mirror of
https://github.com/torvalds/linux.git
synced 2024-12-04 01:51:34 +00:00
e88643ba1a
MIPS hasn't up to this point properly supported dirty page logging, as pages in slots with dirty logging enabled aren't made clean, and tlbmod exceptions from writes to clean pages have been assumed to be due to guest TLB protection and unconditionally passed to the guest. Use the generic dirty logging helper kvm_get_dirty_log_protect() to properly implement kvm_vm_ioctl_get_dirty_log(), similar to how ARM does. This uses xchg to clear the dirty bits when reading them, rather than wiping them out afterwards with a memset, which would potentially wipe recently set bits that weren't caught by kvm_get_dirty_log(). It also makes the pages clean again using the kvm_arch_mmu_enable_log_dirty_pt_masked() architecture callback so that further writes after the shadow memslot is flushed will trigger tlbmod exceptions and dirty handling. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
963 lines
24 KiB
C
963 lines
24 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* KVM/MIPS MMU handling in the KVM module.
|
|
*
|
|
* Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
|
|
* Authors: Sanjay Lal <sanjayl@kymasys.com>
|
|
*/
|
|
|
|
#include <linux/highmem.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgalloc.h>
|
|
|
|
/*
|
|
* KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
|
|
* for which pages need to be cached.
|
|
*/
|
|
#if defined(__PAGETABLE_PMD_FOLDED)
|
|
#define KVM_MMU_CACHE_MIN_PAGES 1
|
|
#else
|
|
#define KVM_MMU_CACHE_MIN_PAGES 2
|
|
#endif
|
|
|
|
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
|
|
int min, int max)
|
|
{
|
|
void *page;
|
|
|
|
BUG_ON(max > KVM_NR_MEM_OBJS);
|
|
if (cache->nobjs >= min)
|
|
return 0;
|
|
while (cache->nobjs < max) {
|
|
page = (void *)__get_free_page(GFP_KERNEL);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
cache->objects[cache->nobjs++] = page;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
|
|
{
|
|
while (mc->nobjs)
|
|
free_page((unsigned long)mc->objects[--mc->nobjs]);
|
|
}
|
|
|
|
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
|
|
{
|
|
void *p;
|
|
|
|
BUG_ON(!mc || !mc->nobjs);
|
|
p = mc->objects[--mc->nobjs];
|
|
return p;
|
|
}
|
|
|
|
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
|
|
{
|
|
mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
|
|
}
|
|
|
|
/**
|
|
* kvm_pgd_init() - Initialise KVM GPA page directory.
|
|
* @page: Pointer to page directory (PGD) for KVM GPA.
|
|
*
|
|
* Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
|
|
* representing no mappings. This is similar to pgd_init(), however it
|
|
* initialises all the page directory pointers, not just the ones corresponding
|
|
* to the userland address space (since it is for the guest physical address
|
|
* space rather than a virtual address space).
|
|
*/
|
|
static void kvm_pgd_init(void *page)
|
|
{
|
|
unsigned long *p, *end;
|
|
unsigned long entry;
|
|
|
|
#ifdef __PAGETABLE_PMD_FOLDED
|
|
entry = (unsigned long)invalid_pte_table;
|
|
#else
|
|
entry = (unsigned long)invalid_pmd_table;
|
|
#endif
|
|
|
|
p = (unsigned long *)page;
|
|
end = p + PTRS_PER_PGD;
|
|
|
|
do {
|
|
p[0] = entry;
|
|
p[1] = entry;
|
|
p[2] = entry;
|
|
p[3] = entry;
|
|
p[4] = entry;
|
|
p += 8;
|
|
p[-3] = entry;
|
|
p[-2] = entry;
|
|
p[-1] = entry;
|
|
} while (p != end);
|
|
}
|
|
|
|
/**
|
|
* kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
|
|
*
|
|
* Allocate a blank KVM GPA page directory (PGD) for representing guest physical
|
|
* to host physical page mappings.
|
|
*
|
|
* Returns: Pointer to new KVM GPA page directory.
|
|
* NULL on allocation failure.
|
|
*/
|
|
pgd_t *kvm_pgd_alloc(void)
|
|
{
|
|
pgd_t *ret;
|
|
|
|
ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
|
|
if (ret)
|
|
kvm_pgd_init(ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_walk_pgd() - Walk page table with optional allocation.
|
|
* @pgd: Page directory pointer.
