mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 04:02:20 +00:00
af0c8b2bf6
Let's define the "scheduling context" as all the scheduler state in task_struct for the task chosen to run, which we'll call the donor task, and the "execution context" as all state required to actually run the task. Currently both are intertwined in task_struct. We want to logically split these such that we can use the scheduling context of the donor task selected to be scheduled, but use the execution context of a different task to actually be run. To this purpose, introduce rq->donor field to point to the task_struct chosen from the runqueue by the scheduler, and will be used for scheduler state, and preserve rq->curr to indicate the execution context of the task that will actually be run. This patch introduces the donor field as a union with curr, so it doesn't cause the contexts to be split yet, but adds the logic to handle everything separately. [add additional comments and update more sched_class code to use rq::proxy] [jstultz: Rebased and resolved minor collisions, reworked to use accessors, tweaked update_curr_common to use rq_proxy fixing rt scheduling issues] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Signed-off-by: Connor O'Brien <connoro@google.com> Signed-off-by: John Stultz <jstultz@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Metin Kaya <metin.kaya@arm.com> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Tested-by: Metin Kaya <metin.kaya@arm.com> Link: https://lore.kernel.org/r/20241009235352.1614323-8-jstultz@google.com
3512 lines
93 KiB
C
3512 lines
93 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Deadline Scheduling Class (SCHED_DEADLINE)
|
|
*
|
|
* Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
|
|
*
|
|
* Tasks that periodically executes their instances for less than their
|
|
* runtime won't miss any of their deadlines.
|
|
* Tasks that are not periodic or sporadic or that tries to execute more
|
|
* than their reserved bandwidth will be slowed down (and may potentially
|
|
* miss some of their deadlines), and won't affect any other task.
|
|
*
|
|
* Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
|
|
* Juri Lelli <juri.lelli@gmail.com>,
|
|
* Michael Trimarchi <michael@amarulasolutions.com>,
|
|
* Fabio Checconi <fchecconi@gmail.com>
|
|
*/
|
|
|
|
#include <linux/cpuset.h>
|
|
|
|
/*
|
|
* Default limits for DL period; on the top end we guard against small util
|
|
* tasks still getting ridiculously long effective runtimes, on the bottom end we
|
|
* guard against timer DoS.
|
|
*/
|
|
static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
|
|
static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
|
|
#ifdef CONFIG_SYSCTL
|
|
static struct ctl_table sched_dl_sysctls[] = {
|
|
{
|
|
.procname = "sched_deadline_period_max_us",
|
|
.data = &sysctl_sched_dl_period_max,
|
|
.maxlen = sizeof(unsigned int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_douintvec_minmax,
|
|
.extra1 = (void *)&sysctl_sched_dl_period_min,
|
|
},
|
|
{
|
|
.procname = "sched_deadline_period_min_us",
|
|
.data = &sysctl_sched_dl_period_min,
|
|
.maxlen = sizeof(unsigned int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_douintvec_minmax,
|
|
.extra2 = (void *)&sysctl_sched_dl_period_max,
|
|
},
|
|
};
|
|
|
|
static int __init sched_dl_sysctl_init(void)
|
|
{
|
|
register_sysctl_init("kernel", sched_dl_sysctls);
|
|
return 0;
|
|
}
|
|
late_initcall(sched_dl_sysctl_init);
|
|
#endif
|
|
|
|
static bool dl_server(struct sched_dl_entity *dl_se)
|
|
{
|
|
return dl_se->dl_server;
|
|
}
|
|
|
|
static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
|
|
{
|
|
BUG_ON(dl_server(dl_se));
|
|
return container_of(dl_se, struct task_struct, dl);
|
|
}
|
|
|
|
static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
|
|
{
|
|
return container_of(dl_rq, struct rq, dl);
|
|
}
|
|
|
|
static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
|
|
{
|
|
struct rq *rq = dl_se->rq;
|
|
|
|
if (!dl_server(dl_se))
|
|
rq = task_rq(dl_task_of(dl_se));
|
|
|
|
return rq;
|
|
}
|
|
|
|
static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
|
|
{
|
|
return &rq_of_dl_se(dl_se)->dl;
|
|
}
|
|
|
|
static inline int on_dl_rq(struct sched_dl_entity *dl_se)
|
|
{
|
|
return !RB_EMPTY_NODE(&dl_se->rb_node);
|
|
}
|
|
|
|
#ifdef CONFIG_RT_MUTEXES
|
|
static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
|
|
{
|
|
return dl_se->pi_se;
|
|
}
|
|
|
|
static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
|
|
{
|
|
return pi_of(dl_se) != dl_se;
|
|
}
|
|
#else
|
|
static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
|
|
{
|
|
return dl_se;
|
|
}
|
|
|
|
static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
static inline struct dl_bw *dl_bw_of(int i)
|
|
{
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
|
|
"sched RCU must be held");
|
|
return &cpu_rq(i)->rd->dl_bw;
|
|
}
|
|
|
|
static inline int dl_bw_cpus(int i)
|
|
{
|
|
struct root_domain *rd = cpu_rq(i)->rd;
|
|
int cpus;
|
|
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
|
|
"sched RCU must be held");
|
|
|
|
if (cpumask_subset(rd->span, cpu_active_mask))
|
|
return cpumask_weight(rd->span);
|
|
|
|
cpus = 0;
|
|
|
|
for_each_cpu_and(i, rd->span, cpu_active_mask)
|
|
cpus++;
|
|
|
|
return cpus;
|
|
}
|
|
|
|
static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
|
|
{
|
|
unsigned long cap = 0;
|
|
int i;
|
|
|
|
for_each_cpu_and(i, mask, cpu_active_mask)
|
|
cap += arch_scale_cpu_capacity(i);
|
|
|
|
return cap;
|
|
}
|
|
|
|
/*
|
|
* XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
|
|
* of the CPU the task is running on rather rd's \Sum CPU capacity.
|
|
*/
|
|
static inline unsigned long dl_bw_capacity(int i)
|
|
{
|
|
if (!sched_asym_cpucap_active() &&
|
|
arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
|
|
return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
|
|
} else {
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
|
|
"sched RCU must be held");
|
|
|
|
return __dl_bw_capacity(cpu_rq(i)->rd->span);
|
|
}
|
|
}
|
|
|
|
static inline bool dl_bw_visited(int cpu, u64 gen)
|
|
{
|
|
struct root_domain *rd = cpu_rq(cpu)->rd;
|
|
|
|
if (rd->visit_gen == gen)
|
|
return true;
|
|
|
|
rd->visit_gen = gen;
|
|
return false;
|
|
}
|
|
|
|
static inline
|
|
void __dl_update(struct dl_bw *dl_b, s64 bw)
|
|
{
|
|
struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
|
|
int i;
|
|
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
|
|
"sched RCU must be held");
|
|
for_each_cpu_and(i, rd->span, cpu_active_mask) {
|
|
struct rq *rq = cpu_rq(i);
|
|
|
|
rq->dl.extra_bw += bw;
|
|
}
|
|
}
|
|
#else
|
|
static inline struct dl_bw *dl_bw_of(int i)
|
|
{
|
|
return &cpu_rq(i)->dl.dl_bw;
|
|
}
|
|
|
|
static inline int dl_bw_cpus(int i)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static inline unsigned long dl_bw_capacity(int i)
|
|
{
|
|
return SCHED_CAPACITY_SCALE;
|
|
}
|
|
|
|
static inline bool dl_bw_visited(int cpu, u64 gen)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline
|
|
void __dl_update(struct dl_bw *dl_b, s64 bw)
|
|
{
|
|
struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
|
|
|
|
dl->extra_bw += bw;
|
|
}
|
|
#endif
|
|
|
|
static inline
|
|
void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
|
|
{
|
|
dl_b->total_bw -= tsk_bw;
|
|
__dl_update(dl_b, (s32)tsk_bw / cpus);
|
|
}
|
|
|
|
static inline
|
|
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
|
|
{
|
|
dl_b->total_bw += tsk_bw;
|
|
__dl_update(dl_b, -((s32)tsk_bw / cpus));
|
|
}
|
|
|
|
static inline bool
|
|
__dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
|
|
{
|
|
return dl_b->bw != -1 &&
|
|
cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
|
|
}
|
|
|
|
static inline
|
|
void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
|
|
{
|
|
u64 old = dl_rq->running_bw;
|
|
|
|
lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
|
|
dl_rq->running_bw += dl_bw;
|
|
SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
|
|
SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
|
|
/* kick cpufreq (see the comment in kernel/sched/sched.h). */
|
|
cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
|
|
}
|
|
|
|
static inline
|
|
void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
|
|
{
|
|
u64 old = dl_rq->running_bw;
|
|
|
|
lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
|
|
dl_rq->running_bw -= dl_bw;
|
|
SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
|
|
if (dl_rq->running_bw > old)
|
|
dl_rq->running_bw = 0;
|
|
/* kick cpufreq (see the comment in kernel/sched/sched.h). */
|
|
cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
|
|
}
|
|
|
|
static inline
|
|
void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
|
|
{
|
|
u64 old = dl_rq->this_bw;
|
|
|
|
lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
|
|
dl_rq->this_bw += dl_bw;
|
|
SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
|
|
}
|
|
|
|
static inline
|
|
void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
|
|
{
|
|
u64 old = dl_rq->this_bw;
|
|
|
|
lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
|
|
dl_rq->this_bw -= dl_bw;
|
|
SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
|
|
if (dl_rq->this_bw > old)
|
|
dl_rq->this_bw = 0;
|
|
SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
|
|
}
|
|
|
|
static inline
|
|
void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
|
|
{
|
|
if (!dl_entity_is_special(dl_se))
|
|
__add_rq_bw(dl_se->dl_bw, dl_rq);
|
|
}
|
|
|
|
static inline
|
|
void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
|
|
{
|
|
if (!dl_entity_is_special(dl_se))
|
|
__sub_rq_bw(dl_se->dl_bw, dl_rq);
|
|
}
|
|
|
|
static inline
|
|
void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
|
|
{
|
|
if (!dl_entity_is_special(dl_se))
|
|
__add_running_bw(dl_se->dl_bw, dl_rq);
|
|
}
|
|
|
|
static inline
|
|
void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
|
|
{
|
|
if (!dl_entity_is_special(dl_se))
|
|
__sub_running_bw(dl_se->dl_bw, dl_rq);
|
|
}
|
|
|
|
static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
|
|
{
|
|
if (dl_se->dl_non_contending) {
|
|
sub_running_bw(dl_se, &rq->dl);
|
|
dl_se->dl_non_contending = 0;
|
|
|
|
/*
|
|
* If the timer handler is currently running and the
|
|
* timer cannot be canceled, inactive_task_timer()
|
|
* will see that dl_not_contending is not set, and
|
|
* will not touch the rq's active utilization,
|
|
* so we are still safe.
|
|
*/
|
|
if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
|
|
if (!dl_server(dl_se))
|
|
put_task_struct(dl_task_of(dl_se));
|
|
}
|
|
}
|
|
__sub_rq_bw(dl_se->dl_bw, &rq->dl);
|
|
__add_rq_bw(new_bw, &rq->dl);
|
|
}
|
|
|
|
static void dl_change_utilization(struct task_struct *p, u64 new_bw)
|
|
{
|
|
WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
|
|
|
|
if (task_on_rq_queued(p))
|
|
return;
|
|
|
|
dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
|
|
}
|
|
|
|
static void __dl_clear_params(struct sched_dl_entity *dl_se);
|
|
|
|
/*
|
|
* The utilization of a task cannot be immediately removed from
|
|
* the rq active utilization (running_bw) when the task blocks.
|
|
* Instead, we have to wait for the so called "0-lag time".
|
|
*
|
|
* If a task blocks before the "0-lag time", a timer (the inactive
|
|
* timer) is armed, and running_bw is decreased when the timer
|
|
* fires.
|
|
*
|
|
* If the task wakes up again before the inactive timer fires,
|
|
* the timer is canceled, whereas if the task wakes up after the
|
|
* inactive timer fired (and running_bw has been decreased) the
|
|
* task's utilization has to be added to running_bw again.
|
|
* A flag in the deadline scheduling entity (dl_non_contending)
|
|
* is used to avoid race conditions between the inactive timer handler
|
|
* and task wakeups.
|
|
*
|
|
* The following diagram shows how running_bw is updated. A task is
|
|
* "ACTIVE" when its utilization contributes to running_bw; an
|
|
* "ACTIVE contending" task is in the TASK_RUNNING state, while an
|
|
* "ACTIVE non contending" task is a blocked task for which the "0-lag time"
|
|
* has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
|
|
* time already passed, which does not contribute to running_bw anymore.
|
|
* +------------------+
|
|
* wakeup | ACTIVE |
|
|
* +------------------>+ contending |
|
|
* | add_running_bw | |
|
|
* | +----+------+------+
|
|
* | | ^
|
|
* | dequeue | |
|
|
* +--------+-------+ | |
|
|
* | | t >= 0-lag | | wakeup
|
|
* | INACTIVE |<---------------+ |
|
|
* | | sub_running_bw | |
|
|
* +--------+-------+ | |
|
|
* ^ | |
|
|
* | t < 0-lag | |
|
|
* | | |
|
|
* | V |
|
|
* | +----+------+------+
|
|
* | sub_running_bw | ACTIVE |
|
|
* +-------------------+ |
|
|
* inactive timer | non contending |
|
|
* fired +------------------+
|
|
*
|
|
* The task_non_contending() function is invoked when a task
|
|
* blocks, and checks if the 0-lag time already passed or
|
|
* not (in the first case, it directly updates running_bw;
|
|
* in the second case, it arms the inactive timer).
|
|
*
|
|
* The task_contending() function is invoked when a task wakes
|
|
* up, and checks if the task is still in the "ACTIVE non contending"
|
|
* state or not (in the second case, it updates running_bw).
