mirror of
https://github.com/torvalds/linux.git
synced 2024-11-29 23:51:37 +00:00
18685451fc
ip_local_out() and other functions can pass skb->sk as function argument. If the skb is a fragment and reassembly happens before such function call returns, the sk must not be released. This affects skb fragments reassembled via netfilter or similar modules, e.g. openvswitch or ct_act.c, when run as part of tx pipeline. Eric Dumazet made an initial analysis of this bug. Quoting Eric: Calling ip_defrag() in output path is also implying skb_orphan(), which is buggy because output path relies on sk not disappearing. A relevant old patch about the issue was :8282f27449
("inet: frag: Always orphan skbs inside ip_defrag()") [..] net/ipv4/ip_output.c depends on skb->sk being set, and probably to an inet socket, not an arbitrary one. If we orphan the packet in ipvlan, then downstream things like FQ packet scheduler will not work properly. We need to change ip_defrag() to only use skb_orphan() when really needed, ie whenever frag_list is going to be used. Eric suggested to stash sk in fragment queue and made an initial patch. However there is a problem with this: If skb is refragmented again right after, ip_do_fragment() will copy head->sk to the new fragments, and sets up destructor to sock_wfree. IOW, we have no choice but to fix up sk_wmem accouting to reflect the fully reassembled skb, else wmem will underflow. This change moves the orphan down into the core, to last possible moment. As ip_defrag_offset is aliased with sk_buff->sk member, we must move the offset into the FRAG_CB, else skb->sk gets clobbered. This allows to delay the orphaning long enough to learn if the skb has to be queued or if the skb is completing the reasm queue. In the former case, things work as before, skb is orphaned. This is safe because skb gets queued/stolen and won't continue past reasm engine. In the latter case, we will steal the skb->sk reference, reattach it to the head skb, and fix up wmem accouting when inet_frag inflates truesize. Fixes:7026b1ddb6
("netfilter: Pass socket pointer down through okfn().") Diagnosed-by: Eric Dumazet <edumazet@google.com> Reported-by: xingwei lee <xrivendell7@gmail.com> Reported-by: yue sun <samsun1006219@gmail.com> Reported-by: syzbot+e5167d7144a62715044c@syzkaller.appspotmail.com Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20240326101845.30836-1-fw@strlen.de Signed-off-by: Paolo Abeni <pabeni@redhat.com>
653 lines
17 KiB
C
653 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* inet fragments management
|
|
*
|
|
* Authors: Pavel Emelyanov <xemul@openvz.org>
|
|
* Started as consolidation of ipv4/ip_fragment.c,
|
|
* ipv6/reassembly. and ipv6 nf conntrack reassembly
|
|
*/
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/module.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/random.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/rhashtable.h>
|
|
|
|
#include <net/sock.h>
|
|
#include <net/inet_frag.h>
|
|
#include <net/inet_ecn.h>
|
|
#include <net/ip.h>
|
|
#include <net/ipv6.h>
|
|
|
|
#include "../core/sock_destructor.h"
|
|
|
|
/* Use skb->cb to track consecutive/adjacent fragments coming at
|
|
* the end of the queue. Nodes in the rb-tree queue will
|
|
* contain "runs" of one or more adjacent fragments.
|
|
*
|
|
* Invariants:
|
|
* - next_frag is NULL at the tail of a "run";
|
|
* - the head of a "run" has the sum of all fragment lengths in frag_run_len.
|
|
*/
|
|
struct ipfrag_skb_cb {
|
|
union {
|
|
struct inet_skb_parm h4;
|
|
struct inet6_skb_parm h6;
|
|
};
|
|
struct sk_buff *next_frag;
|
|
int frag_run_len;
|
|
int ip_defrag_offset;
|
|
};
|
|
|
|
#define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
|
|
|
|
static void fragcb_clear(struct sk_buff *skb)
|
|
{
|
|
RB_CLEAR_NODE(&skb->rbnode);
|
|
FRAG_CB(skb)->next_frag = NULL;
|
|
FRAG_CB(skb)->frag_run_len = skb->len;
|
|
}
|
|
|
|
/* Append skb to the last "run". */
|
|
static void fragrun_append_to_last(struct inet_frag_queue *q,
|
|
struct sk_buff *skb)
|
|
{
|
|
fragcb_clear(skb);
|
|
|
|
FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
|
|
FRAG_CB(q->fragments_tail)->next_frag = skb;
|
|
q->fragments_tail = skb;
|
|
}
|
|
|
|
/* Create a new "run" with the skb. */
|
|
static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
|
|
{
|
|
BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
|
|
fragcb_clear(skb);
|
|
|
|
if (q->last_run_head)
|
|
rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
|
|
&q->last_run_head->rbnode.rb_right);
|
|
else
|
|
rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
|
|
rb_insert_color(&skb->rbnode, &q->rb_fragments);
|
|
|
|
q->fragments_tail = skb;
|
|
q->last_run_head = skb;
|
|
}
|
|
|
|
/* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
|
|
* Value : 0xff if frame should be dropped.