|
|
* @addr: Address to index page table using.
|
|
* @cache: MMU page cache to allocate new page tables from, or NULL.
|
|
*
|
|
* Walk the page tables pointed to by @pgd to find the PTE corresponding to the
|
|
* address @addr. If page tables don't exist for @addr, they will be created
|
|
* from the MMU cache if @cache is not NULL.
|
|
*
|
|
* Returns: Pointer to pte_t corresponding to @addr.
|
|
* NULL if a page table doesn't exist for @addr and !@cache.
|
|
* NULL if a page table allocation failed.
|
|
*/
|
|
static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
|
|
unsigned long addr)
|
|
{
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pgd += pgd_index(addr);
|
|
if (pgd_none(*pgd)) {
|
|
/* Not used on MIPS yet */
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
pud = pud_offset(pgd, addr);
|
|
if (pud_none(*pud)) {
|
|
pmd_t *new_pmd;
|
|
|
|
if (!cache)
|
|
return NULL;
|
|
new_pmd = mmu_memory_cache_alloc(cache);
|
|
pmd_init((unsigned long)new_pmd,
|
|
(unsigned long)invalid_pte_table);
|
|
pud_populate(NULL, pud, new_pmd);
|
|
}
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd)) {
|
|
pte_t *new_pte;
|
|
|
|
if (!cache)
|
|
return NULL;
|
|
new_pte = mmu_memory_cache_alloc(cache);
|
|
clear_page(new_pte);
|
|
pmd_populate_kernel(NULL, pmd, new_pte);
|
|
}
|
|
return pte_offset(pmd, addr);
|
|
}
|
|
|
|
/* Caller must hold kvm->mm_lock */
|
|
static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
|
|
struct kvm_mmu_memory_cache *cache,
|
|
unsigned long addr)
|
|
{
|
|
return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
|
|
}
|
|
|
|
/*
|
|
* kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
|
|
* Flush a range of guest physical address space from the VM's GPA page tables.
|
|
*/
|
|
|
|
static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
|
|
unsigned long end_gpa)
|
|
{
|
|
int i_min = __pte_offset(start_gpa);
|
|
int i_max = __pte_offset(end_gpa);
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
|
|
int i;
|
|
|
|
for (i = i_min; i <= i_max; ++i) {
|
|
if (!pte_present(pte[i]))
|
|
continue;
|
|
|
|
kvm_release_pfn_clean(pte_pfn(pte[i]));
|
|
set_pte(pte + i, __pte(0));
|
|
}
|
|
return safe_to_remove;
|
|
}
|
|
|
|
static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
|
|
unsigned long end_gpa)
|
|
{
|
|
pte_t *pte;
|
|
unsigned long end = ~0ul;
|
|
int i_min = __pmd_offset(start_gpa);
|
|
int i_max = __pmd_offset(end_gpa);
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
|
|
int i;
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
|
|
if (!pmd_present(pmd[i]))
|
|
continue;
|
|
|
|
pte = pte_offset(pmd + i, 0);
|
|
if (i == i_max)
|
|
end = end_gpa;
|
|
|
|
if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
|
|
pmd_clear(pmd + i);
|
|
pte_free_kernel(NULL, pte);
|
|
} else {
|
|
safe_to_remove = false;
|
|
}
|
|
}
|
|
return safe_to_remove;
|
|
}
|
|
|
|
static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
|
|
unsigned long end_gpa)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long end = ~0ul;
|
|
int i_min = __pud_offset(start_gpa);
|
|
int i_max = __pud_offset(end_gpa);
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
|
|
int i;
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
|
|
if (!pud_present(pud[i]))
|
|
continue;
|
|
|
|
pmd = pmd_offset(pud + i, 0);
|
|
if (i == i_max)
|
|
end = end_gpa;
|
|
|
|
if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
|
|
pud_clear(pud + i);
|
|
pmd_free(NULL, pmd);
|
|
} else {
|
|
safe_to_remove = false;
|
|
}
|
|
}
|
|
return safe_to_remove;
|
|
}
|
|
|
|
static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
|
|
unsigned long end_gpa)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long end = ~0ul;
|
|
int i_min = pgd_index(start_gpa);
|
|
int i_max = pgd_index(end_gpa);
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
|
|
int i;
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
|
|
if (!pgd_present(pgd[i]))
|
|
continue;
|
|
|
|
pud = pud_offset(pgd + i, 0);
|
|
if (i == i_max)
|
|
end = end_gpa;
|
|
|
|
if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
|
|
pgd_clear(pgd + i);
|
|
pud_free(NULL, pud);
|
|
} else {
|
|
safe_to_remove = false;
|
|
}
|
|
}
|
|
return safe_to_remove;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
|
|
* @kvm: KVM pointer.
