mirror of
https://github.com/torvalds/linux.git
synced 2024-12-04 01:51:34 +00:00
e18c709230
Implement port for given CID as input argument instead of using hardcoded value '1234'. This allows to run different test instances on a single CID. Port argument is not required parameter and if it is not set, then default value will be '1234' - thus we preserve previous behaviour. Signed-off-by: Arseniy Krasnov <avkrasnov@salutedevices.com> Reviewed-by: Stefano Garzarella <sgarzare@redhat.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Link: https://lore.kernel.org/r/20240123072750.4084181-1-avkrasnov@salutedevices.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
654 lines
13 KiB
C
654 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* vsock test utilities
|
|
*
|
|
* Copyright (C) 2017 Red Hat, Inc.
|
|
*
|
|
* Author: Stefan Hajnoczi <stefanha@redhat.com>
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#include <assert.h>
|
|
#include <sys/epoll.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include "timeout.h"
|
|
#include "control.h"
|
|
#include "util.h"
|
|
|
|
/* Install signal handlers */
|
|
void init_signals(void)
|
|
{
|
|
struct sigaction act = {
|
|
.sa_handler = sigalrm,
|
|
};
|
|
|
|
sigaction(SIGALRM, &act, NULL);
|
|
signal(SIGPIPE, SIG_IGN);
|
|
}
|
|
|
|
static unsigned int parse_uint(const char *str, const char *err_str)
|
|
{
|
|
char *endptr = NULL;
|
|
unsigned long n;
|
|
|
|
errno = 0;
|
|
n = strtoul(str, &endptr, 10);
|
|
if (errno || *endptr != '\0') {
|
|
fprintf(stderr, "malformed %s \"%s\"\n", err_str, str);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/* Parse a CID in string representation */
|
|
unsigned int parse_cid(const char *str)
|
|
{
|
|
return parse_uint(str, "CID");
|
|
}
|
|
|
|
/* Parse a port in string representation */
|
|
unsigned int parse_port(const char *str)
|
|
{
|
|
return parse_uint(str, "port");
|
|
}
|
|
|
|
/* Wait for the remote to close the connection */
|
|
void vsock_wait_remote_close(int fd)
|
|
{
|
|
struct epoll_event ev;
|
|
int epollfd, nfds;
|
|
|
|
epollfd = epoll_create1(0);
|
|
if (epollfd == -1) {
|
|
perror("epoll_create1");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
ev.events = EPOLLRDHUP | EPOLLHUP;
|
|
ev.data.fd = fd;
|
|
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev) == -1) {
|
|
perror("epoll_ctl");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
nfds = epoll_wait(epollfd, &ev, 1, TIMEOUT * 1000);
|
|
if (nfds == -1) {
|
|
perror("epoll_wait");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (nfds == 0) {
|
|
fprintf(stderr, "epoll_wait timed out\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
assert(nfds == 1);
|
|
assert(ev.events & (EPOLLRDHUP | EPOLLHUP));
|
|
assert(ev.data.fd == fd);
|
|
|
|
close(epollfd);
|
|
}
|
|
|
|
/* Bind to <bind_port>, connect to <cid, port> and return the file descriptor. */
|
|
int vsock_bind_connect(unsigned int cid, unsigned int port, unsigned int bind_port, int type)
|
|
{
|
|
struct sockaddr_vm sa_client = {
|
|
.svm_family = AF_VSOCK,
|
|
.svm_cid = VMADDR_CID_ANY,
|
|
.svm_port = bind_port,
|
|
};
|
|
struct sockaddr_vm sa_server = {
|
|
.svm_family = AF_VSOCK,
|
|
.svm_cid = cid,
|
|
.svm_port = port,
|
|
};
|
|
|
|
int client_fd, ret;
|
|
|
|
client_fd = socket(AF_VSOCK, type, 0);
|
|
if (client_fd < 0) {
|
|
perror("socket");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (bind(client_fd, (struct sockaddr *)&sa_client, sizeof(sa_client))) {
|
|
perror("bind");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
timeout_begin(TIMEOUT);
|
|
do {
|
|
ret = connect(client_fd, (struct sockaddr *)&sa_server, sizeof(sa_server));
|
|
timeout_check("connect");
|
|
} while (ret < 0 && errno == EINTR);
|
|
timeout_end();
|
|
|
|
