linux/drivers/net/wimax/i2400m/driver.c
Cindy H Kao 2354161dd3 wimax/i2400m: Correct the error path handlers order in i2400m_post_reset()
When bus_setup fails in i2400m_post_reset(), it falls to the error path handler
"error_bus_setup:" which includes unlock the mutext. However, we didn't ever
try to the obtain the lock when running bus_setup.

The patch is to fix the misplaced error path handler "error_bus_setup:".

Signed-off-by: Cindy H Kao <cindy.h.kao@intel.com>
2010-05-11 14:05:47 -07:00

1116 lines
32 KiB
C

/*
* Intel Wireless WiMAX Connection 2400m
* Generic probe/disconnect, reset and message passing
*
*
* Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
*
* See i2400m.h for driver documentation. This contains helpers for
* the driver model glue [_setup()/_release()], handling device resets
* [_dev_reset_handle()], and the backends for the WiMAX stack ops
* reset [_op_reset()] and message from user [_op_msg_from_user()].
*
* ROADMAP:
*
* i2400m_op_msg_from_user()
* i2400m_msg_to_dev()
* wimax_msg_to_user_send()
*
* i2400m_op_reset()
* i240m->bus_reset()
*
* i2400m_dev_reset_handle()
* __i2400m_dev_reset_handle()
* __i2400m_dev_stop()
* __i2400m_dev_start()
*
* i2400m_setup()
* i2400m->bus_setup()
* i2400m_bootrom_init()
* register_netdev()
* wimax_dev_add()
* i2400m_dev_start()
* __i2400m_dev_start()
* i2400m_dev_bootstrap()
* i2400m_tx_setup()
* i2400m->bus_dev_start()
* i2400m_firmware_check()
* i2400m_check_mac_addr()
*
* i2400m_release()
* i2400m_dev_stop()
* __i2400m_dev_stop()
* i2400m_dev_shutdown()
* i2400m->bus_dev_stop()
* i2400m_tx_release()
* i2400m->bus_release()
* wimax_dev_rm()
* unregister_netdev()
*/
#include "i2400m.h"
#include <linux/etherdevice.h>
#include <linux/wimax/i2400m.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/suspend.h>
#include <linux/slab.h>
#define D_SUBMODULE driver
#include "debug-levels.h"
int i2400m_idle_mode_disabled; /* 0 (idle mode enabled) by default */
module_param_named(idle_mode_disabled, i2400m_idle_mode_disabled, int, 0644);
MODULE_PARM_DESC(idle_mode_disabled,
"If true, the device will not enable idle mode negotiation "
"with the base station (when connected) to save power.");
int i2400m_rx_reorder_disabled; /* 0 (rx reorder enabled) by default */
module_param_named(rx_reorder_disabled, i2400m_rx_reorder_disabled, int, 0644);
MODULE_PARM_DESC(rx_reorder_disabled,
"If true, RX reordering will be disabled.");
int i2400m_power_save_disabled; /* 0 (power saving enabled) by default */
module_param_named(power_save_disabled, i2400m_power_save_disabled, int, 0644);
MODULE_PARM_DESC(power_save_disabled,
"If true, the driver will not tell the device to enter "
"power saving mode when it reports it is ready for it. "
"False by default (so the device is told to do power "
"saving).");
static char i2400m_debug_params[128];
module_param_string(debug, i2400m_debug_params, sizeof(i2400m_debug_params),
0644);
MODULE_PARM_DESC(debug,
"String of space-separated NAME:VALUE pairs, where NAMEs "
"are the different debug submodules and VALUE are the "
"initial debug value to set.");
static char i2400m_barkers_params[128];
module_param_string(barkers, i2400m_barkers_params,
sizeof(i2400m_barkers_params), 0644);
MODULE_PARM_DESC(barkers,
"String of comma-separated 32-bit values; each is "
"recognized as the value the device sends as a reboot "
"signal; values are appended to a list--setting one value "
"as zero cleans the existing list and starts a new one.");
static
struct i2400m_work *__i2400m_work_setup(
struct i2400m *i2400m, void (*fn)(struct work_struct *),
gfp_t gfp_flags, const void *pl, size_t pl_size)
{
struct i2400m_work *iw;
iw = kzalloc(sizeof(*iw) + pl_size, gfp_flags);
if (iw == NULL)
return NULL;
iw->i2400m = i2400m_get(i2400m);
iw->pl_size = pl_size;
memcpy(iw->pl, pl, pl_size);
INIT_WORK(&iw->ws, fn);
return iw;
}
/*
* Schedule i2400m's specific work on the system's queue.