|
|
*/
|
|
static void task_non_contending(struct sched_dl_entity *dl_se)
|
|
{
|
|
struct hrtimer *timer = &dl_se->inactive_timer;
|
|
struct rq *rq = rq_of_dl_se(dl_se);
|
|
struct dl_rq *dl_rq = &rq->dl;
|
|
s64 zerolag_time;
|
|
|
|
/*
|
|
* If this is a non-deadline task that has been boosted,
|
|
* do nothing
|
|
*/
|
|
if (dl_se->dl_runtime == 0)
|
|
return;
|
|
|
|
if (dl_entity_is_special(dl_se))
|
|
return;
|
|
|
|
WARN_ON(dl_se->dl_non_contending);
|
|
|
|
zerolag_time = dl_se->deadline -
|
|
div64_long((dl_se->runtime * dl_se->dl_period),
|
|
dl_se->dl_runtime);
|
|
|
|
/*
|
|
* Using relative times instead of the absolute "0-lag time"
|
|
* allows to simplify the code
|
|
*/
|
|
zerolag_time -= rq_clock(rq);
|
|
|
|
/*
|
|
* If the "0-lag time" already passed, decrease the active
|
|
* utilization now, instead of starting a timer
|
|
*/
|
|
if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
|
|
if (dl_server(dl_se)) {
|
|
sub_running_bw(dl_se, dl_rq);
|
|
} else {
|
|
struct task_struct *p = dl_task_of(dl_se);
|
|
|
|
if (dl_task(p))
|
|
sub_running_bw(dl_se, dl_rq);
|
|
|
|
if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
|
|
struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
|
|
|
|
if (READ_ONCE(p->__state) == TASK_DEAD)
|
|
sub_rq_bw(dl_se, &rq->dl);
|
|
raw_spin_lock(&dl_b->lock);
|
|
__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
|
|
raw_spin_unlock(&dl_b->lock);
|
|
__dl_clear_params(dl_se);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
dl_se->dl_non_contending = 1;
|
|
if (!dl_server(dl_se))
|
|
get_task_struct(dl_task_of(dl_se));
|
|
|
|
hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
|
|
}
|
|
|
|
static void task_contending(struct sched_dl_entity *dl_se, int flags)
|
|
{
|
|
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
|
|
|
|
/*
|
|
* If this is a non-deadline task that has been boosted,
|
|
* do nothing
|
|
*/
|
|
if (dl_se->dl_runtime == 0)
|
|
return;
|
|
|
|
if (flags & ENQUEUE_MIGRATED)
|
|
add_rq_bw(dl_se, dl_rq);
|
|
|
|
if (dl_se->dl_non_contending) {
|
|
dl_se->dl_non_contending = 0;
|
|
/*
|
|
* If the timer handler is currently running and the
|
|
* timer cannot be canceled, inactive_task_timer()
|
|
* will see that dl_not_contending is not set, and
|
|
* will not touch the rq's active utilization,
|
|
* so we are still safe.
|
|
*/
|
|
if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
|
|
if (!dl_server(dl_se))
|
|
put_task_struct(dl_task_of(dl_se));
|
|
}
|
|
} else {
|
|
/*
|
|
* Since "dl_non_contending" is not set, the
|
|
* task's utilization has already been removed from
|
|
* active utilization (either when the task blocked,
|
|
* when the "inactive timer" fired).
|
|
* So, add it back.
|
|
*/
|
|
add_running_bw(dl_se, dl_rq);
|
|
}
|
|
}
|
|
|
|
static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
|
|
{
|
|
return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
|
|
}
|
|
|
|
static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
|
|
|
|
void init_dl_bw(struct dl_bw *dl_b)
|
|
{
|
|
raw_spin_lock_init(&dl_b->lock);
|
|
if (global_rt_runtime() == RUNTIME_INF)
|
|
dl_b->bw = -1;
|
|
else
|
|
dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
|
|
dl_b->total_bw = 0;
|
|
}
|
|
|
|
void init_dl_rq(struct dl_rq *dl_rq)
|
|
{
|
|
dl_rq->root = RB_ROOT_CACHED;
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* zero means no -deadline tasks */
|
|
dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
|
|
|
|
dl_rq->overloaded = 0;
|
|
dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
|
|
#else
|
|
init_dl_bw(&dl_rq->dl_bw);
|
|
#endif
|
|
|
|
dl_rq->running_bw = 0;
|
|
dl_rq->this_bw = 0;
|
|
init_dl_rq_bw_ratio(dl_rq);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static inline int dl_overloaded(struct rq *rq)
|
|
{
|
|
return atomic_read(&rq->rd->dlo_count);
|
|
}
|
|
|
|
static inline void dl_set_overload(struct rq *rq)
|
|
{
|
|
if (!rq->online)
|
|
return;
|
|
|
|
cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
|
|
/*
|
|
* Must be visible before the overload count is
|
|
* set (as in sched_rt.c).
|
|
*
|
|
* Matched by the barrier in pull_dl_task().
|
|
*/
|
|
smp_wmb();
|
|
atomic_inc(&rq->rd->dlo_count);
|
|
}
|
|
|
|
static inline void dl_clear_overload(struct rq *rq)
|
|
{
|
|
if (!rq->online)
|
|
return;
|
|
|
|
atomic_dec(&rq->rd->dlo_count);
|
|
cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
|
|
}
|
|
|
|
#define __node_2_pdl(node) \
|
|
rb_entry((node), struct task_struct, pushable_dl_tasks)
|
|
|
|
static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
|
|
{
|
|
return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
|
|
}
|
|
|
|
static inline int has_pushable_dl_tasks(struct rq *rq)
|
|
{
|
|
return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
|
|
}
|
|
|
|
/*
|
|
* The list of pushable -deadline task is not a plist, like in
|
|
* sched_rt.c, it is an rb-tree with tasks ordered by deadline.
|
|
*/
|
|
static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
|
|
{
|
|
struct rb_node *leftmost;
|
|
|
|
WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
|
|
|
|
leftmost = rb_add_cached(&p->pushable_dl_tasks,
|
|
&rq->dl.pushable_dl_tasks_root,
|
|
__pushable_less);
|
|
if (leftmost)
|
|
rq->dl.earliest_dl.next = p->dl.deadline;
|
|
|
|
if (!rq->dl.overloaded) {
|
|
dl_set_overload(rq);
|
|
rq->dl.overloaded = 1;
|
|
}
|
|
}
|
|
|
|
static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
|
|
{
|
|
struct dl_rq *dl_rq = &rq->dl;
|
|
struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
|
|
struct rb_node *leftmost;
|
|
|
|
if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
|
|
return;
|
|
|
|
leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
|
|
if (leftmost)
|
|
dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
|
|
|
|
RB_CLEAR_NODE(&p->pushable_dl_tasks);
|
|
|
|
if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
|
|
dl_clear_overload(rq);
|
|
rq->dl.overloaded = 0;
|
|
}
|
|
}
|
|
|
|
static int push_dl_task(struct rq *rq);
|
|
|
|
static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
|
|
{
|
|
return rq->online && dl_task(prev);
|
|
}
|
|
|
|
static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
|
|
static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
|
|
|
|
static void push_dl_tasks(struct rq *);
|
|
static void pull_dl_task(struct rq *);
|
|
|
|
static inline void deadline_queue_push_tasks(struct rq *rq)
|
|
{
|
|
if (!has_pushable_dl_tasks(rq))
|
|
return;
|
|
|
|
queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
|
|
}
|
|
|
|
static inline void deadline_queue_pull_task(struct rq *rq)
|
|
{
|
|
queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
|
|
}
|
|
|
|
static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
|
|
|
|
static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
|
|
{
|
|
struct rq *later_rq = NULL;
|
|
struct dl_bw *dl_b;
|
|
|
|
later_rq = find_lock_later_rq(p, rq);
|
|
if (!later_rq) {
|
|
int cpu;
|
|
|
|
/*
|
|
* If we cannot preempt any rq, fall back to pick any
|
|
* online CPU:
|
|
*/
|
|
cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
|
|
if (cpu >= nr_cpu_ids) {
|
|
/*
|
|
* Failed to find any suitable CPU.
|
|
* The task will never come back!
|
|
*/
|
|
WARN_ON_ONCE(dl_bandwidth_enabled());
|
|
|
|
/*
|
|
* If admission control is disabled we
|
|
* try a little harder to let the task
|
|
* run.
|
|
*/
|
|
cpu = cpumask_any(cpu_active_mask);
|
|
}
|
|
later_rq = cpu_rq(cpu);
|
|
double_lock_balance(rq, later_rq);
|
|
}
|
|
|
|
if (p->dl.dl_non_contending || p->dl.dl_throttled) {
|
|
/*
|
|
* Inactive timer is armed (or callback is running, but
|
|
* waiting for us to release rq locks). In any case, when it
|
|
* will fire (or continue), it will see running_bw of this
|
|
* task migrated to later_rq (and correctly handle it).
|
|
*/
|
|
sub_running_bw(&p->dl, &rq->dl);
|
|
sub_rq_bw(&p->dl, &rq->dl);
|
|
|
|
add_rq_bw(&p->dl, &later_rq->dl);
|
|
add_running_bw(&p->dl, &later_rq->dl);
|
|
} else {
|
|
sub_rq_bw(&p->dl, &rq->dl);
|
|
add_rq_bw(&p->dl, &later_rq->dl);
|
|
}
|
|
|
|
/*
|
|
* And we finally need to fix up root_domain(s) bandwidth accounting,
|
|
* since p is still hanging out in the old (now moved to default) root
|
|
* domain.
|
|
*/
|
|
dl_b = &rq->rd->dl_bw;
|
|
raw_spin_lock(&dl_b->lock);
|
|
__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
|
|
raw_spin_unlock(&dl_b->lock);
|
|
|
|
dl_b = &later_rq->rd->dl_bw;
|
|
raw_spin_lock(&dl_b->lock);
|
|
__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
|
|
raw_spin_unlock(&dl_b->lock);
|
|
|
|
set_task_cpu(p, later_rq->cpu);
|
|
double_unlock_balance(later_rq, rq);
|
|
|
|
return later_rq;
|
|
}
|
|
|
|
#else
|
|
|
|
static inline
|
|
void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
|
|
{
|
|
}
|
|
|
|
static inline
|
|
void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
|
|
{
|
|
}
|
|
|
|
static inline
|
|
void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
|
|
{
|
|
}
|
|
|
|
static inline
|
|
void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
|
|
{
|
|
}
|
|
|
|
static inline void deadline_queue_push_tasks(struct rq *rq)
|
|
{
|
|
}
|
|
|
|
static inline void deadline_queue_pull_task(struct rq *rq)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static void
|
|
enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
|
|
static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
|
|
static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
|
|
static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
|
|
|
|
static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
|
|
struct rq *rq)
|
|
{
|
|
/* for non-boosted task, pi_of(dl_se) == dl_se */
|
|
dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
|
|
dl_se->runtime = pi_of(dl_se)->dl_runtime;
|
|
|
|
/*
|
|
* If it is a deferred reservation, and the server
|
|
* is not handling an starvation case, defer it.
|
|
*/
|
|
if (dl_se->dl_defer & !dl_se->dl_defer_running) {
|
|
dl_se->dl_throttled = 1;
|
|
dl_se->dl_defer_armed = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We are being explicitly informed that a new instance is starting,
|
|
* and this means that:
|
|
* - the absolute deadline of the entity has to be placed at
|
|
* current time + relative deadline;
|
|
* - the runtime of the entity has to be set to the maximum value.
|
|
*
|
|
* The capability of specifying such event is useful whenever a -deadline
|
|
* entity wants to (try to!) synchronize its behaviour with the scheduler's
|
|
* one, and to (try to!) reconcile itself with its own scheduling
|
|
* parameters.
|
|
*/
|
|
static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
|
|
{
|
|
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
|
|
struct rq *rq = rq_of_dl_rq(dl_rq);
|
|
|
|
WARN_ON(is_dl_boosted(dl_se));
|
|
WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
|
|
|
|
/*
|
|
* We are racing with the deadline timer. So, do nothing because
|
|
* the deadline timer handler will take care of properly recharging
|
|
* the runtime and postponing the deadline
|
|
*/
|
|
if (dl_se->dl_throttled)
|
|
return;
|
|
|
|
/*
|
|
* We use the regular wall clock time to set deadlines in the
|
|
* future; in fact, we must consider execution overheads (time
|
|
* spent on hardirq context, etc.).
|
|
*/
|
|
replenish_dl_new_period(dl_se, rq);
|
|
}
|
|
|
|
static int start_dl_timer(struct sched_dl_entity *dl_se);
|
|
static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
|
|
|
|
/*
|
|
* Pure Earliest Deadline First (EDF) scheduling does not deal with the
|
|
* possibility of a entity lasting more than what it declared, and thus
|
|
* exhausting its runtime.
|
|
*
|
|
* Here we are interested in making runtime overrun possible, but we do
|
|
* not want a entity which is misbehaving to affect the scheduling of all
|
|
* other entities.
|
|
* Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
|
|
* is used, in order to confine each entity within its own bandwidth.
|
|
*
|
|
* This function deals exactly with that, and ensures that when the runtime
|
|
* of a entity is replenished, its deadline is also postponed. That ensures
|
|
* the overrunning entity can't interfere with other entity in the system and
|
|
* can't make them miss their deadlines. Reasons why this kind of overruns
|
|
* could happen are, typically, a entity voluntarily trying to overcome its
|
|
* runtime, or it just underestimated it during sched_setattr().
|
|
*/
|
|
static void replenish_dl_entity(struct sched_dl_entity *dl_se)
|
|
{
|
|
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
|
|
struct rq *rq = rq_of_dl_rq(dl_rq);
|
|
|
|
WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
|
|
|
|
/*
|
|
* This could be the case for a !-dl task that is boosted.
|
|
* Just go with full inherited parameters.
|
|
*
|
|
* Or, it could be the case of a deferred reservation that
|
|
* was not able to consume its runtime in background and
|
|
* reached this point with current u > U.
|
|
*
|
|
* In both cases, set a new period.
|
|
*/
|
|
if (dl_se->dl_deadline == 0 ||
|
|
(dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
|
|
dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
|
|
dl_se->runtime = pi_of(dl_se)->dl_runtime;
|
|
}
|
|
|
|
if (dl_se->dl_yielded && dl_se->runtime > 0)
|
|
dl_se->runtime = 0;
|
|
|
|
/*
|
|
* We keep moving the deadline away until we get some
|
|
* available runtime for the entity. This ensures correct
|
|
* handling of situations where the runtime overrun is
|
|
* arbitrary large.
