mirror of
https://github.com/torvalds/linux.git
synced 2024-12-04 01:51:34 +00:00
fbe1bf1e5f
This reverts commit45e34c8af5
, and the two subsequent fixes to it:3f874c9b2a
("x86/smp: Don't send INIT to non-present and non-booted CPUs")b1472a60a5
("x86/smp: Don't send INIT to boot CPU") because it seems to result in hung machines at shutdown. Particularly some Dell machines, but Thomas says "The rest seems to be Lenovo and Sony with Alderlake/Raptorlake CPUs - at least that's what I could figure out from the various bug reports. I don't know which CPUs the DELL machines have, so I can't say it's a pattern. I agree with the revert for now" Ashok Raj chimes in: "There was a report (probably this same one), and it turns out it was a bug in the BIOS SMI handler. The client BIOS's were waiting for the lowest APICID to be the SMI rendevous master. If this is MeteorLake, the BSP wasn't the one with the lowest APIC and it triped here. The BIOS change is also being pushed to others for assimilation :) Server BIOS's had this correctly for a while now" and it does look likely to be some bad interaction between SMI and the non-BSP cores having put into INIT (and thus unresponsive until reset). Link: https://bbs.archlinux.org/viewtopic.php?pid=2124429 Link: https://www.reddit.com/r/openSUSE/comments/16qq99b/tumbleweed_shutdown_did_not_finish_completely/ Link: https://forum.artixlinux.org/index.php/topic,5997.0.html Link: https://bugzilla.redhat.com/show_bug.cgi?id=2241279 Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Ashok Raj <ashok.raj@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
298 lines
8.9 KiB
C
298 lines
8.9 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Intel SMP support routines.
|
|
*
|
|
* (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
|
|
* (c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
|
|
* (c) 2002,2003 Andi Kleen, SuSE Labs.
|
|
*
|
|
* i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/export.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kexec.h>
|
|
|
|
#include <asm/mtrr.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/idtentry.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/trace/irq_vectors.h>
|
|
#include <asm/kexec.h>
|
|
#include <asm/reboot.h>
|
|
|
|
/*
|
|
* Some notes on x86 processor bugs affecting SMP operation:
|
|
*
|
|
* Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
|
|
* The Linux implications for SMP are handled as follows:
|
|
*
|
|
* Pentium III / [Xeon]
|
|
* None of the E1AP-E3AP errata are visible to the user.
|
|
*
|
|
* E1AP. see PII A1AP
|
|
* E2AP. see PII A2AP
|
|
* E3AP. see PII A3AP
|
|
*
|
|
* Pentium II / [Xeon]
|
|
* None of the A1AP-A3AP errata are visible to the user.
|
|
*
|
|
* A1AP. see PPro 1AP
|
|
* A2AP. see PPro 2AP
|
|
* A3AP. see PPro 7AP
|
|
*
|
|
* Pentium Pro
|
|
* None of 1AP-9AP errata are visible to the normal user,
|
|
* except occasional delivery of 'spurious interrupt' as trap #15.
|
|
* This is very rare and a non-problem.
|
|
*
|
|
* 1AP. Linux maps APIC as non-cacheable
|
|
* 2AP. worked around in hardware
|
|
* 3AP. fixed in C0 and above steppings microcode update.
|
|
* Linux does not use excessive STARTUP_IPIs.
|
|
* 4AP. worked around in hardware
|
|
* 5AP. symmetric IO mode (normal Linux operation) not affected.
|
|
* 'noapic' mode has vector 0xf filled out properly.
|
|
* 6AP. 'noapic' mode might be affected - fixed in later steppings
|
|
* 7AP. We do not assume writes to the LVT deasserting IRQs
|
|
* 8AP. We do not enable low power mode (deep sleep) during MP bootup
|
|
* 9AP. We do not use mixed mode
|
|
*
|
|
* Pentium
|
|
* There is a marginal case where REP MOVS on 100MHz SMP
|
|
* machines with B stepping processors can fail. XXX should provide
|
|
* an L1cache=Writethrough or L1cache=off option.
|
|
*
|
|
* B stepping CPUs may hang. There are hardware work arounds
|
|
* for this. We warn about it in case your board doesn't have the work
|
|
* arounds. Basically that's so I can tell anyone with a B stepping
|
|
* CPU and SMP problems "tough".