if (ret < 0) {
|
|
perror("connect");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
return client_fd;
|
|
}
|
|
|
|
/* Connect to <cid, port> and return the file descriptor. */
|
|
static int vsock_connect(unsigned int cid, unsigned int port, int type)
|
|
{
|
|
union {
|
|
struct sockaddr sa;
|
|
struct sockaddr_vm svm;
|
|
} addr = {
|
|
.svm = {
|
|
.svm_family = AF_VSOCK,
|
|
.svm_port = port,
|
|
.svm_cid = cid,
|
|
},
|
|
};
|
|
int ret;
|
|
int fd;
|
|
|
|
control_expectln("LISTENING");
|
|
|
|
fd = socket(AF_VSOCK, type, 0);
|
|
if (fd < 0) {
|
|
perror("socket");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
timeout_begin(TIMEOUT);
|
|
do {
|
|
ret = connect(fd, &addr.sa, sizeof(addr.svm));
|
|
timeout_check("connect");
|
|
} while (ret < 0 && errno == EINTR);
|
|
timeout_end();
|
|
|
|
if (ret < 0) {
|
|
int old_errno = errno;
|
|
|
|
close(fd);
|
|
fd = -1;
|
|
errno = old_errno;
|
|
}
|
|
return fd;
|
|
}
|
|
|
|
int vsock_stream_connect(unsigned int cid, unsigned int port)
|
|
{
|
|
return vsock_connect(cid, port, SOCK_STREAM);
|
|
}
|
|
|
|
int vsock_seqpacket_connect(unsigned int cid, unsigned int port)
|
|
{
|
|
return vsock_connect(cid, port, SOCK_SEQPACKET);
|
|
}
|
|
|
|
/* Listen on <cid, port> and return the file descriptor. */
|
|
static int vsock_listen(unsigned int cid, unsigned int port, int type)
|
|
{
|
|
union {
|
|
struct sockaddr sa;
|
|
struct sockaddr_vm svm;
|
|
} addr = {
|
|
.svm = {
|
|
.svm_family = AF_VSOCK,
|
|
.svm_port = port,
|
|
.svm_cid = cid,
|
|
},
|
|
};
|
|
int fd;
|
|
|
|
fd = socket(AF_VSOCK, type, 0);
|
|
if (fd < 0) {
|
|
perror("socket");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (bind(fd, &addr.sa, sizeof(addr.svm)) < 0) {
|
|
perror("bind");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (listen(fd, 1) < 0) {
|
|
perror("listen");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
return fd;
|
|
}
|
|
|
|
/* Listen on <cid, port> and return the first incoming connection. The remote
|
|
* address is stored to clientaddrp. clientaddrp may be NULL.
|
|
*/
|
|
static int vsock_accept(unsigned int cid, unsigned int port,
|
|
struct sockaddr_vm *clientaddrp, int type)
|
|
{
|
|
union {
|
|
struct sockaddr sa;
|
|
struct sockaddr_vm svm;
|
|
} clientaddr;
|
|
socklen_t clientaddr_len = sizeof(clientaddr.svm);
|
|
int fd, client_fd, old_errno;
|
|
|
|
fd = vsock_listen(cid, port, type);
|
|
|
|
control_writeln("LISTENING");
|
|
|
|
timeout_begin(TIMEOUT);
|
|
do {
|
|
client_fd = accept(fd, &clientaddr.sa, &clientaddr_len);
|
|
timeout_check("accept");
|
|
} while (client_fd < 0 && errno == EINTR);
|
|
timeout_end();
|
|
|
|
old_errno = errno;
|
|
close(fd);
|
|
errno = old_errno;
|
|
|
|
if (client_fd < 0)
|
|
return client_fd;
|
|
|
|
if (clientaddr_len != sizeof(clientaddr.svm)) {
|
|
fprintf(stderr, "unexpected addrlen from accept(2), %zu\n",
|
|
(size_t)clientaddr_len);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (clientaddr.sa.sa_family != AF_VSOCK) {
|
|
fprintf(stderr, "expected AF_VSOCK from accept(2), got %d\n",
|
|
clientaddr.sa.sa_family);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (clientaddrp)
|
|
*clientaddrp = clientaddr.svm;
|
|
return client_fd;
|
|
}
|
|
|
|
int vsock_stream_accept(unsigned int cid, unsigned int port,
|
|
struct sockaddr_vm *clientaddrp)
|
|
{
|
|
return vsock_accept(cid, port, clientaddrp, SOCK_STREAM);
|
|
}
|
|
|
|
int vsock_stream_listen(unsigned int cid, unsigned int port)
|
|
{
|
|
return vsock_listen(cid, port, SOCK_STREAM);
|
|
}
|
|
|
|
int vsock_seqpacket_accept(unsigned int cid, unsigned int port,
|
|
struct sockaddr_vm *clientaddrp)
|
|
{
|
|
return vsock_accept(cid, port, clientaddrp, SOCK_SEQPACKET);
|
|
}
|
|
|
|
/* Transmit bytes from a buffer and check the return value.