|
|
*/
|
|
while (dl_se->runtime <= 0) {
|
|
dl_se->deadline += pi_of(dl_se)->dl_period;
|
|
dl_se->runtime += pi_of(dl_se)->dl_runtime;
|
|
}
|
|
|
|
/*
|
|
* At this point, the deadline really should be "in
|
|
* the future" with respect to rq->clock. If it's
|
|
* not, we are, for some reason, lagging too much!
|
|
* Anyway, after having warn userspace abut that,
|
|
* we still try to keep the things running by
|
|
* resetting the deadline and the budget of the
|
|
* entity.
|
|
*/
|
|
if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
|
|
printk_deferred_once("sched: DL replenish lagged too much\n");
|
|
replenish_dl_new_period(dl_se, rq);
|
|
}
|
|
|
|
if (dl_se->dl_yielded)
|
|
dl_se->dl_yielded = 0;
|
|
if (dl_se->dl_throttled)
|
|
dl_se->dl_throttled = 0;
|
|
|
|
/*
|
|
* If this is the replenishment of a deferred reservation,
|
|
* clear the flag and return.
|
|
*/
|
|
if (dl_se->dl_defer_armed) {
|
|
dl_se->dl_defer_armed = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* A this point, if the deferred server is not armed, and the deadline
|
|
* is in the future, if it is not running already, throttle the server
|
|
* and arm the defer timer.
|
|
*/
|
|
if (dl_se->dl_defer && !dl_se->dl_defer_running &&
|
|
dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
|
|
if (!is_dl_boosted(dl_se) && dl_se->server_has_tasks(dl_se)) {
|
|
|
|
/*
|
|
* Set dl_se->dl_defer_armed and dl_throttled variables to
|
|
* inform the start_dl_timer() that this is a deferred
|
|
* activation.
|
|
*/
|
|
dl_se->dl_defer_armed = 1;
|
|
dl_se->dl_throttled = 1;
|
|
if (!start_dl_timer(dl_se)) {
|
|
/*
|
|
* If for whatever reason (delays), a previous timer was
|
|
* queued but not serviced, cancel it and clean the
|
|
* deferrable server variables intended for start_dl_timer().
|
|
*/
|
|
hrtimer_try_to_cancel(&dl_se->dl_timer);
|
|
dl_se->dl_defer_armed = 0;
|
|
dl_se->dl_throttled = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Here we check if --at time t-- an entity (which is probably being
|
|
* [re]activated or, in general, enqueued) can use its remaining runtime
|
|
* and its current deadline _without_ exceeding the bandwidth it is
|
|
* assigned (function returns true if it can't). We are in fact applying
|
|
* one of the CBS rules: when a task wakes up, if the residual runtime
|
|
* over residual deadline fits within the allocated bandwidth, then we
|
|
* can keep the current (absolute) deadline and residual budget without
|
|
* disrupting the schedulability of the system. Otherwise, we should
|
|
* refill the runtime and set the deadline a period in the future,
|
|
* because keeping the current (absolute) deadline of the task would
|
|
* result in breaking guarantees promised to other tasks (refer to
|
|
* Documentation/scheduler/sched-deadline.rst for more information).
|
|
*
|
|
* This function returns true if:
|
|
*
|
|
* runtime / (deadline - t) > dl_runtime / dl_deadline ,
|
|
*
|
|
* IOW we can't recycle current parameters.
|
|
*
|
|
* Notice that the bandwidth check is done against the deadline. For
|
|
* task with deadline equal to period this is the same of using
|
|
* dl_period instead of dl_deadline in the equation above.
|
|
*/
|
|
static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
|
|
{
|
|
u64 left, right;
|
|
|
|
/*
|
|
* left and right are the two sides of the equation above,
|
|
* after a bit of shuffling to use multiplications instead
|
|
* of divisions.
|
|
*
|
|
* Note that none of the time values involved in the two
|
|
* multiplications are absolute: dl_deadline and dl_runtime
|
|
* are the relative deadline and the maximum runtime of each
|
|
* instance, runtime is the runtime left for the last instance
|
|
* and (deadline - t), since t is rq->clock, is the time left
|
|
* to the (absolute) deadline. Even if overflowing the u64 type
|
|
* is very unlikely to occur in both cases, here we scale down
|
|
* as we want to avoid that risk at all. Scaling down by 10
|
|
* means that we reduce granularity to 1us. We are fine with it,
|
|
* since this is only a true/false check and, anyway, thinking
|
|
* of anything below microseconds resolution is actually fiction
|
|
* (but still we want to give the user that illusion >;).
|
|
*/
|
|
left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
|
|
right = ((dl_se->deadline - t) >> DL_SCALE) *
|
|
(pi_of(dl_se)->dl_runtime >> DL_SCALE);
|
|
|
|
return dl_time_before(right, left);
|
|
}
|
|
|
|
/*
|
|
* Revised wakeup rule [1]: For self-suspending tasks, rather then
|
|
* re-initializing task's runtime and deadline, the revised wakeup
|
|
* rule adjusts the task's runtime to avoid the task to overrun its
|
|
* density.
|
|
*
|
|
* Reasoning: a task may overrun the density if:
|
|
* runtime / (deadline - t) > dl_runtime / dl_deadline
|
|
*
|
|
* Therefore, runtime can be adjusted to:
|
|
* runtime = (dl_runtime / dl_deadline) * (deadline - t)
|
|
*
|
|
* In such way that runtime will be equal to the maximum density
|
|
* the task can use without breaking any rule.
|
|
*
|
|
* [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
|
|
* bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
|
|
*/
|
|
static void
|
|
update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
|
|
{
|
|
u64 laxity = dl_se->deadline - rq_clock(rq);
|
|
|
|
/*
|
|
* If the task has deadline < period, and the deadline is in the past,
|
|
* it should already be throttled before this check.
|
|
*
|
|
* See update_dl_entity() comments for further details.
|
|
*/
|
|
WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
|
|
|
|
dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* Regarding the deadline, a task with implicit deadline has a relative
|
|
* deadline == relative period. A task with constrained deadline has a
|
|
* relative deadline <= relative period.
|
|
*
|
|
* We support constrained deadline tasks. However, there are some restrictions
|
|
* applied only for tasks which do not have an implicit deadline. See
|
|
* update_dl_entity() to know more about such restrictions.
|
|
*
|
|
* The dl_is_implicit() returns true if the task has an implicit deadline.
|
|
*/
|
|
static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
|
|
{
|
|
return dl_se->dl_deadline == dl_se->dl_period;
|
|
}
|
|
|
|
/*
|
|
* When a deadline entity is placed in the runqueue, its runtime and deadline
|
|
* might need to be updated. This is done by a CBS wake up rule. There are two
|
|
* different rules: 1) the original CBS; and 2) the Revisited CBS.
|
|
*
|
|
* When the task is starting a new period, the Original CBS is used. In this
|
|
* case, the runtime is replenished and a new absolute deadline is set.
|
|
*
|
|
* When a task is queued before the begin of the next period, using the
|
|
* remaining runtime and deadline could make the entity to overflow, see
|
|
* dl_entity_overflow() to find more about runtime overflow. When such case
|
|
* is detected, the runtime and deadline need to be updated.
|
|
*
|
|
* If the task has an implicit deadline, i.e., deadline == period, the Original
|
|
* CBS is applied. The runtime is replenished and a new absolute deadline is
|
|
* set, as in the previous cases.
|
|
*
|
|
* However, the Original CBS does not work properly for tasks with
|
|
* deadline < period, which are said to have a constrained deadline. By
|
|
* applying the Original CBS, a constrained deadline task would be able to run
|
|
* runtime/deadline in a period. With deadline < period, the task would
|
|
* overrun the runtime/period allowed bandwidth, breaking the admission test.
|
|
*
|
|
* In order to prevent this misbehave, the Revisited CBS is used for
|
|
* constrained deadline tasks when a runtime overflow is detected. In the
|
|
* Revisited CBS, rather than replenishing & setting a new absolute deadline,
|
|
* the remaining runtime of the task is reduced to avoid runtime overflow.
|
|
* Please refer to the comments update_dl_revised_wakeup() function to find
|
|
* more about the Revised CBS rule.
|
|
*/
|
|
static void update_dl_entity(struct sched_dl_entity *dl_se)
|
|
{
|
|
struct rq *rq = rq_of_dl_se(dl_se);
|
|
|
|
if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
|
|
dl_entity_overflow(dl_se, rq_clock(rq))) {
|
|
|
|
if (unlikely(!dl_is_implicit(dl_se) &&
|
|
!dl_time_before(dl_se->deadline, rq_clock(rq)) &&
|
|
!is_dl_boosted(dl_se))) {
|
|
update_dl_revised_wakeup(dl_se, rq);
|
|
return;
|
|
}
|
|
|
|
replenish_dl_new_period(dl_se, rq);
|
|
} else if (dl_server(dl_se) && dl_se->dl_defer) {
|
|
/*
|
|
* The server can still use its previous deadline, so check if
|
|
* it left the dl_defer_running state.
|
|
*/
|
|
if (!dl_se->dl_defer_running) {
|
|
dl_se->dl_defer_armed = 1;
|
|
dl_se->dl_throttled = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
|
|
{
|
|
return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
|
|
}
|
|
|
|
/*
|
|
* If the entity depleted all its runtime, and if we want it to sleep
|
|
* while waiting for some new execution time to become available, we
|
|
* set the bandwidth replenishment timer to the replenishment instant
|
|
* and try to activate it.
|
|
*
|
|
* Notice that it is important for the caller to know if the timer
|
|
* actually started or not (i.e., the replenishment instant is in
|
|
* the future or in the past).
|
|
*/
|
|
static int start_dl_timer(struct sched_dl_entity *dl_se)
|
|
{
|
|
struct hrtimer *timer = &dl_se->dl_timer;
|
|
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
|
|
struct rq *rq = rq_of_dl_rq(dl_rq);
|
|
ktime_t now, act;
|
|
s64 delta;
|
|
|
|
lockdep_assert_rq_held(rq);
|
|
|
|
/*
|
|
* We want the timer to fire at the deadline, but considering
|
|
* that it is actually coming from rq->clock and not from
|
|
* hrtimer's time base reading.
|
|
*
|
|
* The deferred reservation will have its timer set to
|
|
* (deadline - runtime). At that point, the CBS rule will decide
|
|
* if the current deadline can be used, or if a replenishment is
|
|
* required to avoid add too much pressure on the system
|
|
* (current u > U).
|
|
*/
|
|
if (dl_se->dl_defer_armed) {
|
|
WARN_ON_ONCE(!dl_se->dl_throttled);
|
|
act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
|
|
} else {
|
|
/* act = deadline - rel-deadline + period */
|
|
act = ns_to_ktime(dl_next_period(dl_se));
|
|
}
|
|
|
|
now = hrtimer_cb_get_time(timer);
|
|
delta = ktime_to_ns(now) - rq_clock(rq);
|
|
act = ktime_add_ns(act, delta);
|
|
|
|
/*
|
|
* If the expiry time already passed, e.g., because the value
|
|
* chosen as the deadline is too small, don't even try to
|
|
* start the timer in the past!
|
|
*/
|
|
if (ktime_us_delta(act, now) < 0)
|
|
return 0;
|
|
|
|
/*
|
|
* !enqueued will guarantee another callback; even if one is already in
|
|
* progress. This ensures a balanced {get,put}_task_struct().
|
|
*
|
|
* The race against __run_timer() clearing the enqueued state is
|
|
* harmless because we're holding task_rq()->lock, therefore the timer
|
|
* expiring after we've done the check will wait on its task_rq_lock()
|
|
* and observe our state.
|
|
*/
|
|
if (!hrtimer_is_queued(timer)) {
|
|
if (!dl_server(dl_se))
|
|
get_task_struct(dl_task_of(dl_se));
|
|
hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Queueing this task back might have overloaded rq, check if we need
|
|
* to kick someone away.
|
|
*/
|
|
if (has_pushable_dl_tasks(rq)) {
|
|
/*
|
|
* Nothing relies on rq->lock after this, so its safe to drop
|
|
* rq->lock.
|
|
*/
|
|
rq_unpin_lock(rq, rf);
|
|
push_dl_task(rq);
|
|
rq_repin_lock(rq, rf);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
|
|
static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
|
|
|
|
static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
|
|
{
|
|
struct rq *rq = rq_of_dl_se(dl_se);
|
|
u64 fw;
|
|
|
|
scoped_guard (rq_lock, rq) {
|
|
struct rq_flags *rf = &scope.rf;
|
|
|
|
if (!dl_se->dl_throttled || !dl_se->dl_runtime)
|
|
return HRTIMER_NORESTART;
|
|
|
|
sched_clock_tick();
|
|
update_rq_clock(rq);
|
|
|
|
if (!dl_se->dl_runtime)
|
|
return HRTIMER_NORESTART;
|
|
|
|
if (!dl_se->server_has_tasks(dl_se)) {
|
|
replenish_dl_entity(dl_se);
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
if (dl_se->dl_defer_armed) {
|
|
/*
|
|
* First check if the server could consume runtime in background.
|
|
* If so, it is possible to push the defer timer for this amount
|
|
* of time. The dl_server_min_res serves as a limit to avoid
|
|
* forwarding the timer for a too small amount of time.
|
|
*/
|
|
if (dl_time_before(rq_clock(dl_se->rq),
|
|
(dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
|
|
|
|
/* reset the defer timer */
|
|
fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
|
|
|
|
hrtimer_forward_now(timer, ns_to_ktime(fw));
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
dl_se->dl_defer_running = 1;
|
|
}
|
|
|
|
enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
|
|
|
|
if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
|
|
resched_curr(rq);
|
|
|
|
__push_dl_task(rq, rf);
|
|
}
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
/*
|
|
* This is the bandwidth enforcement timer callback. If here, we know
|
|
* a task is not on its dl_rq, since the fact that the timer was running
|
|
* means the task is throttled and needs a runtime replenishment.
|
|
*
|
|
* However, what we actually do depends on the fact the task is active,
|
|
* (it is on its rq) or has been removed from there by a call to
|
|
* dequeue_task_dl(). In the former case we must issue the runtime
|
|
* replenishment and add the task back to the dl_rq; in the latter, we just
|
|
* do nothing but clearing dl_throttled, so that runtime and deadline
|
|
* updating (and the queueing back to dl_rq) will be done by the
|
|
* next call to enqueue_task_dl().