*
* Used for a few cases where we really need it; otherwise, identical
* to i2400m_queue_work().
*
* Returns < 0 errno code on error, 1 if ok.
*
* If it returns zero, something really bad happened, as it means the
* works struct was already queued, but we have just allocated it, so
* it should not happen.
*/
int i2400m_schedule_work(struct i2400m *i2400m,
void (*fn)(struct work_struct *), gfp_t gfp_flags,
const void *pl, size_t pl_size)
{
int result;
struct i2400m_work *iw;
result = -ENOMEM;
iw = __i2400m_work_setup(i2400m, fn, gfp_flags, pl, pl_size);
if (iw != NULL) {
result = schedule_work(&iw->ws);
if (WARN_ON(result == 0))
result = -ENXIO;
}
return result;
}
/*
* WiMAX stack operation: relay a message from user space
*
* @wimax_dev: device descriptor
* @pipe_name: named pipe the message is for
* @msg_buf: pointer to the message bytes
* @msg_len: length of the buffer
* @genl_info: passed by the generic netlink layer
*
* The WiMAX stack will call this function when a message was received
* from user space.
*
* For the i2400m, this is an L3L4 message, as specified in
* include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
* i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
* coded in Little Endian.
*
* This function just verifies that the header declaration and the
* payload are consistent and then deals with it, either forwarding it
* to the device or procesing it locally.
*
* In the i2400m, messages are basically commands that will carry an
* ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
* user space. The rx.c code might intercept the response and use it
* to update the driver's state, but then it will pass it on so it can
* be relayed back to user space.
*
* Note that asynchronous events from the device are processed and
* sent to user space in rx.c.
*/
static
int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev,
const char *pipe_name,
const void *msg_buf, size_t msg_len,
const struct genl_info *genl_info)
{
int result;
struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
struct device *dev = i2400m_dev(i2400m);
struct sk_buff *ack_skb;
d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p "
"msg_len %zu genl_info %p)\n", wimax_dev, i2400m,
msg_buf, msg_len, genl_info);
ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len);
result = PTR_ERR(ack_skb);
if (IS_ERR(ack_skb))
goto error_msg_to_dev;
result = wimax_msg_send(&i2400m->wimax_dev, ack_skb);
error_msg_to_dev:
d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
"genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len,
genl_info, result);
return result;
}
/*
* Context to wait for a reset to finalize
*/
struct i2400m_reset_ctx {
struct completion completion;
int result;
};
/*
* WiMAX stack operation: reset a device
*
* @wimax_dev: device descriptor
*
* See the documentation for wimax_reset() and wimax_dev->op_reset for
* the requirements of this function. The WiMAX stack guarantees
* serialization on calls to this function.
*
* Do a warm reset on the device; if it fails, resort to a cold reset
* and return -ENODEV. On successful warm reset, we need to block
* until it is complete.
*
* The bus-driver implementation of reset takes care of falling back
* to cold reset if warm fails.