|
|
* @start_gfn: Guest frame number of first page in GPA range to flush.
|
|
* @end_gfn: Guest frame number of last page in GPA range to flush.
|
|
*
|
|
* Flushes a range of GPA mappings from the GPA page tables.
|
|
*
|
|
* The caller must hold the @kvm->mmu_lock spinlock.
|
|
*
|
|
* Returns: Whether its safe to remove the top level page directory because
|
|
* all lower levels have been removed.
|
|
*/
|
|
bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
|
|
{
|
|
return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
|
|
start_gfn << PAGE_SHIFT,
|
|
end_gfn << PAGE_SHIFT);
|
|
}
|
|
|
|
#define BUILD_PTE_RANGE_OP(name, op) \
|
|
static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start, \
|
|
unsigned long end) \
|
|
{ \
|
|
int ret = 0; \
|
|
int i_min = __pte_offset(start); \
|
|
int i_max = __pte_offset(end); \
|
|
int i; \
|
|
pte_t old, new; \
|
|
\
|
|
for (i = i_min; i <= i_max; ++i) { \
|
|
if (!pte_present(pte[i])) \
|
|
continue; \
|
|
\
|
|
old = pte[i]; \
|
|
new = op(old); \
|
|
if (pte_val(new) == pte_val(old)) \
|
|
continue; \
|
|
set_pte(pte + i, new); \
|
|
ret = 1; \
|
|
} \
|
|
return ret; \
|
|
} \
|
|
\
|
|
/* returns true if anything was done */ \
|
|
static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start, \
|
|
unsigned long end) \
|
|
{ \
|
|
int ret = 0; \
|
|
pte_t *pte; \
|
|
unsigned long cur_end = ~0ul; \
|
|
int i_min = __pmd_offset(start); \
|
|
int i_max = __pmd_offset(end); \
|
|
int i; \
|
|
\
|
|
for (i = i_min; i <= i_max; ++i, start = 0) { \
|
|
if (!pmd_present(pmd[i])) \
|
|
continue; \
|
|
\
|
|
pte = pte_offset(pmd + i, 0); \
|
|
if (i == i_max) \
|
|
cur_end = end; \
|
|
\
|
|
ret |= kvm_mips_##name##_pte(pte, start, cur_end); \
|
|
} \
|
|
return ret; \
|
|
} \
|
|
\
|
|
static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start, \
|
|
unsigned long end) \
|
|
{ \
|
|
int ret = 0; \
|
|
pmd_t *pmd; \
|
|
unsigned long cur_end = ~0ul; \
|
|
int i_min = __pud_offset(start); \
|
|
int i_max = __pud_offset(end); \
|
|
int i; \
|
|
\
|
|
for (i = i_min; i <= i_max; ++i, start = 0) { \
|
|
if (!pud_present(pud[i])) \
|
|
continue; \
|
|
\
|
|
pmd = pmd_offset(pud + i, 0); \
|
|
if (i == i_max) \
|
|
cur_end = end; \
|
|
\
|
|
ret |= kvm_mips_##name##_pmd(pmd, start, cur_end); \
|
|
} \
|
|
return ret; \
|
|
} \
|
|
\
|
|
static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start, \
|
|
unsigned long end) \
|
|
{ \
|
|
int ret = 0; \
|
|
pud_t *pud; \
|
|
unsigned long cur_end = ~0ul; \
|
|
int i_min = pgd_index(start); \
|
|
int i_max = pgd_index(end); \
|
|
int i; \
|
|
\
|
|
for (i = i_min; i <= i_max; ++i, start = 0) { \
|
|
if (!pgd_present(pgd[i])) \
|
|
continue; \
|
|
\
|
|
pud = pud_offset(pgd + i, 0); \
|
|
if (i == i_max) \
|
|
cur_end = end; \
|
|
\
|
|
ret |= kvm_mips_##name##_pud(pud, start, cur_end); \
|
|
} \
|
|
return ret; \
|
|
}
|
|
|
|
/*
|
|
* kvm_mips_mkclean_gpa_pt.