|
|
*/
|
|
static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
|
|
{
|
|
struct sched_dl_entity *dl_se = container_of(timer,
|
|
struct sched_dl_entity,
|
|
dl_timer);
|
|
struct task_struct *p;
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
|
|
if (dl_server(dl_se))
|
|
return dl_server_timer(timer, dl_se);
|
|
|
|
p = dl_task_of(dl_se);
|
|
rq = task_rq_lock(p, &rf);
|
|
|
|
/*
|
|
* The task might have changed its scheduling policy to something
|
|
* different than SCHED_DEADLINE (through switched_from_dl()).
|
|
*/
|
|
if (!dl_task(p))
|
|
goto unlock;
|
|
|
|
/*
|
|
* The task might have been boosted by someone else and might be in the
|
|
* boosting/deboosting path, its not throttled.
|
|
*/
|
|
if (is_dl_boosted(dl_se))
|
|
goto unlock;
|
|
|
|
/*
|
|
* Spurious timer due to start_dl_timer() race; or we already received
|
|
* a replenishment from rt_mutex_setprio().
|
|
*/
|
|
if (!dl_se->dl_throttled)
|
|
goto unlock;
|
|
|
|
sched_clock_tick();
|
|
update_rq_clock(rq);
|
|
|
|
/*
|
|
* If the throttle happened during sched-out; like:
|
|
*
|
|
* schedule()
|
|
* deactivate_task()
|
|
* dequeue_task_dl()
|
|
* update_curr_dl()
|
|
* start_dl_timer()
|
|
* __dequeue_task_dl()
|
|
* prev->on_rq = 0;
|
|
*
|
|
* We can be both throttled and !queued. Replenish the counter
|
|
* but do not enqueue -- wait for our wakeup to do that.
|
|
*/
|
|
if (!task_on_rq_queued(p)) {
|
|
replenish_dl_entity(dl_se);
|
|
goto unlock;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (unlikely(!rq->online)) {
|
|
/*
|
|
* If the runqueue is no longer available, migrate the
|
|
* task elsewhere. This necessarily changes rq.
|
|
*/
|
|
lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
|
|
rq = dl_task_offline_migration(rq, p);
|
|
rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
|
|
update_rq_clock(rq);
|
|
|
|
/*
|
|
* Now that the task has been migrated to the new RQ and we
|
|
* have that locked, proceed as normal and enqueue the task
|
|
* there.
|
|
*/
|
|
}
|
|
#endif
|
|
|
|
enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
|
|
if (dl_task(rq->donor))
|
|
wakeup_preempt_dl(rq, p, 0);
|
|
else
|
|
resched_curr(rq);
|
|
|
|
__push_dl_task(rq, &rf);
|
|
|
|
unlock:
|
|
task_rq_unlock(rq, p, &rf);
|
|
|
|
/*
|
|
* This can free the task_struct, including this hrtimer, do not touch
|
|
* anything related to that after this.
|
|
*/
|
|
put_task_struct(p);
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
static void init_dl_task_timer(struct sched_dl_entity *dl_se)
|
|
{
|
|
struct hrtimer *timer = &dl_se->dl_timer;
|
|
|
|
hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
|
|
timer->function = dl_task_timer;
|
|
}
|
|
|
|
/*
|
|
* During the activation, CBS checks if it can reuse the current task's
|
|
* runtime and period. If the deadline of the task is in the past, CBS
|
|
* cannot use the runtime, and so it replenishes the task. This rule
|
|
* works fine for implicit deadline tasks (deadline == period), and the
|
|
* CBS was designed for implicit deadline tasks. However, a task with
|
|
* constrained deadline (deadline < period) might be awakened after the
|
|
* deadline, but before the next period. In this case, replenishing the
|
|
* task would allow it to run for runtime / deadline. As in this case
|
|
* deadline < period, CBS enables a task to run for more than the
|
|
* runtime / period. In a very loaded system, this can cause a domino
|
|
* effect, making other tasks miss their deadlines.
|
|
*
|
|
* To avoid this problem, in the activation of a constrained deadline
|
|
* task after the deadline but before the next period, throttle the
|
|
* task and set the replenishing timer to the begin of the next period,
|
|
* unless it is boosted.
|
|
*/
|
|
static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
|
|
{
|
|
struct rq *rq = rq_of_dl_se(dl_se);
|
|
|
|
if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
|
|
dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
|
|
if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
|
|
return;
|
|
dl_se->dl_throttled = 1;
|
|
if (dl_se->runtime > 0)
|
|
dl_se->runtime = 0;
|
|
}
|
|
}
|
|
|
|
static
|
|
int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
|
|
{
|
|
return (dl_se->runtime <= 0);
|
|
}
|
|
|
|
/*
|
|
* This function implements the GRUB accounting rule. According to the
|
|
* GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
|
|
* but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
|
|
* where u is the utilization of the task, Umax is the maximum reclaimable
|
|
* utilization, Uinact is the (per-runqueue) inactive utilization, computed
|
|
* as the difference between the "total runqueue utilization" and the
|
|
* "runqueue active utilization", and Uextra is the (per runqueue) extra
|
|
* reclaimable utilization.
|
|
* Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
|
|
* by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
|
|
* Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
|
|
* is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
|
|
* Since delta is a 64 bit variable, to have an overflow its value should be
|
|
* larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
|
|
* not an issue here.
|
|
*/
|
|
static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
|
|
{
|
|
u64 u_act;
|
|
u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
|
|
|
|
/*
|
|
* Instead of computing max{u, (u_max - u_inact - u_extra)}, we
|
|
* compare u_inact + u_extra with u_max - u, because u_inact + u_extra
|
|
* can be larger than u_max. So, u_max - u_inact - u_extra would be
|
|
* negative leading to wrong results.
|
|
*/
|
|
if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
|
|
u_act = dl_se->dl_bw;
|
|
else
|
|
u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
|
|
|
|
u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
|
|
return (delta * u_act) >> BW_SHIFT;
|
|
}
|
|
|
|
s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
|
|
{
|
|
s64 scaled_delta_exec;
|
|
|
|
/*
|
|
* For tasks that participate in GRUB, we implement GRUB-PA: the
|
|
* spare reclaimed bandwidth is used to clock down frequency.
|
|
*
|
|
* For the others, we still need to scale reservation parameters
|
|
* according to current frequency and CPU maximum capacity.
|
|
*/
|
|
if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
|
|
scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
|
|
} else {
|
|
int cpu = cpu_of(rq);
|
|
unsigned long scale_freq = arch_scale_freq_capacity(cpu);
|
|
unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
|
|
|
|
scaled_delta_exec = cap_scale(delta_exec, scale_freq);
|
|
scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
|
|
}
|
|
|
|
return scaled_delta_exec;
|
|
}
|
|
|
|
static inline void
|
|
update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
|
|
int flags);
|
|
static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
|
|
{
|
|
s64 scaled_delta_exec;
|
|
|
|
if (unlikely(delta_exec <= 0)) {
|
|
if (unlikely(dl_se->dl_yielded))
|
|
goto throttle;
|
|
return;
|
|
}
|
|
|
|
if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
|
|
return;
|
|
|
|
if (dl_entity_is_special(dl_se))
|
|
return;
|
|
|
|
scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
|
|
|
|
dl_se->runtime -= scaled_delta_exec;
|
|
|
|
/*
|
|
* The fair server can consume its runtime while throttled (not queued/
|
|
* running as regular CFS).
|
|
*
|
|
* If the server consumes its entire runtime in this state. The server
|
|
* is not required for the current period. Thus, reset the server by
|
|
* starting a new period, pushing the activation.
|
|
*/
|
|
if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
|
|
/*
|
|
* If the server was previously activated - the starving condition
|
|
* took place, it this point it went away because the fair scheduler
|
|
* was able to get runtime in background. So return to the initial
|
|
* state.
|
|
*/
|
|
dl_se->dl_defer_running = 0;
|
|
|
|
hrtimer_try_to_cancel(&dl_se->dl_timer);
|
|
|
|
replenish_dl_new_period(dl_se, dl_se->rq);
|
|
|
|
/*
|
|
* Not being able to start the timer seems problematic. If it could not
|
|
* be started for whatever reason, we need to "unthrottle" the DL server
|
|
* and queue right away. Otherwise nothing might queue it. That's similar
|
|
* to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
|
|
*/
|
|
WARN_ON_ONCE(!start_dl_timer(dl_se));
|
|
|
|
return;
|
|
}
|
|
|
|
throttle:
|
|
if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
|
|
dl_se->dl_throttled = 1;
|
|
|
|
/* If requested, inform the user about runtime overruns. */
|
|
if (dl_runtime_exceeded(dl_se) &&
|
|
(dl_se->flags & SCHED_FLAG_DL_OVERRUN))
|
|
dl_se->dl_overrun = 1;
|
|
|
|
dequeue_dl_entity(dl_se, 0);
|
|
if (!dl_server(dl_se)) {
|
|
update_stats_dequeue_dl(&rq->dl, dl_se, 0);
|
|
dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
|
|
}
|
|
|
|
if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
|
|
if (dl_server(dl_se))
|
|
enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
|
|
else
|
|
enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
|
|
}
|
|
|
|
if (!is_leftmost(dl_se, &rq->dl))
|
|
resched_curr(rq);
|
|
}
|
|
|
|
/*
|
|
* The fair server (sole dl_server) does not account for real-time
|
|
* workload because it is running fair work.
|
|
*/
|
|
if (dl_se == &rq->fair_server)
|
|
return;
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/*
|
|
* Because -- for now -- we share the rt bandwidth, we need to
|
|
* account our runtime there too, otherwise actual rt tasks
|
|
* would be able to exceed the shared quota.
|
|
*
|
|
* Account to the root rt group for now.
|
|
*
|
|
* The solution we're working towards is having the RT groups scheduled
|
|
* using deadline servers -- however there's a few nasties to figure
|
|
* out before that can happen.
|
|
*/
|
|
if (rt_bandwidth_enabled()) {
|
|
struct rt_rq *rt_rq = &rq->rt;
|
|
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
/*
|
|
* We'll let actual RT tasks worry about the overflow here, we
|
|
* have our own CBS to keep us inline; only account when RT
|
|
* bandwidth is relevant.
|
|
*/
|
|
if (sched_rt_bandwidth_account(rt_rq))
|
|
rt_rq->rt_time += delta_exec;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* In the non-defer mode, the idle time is not accounted, as the
|
|
* server provides a guarantee.
|
|
*
|
|
* If the dl_server is in defer mode, the idle time is also considered
|
|
* as time available for the fair server, avoiding a penalty for the
|
|
* rt scheduler that did not consumed that time.
|
|
*/
|
|
void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
|
|
{
|
|
s64 delta_exec, scaled_delta_exec;
|
|
|
|
if (!rq->fair_server.dl_defer)
|
|
return;
|
|
|
|
/* no need to discount more */
|
|
if (rq->fair_server.runtime < 0)
|
|
return;
|
|
|
|
delta_exec = rq_clock_task(rq) - p->se.exec_start;
|
|
if (delta_exec < 0)
|
|
return;
|
|
|
|
scaled_delta_exec = dl_scaled_delta_exec(rq, &rq->fair_server, delta_exec);
|
|
|
|
rq->fair_server.runtime -= scaled_delta_exec;
|
|
|
|
if (rq->fair_server.runtime < 0) {
|
|
rq->fair_server.dl_defer_running = 0;
|
|
rq->fair_server.runtime = 0;
|
|
}
|
|
|
|
p->se.exec_start = rq_clock_task(rq);
|
|
}
|
|
|
|
void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
|
|
{
|
|
/* 0 runtime = fair server disabled */
|
|
if (dl_se->dl_runtime)
|
|
update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
|
|
}
|
|
|
|
void dl_server_start(struct sched_dl_entity *dl_se)
|
|
{
|
|
struct rq *rq = dl_se->rq;
|
|
|
|
/*
|
|
* XXX: the apply do not work fine at the init phase for the
|
|
* fair server because things are not yet set. We need to improve
|
|
* this before getting generic.
|
|
*/
|
|
if (!dl_server(dl_se)) {
|
|
u64 runtime = 50 * NSEC_PER_MSEC;
|
|
u64 period = 1000 * NSEC_PER_MSEC;
|
|
|
|
dl_server_apply_params(dl_se, runtime, period, 1);
|
|
|
|
dl_se->dl_server = 1;
|
|
dl_se->dl_defer = 1;
|
|
setup_new_dl_entity(dl_se);
|
|
}
|
|
|
|
if (!dl_se->dl_runtime)
|
|
return;
|
|
|
|
enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
|
|
if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
|
|
resched_curr(dl_se->rq);
|
|
}
|
|
|
|
void dl_server_stop(struct sched_dl_entity *dl_se)
|
|
{
|
|
if (!dl_se->dl_runtime)
|
|
return;
|
|
|
|
dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
|
|
hrtimer_try_to_cancel(&dl_se->dl_timer);
|
|
dl_se->dl_defer_armed = 0;
|
|
dl_se->dl_throttled = 0;
|
|
}
|
|
|
|
void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
|
|
dl_server_has_tasks_f has_tasks,
|
|
dl_server_pick_f pick_task)
|
|
{
|
|
dl_se->rq = rq;
|
|
dl_se->server_has_tasks = has_tasks;
|
|
dl_se->server_pick_task = pick_task;
|
|
}
|
|
|
|
void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
|
|
{
|
|
u64 new_bw = dl_se->dl_bw;
|
|
int cpu = cpu_of(rq);
|
|
struct dl_bw *dl_b;
|
|
|
|
dl_b = dl_bw_of(cpu_of(rq));
|
|
guard(raw_spinlock)(&dl_b->lock);
|
|
|
|
if (!dl_bw_cpus(cpu))
|
|
return;
|
|
|
|
__dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
|
|
}
|
|
|
|
int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
|
|
{
|
|
u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
|
|
u64 new_bw = to_ratio(period, runtime);
|
|
struct rq *rq = dl_se->rq;
|
|
int cpu = cpu_of(rq);
|
|
struct dl_bw *dl_b;
|
|
unsigned long cap;
|
|
int retval = 0;
|
|
int cpus;
|
|
|
|
dl_b = dl_bw_of(cpu);
|
|
guard(raw_spinlock)(&dl_b->lock);
|
|
|
|
cpus = dl_bw_cpus(cpu);
|
|
cap = dl_bw_capacity(cpu);
|
|
|
|
if (__dl_overflow(dl_b, cap, old_bw, new_bw))
|
|
return -EBUSY;
|
|
|
|
if (init) {
|
|
__add_rq_bw(new_bw, &rq->dl);
|
|
__dl_add(dl_b, new_bw, cpus);
|
|
} else {
|
|
__dl_sub(dl_b, dl_se->dl_bw, cpus);
|
|
__dl_add(dl_b, new_bw, cpus);
|
|
|
|
dl_rq_change_utilization(rq, dl_se, new_bw);
|
|
}
|
|
|
|
dl_se->dl_runtime = runtime;
|
|
dl_se->dl_deadline = period;
|
|
dl_se->dl_period = period;
|
|
|
|
dl_se->runtime = 0;
|
|
dl_se->deadline = 0;
|
|
|
|
dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
|
|
dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Update the current task's runtime statistics (provided it is still
|
|
* a -deadline task and has not been removed from the dl_rq).
