mirror of
https://github.com/torvalds/linux.git
synced 2024-11-01 17:51:43 +00:00
28172739f0
There is a small possibility that a reader gets incorrect values on 32 bit arches. SNMP applications could catch incorrect counters when a 32bit high part is changed by another stats consumer/provider. One way to solve this is to add a rtnl_link_stats64 param to all ndo_get_stats64() methods, and also add such a parameter to dev_get_stats(). Rule is that we are not allowed to use dev->stats64 as a temporary storage for 64bit stats, but a caller provided area (usually on stack) Old drivers (only providing get_stats() method) need no changes. Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2506 lines
66 KiB
C
2506 lines
66 KiB
C
/****************************************************************************
|
|
* Driver for Solarflare Solarstorm network controllers and boards
|
|
* Copyright 2005-2006 Fen Systems Ltd.
|
|
* Copyright 2005-2009 Solarflare Communications Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/in.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/gfp.h>
|
|
#include "net_driver.h"
|
|
#include "efx.h"
|
|
#include "mdio_10g.h"
|
|
#include "nic.h"
|
|
|
|
#include "mcdi.h"
|
|
#include "workarounds.h"
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Type name strings
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
/* Loopback mode names (see LOOPBACK_MODE()) */
|
|
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
|
|
const char *efx_loopback_mode_names[] = {
|
|
[LOOPBACK_NONE] = "NONE",
|
|
[LOOPBACK_DATA] = "DATAPATH",
|
|
[LOOPBACK_GMAC] = "GMAC",
|
|
[LOOPBACK_XGMII] = "XGMII",
|
|
[LOOPBACK_XGXS] = "XGXS",
|
|
[LOOPBACK_XAUI] = "XAUI",
|
|
[LOOPBACK_GMII] = "GMII",
|
|
[LOOPBACK_SGMII] = "SGMII",
|
|
[LOOPBACK_XGBR] = "XGBR",
|
|
[LOOPBACK_XFI] = "XFI",
|
|
[LOOPBACK_XAUI_FAR] = "XAUI_FAR",
|
|
[LOOPBACK_GMII_FAR] = "GMII_FAR",
|
|
[LOOPBACK_SGMII_FAR] = "SGMII_FAR",
|
|
[LOOPBACK_XFI_FAR] = "XFI_FAR",
|
|
[LOOPBACK_GPHY] = "GPHY",
|
|
[LOOPBACK_PHYXS] = "PHYXS",
|
|
[LOOPBACK_PCS] = "PCS",
|
|
[LOOPBACK_PMAPMD] = "PMA/PMD",
|
|
[LOOPBACK_XPORT] = "XPORT",
|
|
[LOOPBACK_XGMII_WS] = "XGMII_WS",
|
|
[LOOPBACK_XAUI_WS] = "XAUI_WS",
|
|
[LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
|
|
[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
|
|
[LOOPBACK_GMII_WS] = "GMII_WS",
|
|
[LOOPBACK_XFI_WS] = "XFI_WS",
|
|
[LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
|
|
[LOOPBACK_PHYXS_WS] = "PHYXS_WS",
|
|
};
|
|
|
|
/* Interrupt mode names (see INT_MODE())) */
|
|
const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
|
|
const char *efx_interrupt_mode_names[] = {
|
|
[EFX_INT_MODE_MSIX] = "MSI-X",
|
|
[EFX_INT_MODE_MSI] = "MSI",
|
|
[EFX_INT_MODE_LEGACY] = "legacy",
|
|
};
|
|
|
|
const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
|
|
const char *efx_reset_type_names[] = {
|
|
[RESET_TYPE_INVISIBLE] = "INVISIBLE",
|
|
[RESET_TYPE_ALL] = "ALL",
|
|
[RESET_TYPE_WORLD] = "WORLD",
|
|
[RESET_TYPE_DISABLE] = "DISABLE",
|
|
[RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
|
|
[RESET_TYPE_INT_ERROR] = "INT_ERROR",
|
|
[RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
|
|
[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
|
|
[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
|
|
[RESET_TYPE_TX_SKIP] = "TX_SKIP",
|
|
[RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
|
|
};
|
|
|
|
#define EFX_MAX_MTU (9 * 1024)
|
|
|
|
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
|
|
* queued onto this work queue. This is not a per-nic work queue, because
|
|
* efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
|
|
*/
|
|
static struct workqueue_struct *reset_workqueue;
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Configurable values
|
|
*
|
|
*************************************************************************/
|
|
|
|
/*
|
|
* Use separate channels for TX and RX events
|
|
*
|
|
* Set this to 1 to use separate channels for TX and RX. It allows us
|
|
* to control interrupt affinity separately for TX and RX.
|
|
*
|
|
* This is only used in MSI-X interrupt mode
|
|
*/
|
|
static unsigned int separate_tx_channels;
|
|
module_param(separate_tx_channels, uint, 0644);
|
|
MODULE_PARM_DESC(separate_tx_channels,
|
|
"Use separate channels for TX and RX");
|
|
|
|
/* This is the weight assigned to each of the (per-channel) virtual
|
|
* NAPI devices.
|
|
*/
|
|
static int napi_weight = 64;
|
|
|
|
/* This is the time (in jiffies) between invocations of the hardware
|
|
* monitor, which checks for known hardware bugs and resets the
|
|
* hardware and driver as necessary.
|
|
*/
|
|
unsigned int efx_monitor_interval = 1 * HZ;
|
|
|
|
/* This controls whether or not the driver will initialise devices
|
|
* with invalid MAC addresses stored in the EEPROM or flash. If true,
|
|
* such devices will be initialised with a random locally-generated
|
|
* MAC address. This allows for loading the sfc_mtd driver to
|
|
* reprogram the flash, even if the flash contents (including the MAC
|
|
* address) have previously been erased.
|
|
*/
|
|
static unsigned int allow_bad_hwaddr;
|
|
|
|
/* Initial interrupt moderation settings. They can be modified after
|
|
* module load with ethtool.
|
|
*
|
|
* The default for RX should strike a balance between increasing the
|
|
* round-trip latency and reducing overhead.
|
|
*/
|
|
static unsigned int rx_irq_mod_usec = 60;
|
|
|
|
/* Initial interrupt moderation settings. They can be modified after
|
|
* module load with ethtool.
|
|
*
|
|
* This default is chosen to ensure that a 10G link does not go idle
|
|
* while a TX queue is stopped after it has become full. A queue is
|
|
* restarted when it drops below half full. The time this takes (assuming
|
|
* worst case 3 descriptors per packet and 1024 descriptors) is
|
|
* 512 / 3 * 1.2 = 205 usec.
|
|
*/
|
|
static unsigned int tx_irq_mod_usec = 150;
|
|
|
|
/* This is the first interrupt mode to try out of:
|
|
* 0 => MSI-X
|
|
* 1 => MSI
|
|
* 2 => legacy
|
|
*/
|
|
static unsigned int interrupt_mode;
|
|
|
|
/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
|
|
* i.e. the number of CPUs among which we may distribute simultaneous
|
|
* interrupt handling.
|
|
*
|
|
* Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
|
|
* The default (0) means to assign an interrupt to each package (level II cache)
|
|
*/
|
|
static unsigned int rss_cpus;
|
|
module_param(rss_cpus, uint, 0444);
|
|
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
|
|
|
|
static int phy_flash_cfg;
|
|
module_param(phy_flash_cfg, int, 0644);
|
|
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
|
|
|
|
static unsigned irq_adapt_low_thresh = 10000;
|
|
module_param(irq_adapt_low_thresh, uint, 0644);
|
|
MODULE_PARM_DESC(irq_adapt_low_thresh,
|
|
"Threshold score for reducing IRQ moderation");
|
|
|
|
static unsigned irq_adapt_high_thresh = 20000;
|
|
module_param(irq_adapt_high_thresh, uint, 0644);
|
|
MODULE_PARM_DESC(irq_adapt_high_thresh,
|
|
"Threshold score for increasing IRQ moderation");
|
|
|
|
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
|
|
NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
|
|
NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
|
|
NETIF_MSG_TX_ERR | NETIF_MSG_HW);
|
|
module_param(debug, uint, 0);
|
|
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Utility functions and prototypes
|
|
*
|
|
*************************************************************************/
|
|
static void efx_remove_channel(struct efx_channel *channel);
|
|
static void efx_remove_port(struct efx_nic *efx);
|
|
static void efx_fini_napi(struct efx_nic *efx);
|
|
static void efx_fini_channels(struct efx_nic *efx);
|
|
|
|
#define EFX_ASSERT_RESET_SERIALISED(efx) \
|
|
do { \
|
|
if ((efx->state == STATE_RUNNING) || \
|
|
(efx->state == STATE_DISABLED)) \
|
|
ASSERT_RTNL(); \
|
|
} while (0)
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Event queue processing
|
|
*
|
|
*************************************************************************/
|
|
|
|
/* Process channel's event queue
|
|
*
|
|
* This function is responsible for processing the event queue of a
|
|
* single channel. The caller must guarantee that this function will
|
|
* never be concurrently called more than once on the same channel,
|
|
* though different channels may be being processed concurrently.
|
|
*/
|
|
static int efx_process_channel(struct efx_channel *channel, int budget)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
int spent;
|
|
|
|
if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
|
|
!channel->enabled))
|
|
return 0;
|
|
|
|
spent = efx_nic_process_eventq(channel, budget);
|
|
if (spent == 0)
|
|
return 0;
|
|
|
|
/* Deliver last RX packet. */
|
|
if (channel->rx_pkt) {
|
|
__efx_rx_packet(channel, channel->rx_pkt,
|
|
channel->rx_pkt_csummed);
|
|
channel->rx_pkt = NULL;
|
|
}
|
|
|
|
efx_rx_strategy(channel);
|
|
|
|
efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
|
|
|
|
return spent;
|
|
}
|
|
|
|
/* Mark channel as finished processing
|
|
*
|
|
* Note that since we will not receive further interrupts for this
|
|
* channel before we finish processing and call the eventq_read_ack()
|
|
* method, there is no need to use the interrupt hold-off timers.