|
|
* Mark a range of guest physical address space clean (writes fault) in the VM's
|
|
* GPA page table to allow dirty page tracking.
|
|
*/
|
|
|
|
BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
|
|
|
|
/**
|
|
* kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
|
|
* @kvm: KVM pointer.
|
|
* @start_gfn: Guest frame number of first page in GPA range to flush.
|
|
* @end_gfn: Guest frame number of last page in GPA range to flush.
|
|
*
|
|
* Make a range of GPA mappings clean so that guest writes will fault and
|
|
* trigger dirty page logging.
|
|
*
|
|
* The caller must hold the @kvm->mmu_lock spinlock.
|
|
*
|
|
* Returns: Whether any GPA mappings were modified, which would require
|
|
* derived mappings (GVA page tables & TLB enties) to be
|
|
* invalidated.
|
|
*/
|
|
int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
|
|
{
|
|
return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
|
|
start_gfn << PAGE_SHIFT,
|
|
end_gfn << PAGE_SHIFT);
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
|
|
* @kvm: The KVM pointer
|
|
* @slot: The memory slot associated with mask
|
|
* @gfn_offset: The gfn offset in memory slot
|
|
* @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
|
|
* slot to be write protected
|
|
*
|
|
* Walks bits set in mask write protects the associated pte's. Caller must
|
|
* acquire @kvm->mmu_lock.
|
|
*/
|
|
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot,
|
|
gfn_t gfn_offset, unsigned long mask)
|
|
{
|
|
gfn_t base_gfn = slot->base_gfn + gfn_offset;
|
|
gfn_t start = base_gfn + __ffs(mask);
|
|
gfn_t end = base_gfn + __fls(mask);
|
|
|
|
kvm_mips_mkclean_gpa_pt(kvm, start, end);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_map_page() - Map a guest physical page.
|
|
* @vcpu: VCPU pointer.
|
|
* @gpa: Guest physical address of fault.
|
|
* @write_fault: Whether the fault was due to a write.
|
|
* @out_entry: New PTE for @gpa (written on success unless NULL).
|
|
* @out_buddy: New PTE for @gpa's buddy (written on success unless
|
|
* NULL).
|
|
*
|
|
* Handle GPA faults by creating a new GPA mapping (or updating an existing
|
|
* one).
|
|
*
|
|
* This takes care of asking KVM for the corresponding PFN, and creating a
|
|
* mapping in the GPA page tables. Derived mappings (GVA page tables and TLBs)
|
|
* must be handled by the caller.
|
|
*
|
|
* Returns: 0 on success, in which case the caller may use the @out_entry
|
|
* and @out_buddy PTEs to update derived mappings and resume guest
|
|
* execution.
|
|
* -EFAULT if there is no memory region at @gpa or a write was
|
|
* attempted to a read-only memory region. This is usually handled
|
|
* as an MMIO access.
|
|
*/
|
|
static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
|
|
bool write_fault,
|
|
pte_t *out_entry, pte_t *out_buddy)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int srcu_idx, err;
|
|
kvm_pfn_t pfn;
|
|
pte_t *ptep, entry, old_pte;
|
|
unsigned long prot_bits;
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
|
|
/* We need a minimum of cached pages ready for page table creation */
|
|
err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
|
|
KVM_NR_MEM_OBJS);
|
|
if (err)
|
|
goto out;
|
|
|
|
pfn = gfn_to_pfn(kvm, gfn);
|
|
|
|
if (is_error_noslot_pfn(pfn)) {
|
|
err = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
|
|
|
|
prot_bits = __READABLE | _PAGE_PRESENT | __WRITEABLE;
|
|
entry = pfn_pte(pfn, __pgprot(prot_bits));
|
|
|
|
old_pte = *ptep;
|
|
set_pte(ptep, entry);
|
|
if (pte_present(old_pte))
|
|
kvm_release_pfn_clean(pte_pfn(old_pte));
|
|
|
|
err = 0;
|
|
if (out_entry)
|
|
*out_entry = *ptep;
|
|
if (out_buddy)
|
|
*out_buddy = *ptep_buddy(ptep);
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
out:
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
return err;
|
|
}
|
|
|
|
static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
|
|
unsigned long addr)
|
|
{
|
|