|
|
*
|
|
* expected_ret:
|
|
* <0 Negative errno (for testing errors)
|
|
* 0 End-of-file
|
|
* >0 Success (bytes successfully written)
|
|
*/
|
|
void send_buf(int fd, const void *buf, size_t len, int flags,
|
|
ssize_t expected_ret)
|
|
{
|
|
ssize_t nwritten = 0;
|
|
ssize_t ret;
|
|
|
|
timeout_begin(TIMEOUT);
|
|
do {
|
|
ret = send(fd, buf + nwritten, len - nwritten, flags);
|
|
timeout_check("send");
|
|
|
|
if (ret == 0 || (ret < 0 && errno != EINTR))
|
|
break;
|
|
|
|
nwritten += ret;
|
|
} while (nwritten < len);
|
|
timeout_end();
|
|
|
|
if (expected_ret < 0) {
|
|
if (ret != -1) {
|
|
fprintf(stderr, "bogus send(2) return value %zd (expected %zd)\n",
|
|
ret, expected_ret);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (errno != -expected_ret) {
|
|
perror("send");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (ret < 0) {
|
|
perror("send");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (nwritten != expected_ret) {
|
|
if (ret == 0)
|
|
fprintf(stderr, "unexpected EOF while sending bytes\n");
|
|
|
|
fprintf(stderr, "bogus send(2) bytes written %zd (expected %zd)\n",
|
|
nwritten, expected_ret);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
/* Receive bytes in a buffer and check the return value.
|
|
*
|
|
* expected_ret:
|
|
* <0 Negative errno (for testing errors)
|
|
* 0 End-of-file
|
|
* >0 Success (bytes successfully read)
|
|
*/
|
|
void recv_buf(int fd, void *buf, size_t len, int flags, ssize_t expected_ret)
|
|
{
|
|
ssize_t nread = 0;
|
|
ssize_t ret;
|
|
|
|
timeout_begin(TIMEOUT);
|
|
do {
|
|
ret = recv(fd, buf + nread, len - nread, flags);
|
|
timeout_check("recv");
|
|
|
|
if (ret == 0 || (ret < 0 && errno != EINTR))
|
|
break;
|
|
|
|
nread += ret;
|
|
} while (nread < len);
|
|
timeout_end();
|
|
|
|
if (expected_ret < 0) {
|
|
if (ret != -1) {
|
|
fprintf(stderr, "bogus recv(2) return value %zd (expected %zd)\n",
|
|
ret, expected_ret);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (errno != -expected_ret) {
|
|
perror("recv");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (ret < 0) {
|
|
perror("recv");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (nread != expected_ret) {
|
|
if (ret == 0)
|
|
fprintf(stderr, "unexpected EOF while receiving bytes\n");
|
|
|
|
fprintf(stderr, "bogus recv(2) bytes read %zd (expected %zd)\n",
|
|
nread, expected_ret);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
/* Transmit one byte and check the return value.