|
|
*/
|
|
static inline void efx_channel_processed(struct efx_channel *channel)
|
|
{
|
|
/* The interrupt handler for this channel may set work_pending
|
|
* as soon as we acknowledge the events we've seen. Make sure
|
|
* it's cleared before then. */
|
|
channel->work_pending = false;
|
|
smp_wmb();
|
|
|
|
efx_nic_eventq_read_ack(channel);
|
|
}
|
|
|
|
/* NAPI poll handler
|
|
*
|
|
* NAPI guarantees serialisation of polls of the same device, which
|
|
* provides the guarantee required by efx_process_channel().
|
|
*/
|
|
static int efx_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct efx_channel *channel =
|
|
container_of(napi, struct efx_channel, napi_str);
|
|
struct efx_nic *efx = channel->efx;
|
|
int spent;
|
|
|
|
netif_vdbg(efx, intr, efx->net_dev,
|
|
"channel %d NAPI poll executing on CPU %d\n",
|
|
channel->channel, raw_smp_processor_id());
|
|
|
|
spent = efx_process_channel(channel, budget);
|
|
|
|
if (spent < budget) {
|
|
if (channel->channel < efx->n_rx_channels &&
|
|
efx->irq_rx_adaptive &&
|
|
unlikely(++channel->irq_count == 1000)) {
|
|
if (unlikely(channel->irq_mod_score <
|
|
irq_adapt_low_thresh)) {
|
|
if (channel->irq_moderation > 1) {
|
|
channel->irq_moderation -= 1;
|
|
efx->type->push_irq_moderation(channel);
|
|
}
|
|
} else if (unlikely(channel->irq_mod_score >
|
|
irq_adapt_high_thresh)) {
|
|
if (channel->irq_moderation <
|
|
efx->irq_rx_moderation) {
|
|
channel->irq_moderation += 1;
|
|
efx->type->push_irq_moderation(channel);
|
|
}
|
|
}
|
|
channel->irq_count = 0;
|
|
channel->irq_mod_score = 0;
|
|
}
|
|
|
|
/* There is no race here; although napi_disable() will
|
|
* only wait for napi_complete(), this isn't a problem
|
|
* since efx_channel_processed() will have no effect if
|
|
* interrupts have already been disabled.
|
|
*/
|
|
napi_complete(napi);
|
|
efx_channel_processed(channel);
|
|
}
|
|
|
|
return spent;
|
|
}
|
|
|
|
/* Process the eventq of the specified channel immediately on this CPU
|
|
*
|
|
* Disable hardware generated interrupts, wait for any existing
|
|
* processing to finish, then directly poll (and ack ) the eventq.
|
|
* Finally reenable NAPI and interrupts.
|
|
*
|
|
* Since we are touching interrupts the caller should hold the suspend lock
|
|
*/
|
|
void efx_process_channel_now(struct efx_channel *channel)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
BUG_ON(!channel->enabled);
|
|
|
|
/* Disable interrupts and wait for ISRs to complete */
|
|
efx_nic_disable_interrupts(efx);
|
|
if (efx->legacy_irq)
|
|
synchronize_irq(efx->legacy_irq);
|
|
if (channel->irq)
|
|
synchronize_irq(channel->irq);
|
|
|
|
/* Wait for any NAPI processing to complete */
|
|
napi_disable(&channel->napi_str);
|
|
|
|
/* Poll the channel */
|
|
efx_process_channel(channel, EFX_EVQ_SIZE);
|
|
|
|
/* Ack the eventq. This may cause an interrupt to be generated
|
|
* when they are reenabled */
|
|
efx_channel_processed(channel);
|
|
|
|
napi_enable(&channel->napi_str);
|
|
efx_nic_enable_interrupts(efx);
|
|
}
|
|
|
|
/* Create event queue
|
|
* Event queue memory allocations are done only once. If the channel
|
|
* is reset, the memory buffer will be reused; this guards against
|
|
* errors during channel reset and also simplifies interrupt handling.
|
|
*/
|
|
static int efx_probe_eventq(struct efx_channel *channel)
|
|
{
|
|
netif_dbg(channel->efx, probe, channel->efx->net_dev,
|
|
"chan %d create event queue\n", channel->channel);
|
|
|
|
return efx_nic_probe_eventq(channel);
|
|
}
|
|
|
|
/* Prepare channel's event queue */
|
|
static void efx_init_eventq(struct efx_channel *channel)
|
|
{
|
|
netif_dbg(channel->efx, drv, channel->efx->net_dev,
|
|
"chan %d init event queue\n", channel->channel);
|
|
|
|
channel->eventq_read_ptr = 0;
|
|
|
|
efx_nic_init_eventq(channel);
|
|
}
|
|
|
|
static void efx_fini_eventq(struct efx_channel *channel)
|
|
{
|
|
netif_dbg(channel->efx, drv, channel->efx->net_dev,
|
|
"chan %d fini event queue\n", channel->channel);
|
|
|
|
efx_nic_fini_eventq(channel);
|
|
}
|
|
|
|
static void efx_remove_eventq(struct efx_channel *channel)
|
|
{
|
|
netif_dbg(channel->efx, drv, channel->efx->net_dev,
|
|
"chan %d remove event queue\n", channel->channel);
|
|
|
|
efx_nic_remove_eventq(channel);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Channel handling
|
|
*
|
|
*************************************************************************/
|
|
|
|
static int efx_probe_channel(struct efx_channel *channel)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
int rc;
|
|
|
|
netif_dbg(channel->efx, probe, channel->efx->net_dev,
|
|
"creating channel %d\n", channel->channel);
|
|
|
|
rc = efx_probe_eventq(channel);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
efx_for_each_channel_tx_queue(tx_queue, channel) {
|
|
rc = efx_probe_tx_queue(tx_queue);
|
|
if (rc)
|
|
goto fail2;
|
|
}
|
|
|
|
efx_for_each_channel_rx_queue(rx_queue, channel) {
|
|
rc = efx_probe_rx_queue(rx_queue);
|
|
if (rc)
|
|
goto fail3;
|
|
}
|
|
|
|
channel->n_rx_frm_trunc = 0;
|
|
|
|
return 0;
|
|
|
|
fail3:
|
|
efx_for_each_channel_rx_queue(rx_queue, channel)
|
|
efx_remove_rx_queue(rx_queue);
|
|
fail2:
|
|
efx_for_each_channel_tx_queue(tx_queue, channel)
|
|
efx_remove_tx_queue(tx_queue);
|
|
fail1:
|
|
return rc;
|
|
}
|
|
|
|
|
|
static void efx_set_channel_names(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
const char *type = "";
|
|
int number;
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
number = channel->channel;
|
|
if (efx->n_channels > efx->n_rx_channels) {
|
|
if (channel->channel < efx->n_rx_channels) {
|
|
type = "-rx";
|
|
} else {
|
|
type = "-tx";
|
|
number -= efx->n_rx_channels;
|
|
}
|
|
}
|
|
snprintf(channel->name, sizeof(channel->name),
|
|
"%s%s-%d", efx->name, type, number);
|
|
}
|
|
}
|
|
|
|
/* Channels are shutdown and reinitialised whilst the NIC is running
|
|
* to propagate configuration changes (mtu, checksum offload), or
|
|
* to clear hardware error conditions
|
|
*/
|
|
static void efx_init_channels(struct efx_nic *efx)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
struct efx_channel *channel;
|
|
|
|
/* Calculate the rx buffer allocation parameters required to
|
|
* support the current MTU, including padding for header
|
|
* alignment and overruns.
|
|
*/
|
|
efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
|
|
EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
|
|
efx->type->rx_buffer_hash_size +
|
|
efx->type->rx_buffer_padding);
|
|
efx->rx_buffer_order = get_order(efx->rx_buffer_len +
|
|
sizeof(struct efx_rx_page_state));
|
|
|
|
/* Initialise the channels */
|
|
efx_for_each_channel(channel, efx) {
|
|
netif_dbg(channel->efx, drv, channel->efx->net_dev,
|
|
"init chan %d\n", channel->channel);
|
|
|
|
efx_init_eventq(channel);
|
|
|
|
efx_for_each_channel_tx_queue(tx_queue, channel)
|
|
efx_init_tx_queue(tx_queue);
|
|
|
|
/* The rx buffer allocation strategy is MTU dependent */
|
|
efx_rx_strategy(channel);
|
|
|
|
efx_for_each_channel_rx_queue(rx_queue, channel)
|
|
efx_init_rx_queue(rx_queue);
|
|
|
|
WARN_ON(channel->rx_pkt != NULL);
|
|
efx_rx_strategy(channel);
|
|
}
|
|
}
|
|
|
|
/* This enables event queue processing and packet transmission.
|
|
*
|
|
* Note that this function is not allowed to fail, since that would
|
|
* introduce too much complexity into the suspend/resume path.
|
|
*/
|
|
static void efx_start_channel(struct efx_channel *channel)
|
|
{
|
|
struct efx_rx_queue *rx_queue;
|
|
|
|
netif_dbg(channel->efx, ifup, channel->efx->net_dev,
|
|
"starting chan %d\n", channel->channel);
|
|
|
|
/* The interrupt handler for this channel may set work_pending
|
|
* as soon as we enable it. Make sure it's cleared before
|
|
* then. Similarly, make sure it sees the enabled flag set. */
|
|
channel->work_pending = false;
|
|
channel->enabled = true;
|
|
smp_wmb();
|
|
|
|
/* Fill the queues before enabling NAPI */
|
|
efx_for_each_channel_rx_queue(rx_queue, channel)
|
|
efx_fast_push_rx_descriptors(rx_queue);
|
|
|
|
napi_enable(&channel->napi_str);
|
|
}
|
|
|
|
/* This disables event queue processing and packet transmission.
|
|
* This function does not guarantee that all queue processing
|
|
* (e.g. RX refill) is complete.