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
|
|
pgd_t *pgdp;
|
|
int ret;
|
|
|
|
/* We need a minimum of cached pages ready for page table creation */
|
|
ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
|
|
KVM_NR_MEM_OBJS);
|
|
if (ret)
|
|
return NULL;
|
|
|
|
if (KVM_GUEST_KERNEL_MODE(vcpu))
|
|
pgdp = vcpu->arch.guest_kernel_mm.pgd;
|
|
else
|
|
pgdp = vcpu->arch.guest_user_mm.pgd;
|
|
|
|
return kvm_mips_walk_pgd(pgdp, memcache, addr);
|
|
}
|
|
|
|
void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
|
|
bool user)
|
|
{
|
|
pgd_t *pgdp;
|
|
pte_t *ptep;
|
|
|
|
addr &= PAGE_MASK << 1;
|
|
|
|
pgdp = vcpu->arch.guest_kernel_mm.pgd;
|
|
ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
|
|
if (ptep) {
|
|
ptep[0] = pfn_pte(0, __pgprot(0));
|
|
ptep[1] = pfn_pte(0, __pgprot(0));
|
|
}
|
|
|
|
if (user) {
|
|
pgdp = vcpu->arch.guest_user_mm.pgd;
|
|
ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
|
|
if (ptep) {
|
|
ptep[0] = pfn_pte(0, __pgprot(0));
|
|
ptep[1] = pfn_pte(0, __pgprot(0));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
|
|
* Flush a range of guest physical address space from the VM's GPA page tables.
|
|
*/
|
|
|
|
static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
|
|
unsigned long end_gva)
|
|
{
|
|
int i_min = __pte_offset(start_gva);
|
|
int i_max = __pte_offset(end_gva);
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
|
|
int i;
|
|
|
|
/*
|
|
* There's no freeing to do, so there's no point clearing individual
|
|
* entries unless only part of the last level page table needs flushing.
|
|
*/
|
|
if (safe_to_remove)
|
|
return true;
|
|
|
|
for (i = i_min; i <= i_max; ++i) {
|
|
if (!pte_present(pte[i]))
|
|
continue;
|
|
|
|
set_pte(pte + i, __pte(0));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
|
|
unsigned long end_gva)
|
|
{
|
|
pte_t *pte;
|
|
unsigned long end = ~0ul;
|
|
int i_min = __pmd_offset(start_gva);
|
|
int i_max = __pmd_offset(end_gva);
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
|
|
int i;
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gva = 0) {
|
|
if (!pmd_present(pmd[i]))
|
|
continue;
|
|
|
|
pte = pte_offset(pmd + i, 0);
|
|
if (i == i_max)
|
|
end = end_gva;
|
|
|
|
if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
|
|
pmd_clear(pmd + i);
|
|
pte_free_kernel(NULL, pte);
|
|
} else {
|
|
safe_to_remove = false;
|
|
}
|
|
}
|
|
return safe_to_remove;
|
|
}
|
|
|
|
static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
|
|
unsigned long end_gva)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long end = ~0ul;
|
|
int i_min = __pud_offset(start_gva);
|
|
int i_max = __pud_offset(end_gva);
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
|
|
int i;
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gva = 0) {
|
|
if (!pud_present(pud[i]))
|
|
continue;
|
|
|
|
pmd = pmd_offset(pud + i, 0);
|
|
if (i == i_max)
|
|
end = end_gva;
|
|
|
|
if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
|
|
pud_clear(pud + i);
|
|
pmd_free(NULL, pmd);
|
|
} else {
|
|
safe_to_remove = false;
|
|
}
|
|
}
|
|
return safe_to_remove;
|
|
}
|
|
|
|
static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
|
|
unsigned long end_gva)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long end = ~0ul;
|
|
int i_min = pgd_index(start_gva);
|
|
int i_max = pgd_index(end_gva);
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
|
|
int i;
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gva = 0) {
|
|
if (!pgd_present(pgd[i]))
|
|
continue;
|
|
|
|
pud = pud_offset(pgd + i, 0);
|
|
if (i == i_max)
|
|
end = end_gva;
|
|
|
|
if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
|
|
pgd_clear(pgd + i);
|
|
pud_free(NULL, pud);
|
|
} else {
|
|
safe_to_remove = false;
|
|
}
|
|
}
|
|
return safe_to_remove;
|
|
}
|
|
|
|
void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
|
|
{
|
|
if (flags & KMF_GPA) {
|
|
/* all of guest virtual address space could be affected */
|
|