|
|
*
|
|
* Specific items [From Pentium Processor Specification Update]
|
|
*
|
|
* 1AP. Linux doesn't use remote read
|
|
* 2AP. Linux doesn't trust APIC errors
|
|
* 3AP. We work around this
|
|
* 4AP. Linux never generated 3 interrupts of the same priority
|
|
* to cause a lost local interrupt.
|
|
* 5AP. Remote read is never used
|
|
* 6AP. not affected - worked around in hardware
|
|
* 7AP. not affected - worked around in hardware
|
|
* 8AP. worked around in hardware - we get explicit CS errors if not
|
|
* 9AP. only 'noapic' mode affected. Might generate spurious
|
|
* interrupts, we log only the first one and count the
|
|
* rest silently.
|
|
* 10AP. not affected - worked around in hardware
|
|
* 11AP. Linux reads the APIC between writes to avoid this, as per
|
|
* the documentation. Make sure you preserve this as it affects
|
|
* the C stepping chips too.
|
|
* 12AP. not affected - worked around in hardware
|
|
* 13AP. not affected - worked around in hardware
|
|
* 14AP. we always deassert INIT during bootup
|
|
* 15AP. not affected - worked around in hardware
|
|
* 16AP. not affected - worked around in hardware
|
|
* 17AP. not affected - worked around in hardware
|
|
* 18AP. not affected - worked around in hardware
|
|
* 19AP. not affected - worked around in BIOS
|
|
*
|
|
* If this sounds worrying believe me these bugs are either ___RARE___,
|
|
* or are signal timing bugs worked around in hardware and there's
|
|
* about nothing of note with C stepping upwards.
|
|
*/
|
|
|
|
static atomic_t stopping_cpu = ATOMIC_INIT(-1);
|
|
static bool smp_no_nmi_ipi = false;
|
|
|
|
static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
|
|
{
|
|
/* We are registered on stopping cpu too, avoid spurious NMI */
|
|
if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
|
|
return NMI_HANDLED;
|
|
|
|
cpu_emergency_disable_virtualization();
|
|
stop_this_cpu(NULL);
|
|
|
|
return NMI_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* this function calls the 'stop' function on all other CPUs in the system.
|
|
*/
|
|
DEFINE_IDTENTRY_SYSVEC(sysvec_reboot)
|
|
{
|
|
apic_eoi();
|
|
cpu_emergency_disable_virtualization();
|
|
stop_this_cpu(NULL);
|
|
}
|
|
|
|
static int register_stop_handler(void)
|
|
{
|
|
return register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
|
|
NMI_FLAG_FIRST, "smp_stop");
|
|
}
|
|
|
|
static void native_stop_other_cpus(int wait)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
unsigned long flags, timeout;
|
|
|
|
if (reboot_force)
|
|
return;
|
|
|
|
/* Only proceed if this is the first CPU to reach this code */
|
|
if (atomic_cmpxchg(&stopping_cpu, -1, cpu) != -1)
|
|
return;
|
|
|
|
/* For kexec, ensure that offline CPUs are out of MWAIT and in HLT */
|
|
if (kexec_in_progress)
|
|
smp_kick_mwait_play_dead();
|
|
|
|
/*
|
|
* 1) Send an IPI on the reboot vector to all other CPUs.
|
|
*
|
|
* The other CPUs should react on it after leaving critical
|
|
* sections and re-enabling interrupts. They might still hold
|
|
* locks, but there is nothing which can be done about that.
|
|
*
|
|
* 2) Wait for all other CPUs to report that they reached the
|
|
* HLT loop in stop_this_cpu()
|
|
*
|
|
* 3) If #2 timed out send an NMI to the CPUs which did not
|
|
* yet report
|
|
*
|
|
* 4) Wait for all other CPUs to report that they reached the
|
|
* HLT loop in stop_this_cpu()
|
|
*
|
|
* #3 can obviously race against a CPU reaching the HLT loop late.
|
|
* That CPU will have reported already and the "have all CPUs
|
|
* reached HLT" condition will be true despite the fact that the
|
|
* other CPU is still handling the NMI. Again, there is no
|
|
* protection against that as "disabled" APICs still respond to
|
|
* NMIs.
|
|
*/
|
|
cpumask_copy(&cpus_stop_mask, cpu_online_mask);
|
|
cpumask_clear_cpu(cpu, &cpus_stop_mask);
|
|
|
|
if (!cpumask_empty(&cpus_stop_mask)) {
|
|
apic_send_IPI_allbutself(REBOOT_VECTOR);
|
|
|
|
/*
|
|
* Don't wait longer than a second for IPI completion. The
|
|
* wait request is not checked here because that would
|
|
* prevent an NMI shutdown attempt in case that not all
|
|
* CPUs reach shutdown state.