|
|
*/
|
|
static void efx_stop_channel(struct efx_channel *channel)
|
|
{
|
|
if (!channel->enabled)
|
|
return;
|
|
|
|
netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
|
|
"stop chan %d\n", channel->channel);
|
|
|
|
channel->enabled = false;
|
|
napi_disable(&channel->napi_str);
|
|
}
|
|
|
|
static void efx_fini_channels(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
int rc;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
BUG_ON(efx->port_enabled);
|
|
|
|
rc = efx_nic_flush_queues(efx);
|
|
if (rc && EFX_WORKAROUND_7803(efx)) {
|
|
/* Schedule a reset to recover from the flush failure. The
|
|
* descriptor caches reference memory we're about to free,
|
|
* but falcon_reconfigure_mac_wrapper() won't reconnect
|
|
* the MACs because of the pending reset. */
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"Resetting to recover from flush failure\n");
|
|
efx_schedule_reset(efx, RESET_TYPE_ALL);
|
|
} else if (rc) {
|
|
netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
|
|
} else {
|
|
netif_dbg(efx, drv, efx->net_dev,
|
|
"successfully flushed all queues\n");
|
|
}
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
netif_dbg(channel->efx, drv, channel->efx->net_dev,
|
|
"shut down chan %d\n", channel->channel);
|
|
|
|
efx_for_each_channel_rx_queue(rx_queue, channel)
|
|
efx_fini_rx_queue(rx_queue);
|
|
efx_for_each_channel_tx_queue(tx_queue, channel)
|
|
efx_fini_tx_queue(tx_queue);
|
|
efx_fini_eventq(channel);
|
|
}
|
|
}
|
|
|
|
static void efx_remove_channel(struct efx_channel *channel)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
|
|
netif_dbg(channel->efx, drv, channel->efx->net_dev,
|
|
"destroy chan %d\n", channel->channel);
|
|
|
|
efx_for_each_channel_rx_queue(rx_queue, channel)
|
|
efx_remove_rx_queue(rx_queue);
|
|
efx_for_each_channel_tx_queue(tx_queue, channel)
|
|
efx_remove_tx_queue(tx_queue);
|
|
efx_remove_eventq(channel);
|
|
}
|
|
|
|
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
|
|
{
|
|
mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Port handling
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* This ensures that the kernel is kept informed (via
|
|
* netif_carrier_on/off) of the link status, and also maintains the
|
|
* link status's stop on the port's TX queue.
|
|
*/
|
|
void efx_link_status_changed(struct efx_nic *efx)
|
|
{
|
|
struct efx_link_state *link_state = &efx->link_state;
|
|
|
|
/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
|
|
* that no events are triggered between unregister_netdev() and the
|
|
* driver unloading. A more general condition is that NETDEV_CHANGE
|
|
* can only be generated between NETDEV_UP and NETDEV_DOWN */
|
|
if (!netif_running(efx->net_dev))
|
|
return;
|
|
|
|
if (efx->port_inhibited) {
|
|
netif_carrier_off(efx->net_dev);
|
|
return;
|
|
}
|
|
|
|
if (link_state->up != netif_carrier_ok(efx->net_dev)) {
|
|
efx->n_link_state_changes++;
|
|
|
|
if (link_state->up)
|
|
netif_carrier_on(efx->net_dev);
|
|
else
|
|
netif_carrier_off(efx->net_dev);
|
|
}
|
|
|
|
/* Status message for kernel log */
|
|
if (link_state->up) {
|
|
netif_info(efx, link, efx->net_dev,
|
|
"link up at %uMbps %s-duplex (MTU %d)%s\n",
|
|
link_state->speed, link_state->fd ? "full" : "half",
|
|
efx->net_dev->mtu,
|
|
(efx->promiscuous ? " [PROMISC]" : ""));
|
|
} else {
|
|
netif_info(efx, link, efx->net_dev, "link down\n");
|
|
}
|
|
|
|
}
|
|
|
|
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
|
|
{
|
|
efx->link_advertising = advertising;
|
|
if (advertising) {
|
|
if (advertising & ADVERTISED_Pause)
|
|
efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
|
|
else
|
|
efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
|
|
if (advertising & ADVERTISED_Asym_Pause)
|
|
efx->wanted_fc ^= EFX_FC_TX;
|
|
}
|
|
}
|
|
|
|
void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
|
|
{
|
|
efx->wanted_fc = wanted_fc;
|
|
if (efx->link_advertising) {
|
|
if (wanted_fc & EFX_FC_RX)
|
|
efx->link_advertising |= (ADVERTISED_Pause |
|
|
ADVERTISED_Asym_Pause);
|
|
else
|
|
efx->link_advertising &= ~(ADVERTISED_Pause |
|
|
ADVERTISED_Asym_Pause);
|
|
if (wanted_fc & EFX_FC_TX)
|
|
efx->link_advertising ^= ADVERTISED_Asym_Pause;
|
|
}
|
|
}
|
|
|
|
static void efx_fini_port(struct efx_nic *efx);
|
|
|
|
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
|
|
* the MAC appropriately. All other PHY configuration changes are pushed
|
|
* through phy_op->set_settings(), and pushed asynchronously to the MAC
|
|
* through efx_monitor().
|
|
*
|
|
* Callers must hold the mac_lock
|
|
*/
|
|
int __efx_reconfigure_port(struct efx_nic *efx)
|
|
{
|
|
enum efx_phy_mode phy_mode;
|
|
int rc;
|
|
|
|
WARN_ON(!mutex_is_locked(&efx->mac_lock));
|
|
|
|
/* Serialise the promiscuous flag with efx_set_multicast_list. */
|
|
if (efx_dev_registered(efx)) {
|
|
netif_addr_lock_bh(efx->net_dev);
|
|
netif_addr_unlock_bh(efx->net_dev);
|
|
}
|
|
|
|
/* Disable PHY transmit in mac level loopbacks */
|
|
phy_mode = efx->phy_mode;
|
|
if (LOOPBACK_INTERNAL(efx))
|
|
efx->phy_mode |= PHY_MODE_TX_DISABLED;
|
|
else
|
|
efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
|
|
|
|
rc = efx->type->reconfigure_port(efx);
|
|
|
|
if (rc)
|
|
efx->phy_mode = phy_mode;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Reinitialise the MAC to pick up new PHY settings, even if the port is
|
|
* disabled. */
|
|
int efx_reconfigure_port(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
mutex_lock(&efx->mac_lock);
|
|
rc = __efx_reconfigure_port(efx);
|
|
mutex_unlock(&efx->mac_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Asynchronous work item for changing MAC promiscuity and multicast
|
|
* hash. Avoid a drain/rx_ingress enable by reconfiguring the current
|
|
* MAC directly. */
|
|
static void efx_mac_work(struct work_struct *data)
|
|
{
|
|
struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
|
|
|
|
mutex_lock(&efx->mac_lock);
|
|
if (efx->port_enabled) {
|
|
efx->type->push_multicast_hash(efx);
|
|
efx->mac_op->reconfigure(efx);
|
|
}
|
|
mutex_unlock(&efx->mac_lock);
|
|
}
|
|
|
|
static int efx_probe_port(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
netif_dbg(efx, probe, efx->net_dev, "create port\n");
|
|
|
|
if (phy_flash_cfg)
|
|
efx->phy_mode = PHY_MODE_SPECIAL;
|
|
|
|
/* Connect up MAC/PHY operations table */
|
|
rc = efx->type->probe_port(efx);
|
|
if (rc)
|
|
goto err;
|
|
|
|
/* Sanity check MAC address */
|
|
if (is_valid_ether_addr(efx->mac_address)) {
|
|
memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
|
|
} else {
|
|
netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
|
|
efx->mac_address);
|
|
if (!allow_bad_hwaddr) {
|
|
rc = -EINVAL;
|
|
goto err;
|
|
}
|
|
random_ether_addr(efx->net_dev->dev_addr);
|
|
netif_info(efx, probe, efx->net_dev,
|
|
"using locally-generated MAC %pM\n",
|
|
efx->net_dev->dev_addr);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
efx_remove_port(efx);
|
|
return rc;
|
|
}
|
|
|
|
static int efx_init_port(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
netif_dbg(efx, drv, efx->net_dev, "init port\n");
|
|
|
|
mutex_lock(&efx->mac_lock);
|
|
|
|
rc = efx->phy_op->init(efx);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
efx->port_initialized = true;
|
|
|
|
/* Reconfigure the MAC before creating dma queues (required for
|
|
* Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
|
|
efx->mac_op->reconfigure(efx);
|
|
|
|
/* Ensure the PHY advertises the correct flow control settings */
|
|
rc = efx->phy_op->reconfigure(efx);
|
|
if (rc)
|
|
goto fail2;
|
|
|
|
mutex_unlock(&efx->mac_lock);
|
|
return 0;
|
|
|
|
fail2:
|
|
efx->phy_op->fini(efx);
|
|
fail1:
|
|
mutex_unlock(&efx->mac_lock);
|
|
return rc;
|
|
}
|
|
|
|
static void efx_start_port(struct efx_nic *efx)
|
|
{
|
|
netif_dbg(efx, ifup, efx->net_dev, "start port\n");
|
|
BUG_ON(efx->port_enabled);
|
|
|
|
mutex_lock(&efx->mac_lock);
|
|
efx->port_enabled = true;
|
|
|
|
/* efx_mac_work() might have been scheduled after efx_stop_port(),
|
|
* and then cancelled by efx_flush_all() */
|
|
efx->type->push_multicast_hash(efx);
|
|
efx->mac_op->reconfigure(efx);
|
|
|
|
mutex_unlock(&efx->mac_lock);
|
|
}
|
|
|
|
/* Prevent efx_mac_work() and efx_monitor() from working */
|
|
static void efx_stop_port(struct efx_nic *efx)
|
|
{
|
|
netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
|
|
|
|
mutex_lock(&efx->mac_lock);
|
|
efx->port_enabled = false;
|
|
mutex_unlock(&efx->mac_lock);
|
|
|
|
/* Serialise against efx_set_multicast_list() */
|
|
if (efx_dev_registered(efx)) {
|
|
netif_addr_lock_bh(efx->net_dev);
|
|
netif_addr_unlock_bh(efx->net_dev);
|
|
}
|
|
}
|
|
|
|
static void efx_fini_port(struct efx_nic *efx)
|
|
{
|
|
netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
|
|
|
|
if (!efx->port_initialized)
|
|
return;
|
|
|
|
efx->phy_op->fini(efx);
|
|
efx->port_initialized = false;
|
|
|
|
efx->link_state.up = false;
|
|
efx_link_status_changed(efx);
|
|
}
|
|
|
|
static void efx_remove_port(struct efx_nic *efx)
|
|
{
|
|
netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
|
|
|
|
efx->type->remove_port(efx);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* NIC handling
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* This configures the PCI device to enable I/O and DMA. */
|
|
static int efx_init_io(struct efx_nic *efx)
|
|
{
|
|
struct pci_dev *pci_dev = efx->pci_dev;
|
|
dma_addr_t dma_mask = efx->type->max_dma_mask;
|
|
int rc;
|
|
|
|
netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
|
|
|
|
rc = pci_enable_device(pci_dev);
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"failed to enable PCI device\n");
|
|
goto fail1;
|
|
}
|
|
|
|
pci_set_master(pci_dev);
|
|
|
|
/* Set the PCI DMA mask. Try all possibilities from our
|
|
* genuine mask down to 32 bits, because some architectures
|
|
* (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
|
|
* masks event though they reject 46 bit masks.
