mirror of
https://github.com/torvalds/linux.git
synced 2024-12-05 02:23:16 +00:00
6ab3d5624e
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de> Signed-off-by: Adrian Bunk <bunk@stusta.de>
177 lines
4.7 KiB
C
177 lines
4.7 KiB
C
/*
|
|
* i386 and x86-64 semaphore implementation.
|
|
*
|
|
* (C) Copyright 1999 Linus Torvalds
|
|
*
|
|
* Portions Copyright 1999 Red Hat, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* rw semaphores implemented November 1999 by Benjamin LaHaise <bcrl@kvack.org>
|
|
*/
|
|
#include <linux/sched.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <asm/semaphore.h>
|
|
|
|
/*
|
|
* Semaphores are implemented using a two-way counter:
|
|
* The "count" variable is decremented for each process
|
|
* that tries to acquire the semaphore, while the "sleeping"
|
|
* variable is a count of such acquires.
|
|
*
|
|
* Notably, the inline "up()" and "down()" functions can
|
|
* efficiently test if they need to do any extra work (up
|
|
* needs to do something only if count was negative before
|
|
* the increment operation.
|
|
*
|
|
* "sleeping" and the contention routine ordering is protected
|
|
* by the spinlock in the semaphore's waitqueue head.
|
|
*
|
|
* Note that these functions are only called when there is
|
|
* contention on the lock, and as such all this is the
|
|
* "non-critical" part of the whole semaphore business. The
|
|
* critical part is the inline stuff in <asm/semaphore.h>
|
|
* where we want to avoid any extra jumps and calls.
|
|
*/
|
|
|
|
/*
|
|
* Logic:
|
|
* - only on a boundary condition do we need to care. When we go
|
|
* from a negative count to a non-negative, we wake people up.
|
|
* - when we go from a non-negative count to a negative do we
|
|
* (a) synchronize with the "sleeper" count and (b) make sure
|
|
* that we're on the wakeup list before we synchronize so that
|
|
* we cannot lose wakeup events.
|
|
*/
|
|
|
|
fastcall void __up(struct semaphore *sem)
|
|
{
|
|
wake_up(&sem->wait);
|
|
}
|
|
|
|
fastcall void __sched __down(struct semaphore * sem)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
DECLARE_WAITQUEUE(wait, tsk);
|
|
unsigned long flags;
|
|
|
|
tsk->state = TASK_UNINTERRUPTIBLE;
|
|
spin_lock_irqsave(&sem->wait.lock, flags);
|
|
add_wait_queue_exclusive_locked(&sem->wait, &wait);
|
|
|
|
sem->sleepers++;
|
|
for (;;) {
|
|
int sleepers = sem->sleepers;
|
|
|
|
/*
|
|
* Add "everybody else" into it. They aren't
|
|
* playing, because we own the spinlock in
|
|
* the wait_queue_head.
|
|
*/
|
|
if (!atomic_add_negative(sleepers - 1, &sem->count)) {
|
|
sem->sleepers = 0;
|
|
break;
|
|
}
|
|
sem->sleepers = 1; /* us - see -1 above */
|
|
spin_unlock_irqrestore(&sem->wait.lock, flags);
|
|
|
|
schedule();
|
|
|
|
spin_lock_irqsave(&sem->wait.lock, flags);
|
|
tsk->state = TASK_UNINTERRUPTIBLE;
|
|
}
|
|
remove_wait_queue_locked(&sem->wait, &wait);
|
|
wake_up_locked(&sem->wait);
|
|
spin_unlock_irqrestore(&sem->wait.lock, flags);
|
|
tsk->state = TASK_RUNNING;
|
|
}
|
|
|
|
fastcall int __sched __down_interruptible(struct semaphore * sem)
|
|
{
|
|
int retval = 0;
|
|
struct task_struct *tsk = current;
|
|
DECLARE_WAITQUEUE(wait, tsk);
|
|
unsigned long flags;
|
|
|
|
tsk->state = TASK_INTERRUPTIBLE;
|
|
spin_lock_irqsave(&sem->wait.lock, flags);
|
|
add_wait_queue_exclusive_locked(&sem->wait, &wait);
|
|
|
|
sem->sleepers++;
|
|
for (;;) {
|
|
int sleepers = sem->sleepers;
|
|
|
|
/*
|
|
* With signals pending, this turns into
|
|
* the trylock failure case - we won't be
|
|
* sleeping, and we* can't get the lock as
|
|
* it has contention. Just correct the count
|
|
* and exit.
|
|
*/
|
|
if (signal_pending(current)) {
|
|
retval = -EINTR;
|
|
sem->sleepers = 0;
|
|
atomic_add(sleepers, &sem->count);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Add "everybody else" into it. They aren't
|
|
* playing, because we own the spinlock in
|
|
* wait_queue_head. The "-1" is because we're
|
|
* still hoping to get the semaphore.
|
|
*/
|
|
if (!atomic_add_negative(sleepers - 1, &sem->count)) {
|
|
sem->sleepers = 0;
|
|
break;
|
|
}
|
|
sem->sleepers = 1; /* us - see -1 above */
|
|
spin_unlock_irqrestore(&sem->wait.lock, flags);
|
|
|
|
schedule();
|
|
|
|
spin_lock_irqsave(&sem->wait.lock, flags);
|
|
tsk->state = TASK_INTERRUPTIBLE;
|
|
}
|
|
remove_wait_queue_locked(&sem->wait, &wait);
|
|
wake_up_locked(&sem->wait);
|
|
spin_unlock_irqrestore(&sem->wait.lock, flags);
|
|
|
|
tsk->state = TASK_RUNNING;
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Trylock failed - make sure we correct for
|
|
* having decremented the count.
|
|
*
|
|
* We could have done the trylock with a
|
|
* single "cmpxchg" without failure cases,
|
|
* but then it wouldn't work on a 386.
|
|
*/
|
|
fastcall int __down_trylock(struct semaphore * sem)
|
|
{
|
|
int sleepers;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&sem->wait.lock, flags);
|
|
sleepers = sem->sleepers + 1;
|
|
sem->sleepers = 0;
|
|
|
|
/*
|
|
* Add "everybody else" and us into it. They aren't
|
|
* playing, because we own the spinlock in the
|
|
* wait_queue_head.
|
|
*/
|
|
if (!atomic_add_negative(sleepers, &sem->count)) {
|
|
wake_up_locked(&sem->wait);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&sem->wait.lock, flags);
|
|
return 1;
|
|
}
|