|
|
*
|
|
* expected_ret:
|
|
* <0 Negative errno (for testing errors)
|
|
* 0 End-of-file
|
|
* 1 Success
|
|
*/
|
|
void send_byte(int fd, int expected_ret, int flags)
|
|
{
|
|
const uint8_t byte = 'A';
|
|
|
|
send_buf(fd, &byte, sizeof(byte), flags, expected_ret);
|
|
}
|
|
|
|
/* Receive one byte and check the return value.
|
|
*
|
|
* expected_ret:
|
|
* <0 Negative errno (for testing errors)
|
|
* 0 End-of-file
|
|
* 1 Success
|
|
*/
|
|
void recv_byte(int fd, int expected_ret, int flags)
|
|
{
|
|
uint8_t byte;
|
|
|
|
recv_buf(fd, &byte, sizeof(byte), flags, expected_ret);
|
|
|
|
if (byte != 'A') {
|
|
fprintf(stderr, "unexpected byte read %c\n", byte);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
/* Run test cases. The program terminates if a failure occurs. */
|
|
void run_tests(const struct test_case *test_cases,
|
|
const struct test_opts *opts)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; test_cases[i].name; i++) {
|
|
void (*run)(const struct test_opts *opts);
|
|
char *line;
|
|
|
|
printf("%d - %s...", i, test_cases[i].name);
|
|
fflush(stdout);
|
|
|
|
/* Full barrier before executing the next test. This
|
|
* ensures that client and server are executing the
|
|
* same test case. In particular, it means whoever is
|
|
* faster will not see the peer still executing the
|
|
* last test. This is important because port numbers
|
|
* can be used by multiple test cases.
|
|
*/
|
|
if (test_cases[i].skip)
|
|
control_writeln("SKIP");
|
|
else
|
|
control_writeln("NEXT");
|
|
|
|
line = control_readln();
|
|
if (control_cmpln(line, "SKIP", false) || test_cases[i].skip) {
|
|
|
|
printf("skipped\n");
|
|
|
|
free(line);
|
|
continue;
|
|
}
|
|
|
|
control_cmpln(line, "NEXT", true);
|
|
free(line);
|
|
|
|
if (opts->mode == TEST_MODE_CLIENT)
|
|
run = test_cases[i].run_client;
|
|
else
|
|
run = test_cases[i].run_server;
|
|
|
|
if (run)
|
|
run(opts);
|
|
|
|
printf("ok\n");
|
|
}
|
|
}
|
|
|
|
void list_tests(const struct test_case *test_cases)
|
|
{
|
|
int i;
|
|
|
|
printf("ID\tTest name\n");
|
|
|
|
for (i = 0; test_cases[i].name; i++)
|
|
printf("%d\t%s\n", i, test_cases[i].name);
|
|
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
void skip_test(struct test_case *test_cases, size_t test_cases_len,
|
|
const char *test_id_str)
|
|
{
|
|
unsigned long test_id;
|
|
char *endptr = NULL;
|
|
|
|
errno = 0;
|
|
test_id = strtoul(test_id_str, &endptr, 10);
|
|
if (errno || *endptr != '\0') {
|
|
fprintf(stderr, "malformed test ID \"%s\"\n", test_id_str);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (test_id >= test_cases_len) {
|
|
fprintf(stderr, "test ID (%lu) larger than the max allowed (%lu)\n",
|
|
test_id, test_cases_len - 1);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
test_cases[test_id].skip = true;
|
|
}
|
|
|
|
unsigned long hash_djb2(const void *data, size_t len)
|
|
{
|
|
unsigned long hash = 5381;
|
|
int i = 0;
|
|
|
|
while (i < len) {
|
|
hash = ((hash << 5) + hash) + ((unsigned char *)data)[i];
|
|
i++;
|
|
}
|
|
|
|
return hash;
|
|
}
|
|
|
|
size_t iovec_bytes(const struct iovec *iov, size_t iovnum)
|
|
{
|
|
size_t bytes;
|
|
int i;
|
|
|
|