|
|
*/
|
|
while (dma_mask > 0x7fffffffUL) {
|
|
if (pci_dma_supported(pci_dev, dma_mask) &&
|
|
((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
|
|
break;
|
|
dma_mask >>= 1;
|
|
}
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"could not find a suitable DMA mask\n");
|
|
goto fail2;
|
|
}
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"using DMA mask %llx\n", (unsigned long long) dma_mask);
|
|
rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
|
|
if (rc) {
|
|
/* pci_set_consistent_dma_mask() is not *allowed* to
|
|
* fail with a mask that pci_set_dma_mask() accepted,
|
|
* but just in case...
|
|
*/
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"failed to set consistent DMA mask\n");
|
|
goto fail2;
|
|
}
|
|
|
|
efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
|
|
rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"request for memory BAR failed\n");
|
|
rc = -EIO;
|
|
goto fail3;
|
|
}
|
|
efx->membase = ioremap_nocache(efx->membase_phys,
|
|
efx->type->mem_map_size);
|
|
if (!efx->membase) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"could not map memory BAR at %llx+%x\n",
|
|
(unsigned long long)efx->membase_phys,
|
|
efx->type->mem_map_size);
|
|
rc = -ENOMEM;
|
|
goto fail4;
|
|
}
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"memory BAR at %llx+%x (virtual %p)\n",
|
|
(unsigned long long)efx->membase_phys,
|
|
efx->type->mem_map_size, efx->membase);
|
|
|
|
return 0;
|
|
|
|
fail4:
|
|
pci_release_region(efx->pci_dev, EFX_MEM_BAR);
|
|
fail3:
|
|
efx->membase_phys = 0;
|
|
fail2:
|
|
pci_disable_device(efx->pci_dev);
|
|
fail1:
|
|
return rc;
|
|
}
|
|
|
|
static void efx_fini_io(struct efx_nic *efx)
|
|
{
|
|
netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
|
|
|
|
if (efx->membase) {
|
|
iounmap(efx->membase);
|
|
efx->membase = NULL;
|
|
}
|
|
|
|
if (efx->membase_phys) {
|
|
pci_release_region(efx->pci_dev, EFX_MEM_BAR);
|
|
efx->membase_phys = 0;
|
|
}
|
|
|
|
pci_disable_device(efx->pci_dev);
|
|
}
|
|
|
|
/* Get number of channels wanted. Each channel will have its own IRQ,
|
|
* 1 RX queue and/or 2 TX queues. */
|
|
static int efx_wanted_channels(void)
|
|
{
|
|
cpumask_var_t core_mask;
|
|
int count;
|
|
int cpu;
|
|
|
|
if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
|
|
printk(KERN_WARNING
|
|
"sfc: RSS disabled due to allocation failure\n");
|
|
return 1;
|
|
}
|
|
|
|
count = 0;
|
|
for_each_online_cpu(cpu) {
|
|
if (!cpumask_test_cpu(cpu, core_mask)) {
|
|
++count;
|
|
cpumask_or(core_mask, core_mask,
|
|
topology_core_cpumask(cpu));
|
|
}
|
|
}
|
|
|
|
free_cpumask_var(core_mask);
|
|
return count;
|
|
}
|
|
|
|
/* Probe the number and type of interrupts we are able to obtain, and
|
|
* the resulting numbers of channels and RX queues.
|
|
*/
|
|
static void efx_probe_interrupts(struct efx_nic *efx)
|
|
{
|
|
int max_channels =
|
|
min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
|
|
int rc, i;
|
|
|
|
if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
|
|
struct msix_entry xentries[EFX_MAX_CHANNELS];
|
|
int n_channels;
|
|
|
|
n_channels = efx_wanted_channels();
|
|
if (separate_tx_channels)
|
|
n_channels *= 2;
|
|
n_channels = min(n_channels, max_channels);
|
|
|
|
for (i = 0; i < n_channels; i++)
|
|
xentries[i].entry = i;
|
|
rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
|
|
if (rc > 0) {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"WARNING: Insufficient MSI-X vectors"
|
|
" available (%d < %d).\n", rc, n_channels);
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"WARNING: Performance may be reduced.\n");
|
|
EFX_BUG_ON_PARANOID(rc >= n_channels);
|
|
n_channels = rc;
|
|
rc = pci_enable_msix(efx->pci_dev, xentries,
|
|
n_channels);
|
|
}
|
|
|
|
if (rc == 0) {
|
|
efx->n_channels = n_channels;
|
|
if (separate_tx_channels) {
|
|
efx->n_tx_channels =
|
|
max(efx->n_channels / 2, 1U);
|
|
efx->n_rx_channels =
|
|
max(efx->n_channels -
|
|
efx->n_tx_channels, 1U);
|
|
} else {
|
|
efx->n_tx_channels = efx->n_channels;
|
|
efx->n_rx_channels = efx->n_channels;
|
|
}
|
|
for (i = 0; i < n_channels; i++)
|
|
efx->channel[i].irq = xentries[i].vector;
|
|
} else {
|
|
/* Fall back to single channel MSI */
|
|
efx->interrupt_mode = EFX_INT_MODE_MSI;
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"could not enable MSI-X\n");
|
|
}
|
|
}
|
|
|
|
/* Try single interrupt MSI */
|
|
if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
|
|
efx->n_channels = 1;
|
|
efx->n_rx_channels = 1;
|
|
efx->n_tx_channels = 1;
|
|
rc = pci_enable_msi(efx->pci_dev);
|
|
if (rc == 0) {
|
|
efx->channel[0].irq = efx->pci_dev->irq;
|
|
} else {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"could not enable MSI\n");
|
|
efx->interrupt_mode = EFX_INT_MODE_LEGACY;
|
|
}
|
|
}
|
|
|
|
/* Assume legacy interrupts */
|
|
if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
|
|
efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
|
|
efx->n_rx_channels = 1;
|
|
efx->n_tx_channels = 1;
|
|
efx->legacy_irq = efx->pci_dev->irq;
|
|
}
|
|
}
|
|
|
|
static void efx_remove_interrupts(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
/* Remove MSI/MSI-X interrupts */
|
|
efx_for_each_channel(channel, efx)
|
|
channel->irq = 0;
|
|
pci_disable_msi(efx->pci_dev);
|
|
pci_disable_msix(efx->pci_dev);
|
|
|
|
/* Remove legacy interrupt */
|
|
efx->legacy_irq = 0;
|
|
}
|
|
|
|
static void efx_set_channels(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
unsigned tx_channel_offset =
|
|
separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
if (channel->channel - tx_channel_offset < efx->n_tx_channels) {
|
|
channel->tx_queue = &efx->tx_queue[
|
|
(channel->channel - tx_channel_offset) *
|
|
EFX_TXQ_TYPES];
|
|
efx_for_each_channel_tx_queue(tx_queue, channel)
|
|
tx_queue->channel = channel;
|
|
}
|
|
}
|
|
|
|
efx_for_each_rx_queue(rx_queue, efx)
|
|
rx_queue->channel = &efx->channel[rx_queue->queue];
|
|
}
|
|
|
|
static int efx_probe_nic(struct efx_nic *efx)
|
|
{
|
|
size_t i;
|
|
int rc;
|
|
|
|
netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
|
|
|
|
/* Carry out hardware-type specific initialisation */
|
|
rc = efx->type->probe(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Determine the number of channels and queues by trying to hook
|
|
* in MSI-X interrupts. */
|
|
efx_probe_interrupts(efx);
|
|
|
|
if (efx->n_channels > 1)
|
|
get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
|
|
for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
|
|
efx->rx_indir_table[i] = i % efx->n_rx_channels;
|
|
|
|
efx_set_channels(efx);
|
|
efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
|
|
|
|
/* Initialise the interrupt moderation settings */
|
|
efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void efx_remove_nic(struct efx_nic *efx)
|
|
{
|
|
netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
|
|
|
|
efx_remove_interrupts(efx);
|
|
efx->type->remove(efx);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* NIC startup/shutdown
|
|
*
|
|
*************************************************************************/
|
|
|
|
static int efx_probe_all(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
int rc;
|
|
|
|
/* Create NIC */
|
|
rc = efx_probe_nic(efx);
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
|
|
goto fail1;
|
|
}
|
|
|
|
/* Create port */
|
|
rc = efx_probe_port(efx);
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev, "failed to create port\n");
|
|
goto fail2;
|
|
}
|
|
|
|
/* Create channels */
|
|
efx_for_each_channel(channel, efx) {
|
|
rc = efx_probe_channel(channel);
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"failed to create channel %d\n",
|
|
channel->channel);
|
|
goto fail3;
|
|
}
|
|
}
|
|
efx_set_channel_names(efx);
|
|
|
|
return 0;
|
|
|
|
fail3:
|
|
efx_for_each_channel(channel, efx)
|
|
efx_remove_channel(channel);
|
|
efx_remove_port(efx);
|
|
fail2:
|
|
efx_remove_nic(efx);
|
|
fail1:
|
|
return rc;
|
|
}
|
|
|
|
/* Called after previous invocation(s) of efx_stop_all, restarts the
|
|
* port, kernel transmit queue, NAPI processing and hardware interrupts,
|
|
* and ensures that the port is scheduled to be reconfigured.