if (flags & KMF_KERN)
|
|
/* useg, kseg0, seg2/3 */
|
|
kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
|
|
else
|
|
/* useg */
|
|
kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
|
|
} else {
|
|
/* useg */
|
|
kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
|
|
|
|
/* kseg2/3 */
|
|
if (flags & KMF_KERN)
|
|
kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
|
|
}
|
|
}
|
|
|
|
/* XXXKYMA: Must be called with interrupts disabled */
|
|
int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
|
|
struct kvm_vcpu *vcpu,
|
|
bool write_fault)
|
|
{
|
|
unsigned long gpa;
|
|
kvm_pfn_t pfn0, pfn1;
|
|
unsigned long vaddr;
|
|
pte_t pte_gpa[2], *ptep_gva;
|
|
|
|
if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
|
|
kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
|
|
kvm_mips_dump_host_tlbs();
|
|
return -1;
|
|
}
|
|
|
|
/* Find host PFNs */
|
|
|
|
gpa = KVM_GUEST_CPHYSADDR(badvaddr & (PAGE_MASK << 1));
|
|
vaddr = badvaddr & (PAGE_MASK << 1);
|
|
|
|
if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[0], NULL) < 0)
|
|
return -1;
|
|
|
|
if (kvm_mips_map_page(vcpu, gpa | PAGE_SIZE, write_fault, &pte_gpa[1],
|
|
NULL) < 0)
|
|
return -1;
|
|
|
|
pfn0 = pte_pfn(pte_gpa[0]);
|
|
pfn1 = pte_pfn(pte_gpa[1]);
|
|
|
|
/* Find GVA page table entry */
|
|
|
|
ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, vaddr);
|
|
if (!ptep_gva) {
|
|
kvm_err("No ptep for gva %lx\n", vaddr);
|
|
return -1;
|
|
}
|
|
|
|
/* Write host PFNs into GVA page table */
|
|
ptep_gva[0] = pte_mkyoung(pte_mkdirty(pfn_pte(pfn0, PAGE_SHARED)));
|
|
ptep_gva[1] = pte_mkyoung(pte_mkdirty(pfn_pte(pfn1, PAGE_SHARED)));
|
|
|
|
/* Invalidate this entry in the TLB, guest kernel ASID only */
|
|
kvm_mips_host_tlb_inv(vcpu, vaddr, false, true);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
|
|
struct kvm_mips_tlb *tlb,
|
|
unsigned long gva,
|
|
bool write_fault)
|
|
{
|
|
kvm_pfn_t pfn;
|
|
long tlb_lo = 0;
|
|
pte_t pte_gpa, *ptep_gva;
|
|
unsigned int idx;
|
|
bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
|
|
|
|
/*
|
|
* The commpage address must not be mapped to anything else if the guest
|
|
* TLB contains entries nearby, or commpage accesses will break.
|
|
*/
|
|
idx = TLB_LO_IDX(*tlb, gva);
|
|
if ((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & PAGE_MASK)
|
|
tlb_lo = tlb->tlb_lo[idx];
|
|
|
|
/* Find host PFN */
|
|
if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo), write_fault,
|
|
&pte_gpa, NULL) < 0)
|
|
return -1;
|
|
pfn = pte_pfn(pte_gpa);
|
|
|
|
/* Find GVA page table entry */
|
|
ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva);
|
|
if (!ptep_gva) {
|
|
kvm_err("No ptep for gva %lx\n", gva);
|
|
return -1;
|
|
}
|
|
|
|
/* Write PFN into GVA page table, taking attributes from Guest TLB */
|
|
*ptep_gva = pfn_pte(pfn, (!(tlb_lo & ENTRYLO_V)) ? __pgprot(0) :
|
|
(tlb_lo & ENTRYLO_D) ? PAGE_SHARED :
|
|
PAGE_READONLY);
|
|
if (pte_present(*ptep_gva))
|
|
*ptep_gva = pte_mkyoung(pte_mkdirty(*ptep_gva));
|
|
|
|
/* Invalidate this entry in the TLB, current guest mode ASID only */
|
|
kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
|
|
|
|
kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
|
|
tlb->tlb_lo[0], tlb->tlb_lo[1]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_pfn_t pfn;
|
|
pte_t *ptep;
|
|
|
|
ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
|
|
if (!ptep) {
|
|
kvm_err("No ptep for commpage %lx\n", badvaddr);
|
|
return -1;
|
|
}
|
|
|
|
pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
|
|
/* Also set valid and dirty, so refill handler doesn't have to */
|
|
*ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
|
|
|
|
/* Invalidate this entry in the TLB, guest kernel ASID only */
|
|
kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_migrate_count() - Migrate timer.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
|
|
* if it was running prior to being cancelled.