*/
static
int i2400m_op_reset(struct wimax_dev *wimax_dev)
{
int result;
struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
struct device *dev = i2400m_dev(i2400m);
struct i2400m_reset_ctx ctx = {
.completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion),
.result = 0,
};
d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev);
mutex_lock(&i2400m->init_mutex);
i2400m->reset_ctx = &ctx;
mutex_unlock(&i2400m->init_mutex);
result = i2400m_reset(i2400m, I2400M_RT_WARM);
if (result < 0)
goto out;
result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
if (result == 0)
result = -ETIMEDOUT;
else if (result > 0)
result = ctx.result;
/* if result < 0, pass it on */
mutex_lock(&i2400m->init_mutex);
i2400m->reset_ctx = NULL;
mutex_unlock(&i2400m->init_mutex);
out:
d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
return result;
}
/*
* Check the MAC address we got from boot mode is ok
*
* @i2400m: device descriptor
*
* Returns: 0 if ok, < 0 errno code on error.
*/
static
int i2400m_check_mac_addr(struct i2400m *i2400m)
{
int result;
struct device *dev = i2400m_dev(i2400m);
struct sk_buff *skb;
const struct i2400m_tlv_detailed_device_info *ddi;
struct net_device *net_dev = i2400m->wimax_dev.net_dev;
const unsigned char zeromac[ETH_ALEN] = { 0 };
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
skb = i2400m_get_device_info(i2400m);
if (IS_ERR(skb)) {
result = PTR_ERR(skb);
dev_err(dev, "Cannot verify MAC address, error reading: %d\n",
result);
goto error;
}
/* Extract MAC addresss */
ddi = (void *) skb->data;
BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address));
d_printf(2, dev, "GET DEVICE INFO: mac addr %pM\n",
ddi->mac_address);
if (!memcmp(net_dev->perm_addr, ddi->mac_address,
sizeof(ddi->mac_address)))
goto ok;
dev_warn(dev, "warning: device reports a different MAC address "
"to that of boot mode's\n");
dev_warn(dev, "device reports %pM\n", ddi->mac_address);
dev_warn(dev, "boot mode reported %pM\n", net_dev->perm_addr);
if (!memcmp(zeromac, ddi->mac_address, sizeof(zeromac)))
dev_err(dev, "device reports an invalid MAC address, "
"not updating\n");
else {
dev_warn(dev, "updating MAC address\n");
net_dev->addr_len = ETH_ALEN;
memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN);
memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN);
}
ok:
result = 0;
kfree_skb(skb);
error:
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
return result;
}
/**
* __i2400m_dev_start - Bring up driver communication with the device
*
* @i2400m: device descriptor
* @flags: boot mode flags
*
* Returns: 0 if ok, < 0 errno code on error.
*
* Uploads firmware and brings up all the resources needed to be able
* to communicate with the device.
*
* The workqueue has to be setup early, at least before RX handling
* (it's only real user for now) so it can process reports as they
* arrive. We also want to destroy it if we retry, to make sure it is
* flushed...easier like this.
*
* TX needs to be setup before the bus-specific code (otherwise on
* shutdown, the bus-tx code could try to access it).
*/
static
int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
{
int result;
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
struct net_device *net_dev = wimax_dev->net_dev;
struct device *dev = i2400m_dev(i2400m);
int times = i2400m->bus_bm_retries;
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
retry:
result = i2400m_dev_bootstrap(i2400m, flags);
if (result < 0) {
dev_err(dev, "cannot bootstrap device: %d\n", result);
goto error_bootstrap;
}
result = i2400m_tx_setup(i2400m);
if (result < 0)
goto error_tx_setup;
result = i2400m_rx_setup(i2400m);
if (result < 0)
goto error_rx_setup;
i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name);
if (i2400m->work_queue == NULL) {
result = -ENOMEM;
dev_err(dev, "cannot create workqueue\n");
goto error_create_workqueue;
}
if (i2400m->bus_dev_start) {
result = i2400m->bus_dev_start(i2400m);
if (result < 0)
goto error_bus_dev_start;
}
i2400m->ready = 1;
wmb(); /* see i2400m->ready's documentation */
/* process pending reports from the device */
queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
result = i2400m_firmware_check(i2400m); /* fw versions ok? */
if (result < 0)
goto error_fw_check;
/* At this point is ok to send commands to the device */
result = i2400m_check_mac_addr(i2400m);
if (result < 0)
goto error_check_mac_addr;
result = i2400m_dev_initialize(i2400m);
if (result < 0)
goto error_dev_initialize;
/* We don't want any additional unwanted error recovery triggered
* from any other context so if anything went wrong before we come
* here, let's keep i2400m->error_recovery untouched and leave it to
* dev_reset_handle(). See dev_reset_handle(). */
atomic_dec(&i2400m->error_recovery);
/* Every thing works so far, ok, now we are ready to
* take error recovery if it's required. */
/* At this point, reports will come for the device and set it
* to the right state if it is different than UNINITIALIZED */
d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
net_dev, i2400m, result);
return result;
error_dev_initialize:
error_check_mac_addr:
error_fw_check:
i2400m->ready = 0;
wmb(); /* see i2400m->ready's documentation */
flush_workqueue(i2400m->work_queue);
if (i2400m->bus_dev_stop)
i2400m->bus_dev_stop(i2400m);
error_bus_dev_start:
destroy_workqueue(i2400m->work_queue);
error_create_workqueue:
i2400m_rx_release(i2400m);
error_rx_setup:
i2400m_tx_release(i2400m);
error_tx_setup:
error_bootstrap:
if (result == -EL3RST && times-- > 0) {
flags = I2400M_BRI_SOFT|I2400M_BRI_MAC_REINIT;
goto retry;
}
d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
net_dev, i2400m, result);
return result;
}
static
int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
{
int result = 0;
mutex_lock(&i2400m->init_mutex); /* Well, start the device */
if (i2400m->updown == 0) {
result = __i2400m_dev_start(i2400m, bm_flags);
if (result >= 0) {
i2400m->updown = 1;
i2400m->alive = 1;
wmb();/* see i2400m->updown and i2400m->alive's doc */
}
}
mutex_unlock(&i2400m->init_mutex);
return result;
}
/**
* i2400m_dev_stop - Tear down driver communication with the device
*
* @i2400m: device descriptor
*
* Returns: 0 if ok, < 0 errno code on error.
*
* Releases all the resources allocated to communicate with the
* device. Note we cannot destroy the workqueue earlier as until RX is
* fully destroyed, it could still try to schedule jobs.
*/
static
void __i2400m_dev_stop(struct i2400m *i2400m)
{
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
struct device *dev = i2400m_dev(i2400m);
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING);
i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
complete(&i2400m->msg_completion);
i2400m_net_wake_stop(i2400m);
i2400m_dev_shutdown(i2400m);
/*
* Make sure no report hooks are running *before* we stop the
* communication infrastructure with the device.
*/
i2400m->ready = 0; /* nobody can queue work anymore */
wmb(); /* see i2400m->ready's documentation */
flush_workqueue(i2400m->work_queue);
if (i2400m->bus_dev_stop)
i2400m->bus_dev_stop(i2400m);
destroy_workqueue(i2400m->work_queue);
i2400m_rx_release(i2400m);
i2400m_tx_release(i2400m);
wimax_state_change(wimax_dev, WIMAX_ST_DOWN);
d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
}
/*
* Watch out -- we only need to stop if there is a need for it. The
* device could have reset itself and failed to come up again (see
* _i2400m_dev_reset_handle()).
*/
static
void i2400m_dev_stop(struct i2400m *i2400m)
{
mutex_lock(&i2400m->init_mutex);
if (i2400m->updown) {
__i2400m_dev_stop(i2400m);
i2400m->updown = 0;
i2400m->alive = 0;
wmb(); /* see i2400m->updown and i2400m->alive's doc */
}
mutex_unlock(&i2400m->init_mutex);
}
/*
* Listen to PM events to cache the firmware before suspend/hibernation
*
* When the device comes out of suspend, it might go into reset and
* firmware has to be uploaded again. At resume, most of the times, we
* can't load firmware images from disk, so we need to cache it.
*
* i2400m_fw_cache() will allocate a kobject and attach the firmware
* to it; that way we don't have to worry too much about the fw loader
* hitting a race condition.
*
* Note: modus operandi stolen from the Orinoco driver; thx.