|
|
* 0 or INET_ECN_CE value, to be ORed in to final iph->tos field
|
|
*/
|
|
const u8 ip_frag_ecn_table[16] = {
|
|
/* at least one fragment had CE, and others ECT_0 or ECT_1 */
|
|
[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = INET_ECN_CE,
|
|
[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = INET_ECN_CE,
|
|
[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = INET_ECN_CE,
|
|
|
|
/* invalid combinations : drop frame */
|
|
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
|
|
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
|
|
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
|
|
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
|
|
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
|
|
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
|
|
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
|
|
};
|
|
EXPORT_SYMBOL(ip_frag_ecn_table);
|
|
|
|
int inet_frags_init(struct inet_frags *f)
|
|
{
|
|
f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
|
|
NULL);
|
|
if (!f->frags_cachep)
|
|
return -ENOMEM;
|
|
|
|
refcount_set(&f->refcnt, 1);
|
|
init_completion(&f->completion);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(inet_frags_init);
|
|
|
|
void inet_frags_fini(struct inet_frags *f)
|
|
{
|
|
if (refcount_dec_and_test(&f->refcnt))
|
|
complete(&f->completion);
|
|
|
|
wait_for_completion(&f->completion);
|
|
|
|
kmem_cache_destroy(f->frags_cachep);
|
|
f->frags_cachep = NULL;
|
|
}
|
|
EXPORT_SYMBOL(inet_frags_fini);
|
|
|
|
/* called from rhashtable_free_and_destroy() at netns_frags dismantle */
|
|
static void inet_frags_free_cb(void *ptr, void *arg)
|
|
{
|
|
struct inet_frag_queue *fq = ptr;
|
|
int count;
|
|
|
|
count = del_timer_sync(&fq->timer) ? 1 : 0;
|
|
|
|
spin_lock_bh(&fq->lock);
|
|
fq->flags |= INET_FRAG_DROP;
|
|
if (!(fq->flags & INET_FRAG_COMPLETE)) {
|
|
fq->flags |= INET_FRAG_COMPLETE;
|
|
count++;
|
|
} else if (fq->flags & INET_FRAG_HASH_DEAD) {
|
|
count++;
|
|
}
|
|
spin_unlock_bh(&fq->lock);
|
|
|
|
if (refcount_sub_and_test(count, &fq->refcnt))
|
|
inet_frag_destroy(fq);
|
|
}
|
|
|
|
static LLIST_HEAD(fqdir_free_list);
|
|
|
|
static void fqdir_free_fn(struct work_struct *work)
|
|
{
|
|
struct llist_node *kill_list;
|
|
struct fqdir *fqdir, *tmp;
|
|
struct inet_frags *f;
|
|
|
|
/* Atomically snapshot the list of fqdirs to free */
|
|
kill_list = llist_del_all(&fqdir_free_list);
|
|
|
|
/* We need to make sure all ongoing call_rcu(..., inet_frag_destroy_rcu)
|
|
* have completed, since they need to dereference fqdir.