|
|
* This function is safe to call multiple times when the NIC is in any
|
|
* state. */
|
|
static void efx_start_all(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
/* Check that it is appropriate to restart the interface. All
|
|
* of these flags are safe to read under just the rtnl lock */
|
|
if (efx->port_enabled)
|
|
return;
|
|
if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
|
|
return;
|
|
if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
|
|
return;
|
|
|
|
/* Mark the port as enabled so port reconfigurations can start, then
|
|
* restart the transmit interface early so the watchdog timer stops */
|
|
efx_start_port(efx);
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
if (efx_dev_registered(efx))
|
|
efx_wake_queue(channel);
|
|
efx_start_channel(channel);
|
|
}
|
|
|
|
efx_nic_enable_interrupts(efx);
|
|
|
|
/* Switch to event based MCDI completions after enabling interrupts.
|
|
* If a reset has been scheduled, then we need to stay in polled mode.
|
|
* Rather than serialising efx_mcdi_mode_event() [which sleeps] and
|
|
* reset_pending [modified from an atomic context], we instead guarantee
|
|
* that efx_mcdi_mode_poll() isn't reverted erroneously */
|
|
efx_mcdi_mode_event(efx);
|
|
if (efx->reset_pending != RESET_TYPE_NONE)
|
|
efx_mcdi_mode_poll(efx);
|
|
|
|
/* Start the hardware monitor if there is one. Otherwise (we're link
|
|
* event driven), we have to poll the PHY because after an event queue
|
|
* flush, we could have a missed a link state change */
|
|
if (efx->type->monitor != NULL) {
|
|
queue_delayed_work(efx->workqueue, &efx->monitor_work,
|
|
efx_monitor_interval);
|
|
} else {
|
|
mutex_lock(&efx->mac_lock);
|
|
if (efx->phy_op->poll(efx))
|
|
efx_link_status_changed(efx);
|
|
mutex_unlock(&efx->mac_lock);
|
|
}
|
|
|
|
efx->type->start_stats(efx);
|
|
}
|
|
|
|
/* Flush all delayed work. Should only be called when no more delayed work
|
|
* will be scheduled. This doesn't flush pending online resets (efx_reset),
|
|
* since we're holding the rtnl_lock at this point. */
|
|
static void efx_flush_all(struct efx_nic *efx)
|
|
{
|
|
/* Make sure the hardware monitor is stopped */
|
|
cancel_delayed_work_sync(&efx->monitor_work);
|
|
/* Stop scheduled port reconfigurations */
|
|
cancel_work_sync(&efx->mac_work);
|
|
}
|
|
|
|
/* Quiesce hardware and software without bringing the link down.
|
|
* Safe to call multiple times, when the nic and interface is in any
|
|
* state. The caller is guaranteed to subsequently be in a position
|
|
* to modify any hardware and software state they see fit without
|
|
* taking locks. */
|
|
static void efx_stop_all(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
/* port_enabled can be read safely under the rtnl lock */
|
|
if (!efx->port_enabled)
|
|
return;
|
|
|
|
efx->type->stop_stats(efx);
|
|
|
|
/* Switch to MCDI polling on Siena before disabling interrupts */
|
|
efx_mcdi_mode_poll(efx);
|
|
|
|
/* Disable interrupts and wait for ISR to complete */
|
|
efx_nic_disable_interrupts(efx);
|
|
if (efx->legacy_irq)
|
|
synchronize_irq(efx->legacy_irq);
|
|
efx_for_each_channel(channel, efx) {
|
|
if (channel->irq)
|
|
synchronize_irq(channel->irq);
|
|
}
|
|
|
|
/* Stop all NAPI processing and synchronous rx refills */
|
|
efx_for_each_channel(channel, efx)
|
|
efx_stop_channel(channel);
|
|
|
|
/* Stop all asynchronous port reconfigurations. Since all
|
|
* event processing has already been stopped, there is no
|
|
* window to loose phy events */
|
|
efx_stop_port(efx);
|
|
|
|
/* Flush efx_mac_work(), refill_workqueue, monitor_work */
|
|
efx_flush_all(efx);
|
|
|
|
/* Stop the kernel transmit interface late, so the watchdog
|
|
* timer isn't ticking over the flush */
|
|
if (efx_dev_registered(efx)) {
|
|
struct efx_channel *channel;
|
|
efx_for_each_channel(channel, efx)
|
|
efx_stop_queue(channel);
|
|
netif_tx_lock_bh(efx->net_dev);
|
|
netif_tx_unlock_bh(efx->net_dev);
|
|
}
|
|
}
|
|
|
|
static void efx_remove_all(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
efx_for_each_channel(channel, efx)
|
|
efx_remove_channel(channel);
|
|
efx_remove_port(efx);
|
|
efx_remove_nic(efx);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Interrupt moderation
|
|
*
|
|
**************************************************************************/
|
|
|
|
static unsigned irq_mod_ticks(int usecs, int resolution)
|
|
{
|
|
if (usecs <= 0)
|
|
return 0; /* cannot receive interrupts ahead of time :-) */
|
|
if (usecs < resolution)
|
|
return 1; /* never round down to 0 */
|
|
return usecs / resolution;
|
|
}
|
|
|
|
/* Set interrupt moderation parameters */
|
|
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
|
|
bool rx_adaptive)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
|
|
unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
efx_for_each_tx_queue(tx_queue, efx)
|
|
tx_queue->channel->irq_moderation = tx_ticks;
|
|
|
|
efx->irq_rx_adaptive = rx_adaptive;
|
|
efx->irq_rx_moderation = rx_ticks;
|
|
efx_for_each_rx_queue(rx_queue, efx)
|
|
rx_queue->channel->irq_moderation = rx_ticks;
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Hardware monitor
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Run periodically off the general workqueue. Serialised against
|
|
* efx_reconfigure_port via the mac_lock */
|
|
static void efx_monitor(struct work_struct *data)
|
|
{
|
|
struct efx_nic *efx = container_of(data, struct efx_nic,
|
|
monitor_work.work);
|
|
|
|
netif_vdbg(efx, timer, efx->net_dev,
|
|
"hardware monitor executing on CPU %d\n",
|
|
raw_smp_processor_id());
|
|
BUG_ON(efx->type->monitor == NULL);
|
|
|
|
/* If the mac_lock is already held then it is likely a port
|
|
* reconfiguration is already in place, which will likely do
|
|
* most of the work of check_hw() anyway. */
|
|
if (!mutex_trylock(&efx->mac_lock))
|
|
goto out_requeue;
|
|
if (!efx->port_enabled)
|
|
goto out_unlock;
|
|
efx->type->monitor(efx);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&efx->mac_lock);
|
|
out_requeue:
|
|
queue_delayed_work(efx->workqueue, &efx->monitor_work,
|
|
efx_monitor_interval);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* ioctls
|
|
*
|
|
*************************************************************************/
|
|
|
|
/* Net device ioctl
|
|
* Context: process, rtnl_lock() held.
|
|
*/
|
|
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
struct mii_ioctl_data *data = if_mii(ifr);
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
/* Convert phy_id from older PRTAD/DEVAD format */
|
|
if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
|
|
(data->phy_id & 0xfc00) == 0x0400)
|
|
data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
|
|
|
|
return mdio_mii_ioctl(&efx->mdio, data, cmd);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* NAPI interface
|
|
*
|
|
**************************************************************************/
|
|
|
|
static int efx_init_napi(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
channel->napi_dev = efx->net_dev;
|
|
netif_napi_add(channel->napi_dev, &channel->napi_str,
|
|
efx_poll, napi_weight);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void efx_fini_napi(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
if (channel->napi_dev)
|
|
netif_napi_del(&channel->napi_str);
|
|
channel->napi_dev = NULL;
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Kernel netpoll interface
|
|
*
|
|
*************************************************************************/
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
|
|
/* Although in the common case interrupts will be disabled, this is not
|
|
* guaranteed. However, all our work happens inside the NAPI callback,
|
|
* so no locking is required.
|
|
*/
|
|
static void efx_netpoll(struct net_device *net_dev)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
struct efx_channel *channel;
|
|
|
|
efx_for_each_channel(channel, efx)
|
|
efx_schedule_channel(channel);
|
|
}
|
|
|
|
#endif
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Kernel net device interface
|
|
*
|
|
*************************************************************************/
|
|
|
|
/* Context: process, rtnl_lock() held. */
|
|
static int efx_net_open(struct net_device *net_dev)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
|
|
raw_smp_processor_id());
|
|
|
|
if (efx->state == STATE_DISABLED)
|
|
return -EIO;
|
|
if (efx->phy_mode & PHY_MODE_SPECIAL)
|
|
return -EBUSY;
|
|
if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
|
|
return -EIO;
|
|
|
|
/* Notify the kernel of the link state polled during driver load,
|
|
* before the monitor starts running */
|
|
efx_link_status_changed(efx);
|
|
|
|
efx_start_all(efx);
|
|
return 0;
|
|
}
|
|
|
|
/* Context: process, rtnl_lock() held.
|
|
* Note that the kernel will ignore our return code; this method
|
|
* should really be a void.