*/
static
int i2400m_pm_notifier(struct notifier_block *notifier,
unsigned long pm_event,
void *unused)
{
struct i2400m *i2400m =
container_of(notifier, struct i2400m, pm_notifier);
struct device *dev = i2400m_dev(i2400m);
d_fnstart(3, dev, "(i2400m %p pm_event %lx)\n", i2400m, pm_event);
switch (pm_event) {
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
i2400m_fw_cache(i2400m);
break;
case PM_POST_RESTORE:
/* Restore from hibernation failed. We need to clean
* up in exactly the same way, so fall through. */
case PM_POST_HIBERNATION:
case PM_POST_SUSPEND:
i2400m_fw_uncache(i2400m);
break;
case PM_RESTORE_PREPARE:
default:
break;
}
d_fnend(3, dev, "(i2400m %p pm_event %lx) = void\n", i2400m, pm_event);
return NOTIFY_DONE;
}
/*
* pre-reset is called before a device is going on reset
*
* This has to be followed by a call to i2400m_post_reset(), otherwise
* bad things might happen.
*/
int i2400m_pre_reset(struct i2400m *i2400m)
{
int result;
struct device *dev = i2400m_dev(i2400m);
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
d_printf(1, dev, "pre-reset shut down\n");
result = 0;
mutex_lock(&i2400m->init_mutex);
if (i2400m->updown) {
netif_tx_disable(i2400m->wimax_dev.net_dev);
__i2400m_dev_stop(i2400m);
result = 0;
/* down't set updown to zero -- this way
* post_reset can restore properly */
}
mutex_unlock(&i2400m->init_mutex);
if (i2400m->bus_release)
i2400m->bus_release(i2400m);
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
return result;
}
EXPORT_SYMBOL_GPL(i2400m_pre_reset);
/*
* Restore device state after a reset
*
* Do the work needed after a device reset to bring it up to the same
* state as it was before the reset.
*
* NOTE: this requires i2400m->init_mutex taken
*/
int i2400m_post_reset(struct i2400m *i2400m)
{
int result = 0;
struct device *dev = i2400m_dev(i2400m);
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
d_printf(1, dev, "post-reset start\n");
if (i2400m->bus_setup) {
result = i2400m->bus_setup(i2400m);
if (result < 0) {
dev_err(dev, "bus-specific setup failed: %d\n",
result);
goto error_bus_setup;
}
}
mutex_lock(&i2400m->init_mutex);
if (i2400m->updown) {
result = __i2400m_dev_start(
i2400m, I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
if (result < 0)
goto error_dev_start;
}
mutex_unlock(&i2400m->init_mutex);
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
return result;
error_dev_start:
if (i2400m->bus_release)
i2400m->bus_release(i2400m);
/* even if the device was up, it could not be recovered, so we
* mark it as down. */
i2400m->updown = 0;
wmb(); /* see i2400m->updown's documentation */
mutex_unlock(&i2400m->init_mutex);
error_bus_setup:
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
return result;
}
EXPORT_SYMBOL_GPL(i2400m_post_reset);
/*
* The device has rebooted; fix up the device and the driver
*
* Tear down the driver communication with the device, reload the
* firmware and reinitialize the communication with the device.
*
* If someone calls a reset when the device's firmware is down, in
* theory we won't see it because we are not listening. However, just
* in case, leave the code to handle it.
*
* If there is a reset context, use it; this means someone is waiting
* for us to tell him when the reset operation is complete and the
* device is ready to rock again.
*
* NOTE: if we are in the process of bringing up or down the
* communication with the device [running i2400m_dev_start() or
* _stop()], don't do anything, let it fail and handle it.
*
* This function is ran always in a thread context
*
* This function gets passed, as payload to i2400m_work() a 'const
* char *' ptr with a "reason" why the reset happened (for messages).