|
|
* Would it not be nice to have kfree_rcu_barrier() ? :)
|
|
*/
|
|
rcu_barrier();
|
|
|
|
llist_for_each_entry_safe(fqdir, tmp, kill_list, free_list) {
|
|
f = fqdir->f;
|
|
if (refcount_dec_and_test(&f->refcnt))
|
|
complete(&f->completion);
|
|
|
|
kfree(fqdir);
|
|
}
|
|
}
|
|
|
|
static DECLARE_WORK(fqdir_free_work, fqdir_free_fn);
|
|
|
|
static void fqdir_work_fn(struct work_struct *work)
|
|
{
|
|
struct fqdir *fqdir = container_of(work, struct fqdir, destroy_work);
|
|
|
|
rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL);
|
|
|
|
if (llist_add(&fqdir->free_list, &fqdir_free_list))
|
|
queue_work(system_wq, &fqdir_free_work);
|
|
}
|
|
|
|
int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net)
|
|
{
|
|
struct fqdir *fqdir = kzalloc(sizeof(*fqdir), GFP_KERNEL);
|
|
int res;
|
|
|
|
if (!fqdir)
|
|
return -ENOMEM;
|
|
fqdir->f = f;
|
|
fqdir->net = net;
|
|
res = rhashtable_init(&fqdir->rhashtable, &fqdir->f->rhash_params);
|
|
if (res < 0) {
|
|
kfree(fqdir);
|
|
return res;
|
|
}
|
|
refcount_inc(&f->refcnt);
|
|
*fqdirp = fqdir;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(fqdir_init);
|
|
|
|
static struct workqueue_struct *inet_frag_wq;
|
|
|
|
static int __init inet_frag_wq_init(void)
|
|
{
|
|
inet_frag_wq = create_workqueue("inet_frag_wq");
|
|
if (!inet_frag_wq)
|
|
panic("Could not create inet frag workq");
|
|
return 0;
|
|
}
|
|
|
|
pure_initcall(inet_frag_wq_init);
|
|
|
|
void fqdir_exit(struct fqdir *fqdir)
|
|
{
|
|
INIT_WORK(&fqdir->destroy_work, fqdir_work_fn);
|
|
queue_work(inet_frag_wq, &fqdir->destroy_work);
|
|
}
|
|
EXPORT_SYMBOL(fqdir_exit);
|
|
|
|
void inet_frag_kill(struct inet_frag_queue *fq)
|
|
{
|
|
if (del_timer(&fq->timer))
|
|
refcount_dec(&fq->refcnt);
|
|
|
|
if (!(fq->flags & INET_FRAG_COMPLETE)) {
|
|
struct fqdir *fqdir = fq->fqdir;
|
|
|
|
fq->flags |= INET_FRAG_COMPLETE;
|
|
rcu_read_lock();
|
|
/* The RCU read lock provides a memory barrier
|
|
* guaranteeing that if fqdir->dead is false then
|
|
* the hash table destruction will not start until
|
|
* after we unlock. Paired with fqdir_pre_exit().
|
|
*/
|
|
if (!READ_ONCE(fqdir->dead)) {
|
|
rhashtable_remove_fast(&fqdir->rhashtable, &fq->node,
|
|
fqdir->f->rhash_params);
|
|
refcount_dec(&fq->refcnt);
|
|
} else {
|
|
fq->flags |= INET_FRAG_HASH_DEAD;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(inet_frag_kill);
|
|
|
|
static void inet_frag_destroy_rcu(struct rcu_head *head)
|
|
{
|
|
struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
|
|
rcu);
|
|
struct inet_frags *f = q->fqdir->f;
|
|
|
|
if (f->destructor)
|
|
f->destructor(q);
|
|
kmem_cache_free(f->frags_cachep, q);
|
|
}
|
|
|
|
unsigned int inet_frag_rbtree_purge(struct rb_root *root,
|
|
enum skb_drop_reason reason)
|
|
{
|
|
struct rb_node *p = rb_first(root);
|
|
unsigned int sum = 0;
|
|
|
|
while (p) {
|
|
struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
|
|
|
|
p = rb_next(p);
|
|
rb_erase(&skb->rbnode, root);
|
|
while (skb) {
|
|
struct sk_buff *next = FRAG_CB(skb)->next_frag;
|
|
|
|
sum += skb->truesize;
|
|
kfree_skb_reason(skb, reason);
|
|
skb = next;
|
|
}
|
|
}
|
|
return sum;
|
|
}
|
|
EXPORT_SYMBOL(inet_frag_rbtree_purge);
|
|
|
|
void inet_frag_destroy(struct inet_frag_queue *q)
|
|
{
|
|
unsigned int sum, sum_truesize = 0;
|
|
enum skb_drop_reason reason;
|
|
struct inet_frags *f;
|
|
struct fqdir *fqdir;
|
|
|
|
WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
|
|
reason = (q->flags & INET_FRAG_DROP) ?