|
|
*/
|
|
static int efx_net_stop(struct net_device *net_dev)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
|
|
netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
|
|
raw_smp_processor_id());
|
|
|
|
if (efx->state != STATE_DISABLED) {
|
|
/* Stop the device and flush all the channels */
|
|
efx_stop_all(efx);
|
|
efx_fini_channels(efx);
|
|
efx_init_channels(efx);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
|
|
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
struct efx_mac_stats *mac_stats = &efx->mac_stats;
|
|
|
|
spin_lock_bh(&efx->stats_lock);
|
|
efx->type->update_stats(efx);
|
|
spin_unlock_bh(&efx->stats_lock);
|
|
|
|
stats->rx_packets = mac_stats->rx_packets;
|
|
stats->tx_packets = mac_stats->tx_packets;
|
|
stats->rx_bytes = mac_stats->rx_bytes;
|
|
stats->tx_bytes = mac_stats->tx_bytes;
|
|
stats->multicast = mac_stats->rx_multicast;
|
|
stats->collisions = mac_stats->tx_collision;
|
|
stats->rx_length_errors = (mac_stats->rx_gtjumbo +
|
|
mac_stats->rx_length_error);
|
|
stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
|
|
stats->rx_crc_errors = mac_stats->rx_bad;
|
|
stats->rx_frame_errors = mac_stats->rx_align_error;
|
|
stats->rx_fifo_errors = mac_stats->rx_overflow;
|
|
stats->rx_missed_errors = mac_stats->rx_missed;
|
|
stats->tx_window_errors = mac_stats->tx_late_collision;
|
|
|
|
stats->rx_errors = (stats->rx_length_errors +
|
|
stats->rx_crc_errors +
|
|
stats->rx_frame_errors +
|
|
mac_stats->rx_symbol_error);
|
|
stats->tx_errors = (stats->tx_window_errors +
|
|
mac_stats->tx_bad);
|
|
|
|
return stats;
|
|
}
|
|
|
|
/* Context: netif_tx_lock held, BHs disabled. */
|
|
static void efx_watchdog(struct net_device *net_dev)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
|
|
netif_err(efx, tx_err, efx->net_dev,
|
|
"TX stuck with port_enabled=%d: resetting channels\n",
|
|
efx->port_enabled);
|
|
|
|
efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
|
|
}
|
|
|
|
|
|
/* Context: process, rtnl_lock() held. */
|
|
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
int rc = 0;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
if (new_mtu > EFX_MAX_MTU)
|
|
return -EINVAL;
|
|
|
|
efx_stop_all(efx);
|
|
|
|
netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
|
|
|
|
efx_fini_channels(efx);
|
|
|
|
mutex_lock(&efx->mac_lock);
|
|
/* Reconfigure the MAC before enabling the dma queues so that
|
|
* the RX buffers don't overflow */
|
|
net_dev->mtu = new_mtu;
|
|
efx->mac_op->reconfigure(efx);
|
|
mutex_unlock(&efx->mac_lock);
|
|
|
|
efx_init_channels(efx);
|
|
|
|
efx_start_all(efx);
|
|
return rc;
|
|
}
|
|
|
|
static int efx_set_mac_address(struct net_device *net_dev, void *data)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
struct sockaddr *addr = data;
|
|
char *new_addr = addr->sa_data;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
if (!is_valid_ether_addr(new_addr)) {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"invalid ethernet MAC address requested: %pM\n",
|
|
new_addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
|
|
|
|
/* Reconfigure the MAC */
|
|
mutex_lock(&efx->mac_lock);
|
|
efx->mac_op->reconfigure(efx);
|
|
mutex_unlock(&efx->mac_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Context: netif_addr_lock held, BHs disabled. */
|
|
static void efx_set_multicast_list(struct net_device *net_dev)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
struct netdev_hw_addr *ha;
|
|
union efx_multicast_hash *mc_hash = &efx->multicast_hash;
|
|
u32 crc;
|
|
int bit;
|
|
|
|
efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
|
|
|
|
/* Build multicast hash table */
|
|
if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
|
|
memset(mc_hash, 0xff, sizeof(*mc_hash));
|
|
} else {
|
|
memset(mc_hash, 0x00, sizeof(*mc_hash));
|
|
netdev_for_each_mc_addr(ha, net_dev) {
|
|
crc = ether_crc_le(ETH_ALEN, ha->addr);
|
|
bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
|
|
set_bit_le(bit, mc_hash->byte);
|
|
}
|
|
|
|
/* Broadcast packets go through the multicast hash filter.
|
|
* ether_crc_le() of the broadcast address is 0xbe2612ff
|
|
* so we always add bit 0xff to the mask.
|
|
*/
|
|
set_bit_le(0xff, mc_hash->byte);
|
|
}
|
|
|
|
if (efx->port_enabled)
|
|
queue_work(efx->workqueue, &efx->mac_work);
|
|
/* Otherwise efx_start_port() will do this */
|
|
}
|
|
|
|
static const struct net_device_ops efx_netdev_ops = {
|
|
.ndo_open = efx_net_open,
|
|
.ndo_stop = efx_net_stop,
|
|
.ndo_get_stats64 = efx_net_stats,
|
|
.ndo_tx_timeout = efx_watchdog,
|
|
.ndo_start_xmit = efx_hard_start_xmit,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_do_ioctl = efx_ioctl,
|
|
.ndo_change_mtu = efx_change_mtu,
|
|
.ndo_set_mac_address = efx_set_mac_address,
|
|
.ndo_set_multicast_list = efx_set_multicast_list,
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
.ndo_poll_controller = efx_netpoll,
|
|
#endif
|
|
};
|
|
|
|
static void efx_update_name(struct efx_nic *efx)
|
|
{
|
|
strcpy(efx->name, efx->net_dev->name);
|
|
efx_mtd_rename(efx);
|
|
efx_set_channel_names(efx);
|
|
}
|
|
|
|
static int efx_netdev_event(struct notifier_block *this,
|
|
unsigned long event, void *ptr)
|
|
{
|
|
struct net_device *net_dev = ptr;
|
|
|
|
if (net_dev->netdev_ops == &efx_netdev_ops &&
|
|
event == NETDEV_CHANGENAME)
|
|
efx_update_name(netdev_priv(net_dev));
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block efx_netdev_notifier = {
|
|
.notifier_call = efx_netdev_event,
|
|
};
|
|
|
|
static ssize_t
|
|
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
|
|
{
|
|
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
|
|
return sprintf(buf, "%d\n", efx->phy_type);
|
|
}
|
|
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
|
|
|
|
static int efx_register_netdev(struct efx_nic *efx)
|
|
{
|
|
struct net_device *net_dev = efx->net_dev;
|
|
int rc;
|
|
|
|
net_dev->watchdog_timeo = 5 * HZ;
|
|
net_dev->irq = efx->pci_dev->irq;
|
|
net_dev->netdev_ops = &efx_netdev_ops;
|
|
SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
|
|
|
|
/* Clear MAC statistics */
|
|
efx->mac_op->update_stats(efx);
|
|
memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
|
|
|
|
rtnl_lock();
|
|
|
|
rc = dev_alloc_name(net_dev, net_dev->name);
|
|
if (rc < 0)
|
|
goto fail_locked;
|
|
efx_update_name(efx);
|
|
|
|
rc = register_netdevice(net_dev);
|
|
if (rc)
|
|
goto fail_locked;
|
|
|
|
/* Always start with carrier off; PHY events will detect the link */
|
|
netif_carrier_off(efx->net_dev);
|
|
|
|
rtnl_unlock();
|
|
|
|
rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
|
|
if (rc) {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"failed to init net dev attributes\n");
|
|
goto fail_registered;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_locked:
|
|
rtnl_unlock();
|
|
netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
|
|
return rc;
|
|
|
|
fail_registered:
|
|
unregister_netdev(net_dev);
|
|
return rc;
|
|
}
|
|
|
|
static void efx_unregister_netdev(struct efx_nic *efx)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
|
|
if (!efx->net_dev)
|
|
return;
|
|
|
|
BUG_ON(netdev_priv(efx->net_dev) != efx);
|
|
|
|
/* Free up any skbs still remaining. This has to happen before
|
|
* we try to unregister the netdev as running their destructors
|
|
* may be needed to get the device ref. count to 0. */
|
|
efx_for_each_tx_queue(tx_queue, efx)
|
|
efx_release_tx_buffers(tx_queue);
|
|
|
|
if (efx_dev_registered(efx)) {
|
|
strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
|
|
device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
|
|
unregister_netdev(efx->net_dev);
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Device reset and suspend
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Tears down the entire software state and most of the hardware state
|
|
* before reset. */
|
|
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
|
|
{
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
efx_stop_all(efx);
|
|
mutex_lock(&efx->mac_lock);
|
|
mutex_lock(&efx->spi_lock);
|
|
|
|
efx_fini_channels(efx);
|
|
if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
|
|
efx->phy_op->fini(efx);
|
|
efx->type->fini(efx);
|
|
}
|
|
|
|
/* This function will always ensure that the locks acquired in
|
|
* efx_reset_down() are released. A failure return code indicates
|
|
* that we were unable to reinitialise the hardware, and the
|
|
* driver should be disabled. If ok is false, then the rx and tx
|
|
* engines are not restarted, pending a RESET_DISABLE. */
|
|
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
|
|
{
|
|
int rc;
|
|
|
|
EFX_ASSERT_RESET_SERIALISED(efx);
|
|
|
|
rc = efx->type->init(efx);
|
|
if (rc) {
|
|
netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (!ok)
|
|
goto fail;
|
|
|
|
if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
|
|
rc = efx->phy_op->init(efx);
|
|
if (rc)
|
|
goto fail;
|
|
if (efx->phy_op->reconfigure(efx))
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"could not restore PHY settings\n");
|
|
}
|
|
|
|
efx->mac_op->reconfigure(efx);
|
|
|
|
efx_init_channels(efx);
|
|
|
|
mutex_unlock(&efx->spi_lock);
|
|
mutex_unlock(&efx->mac_lock);
|
|
|
|
efx_start_all(efx);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
efx->port_initialized = false;
|
|
|
|
mutex_unlock(&efx->spi_lock);
|
|
mutex_unlock(&efx->mac_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Reset the NIC using the specified method. Note that the reset may
|
|
* fail, in which case the card will be left in an unusable state.
|
|
*
|
|
* Caller must hold the rtnl_lock.