for (bytes = 0, i = 0; i < iovnum; i++)
|
|
bytes += iov[i].iov_len;
|
|
|
|
return bytes;
|
|
}
|
|
|
|
unsigned long iovec_hash_djb2(const struct iovec *iov, size_t iovnum)
|
|
{
|
|
unsigned long hash;
|
|
size_t iov_bytes;
|
|
size_t offs;
|
|
void *tmp;
|
|
int i;
|
|
|
|
iov_bytes = iovec_bytes(iov, iovnum);
|
|
|
|
tmp = malloc(iov_bytes);
|
|
if (!tmp) {
|
|
perror("malloc");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
for (offs = 0, i = 0; i < iovnum; i++) {
|
|
memcpy(tmp + offs, iov[i].iov_base, iov[i].iov_len);
|
|
offs += iov[i].iov_len;
|
|
}
|
|
|
|
hash = hash_djb2(tmp, iov_bytes);
|
|
free(tmp);
|
|
|
|
return hash;
|
|
}
|
|
|
|
/* Allocates and returns new 'struct iovec *' according pattern
|
|
* in the 'test_iovec'. For each element in the 'test_iovec' it
|
|
* allocates new element in the resulting 'iovec'. 'iov_len'
|
|
* of the new element is copied from 'test_iovec'. 'iov_base' is
|
|
* allocated depending on the 'iov_base' of 'test_iovec':
|
|
*
|
|
* 'iov_base' == NULL -> valid buf: mmap('iov_len').
|
|
*
|
|
* 'iov_base' == MAP_FAILED -> invalid buf:
|
|
* mmap('iov_len'), then munmap('iov_len').
|
|
* 'iov_base' still contains result of
|
|
* mmap().
|
|
*
|
|
* 'iov_base' == number -> unaligned valid buf:
|
|
* mmap('iov_len') + number.
|
|
*
|
|
* 'iovnum' is number of elements in 'test_iovec'.
|
|
*
|
|
* Returns new 'iovec' or calls 'exit()' on error.
|
|
*/
|
|
struct iovec *alloc_test_iovec(const struct iovec *test_iovec, int iovnum)
|
|
{
|
|
struct iovec *iovec;
|
|
int i;
|
|
|
|
iovec = malloc(sizeof(*iovec) * iovnum);
|
|
if (!iovec) {
|
|
perror("malloc");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
for (i = 0; i < iovnum; i++) {
|
|
iovec[i].iov_len = test_iovec[i].iov_len;
|
|
|
|
iovec[i].iov_base = mmap(NULL, iovec[i].iov_len,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS | MAP_POPULATE,
|
|
-1, 0);
|
|
if (iovec[i].iov_base == MAP_FAILED) {
|
|
perror("mmap");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (test_iovec[i].iov_base != MAP_FAILED)
|
|
iovec[i].iov_base += (uintptr_t)test_iovec[i].iov_base;
|
|
}
|
|
|
|
/* Unmap "invalid" elements. */
|
|
for (i = 0; i < iovnum; i++) {
|
|
if (test_iovec[i].iov_base == MAP_FAILED) {
|
|
if (munmap(iovec[i].iov_base, iovec[i].iov_len)) {
|
|
perror("munmap");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < iovnum; i++) {
|
|
int j;
|
|
|
|
if (test_iovec[i].iov_base == MAP_FAILED)
|
|
continue;
|
|
|
|
for (j = 0; j < iovec[i].iov_len; j++)
|
|
((uint8_t *)iovec[i].iov_base)[j] = rand() & 0xff;
|
|
}
|
|
|
|
return iovec;
|
|
}
|
|
|
|
/* Frees 'iovec *', previously allocated by 'alloc_test_iovec()'.
|
|
* On error calls 'exit()'.
|
|
*/
|
|
void free_test_iovec(const struct iovec *test_iovec,
|
|
struct iovec *iovec, int iovnum)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < iovnum; i++) {
|
|
if (test_iovec[i].iov_base != MAP_FAILED) {
|
|
if (test_iovec[i].iov_base)
|
|
iovec[i].iov_base -= (uintptr_t)test_iovec[i].iov_base;
|
|
|
|
if (munmap(iovec[i].iov_base, iovec[i].iov_len)) {
|
|
perror("munmap");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
}
|
|
|
|
free(iovec);
|
|
}
|