|
|
SKB_DROP_REASON_FRAG_REASM_TIMEOUT :
|
|
SKB_CONSUMED;
|
|
WARN_ON(del_timer(&q->timer) != 0);
|
|
|
|
/* Release all fragment data. */
|
|
fqdir = q->fqdir;
|
|
f = fqdir->f;
|
|
sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments, reason);
|
|
sum = sum_truesize + f->qsize;
|
|
|
|
call_rcu(&q->rcu, inet_frag_destroy_rcu);
|
|
|
|
sub_frag_mem_limit(fqdir, sum);
|
|
}
|
|
EXPORT_SYMBOL(inet_frag_destroy);
|
|
|
|
static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir,
|
|
struct inet_frags *f,
|
|
void *arg)
|
|
{
|
|
struct inet_frag_queue *q;
|
|
|
|
q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
|
|
if (!q)
|
|
return NULL;
|
|
|
|
q->fqdir = fqdir;
|
|
f->constructor(q, arg);
|
|
add_frag_mem_limit(fqdir, f->qsize);
|
|
|
|
timer_setup(&q->timer, f->frag_expire, 0);
|
|
spin_lock_init(&q->lock);
|
|
refcount_set(&q->refcnt, 3);
|
|
|
|
return q;
|
|
}
|
|
|
|
static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir,
|
|
void *arg,
|
|
struct inet_frag_queue **prev)
|
|
{
|
|
struct inet_frags *f = fqdir->f;
|
|
struct inet_frag_queue *q;
|
|
|
|
q = inet_frag_alloc(fqdir, f, arg);
|
|
if (!q) {
|
|
*prev = ERR_PTR(-ENOMEM);
|
|
return NULL;
|
|
}
|
|
mod_timer(&q->timer, jiffies + fqdir->timeout);
|
|
|
|
*prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key,
|
|
&q->node, f->rhash_params);
|
|
if (*prev) {
|
|
q->flags |= INET_FRAG_COMPLETE;
|
|
inet_frag_kill(q);
|
|
inet_frag_destroy(q);
|
|
return NULL;
|
|
}
|
|
return q;
|
|
}
|
|
|
|
/* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */
|
|
struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key)
|
|
{
|
|
/* This pairs with WRITE_ONCE() in fqdir_pre_exit(). */
|
|
long high_thresh = READ_ONCE(fqdir->high_thresh);
|
|
struct inet_frag_queue *fq = NULL, *prev;
|
|
|
|
if (!high_thresh || frag_mem_limit(fqdir) > high_thresh)
|
|
return NULL;
|
|
|
|
rcu_read_lock();
|
|
|
|
prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params);
|
|
if (!prev)
|
|
fq = inet_frag_create(fqdir, key, &prev);
|
|
if (!IS_ERR_OR_NULL(prev)) {
|
|
fq = prev;
|
|
if (!refcount_inc_not_zero(&fq->refcnt))
|
|
fq = NULL;
|
|
}
|
|
rcu_read_unlock();
|
|
return fq;
|
|
}
|
|
EXPORT_SYMBOL(inet_frag_find);
|
|
|
|
int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
|
|
int offset, int end)
|
|
{
|
|
struct sk_buff *last = q->fragments_tail;
|
|
|
|
/* RFC5722, Section 4, amended by Errata ID : 3089
|
|
* When reassembling an IPv6 datagram, if
|
|
* one or more its constituent fragments is determined to be an
|
|
* overlapping fragment, the entire datagram (and any constituent
|
|
* fragments) MUST be silently discarded.
|
|
*
|
|
* Duplicates, however, should be ignored (i.e. skb dropped, but the
|
|
* queue/fragments kept for later reassembly).
|
|
*/
|
|
if (!last)
|
|
fragrun_create(q, skb); /* First fragment. */
|
|
else if (FRAG_CB(last)->ip_defrag_offset + last->len < end) {
|
|
/* This is the common case: skb goes to the end. */
|
|
/* Detect and discard overlaps. */
|
|
if (offset < FRAG_CB(last)->ip_defrag_offset + last->len)
|
|
return IPFRAG_OVERLAP;
|
|
if (offset == FRAG_CB(last)->ip_defrag_offset + last->len)
|
|
fragrun_append_to_last(q, skb);
|
|
else
|
|
fragrun_create(q, skb);
|
|
} else {
|
|
/* Binary search. Note that skb can become the first fragment,
|
|
* but not the last (covered above).