|
|
*/
|
|
int efx_reset(struct efx_nic *efx, enum reset_type method)
|
|
{
|
|
int rc, rc2;
|
|
bool disabled;
|
|
|
|
netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
|
|
RESET_TYPE(method));
|
|
|
|
efx_reset_down(efx, method);
|
|
|
|
rc = efx->type->reset(efx, method);
|
|
if (rc) {
|
|
netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
|
|
goto out;
|
|
}
|
|
|
|
/* Allow resets to be rescheduled. */
|
|
efx->reset_pending = RESET_TYPE_NONE;
|
|
|
|
/* Reinitialise bus-mastering, which may have been turned off before
|
|
* the reset was scheduled. This is still appropriate, even in the
|
|
* RESET_TYPE_DISABLE since this driver generally assumes the hardware
|
|
* can respond to requests. */
|
|
pci_set_master(efx->pci_dev);
|
|
|
|
out:
|
|
/* Leave device stopped if necessary */
|
|
disabled = rc || method == RESET_TYPE_DISABLE;
|
|
rc2 = efx_reset_up(efx, method, !disabled);
|
|
if (rc2) {
|
|
disabled = true;
|
|
if (!rc)
|
|
rc = rc2;
|
|
}
|
|
|
|
if (disabled) {
|
|
dev_close(efx->net_dev);
|
|
netif_err(efx, drv, efx->net_dev, "has been disabled\n");
|
|
efx->state = STATE_DISABLED;
|
|
} else {
|
|
netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* The worker thread exists so that code that cannot sleep can
|
|
* schedule a reset for later.
|
|
*/
|
|
static void efx_reset_work(struct work_struct *data)
|
|
{
|
|
struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
|
|
|
|
if (efx->reset_pending == RESET_TYPE_NONE)
|
|
return;
|
|
|
|
/* If we're not RUNNING then don't reset. Leave the reset_pending
|
|
* flag set so that efx_pci_probe_main will be retried */
|
|
if (efx->state != STATE_RUNNING) {
|
|
netif_info(efx, drv, efx->net_dev,
|
|
"scheduled reset quenched. NIC not RUNNING\n");
|
|
return;
|
|
}
|
|
|
|
rtnl_lock();
|
|
(void)efx_reset(efx, efx->reset_pending);
|
|
rtnl_unlock();
|
|
}
|
|
|
|
void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
|
|
{
|
|
enum reset_type method;
|
|
|
|
if (efx->reset_pending != RESET_TYPE_NONE) {
|
|
netif_info(efx, drv, efx->net_dev,
|
|
"quenching already scheduled reset\n");
|
|
return;
|
|
}
|
|
|
|
switch (type) {
|
|
case RESET_TYPE_INVISIBLE:
|
|
case RESET_TYPE_ALL:
|
|
case RESET_TYPE_WORLD:
|
|
case RESET_TYPE_DISABLE:
|
|
method = type;
|
|
break;
|
|
case RESET_TYPE_RX_RECOVERY:
|
|
case RESET_TYPE_RX_DESC_FETCH:
|
|
case RESET_TYPE_TX_DESC_FETCH:
|
|
case RESET_TYPE_TX_SKIP:
|
|
method = RESET_TYPE_INVISIBLE;
|
|
break;
|
|
case RESET_TYPE_MC_FAILURE:
|
|
default:
|
|
method = RESET_TYPE_ALL;
|
|
break;
|
|
}
|
|
|
|
if (method != type)
|
|
netif_dbg(efx, drv, efx->net_dev,
|
|
"scheduling %s reset for %s\n",
|
|
RESET_TYPE(method), RESET_TYPE(type));
|
|
else
|
|
netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
|
|
RESET_TYPE(method));
|
|
|
|
efx->reset_pending = method;
|
|
|
|
/* efx_process_channel() will no longer read events once a
|
|
* reset is scheduled. So switch back to poll'd MCDI completions. */
|
|
efx_mcdi_mode_poll(efx);
|
|
|
|
queue_work(reset_workqueue, &efx->reset_work);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* List of NICs we support
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* PCI device ID table */
|
|
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
|
|
{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
|
|
.driver_data = (unsigned long) &falcon_a1_nic_type},
|
|
{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
|
|
.driver_data = (unsigned long) &falcon_b0_nic_type},
|
|
{PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
|
|
.driver_data = (unsigned long) &siena_a0_nic_type},
|
|
{PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
|
|
.driver_data = (unsigned long) &siena_a0_nic_type},
|
|
{0} /* end of list */
|
|
};
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Dummy PHY/MAC operations
|
|
*
|
|
* Can be used for some unimplemented operations
|
|
* Needed so all function pointers are valid and do not have to be tested
|
|
* before use
|
|
*
|
|
**************************************************************************/
|
|
int efx_port_dummy_op_int(struct efx_nic *efx)
|
|
{
|
|
return 0;
|
|
}
|
|
void efx_port_dummy_op_void(struct efx_nic *efx) {}
|
|
void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
|
|
{
|
|
}
|
|
bool efx_port_dummy_op_poll(struct efx_nic *efx)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static struct efx_phy_operations efx_dummy_phy_operations = {
|
|
.init = efx_port_dummy_op_int,
|
|
.reconfigure = efx_port_dummy_op_int,
|
|
.poll = efx_port_dummy_op_poll,
|
|
.fini = efx_port_dummy_op_void,
|
|
};
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Data housekeeping
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* This zeroes out and then fills in the invariants in a struct
|
|
* efx_nic (including all sub-structures).
|
|
*/
|
|
static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
|
|
struct pci_dev *pci_dev, struct net_device *net_dev)
|
|
{
|
|
struct efx_channel *channel;
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
int i;
|
|
|
|
/* Initialise common structures */
|
|
memset(efx, 0, sizeof(*efx));
|
|
spin_lock_init(&efx->biu_lock);
|
|
mutex_init(&efx->mdio_lock);
|
|
mutex_init(&efx->spi_lock);
|
|
#ifdef CONFIG_SFC_MTD
|
|
INIT_LIST_HEAD(&efx->mtd_list);
|
|
#endif
|
|
INIT_WORK(&efx->reset_work, efx_reset_work);
|
|
INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
|
|
efx->pci_dev = pci_dev;
|
|
efx->msg_enable = debug;
|
|
efx->state = STATE_INIT;
|
|
efx->reset_pending = RESET_TYPE_NONE;
|
|
strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
|
|
|
|
efx->net_dev = net_dev;
|
|
efx->rx_checksum_enabled = true;
|
|
spin_lock_init(&efx->stats_lock);
|
|
mutex_init(&efx->mac_lock);
|
|
efx->mac_op = type->default_mac_ops;
|
|
efx->phy_op = &efx_dummy_phy_operations;
|
|
efx->mdio.dev = net_dev;
|
|
INIT_WORK(&efx->mac_work, efx_mac_work);
|
|
|
|
for (i = 0; i < EFX_MAX_CHANNELS; i++) {
|
|
channel = &efx->channel[i];
|
|
channel->efx = efx;
|
|
channel->channel = i;
|
|
channel->work_pending = false;
|
|
spin_lock_init(&channel->tx_stop_lock);
|
|
atomic_set(&channel->tx_stop_count, 1);
|
|
}
|
|
for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
|
|
tx_queue = &efx->tx_queue[i];
|
|
tx_queue->efx = efx;
|
|
tx_queue->queue = i;
|
|
tx_queue->buffer = NULL;
|
|
tx_queue->channel = &efx->channel[0]; /* for safety */
|
|
tx_queue->tso_headers_free = NULL;
|
|
}
|
|
for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
|
|
rx_queue = &efx->rx_queue[i];
|
|
rx_queue->efx = efx;
|
|
rx_queue->queue = i;
|
|
rx_queue->channel = &efx->channel[0]; /* for safety */
|
|
rx_queue->buffer = NULL;
|
|
setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
|
|
(unsigned long)rx_queue);
|
|
}
|
|
|
|
efx->type = type;
|
|
|
|
/* As close as we can get to guaranteeing that we don't overflow */
|
|
BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
|
|
|
|
EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
|
|
|
|
/* Higher numbered interrupt modes are less capable! */
|
|
efx->interrupt_mode = max(efx->type->max_interrupt_mode,
|
|
interrupt_mode);
|
|
|
|
/* Would be good to use the net_dev name, but we're too early */
|
|
snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
|
|
pci_name(pci_dev));
|
|
efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
|
|
if (!efx->workqueue)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void efx_fini_struct(struct efx_nic *efx)
|
|
{
|
|
if (efx->workqueue) {
|
|
destroy_workqueue(efx->workqueue);
|
|
efx->workqueue = NULL;
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* PCI interface
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Main body of final NIC shutdown code
|
|
* This is called only at module unload (or hotplug removal).
|
|
*/
|
|
static void efx_pci_remove_main(struct efx_nic *efx)
|
|
{
|
|
efx_nic_fini_interrupt(efx);
|
|
efx_fini_channels(efx);
|
|
efx_fini_port(efx);
|
|
efx->type->fini(efx);
|
|
efx_fini_napi(efx);
|
|
efx_remove_all(efx);
|
|
}
|
|
|
|
/* Final NIC shutdown
|
|
* This is called only at module unload (or hotplug removal).
|
|
*/
|
|
static void efx_pci_remove(struct pci_dev *pci_dev)
|
|
{
|
|
struct efx_nic *efx;
|
|
|
|
efx = pci_get_drvdata(pci_dev);
|
|
if (!efx)
|
|
return;
|
|
|
|
/* Mark the NIC as fini, then stop the interface */
|
|
rtnl_lock();
|
|
efx->state = STATE_FINI;
|
|
dev_close(efx->net_dev);
|
|
|
|
/* Allow any queued efx_resets() to complete */
|
|
rtnl_unlock();
|
|
|
|
efx_unregister_netdev(efx);
|
|
|
|
efx_mtd_remove(efx);
|
|
|
|
/* Wait for any scheduled resets to complete. No more will be
|
|
* scheduled from this point because efx_stop_all() has been
|
|
* called, we are no longer registered with driverlink, and
|
|
* the net_device's have been removed. */
|
|
cancel_work_sync(&efx->reset_work);
|
|
|
|
efx_pci_remove_main(efx);
|
|
|
|
efx_fini_io(efx);
|
|
netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
|
|
|
|
pci_set_drvdata(pci_dev, NULL);
|
|
efx_fini_struct(efx);
|
|
free_netdev(efx->net_dev);
|
|
};
|
|
|
|
/* Main body of NIC initialisation
|
|
* This is called at module load (or hotplug insertion, theoretically).