|
|
*/
|
|
static void update_curr_dl(struct rq *rq)
|
|
{
|
|
struct task_struct *donor = rq->donor;
|
|
struct sched_dl_entity *dl_se = &donor->dl;
|
|
s64 delta_exec;
|
|
|
|
if (!dl_task(donor) || !on_dl_rq(dl_se))
|
|
return;
|
|
|
|
/*
|
|
* Consumed budget is computed considering the time as
|
|
* observed by schedulable tasks (excluding time spent
|
|
* in hardirq context, etc.). Deadlines are instead
|
|
* computed using hard walltime. This seems to be the more
|
|
* natural solution, but the full ramifications of this
|
|
* approach need further study.
|
|
*/
|
|
delta_exec = update_curr_common(rq);
|
|
update_curr_dl_se(rq, dl_se, delta_exec);
|
|
}
|
|
|
|
static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
|
|
{
|
|
struct sched_dl_entity *dl_se = container_of(timer,
|
|
struct sched_dl_entity,
|
|
inactive_timer);
|
|
struct task_struct *p = NULL;
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
|
|
if (!dl_server(dl_se)) {
|
|
p = dl_task_of(dl_se);
|
|
rq = task_rq_lock(p, &rf);
|
|
} else {
|
|
rq = dl_se->rq;
|
|
rq_lock(rq, &rf);
|
|
}
|
|
|
|
sched_clock_tick();
|
|
update_rq_clock(rq);
|
|
|
|
if (dl_server(dl_se))
|
|
goto no_task;
|
|
|
|
if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
|
|
struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
|
|
|
|
if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
|
|
sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
|
|
sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
|
|
dl_se->dl_non_contending = 0;
|
|
}
|
|
|
|
raw_spin_lock(&dl_b->lock);
|
|
__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
|
|
raw_spin_unlock(&dl_b->lock);
|
|
__dl_clear_params(dl_se);
|
|
|
|
goto unlock;
|
|
}
|
|
|
|
no_task:
|
|
if (dl_se->dl_non_contending == 0)
|
|
goto unlock;
|
|
|
|
sub_running_bw(dl_se, &rq->dl);
|
|
dl_se->dl_non_contending = 0;
|
|
unlock:
|
|
|
|
if (!dl_server(dl_se)) {
|
|
task_rq_unlock(rq, p, &rf);
|
|
put_task_struct(p);
|
|
} else {
|
|
rq_unlock(rq, &rf);
|
|
}
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
|
|
{
|
|
struct hrtimer *timer = &dl_se->inactive_timer;
|
|
|
|
hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
|
|
timer->function = inactive_task_timer;
|
|
}
|
|
|
|
#define __node_2_dle(node) \
|
|
rb_entry((node), struct sched_dl_entity, rb_node)
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
|
|
{
|
|
struct rq *rq = rq_of_dl_rq(dl_rq);
|
|
|
|
if (dl_rq->earliest_dl.curr == 0 ||
|
|
dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
|
|
if (dl_rq->earliest_dl.curr == 0)
|
|
cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
|
|
dl_rq->earliest_dl.curr = deadline;
|
|
cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
|
|
}
|
|
}
|
|
|
|
static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
|
|
{
|
|
struct rq *rq = rq_of_dl_rq(dl_rq);
|
|
|
|
/*
|
|
* Since we may have removed our earliest (and/or next earliest)
|
|
* task we must recompute them.
|
|
*/
|
|
if (!dl_rq->dl_nr_running) {
|
|
dl_rq->earliest_dl.curr = 0;
|
|
dl_rq->earliest_dl.next = 0;
|
|
cpudl_clear(&rq->rd->cpudl, rq->cpu);
|
|
cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
|
|
} else {
|
|
struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
|
|
struct sched_dl_entity *entry = __node_2_dle(leftmost);
|
|
|
|
dl_rq->earliest_dl.curr = entry->deadline;
|
|
cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
|
|
static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static inline
|
|
void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
|
|
{
|
|
u64 deadline = dl_se->deadline;
|
|
|
|
dl_rq->dl_nr_running++;
|
|
add_nr_running(rq_of_dl_rq(dl_rq), 1);
|
|
|
|
inc_dl_deadline(dl_rq, deadline);
|
|
}
|
|
|
|
static inline
|
|
void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
|
|
{
|
|
WARN_ON(!dl_rq->dl_nr_running);
|
|
dl_rq->dl_nr_running--;
|
|
sub_nr_running(rq_of_dl_rq(dl_rq), 1);
|
|
|
|
dec_dl_deadline(dl_rq, dl_se->deadline);
|
|
}
|
|
|
|
static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
|
|
{
|
|
return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
|
|
}
|
|
|
|
static __always_inline struct sched_statistics *
|
|
__schedstats_from_dl_se(struct sched_dl_entity *dl_se)
|
|
{
|
|
if (!schedstat_enabled())
|
|
return NULL;
|
|
|
|
if (dl_server(dl_se))
|
|
return NULL;
|
|
|
|
return &dl_task_of(dl_se)->stats;
|
|
}
|
|
|
|
static inline void
|
|
update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
|
|
{
|
|
struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
|
|
if (stats)
|
|
__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
|
|
}
|
|
|
|
static inline void
|
|
update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
|
|
{
|
|
struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
|
|
if (stats)
|
|
__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
|
|
}
|
|
|
|
static inline void
|
|
update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
|
|
{
|
|
struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
|
|
if (stats)
|
|
__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
|
|
}
|
|
|
|
static inline void
|
|
update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
|
|
int flags)
|
|
{
|
|
if (!schedstat_enabled())
|
|
return;
|
|
|
|
if (flags & ENQUEUE_WAKEUP)
|
|
update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
|
|
}
|
|
|
|
static inline void
|
|
update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
|
|
int flags)
|
|
{
|
|
struct task_struct *p = dl_task_of(dl_se);
|
|
|
|
if (!schedstat_enabled())
|
|
return;
|
|
|
|
if ((flags & DEQUEUE_SLEEP)) {
|
|
unsigned int state;
|
|
|
|
state = READ_ONCE(p->__state);
|
|
if (state & TASK_INTERRUPTIBLE)
|
|
__schedstat_set(p->stats.sleep_start,
|
|
rq_clock(rq_of_dl_rq(dl_rq)));
|
|
|
|
if (state & TASK_UNINTERRUPTIBLE)
|
|
__schedstat_set(p->stats.block_start,
|
|
rq_clock(rq_of_dl_rq(dl_rq)));
|
|
}
|
|
}
|
|
|
|
static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
|
|
{
|
|
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
|
|
|
|
WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
|
|
|
|
rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
|
|
|
|
inc_dl_tasks(dl_se, dl_rq);
|
|
}
|
|
|
|
static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
|
|
{
|
|
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
|
|
|
|
if (RB_EMPTY_NODE(&dl_se->rb_node))
|
|
return;
|
|
|
|
rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
|
|
|
|
RB_CLEAR_NODE(&dl_se->rb_node);
|
|
|
|
dec_dl_tasks(dl_se, dl_rq);
|
|
}
|
|
|
|
static void
|
|
enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
|
|
{
|
|
WARN_ON_ONCE(on_dl_rq(dl_se));
|
|
|
|
update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
|
|
|
|
/*
|
|
* Check if a constrained deadline task was activated
|
|
* after the deadline but before the next period.
|
|
* If that is the case, the task will be throttled and
|
|
* the replenishment timer will be set to the next period.
|
|
*/
|
|
if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
|
|
dl_check_constrained_dl(dl_se);
|
|
|
|
if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
|
|
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
|
|
|
|
add_rq_bw(dl_se, dl_rq);
|
|
add_running_bw(dl_se, dl_rq);
|
|
}
|
|
|
|
/*
|
|
* If p is throttled, we do not enqueue it. In fact, if it exhausted
|
|
* its budget it needs a replenishment and, since it now is on
|
|
* its rq, the bandwidth timer callback (which clearly has not
|
|
* run yet) will take care of this.
|
|
* However, the active utilization does not depend on the fact
|
|
* that the task is on the runqueue or not (but depends on the
|
|
* task's state - in GRUB parlance, "inactive" vs "active contending").
|
|
* In other words, even if a task is throttled its utilization must
|
|
* be counted in the active utilization; hence, we need to call
|
|
* add_running_bw().
|
|
*/
|
|
if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
|
|
if (flags & ENQUEUE_WAKEUP)
|
|
task_contending(dl_se, flags);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If this is a wakeup or a new instance, the scheduling
|
|
* parameters of the task might need updating. Otherwise,
|
|
* we want a replenishment of its runtime.
|
|
*/
|
|
if (flags & ENQUEUE_WAKEUP) {
|
|
task_contending(dl_se, flags);
|
|
update_dl_entity(dl_se);
|
|
} else if (flags & ENQUEUE_REPLENISH) {
|
|
replenish_dl_entity(dl_se);
|
|
} else if ((flags & ENQUEUE_RESTORE) &&
|
|
dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
|
|
setup_new_dl_entity(dl_se);
|
|
}
|
|
|
|
/*
|
|
* If the reservation is still throttled, e.g., it got replenished but is a
|
|
* deferred task and still got to wait, don't enqueue.
|
|
*/
|
|
if (dl_se->dl_throttled && start_dl_timer(dl_se))
|
|
return;
|
|
|
|
/*
|
|
* We're about to enqueue, make sure we're not ->dl_throttled!
|
|
* In case the timer was not started, say because the defer time
|
|
* has passed, mark as not throttled and mark unarmed.
|
|
* Also cancel earlier timers, since letting those run is pointless.
|
|
*/
|
|
if (dl_se->dl_throttled) {
|
|
hrtimer_try_to_cancel(&dl_se->dl_timer);
|
|
dl_se->dl_defer_armed = 0;
|
|
dl_se->dl_throttled = 0;
|
|
}
|
|
|
|
__enqueue_dl_entity(dl_se);
|
|
}
|
|
|
|
static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
|
|
{
|
|
__dequeue_dl_entity(dl_se);
|
|
|
|
if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
|
|
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
|
|
|
|
sub_running_bw(dl_se, dl_rq);
|
|
sub_rq_bw(dl_se, dl_rq);
|
|
}
|
|
|
|
/*
|
|
* This check allows to start the inactive timer (or to immediately
|
|
* decrease the active utilization, if needed) in two cases:
|
|
* when the task blocks and when it is terminating
|
|
* (p->state == TASK_DEAD). We can handle the two cases in the same
|
|
* way, because from GRUB's point of view the same thing is happening
|
|
* (the task moves from "active contending" to "active non contending"
|
|
* or "inactive")
|
|
*/
|
|
if (flags & DEQUEUE_SLEEP)
|
|
task_non_contending(dl_se);
|
|
}
|
|
|
|
static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
if (is_dl_boosted(&p->dl)) {
|
|
/*
|
|
* Because of delays in the detection of the overrun of a
|
|
* thread's runtime, it might be the case that a thread
|
|
* goes to sleep in a rt mutex with negative runtime. As
|
|
* a consequence, the thread will be throttled.
|
|
*
|
|
* While waiting for the mutex, this thread can also be
|
|
* boosted via PI, resulting in a thread that is throttled
|
|
* and boosted at the same time.
|
|
*
|
|
* In this case, the boost overrides the throttle.
|
|
*/
|
|
if (p->dl.dl_throttled) {
|
|
/*
|
|
* The replenish timer needs to be canceled. No
|
|
* problem if it fires concurrently: boosted threads
|
|
* are ignored in dl_task_timer().
|
|
*
|
|
* If the timer callback was running (hrtimer_try_to_cancel == -1),
|
|
* it will eventually call put_task_struct().
|
|
*/
|
|
if (hrtimer_try_to_cancel(&p->dl.dl_timer) == 1 &&
|
|
!dl_server(&p->dl))
|
|
put_task_struct(p);
|
|
p->dl.dl_throttled = 0;
|
|
}
|
|
} else if (!dl_prio(p->normal_prio)) {
|
|
/*
|
|
* Special case in which we have a !SCHED_DEADLINE task that is going
|
|
* to be deboosted, but exceeds its runtime while doing so. No point in
|
|
* replenishing it, as it's going to return back to its original
|
|
* scheduling class after this. If it has been throttled, we need to
|
|
* clear the flag, otherwise the task may wake up as throttled after
|
|
* being boosted again with no means to replenish the runtime and clear
|
|
* the throttle.
|
|
*/
|
|
p->dl.dl_throttled = 0;
|
|
if (!(flags & ENQUEUE_REPLENISH))
|
|
printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
|
|
task_pid_nr(p));
|
|
|
|
return;
|
|
}
|
|
|
|
check_schedstat_required();
|
|
update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
|
|
|
|
if (p->on_rq == TASK_ON_RQ_MIGRATING)
|
|
flags |= ENQUEUE_MIGRATING;
|
|
|
|
enqueue_dl_entity(&p->dl, flags);
|
|
|
|
if (dl_server(&p->dl))
|
|
return;
|
|
|
|
if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
|
|
enqueue_pushable_dl_task(rq, p);
|
|
}
|
|
|
|
static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
update_curr_dl(rq);
|
|
|
|
if (p->on_rq == TASK_ON_RQ_MIGRATING)
|
|
flags |= DEQUEUE_MIGRATING;
|
|
|
|
dequeue_dl_entity(&p->dl, flags);
|
|
if (!p->dl.dl_throttled && !dl_server(&p->dl))
|
|
dequeue_pushable_dl_task(rq, p);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Yield task semantic for -deadline tasks is:
|
|
*
|
|
* get off from the CPU until our next instance, with
|
|
* a new runtime. This is of little use now, since we
|
|
* don't have a bandwidth reclaiming mechanism. Anyway,
|
|
* bandwidth reclaiming is planned for the future, and
|
|
* yield_task_dl will indicate that some spare budget
|
|
* is available for other task instances to use it.