*/
static
void __i2400m_dev_reset_handle(struct work_struct *ws)
{
int result;
struct i2400m_work *iw = container_of(ws, struct i2400m_work, ws);
const char *reason;
struct i2400m *i2400m = iw->i2400m;
struct device *dev = i2400m_dev(i2400m);
struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
if (WARN_ON(iw->pl_size != sizeof(reason)))
reason = "SW BUG: reason n/a";
else
memcpy(&reason, iw->pl, sizeof(reason));
d_fnstart(3, dev, "(ws %p i2400m %p reason %s)\n", ws, i2400m, reason);
i2400m->boot_mode = 1;
wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
result = 0;
if (mutex_trylock(&i2400m->init_mutex) == 0) {
/* We are still in i2400m_dev_start() [let it fail] or
* i2400m_dev_stop() [we are shutting down anyway, so
* ignore it] or we are resetting somewhere else. */
dev_err(dev, "device rebooted somewhere else?\n");
i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
complete(&i2400m->msg_completion);
goto out;
}
dev_err(dev, "%s: reinitializing driver\n", reason);
rmb();
if (i2400m->updown) {
__i2400m_dev_stop(i2400m);
i2400m->updown = 0;
wmb(); /* see i2400m->updown's documentation */
}
if (i2400m->alive) {
result = __i2400m_dev_start(i2400m,
I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
if (result < 0) {
dev_err(dev, "%s: cannot start the device: %d\n",
reason, result);
result = -EUCLEAN;
if (atomic_read(&i2400m->bus_reset_retries)
>= I2400M_BUS_RESET_RETRIES) {
result = -ENODEV;
dev_err(dev, "tried too many times to "
"reset the device, giving up\n");
}
}
}
if (i2400m->reset_ctx) {
ctx->result = result;
complete(&ctx->completion);
}
mutex_unlock(&i2400m->init_mutex);
if (result == -EUCLEAN) {
/*
* We come here because the reset during operational mode
* wasn't successully done and need to proceed to a bus
* reset. For the dev_reset_handle() to be able to handle
* the reset event later properly, we restore boot_mode back
* to the state before previous reset. ie: just like we are
* issuing the bus reset for the first time
*/
i2400m->boot_mode = 0;
wmb();
atomic_inc(&i2400m->bus_reset_retries);
/* ops, need to clean up [w/ init_mutex not held] */
result = i2400m_reset(i2400m, I2400M_RT_BUS);
if (result >= 0)
result = -ENODEV;
} else {
rmb();
if (i2400m->alive) {
/* great, we expect the device state up and
* dev_start() actually brings the device state up */
i2400m->updown = 1;
wmb();
atomic_set(&i2400m->bus_reset_retries, 0);
}
}
out:
i2400m_put(i2400m);
kfree(iw);
d_fnend(3, dev, "(ws %p i2400m %p reason %s) = void\n",
ws, i2400m, reason);
return;
}
/**
* i2400m_dev_reset_handle - Handle a device's reset in a thread context
*
* Schedule a device reset handling out on a thread context, so it
* is safe to call from atomic context. We can't use the i2400m's
* queue as we are going to destroy it and reinitialize it as part of
* the driver bringup/bringup process.
*
* See __i2400m_dev_reset_handle() for details; that takes care of
* reinitializing the driver to handle the reset, calling into the
* bus-specific functions ops as needed.
*/
int i2400m_dev_reset_handle(struct i2400m *i2400m, const char *reason)
{
return i2400m_schedule_work(i2400m, __i2400m_dev_reset_handle,
GFP_ATOMIC, &reason, sizeof(reason));
}
EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
/*
* The actual work of error recovery.
*
* The current implementation of error recovery is to trigger a bus reset.
*/
static
void __i2400m_error_recovery(struct work_struct *ws)
{
struct i2400m_work *iw = container_of(ws, struct i2400m_work, ws);
struct i2400m *i2400m = iw->i2400m;
i2400m_reset(i2400m, I2400M_RT_BUS);
i2400m_put(i2400m);
kfree(iw);
return;
}
/*
* Schedule a work struct for error recovery.