|
|
*/
|
|
struct rb_node **rbn, *parent;
|
|
|
|
rbn = &q->rb_fragments.rb_node;
|
|
do {
|
|
struct sk_buff *curr;
|
|
int curr_run_end;
|
|
|
|
parent = *rbn;
|
|
curr = rb_to_skb(parent);
|
|
curr_run_end = FRAG_CB(curr)->ip_defrag_offset +
|
|
FRAG_CB(curr)->frag_run_len;
|
|
if (end <= FRAG_CB(curr)->ip_defrag_offset)
|
|
rbn = &parent->rb_left;
|
|
else if (offset >= curr_run_end)
|
|
rbn = &parent->rb_right;
|
|
else if (offset >= FRAG_CB(curr)->ip_defrag_offset &&
|
|
end <= curr_run_end)
|
|
return IPFRAG_DUP;
|
|
else
|
|
return IPFRAG_OVERLAP;
|
|
} while (*rbn);
|
|
/* Here we have parent properly set, and rbn pointing to
|
|
* one of its NULL left/right children. Insert skb.
|
|
*/
|
|
fragcb_clear(skb);
|
|
rb_link_node(&skb->rbnode, parent, rbn);
|
|
rb_insert_color(&skb->rbnode, &q->rb_fragments);
|
|
}
|
|
|
|
FRAG_CB(skb)->ip_defrag_offset = offset;
|
|
|
|
return IPFRAG_OK;
|
|
}
|
|
EXPORT_SYMBOL(inet_frag_queue_insert);
|
|
|
|
void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
|
|
struct sk_buff *parent)
|
|
{
|
|
struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
|
|
void (*destructor)(struct sk_buff *);
|
|
unsigned int orig_truesize = 0;
|
|
struct sk_buff **nextp = NULL;
|
|
struct sock *sk = skb->sk;
|
|
int delta;
|
|
|
|
if (sk && is_skb_wmem(skb)) {
|
|
/* TX: skb->sk might have been passed as argument to
|
|
* dst->output and must remain valid until tx completes.
|
|
*
|
|
* Move sk to reassembled skb and fix up wmem accounting.
|
|
*/
|
|
orig_truesize = skb->truesize;
|
|
destructor = skb->destructor;
|
|
}
|
|
|
|
if (head != skb) {
|
|
fp = skb_clone(skb, GFP_ATOMIC);
|
|
if (!fp) {
|
|
head = skb;
|
|
goto out_restore_sk;
|
|
}
|
|
FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
|
|
if (RB_EMPTY_NODE(&skb->rbnode))
|
|
FRAG_CB(parent)->next_frag = fp;
|
|
else
|
|
rb_replace_node(&skb->rbnode, &fp->rbnode,
|
|
&q->rb_fragments);
|
|
if (q->fragments_tail == skb)
|
|
q->fragments_tail = fp;
|
|
|
|
if (orig_truesize) {
|
|
/* prevent skb_morph from releasing sk */
|
|
skb->sk = NULL;
|
|
skb->destructor = NULL;
|
|
}
|
|
skb_morph(skb, head);
|
|
FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
|
|
rb_replace_node(&head->rbnode, &skb->rbnode,
|
|
&q->rb_fragments);
|
|
consume_skb(head);
|
|
head = skb;
|
|
}
|
|
WARN_ON(FRAG_CB(head)->ip_defrag_offset != 0);
|
|
|
|
delta = -head->truesize;
|
|
|
|
/* Head of list must not be cloned. */
|
|
if (skb_unclone(head, GFP_ATOMIC))
|
|
goto out_restore_sk;
|
|
|
|
delta += head->truesize;
|
|
if (delta)
|
|
add_frag_mem_limit(q->fqdir, delta);
|
|
|
|
/* If the first fragment is fragmented itself, we split
|
|
* it to two chunks: the first with data and paged part
|
|
* and the second, holding only fragments.
|
|
*/
|
|
if (skb_has_frag_list(head)) {
|
|
struct sk_buff *clone;
|
|
int i, plen = 0;
|
|
|
|
clone = alloc_skb(0, GFP_ATOMIC);
|
|
if (!clone)
|
|
goto out_restore_sk;
|
|
skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
|
|
skb_frag_list_init(head);
|
|
for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
|
|
plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
|
|
clone->data_len = head->data_len - plen;
|
|
clone->len = clone->data_len;
|
|
head->truesize += clone->truesize;
|
|
clone->csum = 0;
|
|
clone->ip_summed = head->ip_summed;
|
|
add_frag_mem_limit(q->fqdir, clone->truesize);
|
|
skb_shinfo(head)->frag_list = clone;
|
|
nextp = &clone->next;
|
|
} else {
|
|
nextp = &skb_shinfo(head)->frag_list;
|
|
}
|
|
|
|
out_restore_sk:
|
|
if (orig_truesize) {
|
|
int ts_delta = head->truesize - orig_truesize;
|
|
|
|
/* if this reassembled skb is fragmented later,
|
|
* fraglist skbs will get skb->sk assigned from head->sk,
|
|
* and each frag skb will be released via sock_wfree.