|
|
*/
|
|
static void yield_task_dl(struct rq *rq)
|
|
{
|
|
/*
|
|
* We make the task go to sleep until its current deadline by
|
|
* forcing its runtime to zero. This way, update_curr_dl() stops
|
|
* it and the bandwidth timer will wake it up and will give it
|
|
* new scheduling parameters (thanks to dl_yielded=1).
|
|
*/
|
|
rq->curr->dl.dl_yielded = 1;
|
|
|
|
update_rq_clock(rq);
|
|
update_curr_dl(rq);
|
|
/*
|
|
* Tell update_rq_clock() that we've just updated,
|
|
* so we don't do microscopic update in schedule()
|
|
* and double the fastpath cost.
|
|
*/
|
|
rq_clock_skip_update(rq);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
|
|
struct rq *rq)
|
|
{
|
|
return (!rq->dl.dl_nr_running ||
|
|
dl_time_before(p->dl.deadline,
|
|
rq->dl.earliest_dl.curr));
|
|
}
|
|
|
|
static int find_later_rq(struct task_struct *task);
|
|
|
|
static int
|
|
select_task_rq_dl(struct task_struct *p, int cpu, int flags)
|
|
{
|
|
struct task_struct *curr, *donor;
|
|
bool select_rq;
|
|
struct rq *rq;
|
|
|
|
if (!(flags & WF_TTWU))
|
|
goto out;
|
|
|
|
rq = cpu_rq(cpu);
|
|
|
|
rcu_read_lock();
|
|
curr = READ_ONCE(rq->curr); /* unlocked access */
|
|
donor = READ_ONCE(rq->donor);
|
|
|
|
/*
|
|
* If we are dealing with a -deadline task, we must
|
|
* decide where to wake it up.
|
|
* If it has a later deadline and the current task
|
|
* on this rq can't move (provided the waking task
|
|
* can!) we prefer to send it somewhere else. On the
|
|
* other hand, if it has a shorter deadline, we
|
|
* try to make it stay here, it might be important.
|
|
*/
|
|
select_rq = unlikely(dl_task(donor)) &&
|
|
(curr->nr_cpus_allowed < 2 ||
|
|
!dl_entity_preempt(&p->dl, &donor->dl)) &&
|
|
p->nr_cpus_allowed > 1;
|
|
|
|
/*
|
|
* Take the capacity of the CPU into account to
|
|
* ensure it fits the requirement of the task.
|
|
*/
|
|
if (sched_asym_cpucap_active())
|
|
select_rq |= !dl_task_fits_capacity(p, cpu);
|
|
|
|
if (select_rq) {
|
|
int target = find_later_rq(p);
|
|
|
|
if (target != -1 &&
|
|
dl_task_is_earliest_deadline(p, cpu_rq(target)))
|
|
cpu = target;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
out:
|
|
return cpu;
|
|
}
|
|
|
|
static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
|
|
{
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
|
|
if (READ_ONCE(p->__state) != TASK_WAKING)
|
|
return;
|
|
|
|
rq = task_rq(p);
|
|
/*
|
|
* Since p->state == TASK_WAKING, set_task_cpu() has been called
|
|
* from try_to_wake_up(). Hence, p->pi_lock is locked, but
|
|
* rq->lock is not... So, lock it
|
|
*/
|
|
rq_lock(rq, &rf);
|
|
if (p->dl.dl_non_contending) {
|
|
update_rq_clock(rq);
|
|
sub_running_bw(&p->dl, &rq->dl);
|
|
p->dl.dl_non_contending = 0;
|
|
/*
|
|
* If the timer handler is currently running and the
|
|
* timer cannot be canceled, inactive_task_timer()
|
|
* will see that dl_not_contending is not set, and
|
|
* will not touch the rq's active utilization,
|
|
* so we are still safe.
|
|
*/
|
|
if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
|
|
put_task_struct(p);
|
|
}
|
|
sub_rq_bw(&p->dl, &rq->dl);
|
|
rq_unlock(rq, &rf);
|
|
}
|
|
|
|
static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
|
|
{
|
|
/*
|
|
* Current can't be migrated, useless to reschedule,
|
|
* let's hope p can move out.
|
|
*/
|
|
if (rq->curr->nr_cpus_allowed == 1 ||
|
|
!cpudl_find(&rq->rd->cpudl, rq->donor, NULL))
|
|
return;
|
|
|
|
/*
|
|
* p is migratable, so let's not schedule it and
|
|
* see if it is pushed or pulled somewhere else.
|
|
*/
|
|
if (p->nr_cpus_allowed != 1 &&
|
|
cpudl_find(&rq->rd->cpudl, p, NULL))
|
|
return;
|
|
|
|
resched_curr(rq);
|
|
}
|
|
|
|
static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
|
|
{
|
|
if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
|
|
/*
|
|
* This is OK, because current is on_cpu, which avoids it being
|
|
* picked for load-balance and preemption/IRQs are still
|
|
* disabled avoiding further scheduler activity on it and we've
|
|
* not yet started the picking loop.
|
|
*/
|
|
rq_unpin_lock(rq, rf);
|
|
pull_dl_task(rq);
|
|
rq_repin_lock(rq, rf);
|
|
}
|
|
|
|
return sched_stop_runnable(rq) || sched_dl_runnable(rq);
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* Only called when both the current and waking task are -deadline
|
|
* tasks.
|
|
*/
|
|
static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
|
|
int flags)
|
|
{
|
|
if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
|
|
resched_curr(rq);
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* In the unlikely case current and p have the same deadline
|
|
* let us try to decide what's the best thing to do...
|
|
*/
|
|
if ((p->dl.deadline == rq->donor->dl.deadline) &&
|
|
!test_tsk_need_resched(rq->curr))
|
|
check_preempt_equal_dl(rq, p);
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_HRTICK
|
|
static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
|
|
{
|
|
hrtick_start(rq, dl_se->runtime);
|
|
}
|
|
#else /* !CONFIG_SCHED_HRTICK */
|
|
static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
|
|
{
|
|
struct sched_dl_entity *dl_se = &p->dl;
|
|
struct dl_rq *dl_rq = &rq->dl;
|
|
|
|
p->se.exec_start = rq_clock_task(rq);
|
|
if (on_dl_rq(&p->dl))
|
|
update_stats_wait_end_dl(dl_rq, dl_se);
|
|
|
|
/* You can't push away the running task */
|
|
dequeue_pushable_dl_task(rq, p);
|
|
|
|
if (!first)
|
|
return;
|
|
|
|
if (rq->donor->sched_class != &dl_sched_class)
|
|
update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
|
|
|
|
deadline_queue_push_tasks(rq);
|
|
|
|
if (hrtick_enabled_dl(rq))
|
|
start_hrtick_dl(rq, &p->dl);
|
|
}
|
|
|
|
static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
|
|
{
|
|
struct rb_node *left = rb_first_cached(&dl_rq->root);
|
|
|
|
if (!left)
|
|
return NULL;
|
|
|
|
return __node_2_dle(left);
|
|
}
|
|
|
|
/*
|
|
* __pick_next_task_dl - Helper to pick the next -deadline task to run.
|
|
* @rq: The runqueue to pick the next task from.
|
|
*/
|
|
static struct task_struct *__pick_task_dl(struct rq *rq)
|
|
{
|
|
struct sched_dl_entity *dl_se;
|
|
struct dl_rq *dl_rq = &rq->dl;
|
|
struct task_struct *p;
|
|
|
|
again:
|
|
if (!sched_dl_runnable(rq))
|
|
return NULL;
|
|
|
|
dl_se = pick_next_dl_entity(dl_rq);
|
|
WARN_ON_ONCE(!dl_se);
|
|
|
|
if (dl_server(dl_se)) {
|
|
p = dl_se->server_pick_task(dl_se);
|
|
if (!p) {
|
|
dl_se->dl_yielded = 1;
|
|
update_curr_dl_se(rq, dl_se, 0);
|
|
goto again;
|
|
}
|
|
rq->dl_server = dl_se;
|
|
} else {
|
|
p = dl_task_of(dl_se);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
static struct task_struct *pick_task_dl(struct rq *rq)
|
|
{
|
|
return __pick_task_dl(rq);
|
|
}
|
|
|
|
static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
|
|
{
|
|
struct sched_dl_entity *dl_se = &p->dl;
|
|
struct dl_rq *dl_rq = &rq->dl;
|
|
|
|
if (on_dl_rq(&p->dl))
|
|
update_stats_wait_start_dl(dl_rq, dl_se);
|
|
|
|
update_curr_dl(rq);
|
|
|
|
update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
|
|
if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
|
|
enqueue_pushable_dl_task(rq, p);
|
|
}
|
|
|
|
/*
|
|
* scheduler tick hitting a task of our scheduling class.
|
|
*
|
|
* NOTE: This function can be called remotely by the tick offload that
|
|
* goes along full dynticks. Therefore no local assumption can be made
|
|
* and everything must be accessed through the @rq and @curr passed in
|
|
* parameters.
|
|
*/
|
|
static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
|
|
{
|
|
update_curr_dl(rq);
|
|
|
|
update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
|
|
/*
|
|
* Even when we have runtime, update_curr_dl() might have resulted in us
|
|
* not being the leftmost task anymore. In that case NEED_RESCHED will
|
|
* be set and schedule() will start a new hrtick for the next task.
|
|
*/
|
|
if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
|
|
is_leftmost(&p->dl, &rq->dl))
|
|
start_hrtick_dl(rq, &p->dl);
|
|
}
|
|
|
|
static void task_fork_dl(struct task_struct *p)
|
|
{
|
|
/*
|
|
* SCHED_DEADLINE tasks cannot fork and this is achieved through
|
|
* sched_fork()
|
|
*/
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/* Only try algorithms three times */
|
|
#define DL_MAX_TRIES 3
|
|
|
|
/*
|
|
* Return the earliest pushable rq's task, which is suitable to be executed
|
|
* on the CPU, NULL otherwise:
|
|
*/
|
|
static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
|
|
{
|
|
struct task_struct *p = NULL;
|
|
struct rb_node *next_node;
|
|
|
|
if (!has_pushable_dl_tasks(rq))
|
|
return NULL;
|
|
|
|
next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
|
|
|
|
next_node:
|
|
if (next_node) {
|
|
p = __node_2_pdl(next_node);
|
|
|
|
if (task_is_pushable(rq, p, cpu))
|
|
return p;
|
|
|
|
next_node = rb_next(next_node);
|
|
goto next_node;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
|
|
|
|
static int find_later_rq(struct task_struct *task)
|
|
{
|
|
struct sched_domain *sd;
|
|
struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
|
|
int this_cpu = smp_processor_id();
|
|
int cpu = task_cpu(task);
|
|
|
|
/* Make sure the mask is initialized first */
|
|
if (unlikely(!later_mask))
|
|
return -1;
|
|
|
|
if (task->nr_cpus_allowed == 1)
|
|
return -1;
|
|
|
|
/*
|
|
* We have to consider system topology and task affinity
|
|
* first, then we can look for a suitable CPU.
|
|
*/
|
|
if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
|
|
return -1;
|
|
|
|
/*
|
|
* If we are here, some targets have been found, including
|
|
* the most suitable which is, among the runqueues where the
|
|
* current tasks have later deadlines than the task's one, the
|
|
* rq with the latest possible one.
|
|
*
|
|
* Now we check how well this matches with task's
|
|
* affinity and system topology.
|
|
*
|
|
* The last CPU where the task run is our first
|
|
* guess, since it is most likely cache-hot there.
|
|
*/
|
|
if (cpumask_test_cpu(cpu, later_mask))
|
|
return cpu;
|
|
/*
|
|
* Check if this_cpu is to be skipped (i.e., it is
|
|
* not in the mask) or not.
|
|
*/
|
|
if (!cpumask_test_cpu(this_cpu, later_mask))
|
|
this_cpu = -1;
|
|
|
|
rcu_read_lock();
|
|
for_each_domain(cpu, sd) {
|
|
if (sd->flags & SD_WAKE_AFFINE) {
|
|
int best_cpu;
|
|
|
|
/*
|
|
* If possible, preempting this_cpu is
|
|
* cheaper than migrating.
|
|
*/
|
|
if (this_cpu != -1 &&
|
|
cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
|
|
rcu_read_unlock();
|
|
return this_cpu;
|
|
}
|
|
|
|
best_cpu = cpumask_any_and_distribute(later_mask,
|
|
sched_domain_span(sd));
|
|
/*
|
|
* Last chance: if a CPU being in both later_mask
|
|
* and current sd span is valid, that becomes our
|
|
* choice. Of course, the latest possible CPU is
|
|
* already under consideration through later_mask.
|
|
*/
|
|
if (best_cpu < nr_cpu_ids) {
|
|
rcu_read_unlock();
|
|
return best_cpu;
|
|
}
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* At this point, all our guesses failed, we just return
|
|
* 'something', and let the caller sort the things out.
|
|
*/
|
|
if (this_cpu != -1)
|
|
return this_cpu;
|
|
|
|
cpu = cpumask_any_distribute(later_mask);
|
|
if (cpu < nr_cpu_ids)
|
|
return cpu;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Locks the rq it finds */
|
|
static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
|
|
{
|
|
struct rq *later_rq = NULL;
|
|
int tries;
|
|
int cpu;
|
|
|
|
for (tries = 0; tries < DL_MAX_TRIES; tries++) {
|
|
cpu = find_later_rq(task);
|
|
|
|
if ((cpu == -1) || (cpu == rq->cpu))
|
|
break;
|
|
|
|
later_rq = cpu_rq(cpu);
|
|
|
|
if (!dl_task_is_earliest_deadline(task, later_rq)) {
|
|
/*
|
|
* Target rq has tasks of equal or earlier deadline,
|
|
* retrying does not release any lock and is unlikely
|
|
* to yield a different result.