|
|
*
|
|
* Must be called when the VCPU is migrated to a different CPU to ensure that
|
|
* timer expiry during guest execution interrupts the guest and causes the
|
|
* interrupt to be delivered in a timely manner.
|
|
*/
|
|
static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
|
|
hrtimer_restart(&vcpu->arch.comparecount_timer);
|
|
}
|
|
|
|
/* Restore ASID once we are scheduled back after preemption */
|
|
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
unsigned long flags;
|
|
|
|
kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
|
|
|
|
local_irq_save(flags);
|
|
|
|
vcpu->cpu = cpu;
|
|
if (vcpu->arch.last_sched_cpu != cpu) {
|
|
kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
|
|
vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
|
|
/*
|
|
* Migrate the timer interrupt to the current CPU so that it
|
|
* always interrupts the guest and synchronously triggers a
|
|
* guest timer interrupt.
|
|
*/
|
|
kvm_mips_migrate_count(vcpu);
|
|
}
|
|
|
|
/* restore guest state to registers */
|
|
kvm_mips_callbacks->vcpu_load(vcpu, cpu);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/* ASID can change if another task is scheduled during preemption */
|
|
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long flags;
|
|
int cpu;
|
|
|
|
local_irq_save(flags);
|
|
|
|
cpu = smp_processor_id();
|
|
vcpu->arch.last_sched_cpu = cpu;
|
|
vcpu->cpu = -1;
|
|
|
|
/* save guest state in registers */
|
|
kvm_mips_callbacks->vcpu_put(vcpu, cpu);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/**
|
|
* kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
|
|
* @vcpu: Virtual CPU.
|
|
* @gva: Guest virtual address to be accessed.
|
|
* @write: True if write attempted (must be dirtied and made writable).
|
|
*
|
|
* Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
|
|
* dirtying the page if @write so that guest instructions can be modified.
|
|
*
|
|
* Returns: KVM_MIPS_MAPPED on success.
|
|
* KVM_MIPS_GVA if bad guest virtual address.
|
|
* KVM_MIPS_GPA if bad guest physical address.
|
|
* KVM_MIPS_TLB if guest TLB not present.
|
|
* KVM_MIPS_TLBINV if guest TLB present but not valid.
|
|
* KVM_MIPS_TLBMOD if guest TLB read only.
|
|
*/
|
|
enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
|
|
unsigned long gva,
|
|
bool write)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_mips_tlb *tlb;
|
|
int index;
|
|
|
|
if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
|
|
if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
|
|
return KVM_MIPS_GPA;
|
|
} else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
|
|
KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
|
|
/* Address should be in the guest TLB */
|
|
index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
|
|
(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
|
|
if (index < 0)
|
|
return KVM_MIPS_TLB;
|
|
tlb = &vcpu->arch.guest_tlb[index];
|
|
|
|
/* Entry should be valid, and dirty for writes */
|
|
if (!TLB_IS_VALID(*tlb, gva))
|
|
return KVM_MIPS_TLBINV;
|
|
if (write && !TLB_IS_DIRTY(*tlb, gva))
|
|
return KVM_MIPS_TLBMOD;
|
|
|
|
if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
|
|
return KVM_MIPS_GPA;
|
|
} else {
|
|
return KVM_MIPS_GVA;
|
|
}
|
|
|
|
return KVM_MIPS_MAPPED;
|
|
}
|
|
|
|
int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
|
|
{
|
|
int err;
|
|
|
|
retry:
|
|
kvm_trap_emul_gva_lockless_begin(vcpu);
|
|
err = get_user(*out, opc);
|
|
kvm_trap_emul_gva_lockless_end(vcpu);
|
|
|
|
if (unlikely(err)) {
|
|
/*
|
|
* Try to handle the fault, maybe we just raced with a GVA
|
|
* invalidation.
|
|
*/
|
|
err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
|
|
false);
|
|
if (unlikely(err)) {
|
|
kvm_err("%s: illegal address: %p\n",
|
|
__func__, opc);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Hopefully it'll work now */
|
|
goto retry;
|
|
}
|
|
return 0;
|
|
}
|