|
|
*
|
|
* Update sk_wmem_alloc.
|
|
*/
|
|
head->sk = sk;
|
|
head->destructor = destructor;
|
|
refcount_add(ts_delta, &sk->sk_wmem_alloc);
|
|
}
|
|
|
|
return nextp;
|
|
}
|
|
EXPORT_SYMBOL(inet_frag_reasm_prepare);
|
|
|
|
void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
|
|
void *reasm_data, bool try_coalesce)
|
|
{
|
|
struct sock *sk = is_skb_wmem(head) ? head->sk : NULL;
|
|
const unsigned int head_truesize = head->truesize;
|
|
struct sk_buff **nextp = reasm_data;
|
|
struct rb_node *rbn;
|
|
struct sk_buff *fp;
|
|
int sum_truesize;
|
|
|
|
skb_push(head, head->data - skb_network_header(head));
|
|
|
|
/* Traverse the tree in order, to build frag_list. */
|
|
fp = FRAG_CB(head)->next_frag;
|
|
rbn = rb_next(&head->rbnode);
|
|
rb_erase(&head->rbnode, &q->rb_fragments);
|
|
|
|
sum_truesize = head->truesize;
|
|
while (rbn || fp) {
|
|
/* fp points to the next sk_buff in the current run;
|
|
* rbn points to the next run.
|
|
*/
|
|
/* Go through the current run. */
|
|
while (fp) {
|
|
struct sk_buff *next_frag = FRAG_CB(fp)->next_frag;
|
|
bool stolen;
|
|
int delta;
|
|
|
|
sum_truesize += fp->truesize;
|
|
if (head->ip_summed != fp->ip_summed)
|
|
head->ip_summed = CHECKSUM_NONE;
|
|
else if (head->ip_summed == CHECKSUM_COMPLETE)
|
|
head->csum = csum_add(head->csum, fp->csum);
|
|
|
|
if (try_coalesce && skb_try_coalesce(head, fp, &stolen,
|
|
&delta)) {
|
|
kfree_skb_partial(fp, stolen);
|
|
} else {
|
|
fp->prev = NULL;
|
|
memset(&fp->rbnode, 0, sizeof(fp->rbnode));
|
|
fp->sk = NULL;
|
|
|
|
head->data_len += fp->len;
|
|
head->len += fp->len;
|
|
head->truesize += fp->truesize;
|
|
|
|
*nextp = fp;
|
|
nextp = &fp->next;
|
|
}
|
|
|
|
fp = next_frag;
|
|
}
|
|
/* Move to the next run. */
|
|
if (rbn) {
|
|
struct rb_node *rbnext = rb_next(rbn);
|
|
|
|
fp = rb_to_skb(rbn);
|
|
rb_erase(rbn, &q->rb_fragments);
|
|
rbn = rbnext;
|
|
}
|
|
}
|
|
sub_frag_mem_limit(q->fqdir, sum_truesize);
|
|
|
|
*nextp = NULL;
|
|
skb_mark_not_on_list(head);
|
|
head->prev = NULL;
|
|
head->tstamp = q->stamp;
|
|
head->mono_delivery_time = q->mono_delivery_time;
|
|
|
|
if (sk)
|
|
refcount_add(sum_truesize - head_truesize, &sk->sk_wmem_alloc);
|
|
}
|
|
EXPORT_SYMBOL(inet_frag_reasm_finish);
|
|
|
|
struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
|
|
{
|
|
struct sk_buff *head, *skb;
|
|
|
|
head = skb_rb_first(&q->rb_fragments);
|
|
if (!head)
|
|
return NULL;
|
|
skb = FRAG_CB(head)->next_frag;
|
|
if (skb)
|
|
rb_replace_node(&head->rbnode, &skb->rbnode,
|
|
&q->rb_fragments);
|
|
else
|
|
rb_erase(&head->rbnode, &q->rb_fragments);
|
|
memset(&head->rbnode, 0, sizeof(head->rbnode));
|
|
barrier();
|
|
|
|
if (head == q->fragments_tail)
|
|
q->fragments_tail = NULL;
|
|
|
|
sub_frag_mem_limit(q->fqdir, head->truesize);
|
|
|
|
return head;
|
|
}
|
|
EXPORT_SYMBOL(inet_frag_pull_head);
|