|
|
*/
|
|
later_rq = NULL;
|
|
break;
|
|
}
|
|
|
|
/* Retry if something changed. */
|
|
if (double_lock_balance(rq, later_rq)) {
|
|
if (unlikely(task_rq(task) != rq ||
|
|
!cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
|
|
task_on_cpu(rq, task) ||
|
|
!dl_task(task) ||
|
|
is_migration_disabled(task) ||
|
|
!task_on_rq_queued(task))) {
|
|
double_unlock_balance(rq, later_rq);
|
|
later_rq = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the rq we found has no -deadline task, or
|
|
* its earliest one has a later deadline than our
|
|
* task, the rq is a good one.
|
|
*/
|
|
if (dl_task_is_earliest_deadline(task, later_rq))
|
|
break;
|
|
|
|
/* Otherwise we try again. */
|
|
double_unlock_balance(rq, later_rq);
|
|
later_rq = NULL;
|
|
}
|
|
|
|
return later_rq;
|
|
}
|
|
|
|
static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
if (!has_pushable_dl_tasks(rq))
|
|
return NULL;
|
|
|
|
p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
|
|
|
|
WARN_ON_ONCE(rq->cpu != task_cpu(p));
|
|
WARN_ON_ONCE(task_current(rq, p));
|
|
WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
|
|
|
|
WARN_ON_ONCE(!task_on_rq_queued(p));
|
|
WARN_ON_ONCE(!dl_task(p));
|
|
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* See if the non running -deadline tasks on this rq
|
|
* can be sent to some other CPU where they can preempt
|
|
* and start executing.
|
|
*/
|
|
static int push_dl_task(struct rq *rq)
|
|
{
|
|
struct task_struct *next_task;
|
|
struct rq *later_rq;
|
|
int ret = 0;
|
|
|
|
next_task = pick_next_pushable_dl_task(rq);
|
|
if (!next_task)
|
|
return 0;
|
|
|
|
retry:
|
|
/*
|
|
* If next_task preempts rq->curr, and rq->curr
|
|
* can move away, it makes sense to just reschedule
|
|
* without going further in pushing next_task.
|
|
*/
|
|
if (dl_task(rq->donor) &&
|
|
dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
|
|
rq->curr->nr_cpus_allowed > 1) {
|
|
resched_curr(rq);
|
|
return 0;
|
|
}
|
|
|
|
if (is_migration_disabled(next_task))
|
|
return 0;
|
|
|
|
if (WARN_ON(next_task == rq->curr))
|
|
return 0;
|
|
|
|
/* We might release rq lock */
|
|
get_task_struct(next_task);
|
|
|
|
/* Will lock the rq it'll find */
|
|
later_rq = find_lock_later_rq(next_task, rq);
|
|
if (!later_rq) {
|
|
struct task_struct *task;
|
|
|
|
/*
|
|
* We must check all this again, since
|
|
* find_lock_later_rq releases rq->lock and it is
|
|
* then possible that next_task has migrated.
|
|
*/
|
|
task = pick_next_pushable_dl_task(rq);
|
|
if (task == next_task) {
|
|
/*
|
|
* The task is still there. We don't try
|
|
* again, some other CPU will pull it when ready.
|
|
*/
|
|
goto out;
|
|
}
|
|
|
|
if (!task)
|
|
/* No more tasks */
|
|
goto out;
|
|
|
|
put_task_struct(next_task);
|
|
next_task = task;
|
|
goto retry;
|
|
}
|
|
|
|
move_queued_task_locked(rq, later_rq, next_task);
|
|
ret = 1;
|
|
|
|
resched_curr(later_rq);
|
|
|
|
double_unlock_balance(rq, later_rq);
|
|
|
|
out:
|
|
put_task_struct(next_task);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void push_dl_tasks(struct rq *rq)
|
|
{
|
|
/* push_dl_task() will return true if it moved a -deadline task */
|
|
while (push_dl_task(rq))
|
|
;
|
|
}
|
|
|
|
static void pull_dl_task(struct rq *this_rq)
|
|
{
|
|
int this_cpu = this_rq->cpu, cpu;
|
|
struct task_struct *p, *push_task;
|
|
bool resched = false;
|
|
struct rq *src_rq;
|
|
u64 dmin = LONG_MAX;
|
|
|
|
if (likely(!dl_overloaded(this_rq)))
|
|
return;
|
|
|
|
/*
|
|
* Match the barrier from dl_set_overloaded; this guarantees that if we
|
|
* see overloaded we must also see the dlo_mask bit.
|
|
*/
|
|
smp_rmb();
|
|
|
|
for_each_cpu(cpu, this_rq->rd->dlo_mask) {
|
|
if (this_cpu == cpu)
|
|
continue;
|
|
|
|
src_rq = cpu_rq(cpu);
|
|
|
|
/*
|
|
* It looks racy, and it is! However, as in sched_rt.c,
|
|
* we are fine with this.
|
|
*/
|
|
if (this_rq->dl.dl_nr_running &&
|
|
dl_time_before(this_rq->dl.earliest_dl.curr,
|
|
src_rq->dl.earliest_dl.next))
|
|
continue;
|
|
|
|
/* Might drop this_rq->lock */
|
|
push_task = NULL;
|
|
double_lock_balance(this_rq, src_rq);
|
|
|
|
/*
|
|
* If there are no more pullable tasks on the
|
|
* rq, we're done with it.
|
|
*/
|
|
if (src_rq->dl.dl_nr_running <= 1)
|
|
goto skip;
|
|
|
|
p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
|
|
|
|
/*
|
|
* We found a task to be pulled if:
|
|
* - it preempts our current (if there's one),
|
|
* - it will preempt the last one we pulled (if any).
|
|
*/
|
|
if (p && dl_time_before(p->dl.deadline, dmin) &&
|
|
dl_task_is_earliest_deadline(p, this_rq)) {
|
|
WARN_ON(p == src_rq->curr);
|
|
WARN_ON(!task_on_rq_queued(p));
|
|
|
|
/*
|
|
* Then we pull iff p has actually an earlier
|
|
* deadline than the current task of its runqueue.
|
|
*/
|
|
if (dl_time_before(p->dl.deadline,
|
|
src_rq->donor->dl.deadline))
|
|
goto skip;
|
|
|
|
if (is_migration_disabled(p)) {
|
|
push_task = get_push_task(src_rq);
|
|
} else {
|
|
move_queued_task_locked(src_rq, this_rq, p);
|
|
dmin = p->dl.deadline;
|
|
resched = true;
|
|
}
|
|
|
|
/* Is there any other task even earlier? */
|
|
}
|
|
skip:
|
|
double_unlock_balance(this_rq, src_rq);
|
|
|
|
if (push_task) {
|
|
preempt_disable();
|
|
raw_spin_rq_unlock(this_rq);
|
|
stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
|
|
push_task, &src_rq->push_work);
|
|
preempt_enable();
|
|
raw_spin_rq_lock(this_rq);
|
|
}
|
|
}
|
|
|
|
if (resched)
|
|
resched_curr(this_rq);
|
|
}
|
|
|
|
/*
|
|
* Since the task is not running and a reschedule is not going to happen
|
|
* anytime soon on its runqueue, we try pushing it away now.
|
|
*/
|
|
static void task_woken_dl(struct rq *rq, struct task_struct *p)
|
|
{
|
|
if (!task_on_cpu(rq, p) &&
|
|
!test_tsk_need_resched(rq->curr) &&
|
|
p->nr_cpus_allowed > 1 &&
|
|
dl_task(rq->donor) &&
|
|
(rq->curr->nr_cpus_allowed < 2 ||
|
|
!dl_entity_preempt(&p->dl, &rq->donor->dl))) {
|
|
push_dl_tasks(rq);
|
|
}
|
|
}
|
|
|
|
static void set_cpus_allowed_dl(struct task_struct *p,
|
|
struct affinity_context *ctx)
|
|
{
|
|
struct root_domain *src_rd;
|
|
struct rq *rq;
|
|
|
|
WARN_ON_ONCE(!dl_task(p));
|
|
|
|
rq = task_rq(p);
|
|
src_rd = rq->rd;
|
|
/*
|
|
* Migrating a SCHED_DEADLINE task between exclusive
|
|
* cpusets (different root_domains) entails a bandwidth
|
|
* update. We already made space for us in the destination
|
|
* domain (see cpuset_can_attach()).
|
|
*/
|
|
if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
|
|
struct dl_bw *src_dl_b;
|
|
|
|
src_dl_b = dl_bw_of(cpu_of(rq));
|
|
/*
|
|
* We now free resources of the root_domain we are migrating
|
|
* off. In the worst case, sched_setattr() may temporary fail
|
|
* until we complete the update.
|
|
*/
|
|
raw_spin_lock(&src_dl_b->lock);
|
|
__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
|
|
raw_spin_unlock(&src_dl_b->lock);
|
|
}
|
|
|
|
set_cpus_allowed_common(p, ctx);
|
|
}
|
|
|
|
/* Assumes rq->lock is held */
|
|
static void rq_online_dl(struct rq *rq)
|
|
{
|
|
if (rq->dl.overloaded)
|
|
dl_set_overload(rq);
|
|
|
|
cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
|
|
if (rq->dl.dl_nr_running > 0)
|
|
cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
|
|
}
|
|
|
|
/* Assumes rq->lock is held */
|
|
static void rq_offline_dl(struct rq *rq)
|
|
{
|
|
if (rq->dl.overloaded)
|
|
dl_clear_overload(rq);
|
|
|
|
cpudl_clear(&rq->rd->cpudl, rq->cpu);
|
|
cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
|
|
}
|
|
|
|
void __init init_sched_dl_class(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
for_each_possible_cpu(i)
|
|
zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
|
|
GFP_KERNEL, cpu_to_node(i));
|
|
}
|
|
|
|
void dl_add_task_root_domain(struct task_struct *p)
|
|
{
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
struct dl_bw *dl_b;
|
|
|
|
raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
|
|
if (!dl_task(p)) {
|
|
raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
|
|
return;
|
|
}
|
|
|
|
rq = __task_rq_lock(p, &rf);
|
|
|
|
dl_b = &rq->rd->dl_bw;
|
|
raw_spin_lock(&dl_b->lock);
|
|
|
|
__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
|
|
|
|
raw_spin_unlock(&dl_b->lock);
|
|
|
|
task_rq_unlock(rq, p, &rf);
|
|
}
|
|
|
|
void dl_clear_root_domain(struct root_domain *rd)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
|
|
rd->dl_bw.total_bw = 0;
|
|
raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
|
|
}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static void switched_from_dl(struct rq *rq, struct task_struct *p)
|
|
{
|
|
/*
|
|
* task_non_contending() can start the "inactive timer" (if the 0-lag
|
|
* time is in the future). If the task switches back to dl before
|
|
* the "inactive timer" fires, it can continue to consume its current
|
|
* runtime using its current deadline. If it stays outside of
|
|
* SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
|
|
* will reset the task parameters.
|
|
*/
|
|
if (task_on_rq_queued(p) && p->dl.dl_runtime)
|
|
task_non_contending(&p->dl);
|
|
|
|
/*
|
|
* In case a task is setscheduled out from SCHED_DEADLINE we need to
|
|
* keep track of that on its cpuset (for correct bandwidth tracking).
|
|
*/
|
|
dec_dl_tasks_cs(p);
|
|
|
|
if (!task_on_rq_queued(p)) {
|
|
/*
|
|
* Inactive timer is armed. However, p is leaving DEADLINE and
|
|
* might migrate away from this rq while continuing to run on
|
|
* some other class. We need to remove its contribution from
|
|
* this rq running_bw now, or sub_rq_bw (below) will complain.
|
|
*/
|
|
if (p->dl.dl_non_contending)
|
|
sub_running_bw(&p->dl, &rq->dl);
|
|
sub_rq_bw(&p->dl, &rq->dl);
|
|
}
|
|
|
|
/*
|
|
* We cannot use inactive_task_timer() to invoke sub_running_bw()
|
|
* at the 0-lag time, because the task could have been migrated
|
|
* while SCHED_OTHER in the meanwhile.
|
|
*/
|
|
if (p->dl.dl_non_contending)
|
|
p->dl.dl_non_contending = 0;
|
|
|
|
/*
|
|
* Since this might be the only -deadline task on the rq,
|
|
* this is the right place to try to pull some other one
|
|
* from an overloaded CPU, if any.
|
|
*/
|
|
if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
|
|
return;
|
|
|
|
deadline_queue_pull_task(rq);
|
|
}
|
|
|
|
/*
|
|
* When switching to -deadline, we may overload the rq, then
|
|
* we try to push someone off, if possible.
|
|
*/
|
|
static void switched_to_dl(struct rq *rq, struct task_struct *p)
|
|
{
|
|
if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
|
|
put_task_struct(p);
|
|
|
|
/*
|
|
* In case a task is setscheduled to SCHED_DEADLINE we need to keep
|
|
* track of that on its cpuset (for correct bandwidth tracking).
|
|
*/
|
|
inc_dl_tasks_cs(p);
|
|
|
|
/* If p is not queued we will update its parameters at next wakeup. */
|
|
if (!task_on_rq_queued(p)) {
|
|
add_rq_bw(&p->dl, &rq->dl);
|
|
|
|
return;
|
|
}
|
|
|
|
if (rq->donor != p) {
|
|
#ifdef CONFIG_SMP
|
|
if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
|
|
deadline_queue_push_tasks(rq);
|
|
#endif
|
|
if (dl_task(rq->donor))
|
|
wakeup_preempt_dl(rq, p, 0);
|
|
else
|
|
resched_curr(rq);
|
|
} else {
|
|
update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the scheduling parameters of a -deadline task changed,
|
|
* a push or pull operation might be needed.
|
|
*/
|
|
static void prio_changed_dl(struct rq *rq, struct task_struct *p,
|
|
int oldprio)
|
|
{
|
|
if (!task_on_rq_queued(p))
|
|
return;
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* This might be too much, but unfortunately
|
|
* we don't have the old deadline value, and
|
|
* we can't argue if the task is increasing
|
|
* or lowering its prio, so...
|
|
*/
|
|
if (!rq->dl.overloaded)
|
|
deadline_queue_pull_task(rq);
|
|
|
|
if (task_current_donor(rq, p)) {
|
|
/*
|
|
* If we now have a earlier deadline task than p,
|
|
* then reschedule, provided p is still on this
|
|
* runqueue.