|
|
*/
|
|
timeout = USEC_PER_SEC;
|
|
while (!cpumask_empty(&cpus_stop_mask) && timeout--)
|
|
udelay(1);
|
|
}
|
|
|
|
/* if the REBOOT_VECTOR didn't work, try with the NMI */
|
|
if (!cpumask_empty(&cpus_stop_mask)) {
|
|
/*
|
|
* If NMI IPI is enabled, try to register the stop handler
|
|
* and send the IPI. In any case try to wait for the other
|
|
* CPUs to stop.
|
|
*/
|
|
if (!smp_no_nmi_ipi && !register_stop_handler()) {
|
|
pr_emerg("Shutting down cpus with NMI\n");
|
|
|
|
for_each_cpu(cpu, &cpus_stop_mask)
|
|
__apic_send_IPI(cpu, NMI_VECTOR);
|
|
}
|
|
/*
|
|
* Don't wait longer than 10 ms if the caller didn't
|
|
* request it. If wait is true, the machine hangs here if
|
|
* one or more CPUs do not reach shutdown state.
|
|
*/
|
|
timeout = USEC_PER_MSEC * 10;
|
|
while (!cpumask_empty(&cpus_stop_mask) && (wait || timeout--))
|
|
udelay(1);
|
|
}
|
|
|
|
local_irq_save(flags);
|
|
disable_local_APIC();
|
|
mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
|
|
local_irq_restore(flags);
|
|
|
|
/*
|
|
* Ensure that the cpus_stop_mask cache lines are invalidated on
|
|
* the other CPUs. See comment vs. SME in stop_this_cpu().
|
|
*/
|
|
cpumask_clear(&cpus_stop_mask);
|
|
}
|
|
|
|
/*
|
|
* Reschedule call back. KVM uses this interrupt to force a cpu out of
|
|
* guest mode.
|
|
*/
|
|
DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_reschedule_ipi)
|
|
{
|
|
apic_eoi();
|
|
trace_reschedule_entry(RESCHEDULE_VECTOR);
|
|
inc_irq_stat(irq_resched_count);
|
|
scheduler_ipi();
|
|
trace_reschedule_exit(RESCHEDULE_VECTOR);
|
|
}
|
|
|
|
DEFINE_IDTENTRY_SYSVEC(sysvec_call_function)
|
|
{
|
|
apic_eoi();
|
|
trace_call_function_entry(CALL_FUNCTION_VECTOR);
|
|
inc_irq_stat(irq_call_count);
|
|
generic_smp_call_function_interrupt();
|
|
trace_call_function_exit(CALL_FUNCTION_VECTOR);
|
|
}
|
|
|
|
DEFINE_IDTENTRY_SYSVEC(sysvec_call_function_single)
|
|
{
|
|
apic_eoi();
|
|
trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
|
|
inc_irq_stat(irq_call_count);
|
|
generic_smp_call_function_single_interrupt();
|
|
trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
|
|
}
|
|
|
|
static int __init nonmi_ipi_setup(char *str)
|
|
{
|
|
smp_no_nmi_ipi = true;
|
|
return 1;
|
|
}
|
|
|
|
__setup("nonmi_ipi", nonmi_ipi_setup);
|
|
|
|
struct smp_ops smp_ops = {
|
|
.smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
|
|
.smp_prepare_cpus = native_smp_prepare_cpus,
|
|
.smp_cpus_done = native_smp_cpus_done,
|
|
|
|
.stop_other_cpus = native_stop_other_cpus,
|
|
#if defined(CONFIG_KEXEC_CORE)
|
|
.crash_stop_other_cpus = kdump_nmi_shootdown_cpus,
|
|
#endif
|
|
.smp_send_reschedule = native_smp_send_reschedule,
|
|
|
|
.kick_ap_alive = native_kick_ap,
|
|
.cpu_disable = native_cpu_disable,
|
|
.play_dead = native_play_dead,
|
|
|
|
.send_call_func_ipi = native_send_call_func_ipi,
|
|
.send_call_func_single_ipi = native_send_call_func_single_ipi,
|
|
};
|
|
EXPORT_SYMBOL_GPL(smp_ops);
|