|
|
*/
|
|
static int efx_pci_probe_main(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
/* Do start-of-day initialisation */
|
|
rc = efx_probe_all(efx);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
rc = efx_init_napi(efx);
|
|
if (rc)
|
|
goto fail2;
|
|
|
|
rc = efx->type->init(efx);
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"failed to initialise NIC\n");
|
|
goto fail3;
|
|
}
|
|
|
|
rc = efx_init_port(efx);
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"failed to initialise port\n");
|
|
goto fail4;
|
|
}
|
|
|
|
efx_init_channels(efx);
|
|
|
|
rc = efx_nic_init_interrupt(efx);
|
|
if (rc)
|
|
goto fail5;
|
|
|
|
return 0;
|
|
|
|
fail5:
|
|
efx_fini_channels(efx);
|
|
efx_fini_port(efx);
|
|
fail4:
|
|
efx->type->fini(efx);
|
|
fail3:
|
|
efx_fini_napi(efx);
|
|
fail2:
|
|
efx_remove_all(efx);
|
|
fail1:
|
|
return rc;
|
|
}
|
|
|
|
/* NIC initialisation
|
|
*
|
|
* This is called at module load (or hotplug insertion,
|
|
* theoretically). It sets up PCI mappings, tests and resets the NIC,
|
|
* sets up and registers the network devices with the kernel and hooks
|
|
* the interrupt service routine. It does not prepare the device for
|
|
* transmission; this is left to the first time one of the network
|
|
* interfaces is brought up (i.e. efx_net_open).
|
|
*/
|
|
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
|
|
const struct pci_device_id *entry)
|
|
{
|
|
struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
|
|
struct net_device *net_dev;
|
|
struct efx_nic *efx;
|
|
int i, rc;
|
|
|
|
/* Allocate and initialise a struct net_device and struct efx_nic */
|
|
net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
|
|
if (!net_dev)
|
|
return -ENOMEM;
|
|
net_dev->features |= (type->offload_features | NETIF_F_SG |
|
|
NETIF_F_HIGHDMA | NETIF_F_TSO |
|
|
NETIF_F_GRO);
|
|
if (type->offload_features & NETIF_F_V6_CSUM)
|
|
net_dev->features |= NETIF_F_TSO6;
|
|
/* Mask for features that also apply to VLAN devices */
|
|
net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
|
|
NETIF_F_HIGHDMA | NETIF_F_TSO);
|
|
efx = netdev_priv(net_dev);
|
|
pci_set_drvdata(pci_dev, efx);
|
|
SET_NETDEV_DEV(net_dev, &pci_dev->dev);
|
|
rc = efx_init_struct(efx, type, pci_dev, net_dev);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
netif_info(efx, probe, efx->net_dev,
|
|
"Solarflare Communications NIC detected\n");
|
|
|
|
/* Set up basic I/O (BAR mappings etc) */
|
|
rc = efx_init_io(efx);
|
|
if (rc)
|
|
goto fail2;
|
|
|
|
/* No serialisation is required with the reset path because
|
|
* we're in STATE_INIT. */
|
|
for (i = 0; i < 5; i++) {
|
|
rc = efx_pci_probe_main(efx);
|
|
|
|
/* Serialise against efx_reset(). No more resets will be
|
|
* scheduled since efx_stop_all() has been called, and we
|
|
* have not and never have been registered with either
|
|
* the rtnetlink or driverlink layers. */
|
|
cancel_work_sync(&efx->reset_work);
|
|
|
|
if (rc == 0) {
|
|
if (efx->reset_pending != RESET_TYPE_NONE) {
|
|
/* If there was a scheduled reset during
|
|
* probe, the NIC is probably hosed anyway */
|
|
efx_pci_remove_main(efx);
|
|
rc = -EIO;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Retry if a recoverably reset event has been scheduled */
|
|
if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
|
|
(efx->reset_pending != RESET_TYPE_ALL))
|
|
goto fail3;
|
|
|
|
efx->reset_pending = RESET_TYPE_NONE;
|
|
}
|
|
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
|
|
goto fail4;
|
|
}
|
|
|
|
/* Switch to the running state before we expose the device to the OS,
|
|
* so that dev_open()|efx_start_all() will actually start the device */
|
|
efx->state = STATE_RUNNING;
|
|
|
|
rc = efx_register_netdev(efx);
|
|
if (rc)
|
|
goto fail5;
|
|
|
|
netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
|
|
|
|
rtnl_lock();
|
|
efx_mtd_probe(efx); /* allowed to fail */
|
|
rtnl_unlock();
|
|
return 0;
|
|
|
|
fail5:
|
|
efx_pci_remove_main(efx);
|
|
fail4:
|
|
fail3:
|
|
efx_fini_io(efx);
|
|
fail2:
|
|
efx_fini_struct(efx);
|
|
fail1:
|
|
WARN_ON(rc > 0);
|
|
netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
|
|
free_netdev(net_dev);
|
|
return rc;
|
|
}
|
|
|
|
static int efx_pm_freeze(struct device *dev)
|
|
{
|
|
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
|
|
|
|
efx->state = STATE_FINI;
|
|
|
|
netif_device_detach(efx->net_dev);
|
|
|
|
efx_stop_all(efx);
|
|
efx_fini_channels(efx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int efx_pm_thaw(struct device *dev)
|
|
{
|
|
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
|
|
|
|
efx->state = STATE_INIT;
|
|
|
|
efx_init_channels(efx);
|
|
|
|
mutex_lock(&efx->mac_lock);
|
|
efx->phy_op->reconfigure(efx);
|
|
mutex_unlock(&efx->mac_lock);
|
|
|
|
efx_start_all(efx);
|
|
|
|
netif_device_attach(efx->net_dev);
|
|
|
|
efx->state = STATE_RUNNING;
|
|
|
|
efx->type->resume_wol(efx);
|
|
|
|
/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
|
|
queue_work(reset_workqueue, &efx->reset_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int efx_pm_poweroff(struct device *dev)
|
|
{
|
|
struct pci_dev *pci_dev = to_pci_dev(dev);
|
|
struct efx_nic *efx = pci_get_drvdata(pci_dev);
|
|
|
|
efx->type->fini(efx);
|
|
|
|
efx->reset_pending = RESET_TYPE_NONE;
|
|
|
|
pci_save_state(pci_dev);
|
|
return pci_set_power_state(pci_dev, PCI_D3hot);
|
|
}
|
|
|
|
/* Used for both resume and restore */
|
|
static int efx_pm_resume(struct device *dev)
|
|
{
|
|
struct pci_dev *pci_dev = to_pci_dev(dev);
|
|
struct efx_nic *efx = pci_get_drvdata(pci_dev);
|
|
int rc;
|
|
|
|
rc = pci_set_power_state(pci_dev, PCI_D0);
|
|
if (rc)
|
|
return rc;
|
|
pci_restore_state(pci_dev);
|
|
rc = pci_enable_device(pci_dev);
|
|
if (rc)
|
|
return rc;
|
|
pci_set_master(efx->pci_dev);
|
|
rc = efx->type->reset(efx, RESET_TYPE_ALL);
|
|
if (rc)
|
|
return rc;
|
|
rc = efx->type->init(efx);
|
|
if (rc)
|
|
return rc;
|
|
efx_pm_thaw(dev);
|
|
return 0;
|
|
}
|
|
|
|
static int efx_pm_suspend(struct device *dev)
|
|
{
|
|
int rc;
|
|
|
|
efx_pm_freeze(dev);
|
|
rc = efx_pm_poweroff(dev);
|
|
if (rc)
|
|
efx_pm_resume(dev);
|
|
return rc;
|
|
}
|
|
|
|
static struct dev_pm_ops efx_pm_ops = {
|
|
.suspend = efx_pm_suspend,
|
|
.resume = efx_pm_resume,
|
|
.freeze = efx_pm_freeze,
|
|
.thaw = efx_pm_thaw,
|
|
.poweroff = efx_pm_poweroff,
|
|
.restore = efx_pm_resume,
|
|
};
|
|
|
|
static struct pci_driver efx_pci_driver = {
|
|
.name = KBUILD_MODNAME,
|
|
.id_table = efx_pci_table,
|
|
.probe = efx_pci_probe,
|
|
.remove = efx_pci_remove,
|
|
.driver.pm = &efx_pm_ops,
|
|
};
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Kernel module interface
|
|
*
|
|
*************************************************************************/
|
|
|
|
module_param(interrupt_mode, uint, 0444);
|
|
MODULE_PARM_DESC(interrupt_mode,
|
|
"Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
|
|
|
|
static int __init efx_init_module(void)
|
|
{
|
|
int rc;
|
|
|
|
printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
|
|
|
|
rc = register_netdevice_notifier(&efx_netdev_notifier);
|
|
if (rc)
|
|
goto err_notifier;
|
|
|
|
reset_workqueue = create_singlethread_workqueue("sfc_reset");
|
|
if (!reset_workqueue) {
|
|
rc = -ENOMEM;
|
|
goto err_reset;
|
|
}
|
|
|
|
rc = pci_register_driver(&efx_pci_driver);
|
|
if (rc < 0)
|
|
goto err_pci;
|
|
|
|
return 0;
|
|
|
|
err_pci:
|
|
destroy_workqueue(reset_workqueue);
|
|
err_reset:
|
|
unregister_netdevice_notifier(&efx_netdev_notifier);
|
|
err_notifier:
|
|
return rc;
|
|
}
|
|
|
|
static void __exit efx_exit_module(void)
|
|
{
|
|
printk(KERN_INFO "Solarflare NET driver unloading\n");
|
|
|
|
pci_unregister_driver(&efx_pci_driver);
|
|
destroy_workqueue(reset_workqueue);
|
|
unregister_netdevice_notifier(&efx_netdev_notifier);
|
|
|
|
}
|
|
|
|
module_init(efx_init_module);
|
|
module_exit(efx_exit_module);
|
|
|
|
MODULE_AUTHOR("Solarflare Communications and "
|
|
"Michael Brown <mbrown@fensystems.co.uk>");
|
|
MODULE_DESCRIPTION("Solarflare Communications network driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DEVICE_TABLE(pci, efx_pci_table);
|