|
|
*/
|
|
if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
|
|
resched_curr(rq);
|
|
} else {
|
|
/*
|
|
* Current may not be deadline in case p was throttled but we
|
|
* have just replenished it (e.g. rt_mutex_setprio()).
|
|
*
|
|
* Otherwise, if p was given an earlier deadline, reschedule.
|
|
*/
|
|
if (!dl_task(rq->curr) ||
|
|
dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
|
|
resched_curr(rq);
|
|
}
|
|
#else
|
|
/*
|
|
* We don't know if p has a earlier or later deadline, so let's blindly
|
|
* set a (maybe not needed) rescheduling point.
|
|
*/
|
|
resched_curr(rq);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_CORE
|
|
static int task_is_throttled_dl(struct task_struct *p, int cpu)
|
|
{
|
|
return p->dl.dl_throttled;
|
|
}
|
|
#endif
|
|
|
|
DEFINE_SCHED_CLASS(dl) = {
|
|
|
|
.enqueue_task = enqueue_task_dl,
|
|
.dequeue_task = dequeue_task_dl,
|
|
.yield_task = yield_task_dl,
|
|
|
|
.wakeup_preempt = wakeup_preempt_dl,
|
|
|
|
.pick_task = pick_task_dl,
|
|
.put_prev_task = put_prev_task_dl,
|
|
.set_next_task = set_next_task_dl,
|
|
|
|
#ifdef CONFIG_SMP
|
|
.balance = balance_dl,
|
|
.select_task_rq = select_task_rq_dl,
|
|
.migrate_task_rq = migrate_task_rq_dl,
|
|
.set_cpus_allowed = set_cpus_allowed_dl,
|
|
.rq_online = rq_online_dl,
|
|
.rq_offline = rq_offline_dl,
|
|
.task_woken = task_woken_dl,
|
|
.find_lock_rq = find_lock_later_rq,
|
|
#endif
|
|
|
|
.task_tick = task_tick_dl,
|
|
.task_fork = task_fork_dl,
|
|
|
|
.prio_changed = prio_changed_dl,
|
|
.switched_from = switched_from_dl,
|
|
.switched_to = switched_to_dl,
|
|
|
|
.update_curr = update_curr_dl,
|
|
#ifdef CONFIG_SCHED_CORE
|
|
.task_is_throttled = task_is_throttled_dl,
|
|
#endif
|
|
};
|
|
|
|
/* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
|
|
static u64 dl_generation;
|
|
|
|
int sched_dl_global_validate(void)
|
|
{
|
|
u64 runtime = global_rt_runtime();
|
|
u64 period = global_rt_period();
|
|
u64 new_bw = to_ratio(period, runtime);
|
|
u64 gen = ++dl_generation;
|
|
struct dl_bw *dl_b;
|
|
int cpu, cpus, ret = 0;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Here we want to check the bandwidth not being set to some
|
|
* value smaller than the currently allocated bandwidth in
|
|
* any of the root_domains.
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
rcu_read_lock_sched();
|
|
|
|
if (dl_bw_visited(cpu, gen))
|
|
goto next;
|
|
|
|
dl_b = dl_bw_of(cpu);
|
|
cpus = dl_bw_cpus(cpu);
|
|
|
|
raw_spin_lock_irqsave(&dl_b->lock, flags);
|
|
if (new_bw * cpus < dl_b->total_bw)
|
|
ret = -EBUSY;
|
|
raw_spin_unlock_irqrestore(&dl_b->lock, flags);
|
|
|
|
next:
|
|
rcu_read_unlock_sched();
|
|
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
|
|
{
|
|
if (global_rt_runtime() == RUNTIME_INF) {
|
|
dl_rq->bw_ratio = 1 << RATIO_SHIFT;
|
|
dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
|
|
} else {
|
|
dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
|
|
global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
|
|
dl_rq->max_bw = dl_rq->extra_bw =
|
|
to_ratio(global_rt_period(), global_rt_runtime());
|
|
}
|
|
}
|
|
|
|
void sched_dl_do_global(void)
|
|
{
|
|
u64 new_bw = -1;
|
|
u64 gen = ++dl_generation;
|
|
struct dl_bw *dl_b;
|
|
int cpu;
|
|
unsigned long flags;
|
|
|
|
if (global_rt_runtime() != RUNTIME_INF)
|
|
new_bw = to_ratio(global_rt_period(), global_rt_runtime());
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
rcu_read_lock_sched();
|
|
|
|
if (dl_bw_visited(cpu, gen)) {
|
|
rcu_read_unlock_sched();
|
|
continue;
|
|
}
|
|
|
|
dl_b = dl_bw_of(cpu);
|
|
|
|
raw_spin_lock_irqsave(&dl_b->lock, flags);
|
|
dl_b->bw = new_bw;
|
|
raw_spin_unlock_irqrestore(&dl_b->lock, flags);
|
|
|
|
rcu_read_unlock_sched();
|
|
init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We must be sure that accepting a new task (or allowing changing the
|
|
* parameters of an existing one) is consistent with the bandwidth
|
|
* constraints. If yes, this function also accordingly updates the currently
|
|
* allocated bandwidth to reflect the new situation.
|
|
*
|
|
* This function is called while holding p's rq->lock.
|
|
*/
|
|
int sched_dl_overflow(struct task_struct *p, int policy,
|
|
const struct sched_attr *attr)
|
|
{
|
|
u64 period = attr->sched_period ?: attr->sched_deadline;
|
|
u64 runtime = attr->sched_runtime;
|
|
u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
|
|
int cpus, err = -1, cpu = task_cpu(p);
|
|
struct dl_bw *dl_b = dl_bw_of(cpu);
|
|
unsigned long cap;
|
|
|
|
if (attr->sched_flags & SCHED_FLAG_SUGOV)
|
|
return 0;
|
|
|
|
/* !deadline task may carry old deadline bandwidth */
|
|
if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
|
|
return 0;
|
|
|
|
/*
|
|
* Either if a task, enters, leave, or stays -deadline but changes
|
|
* its parameters, we may need to update accordingly the total
|
|
* allocated bandwidth of the container.
|
|
*/
|
|
raw_spin_lock(&dl_b->lock);
|
|
cpus = dl_bw_cpus(cpu);
|
|
cap = dl_bw_capacity(cpu);
|
|
|
|
if (dl_policy(policy) && !task_has_dl_policy(p) &&
|
|
!__dl_overflow(dl_b, cap, 0, new_bw)) {
|
|
if (hrtimer_active(&p->dl.inactive_timer))
|
|
__dl_sub(dl_b, p->dl.dl_bw, cpus);
|
|
__dl_add(dl_b, new_bw, cpus);
|
|
err = 0;
|
|
} else if (dl_policy(policy) && task_has_dl_policy(p) &&
|
|
!__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
|
|
/*
|
|
* XXX this is slightly incorrect: when the task
|
|
* utilization decreases, we should delay the total
|
|
* utilization change until the task's 0-lag point.
|
|
* But this would require to set the task's "inactive
|
|
* timer" when the task is not inactive.
|
|
*/
|
|
__dl_sub(dl_b, p->dl.dl_bw, cpus);
|
|
__dl_add(dl_b, new_bw, cpus);
|
|
dl_change_utilization(p, new_bw);
|
|
err = 0;
|
|
} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
|
|
/*
|
|
* Do not decrease the total deadline utilization here,
|
|
* switched_from_dl() will take care to do it at the correct
|
|
* (0-lag) time.
|
|
*/
|
|
err = 0;
|
|
}
|
|
raw_spin_unlock(&dl_b->lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* This function initializes the sched_dl_entity of a newly becoming
|
|
* SCHED_DEADLINE task.
|
|
*
|
|
* Only the static values are considered here, the actual runtime and the
|
|
* absolute deadline will be properly calculated when the task is enqueued
|
|
* for the first time with its new policy.
|
|
*/
|
|
void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
|
|
{
|
|
struct sched_dl_entity *dl_se = &p->dl;
|
|
|
|
dl_se->dl_runtime = attr->sched_runtime;
|
|
dl_se->dl_deadline = attr->sched_deadline;
|
|
dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
|
|
dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
|
|
dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
|
|
dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
|
|
}
|
|
|
|
void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
|
|
{
|
|
struct sched_dl_entity *dl_se = &p->dl;
|
|
|
|
attr->sched_priority = p->rt_priority;
|
|
attr->sched_runtime = dl_se->dl_runtime;
|
|
attr->sched_deadline = dl_se->dl_deadline;
|
|
attr->sched_period = dl_se->dl_period;
|
|
attr->sched_flags &= ~SCHED_DL_FLAGS;
|
|
attr->sched_flags |= dl_se->flags;
|
|
}
|
|
|
|
/*
|
|
* This function validates the new parameters of a -deadline task.
|
|
* We ask for the deadline not being zero, and greater or equal
|
|
* than the runtime, as well as the period of being zero or
|
|
* greater than deadline. Furthermore, we have to be sure that
|
|
* user parameters are above the internal resolution of 1us (we
|
|
* check sched_runtime only since it is always the smaller one) and
|
|
* below 2^63 ns (we have to check both sched_deadline and
|
|
* sched_period, as the latter can be zero).
|
|
*/
|
|
bool __checkparam_dl(const struct sched_attr *attr)
|
|
{
|
|
u64 period, max, min;
|
|
|
|
/* special dl tasks don't actually use any parameter */
|
|
if (attr->sched_flags & SCHED_FLAG_SUGOV)
|
|
return true;
|
|
|
|
/* deadline != 0 */
|
|
if (attr->sched_deadline == 0)
|
|
return false;
|
|
|
|
/*
|
|
* Since we truncate DL_SCALE bits, make sure we're at least
|
|
* that big.
|
|
*/
|
|
if (attr->sched_runtime < (1ULL << DL_SCALE))
|
|
return false;
|
|
|
|
/*
|
|
* Since we use the MSB for wrap-around and sign issues, make
|
|
* sure it's not set (mind that period can be equal to zero).
|
|
*/
|
|
if (attr->sched_deadline & (1ULL << 63) ||
|
|
attr->sched_period & (1ULL << 63))
|
|
return false;
|
|
|
|
period = attr->sched_period;
|
|
if (!period)
|
|
period = attr->sched_deadline;
|
|
|
|
/* runtime <= deadline <= period (if period != 0) */
|
|
if (period < attr->sched_deadline ||
|
|
attr->sched_deadline < attr->sched_runtime)
|
|
return false;
|
|
|
|
max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
|
|
min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
|
|
|
|
if (period < min || period > max)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* This function clears the sched_dl_entity static params.
|
|
*/
|
|
static void __dl_clear_params(struct sched_dl_entity *dl_se)
|
|
{
|
|
dl_se->dl_runtime = 0;
|
|
dl_se->dl_deadline = 0;
|
|
dl_se->dl_period = 0;
|
|
dl_se->flags = 0;
|
|
dl_se->dl_bw = 0;
|
|
dl_se->dl_density = 0;
|
|
|
|
dl_se->dl_throttled = 0;
|
|
dl_se->dl_yielded = 0;
|
|
dl_se->dl_non_contending = 0;
|
|
dl_se->dl_overrun = 0;
|
|
dl_se->dl_server = 0;
|
|
|
|
#ifdef CONFIG_RT_MUTEXES
|
|
dl_se->pi_se = dl_se;
|
|
#endif
|
|
}
|
|
|
|
void init_dl_entity(struct sched_dl_entity *dl_se)
|
|
{
|
|
RB_CLEAR_NODE(&dl_se->rb_node);
|
|
init_dl_task_timer(dl_se);
|
|
init_dl_inactive_task_timer(dl_se);
|
|
__dl_clear_params(dl_se);
|
|
}
|
|
|
|
bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
|
|
{
|
|
struct sched_dl_entity *dl_se = &p->dl;
|
|
|
|
if (dl_se->dl_runtime != attr->sched_runtime ||
|
|
dl_se->dl_deadline != attr->sched_deadline ||
|
|
dl_se->dl_period != attr->sched_period ||
|
|
dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
|
|
const struct cpumask *trial)
|
|
{
|
|
unsigned long flags, cap;
|
|
struct dl_bw *cur_dl_b;
|
|
int ret = 1;
|
|
|
|
rcu_read_lock_sched();
|
|
cur_dl_b = dl_bw_of(cpumask_any(cur));
|
|
cap = __dl_bw_capacity(trial);
|
|
raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
|
|
if (__dl_overflow(cur_dl_b, cap, 0, 0))
|
|
ret = 0;
|
|
raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
|
|
rcu_read_unlock_sched();
|
|
|
|
return ret;
|
|
}
|
|
|
|
enum dl_bw_request {
|
|
dl_bw_req_check_overflow = 0,
|
|
dl_bw_req_alloc,
|
|
dl_bw_req_free
|
|
};
|
|
|
|
static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
|
|
{
|
|
unsigned long flags;
|
|
struct dl_bw *dl_b;
|
|
bool overflow = 0;
|
|
|
|
rcu_read_lock_sched();
|
|
dl_b = dl_bw_of(cpu);
|
|
raw_spin_lock_irqsave(&dl_b->lock, flags);
|
|
|
|
if (req == dl_bw_req_free) {
|
|
__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
|
|
} else {
|
|
unsigned long cap = dl_bw_capacity(cpu);
|
|
|
|
overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
|
|
|
|
if (req == dl_bw_req_alloc && !overflow) {
|
|
/*
|
|
* We reserve space in the destination
|
|
* root_domain, as we can't fail after this point.
|
|
* We will free resources in the source root_domain
|
|
* later on (see set_cpus_allowed_dl()).
|
|
*/
|
|
__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
|
|
}
|
|
}
|
|
|
|
raw_spin_unlock_irqrestore(&dl_b->lock, flags);
|
|
rcu_read_unlock_sched();
|
|
|
|
return overflow ? -EBUSY : 0;
|
|
}
|
|
|
|
int dl_bw_check_overflow(int cpu)
|
|
{
|
|
return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
|
|
}
|
|
|
|
int dl_bw_alloc(int cpu, u64 dl_bw)
|
|
{
|
|
return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
|
|
}
|
|
|
|
void dl_bw_free(int cpu, u64 dl_bw)
|
|
{
|
|
dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
void print_dl_stats(struct seq_file *m, int cpu)
|
|
{
|
|
print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
|
|
}
|
|
#endif /* CONFIG_SCHED_DEBUG */
|