*
* The intention of error recovery is to bring back the device to some
* known state whenever TX sees -110 (-ETIMEOUT) on copying the data to
* the device. The TX failure could mean a device bus stuck, so the current
* error recovery implementation is to trigger a bus reset to the device
* and hopefully it can bring back the device.
*
* The actual work of error recovery has to be in a thread context because
* it is kicked off in the TX thread (i2400ms->tx_workqueue) which is to be
* destroyed by the error recovery mechanism (currently a bus reset).
*
* Also, there may be already a queue of TX works that all hit
* the -ETIMEOUT error condition because the device is stuck already.
* Since bus reset is used as the error recovery mechanism and we don't
* want consecutive bus resets simply because the multiple TX works
* in the queue all hit the same device erratum, the flag "error_recovery"
* is introduced for preventing unwanted consecutive bus resets.
*
* Error recovery shall only be invoked again if previous one was completed.
* The flag error_recovery is set when error recovery mechanism is scheduled,
* and is checked when we need to schedule another error recovery. If it is
* in place already, then we shouldn't schedule another one.
*/
void i2400m_error_recovery(struct i2400m *i2400m)
{
struct device *dev = i2400m_dev(i2400m);
if (atomic_add_return(1, &i2400m->error_recovery) == 1) {
if (i2400m_schedule_work(i2400m, __i2400m_error_recovery,
GFP_ATOMIC, NULL, 0) < 0) {
dev_err(dev, "run out of memory for "
"scheduling an error recovery ?\n");
atomic_dec(&i2400m->error_recovery);
}
} else
atomic_dec(&i2400m->error_recovery);
return;
}
EXPORT_SYMBOL_GPL(i2400m_error_recovery);
/*
* Alloc the command and ack buffers for boot mode
*
* Get the buffers needed to deal with boot mode messages. These
* buffers need to be allocated before the sdio recieve irq is setup.
*/
static
int i2400m_bm_buf_alloc(struct i2400m *i2400m)
{
int result;
result = -ENOMEM;
i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
if (i2400m->bm_cmd_buf == NULL)
goto error_bm_cmd_kzalloc;
i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
if (i2400m->bm_ack_buf == NULL)
goto error_bm_ack_buf_kzalloc;
return 0;
error_bm_ack_buf_kzalloc:
kfree(i2400m->bm_cmd_buf);
error_bm_cmd_kzalloc:
return result;
}
/*
* Free boot mode command and ack buffers.
*/
static
void i2400m_bm_buf_free(struct i2400m *i2400m)
{
kfree(i2400m->bm_ack_buf);
kfree(i2400m->bm_cmd_buf);
}
/**
* i2400m_init - Initialize a 'struct i2400m' from all zeroes
*
* This is a bus-generic API call.
*/
void i2400m_init(struct i2400m *i2400m)
{
wimax_dev_init(&i2400m->wimax_dev);
i2400m->boot_mode = 1;
i2400m->rx_reorder = 1;
init_waitqueue_head(&i2400m->state_wq);
spin_lock_init(&i2400m->tx_lock);
i2400m->tx_pl_min = UINT_MAX;
i2400m->tx_size_min = UINT_MAX;
spin_lock_init(&i2400m->rx_lock);
i2400m->rx_pl_min = UINT_MAX;
i2400m->rx_size_min = UINT_MAX;
INIT_LIST_HEAD(&i2400m->rx_reports);
INIT_WORK(&i2400m->rx_report_ws, i2400m_report_hook_work);
mutex_init(&i2400m->msg_mutex);
init_completion(&i2400m->msg_completion);
mutex_init(&i2400m->init_mutex);
/* wake_tx_ws is initialized in i2400m_tx_setup() */
atomic_set(&i2400m->bus_reset_retries, 0);
i2400m->alive = 0;
/* initialize error_recovery to 1 for denoting we
* are not yet ready to take any error recovery */
atomic_set(&i2400m->error_recovery, 1);
}
EXPORT_SYMBOL_GPL(i2400m_init);
int i2400m_reset(struct i2400m *i2400m, enum i2400m_reset_type rt)
{
struct net_device *net_dev = i2400m->wimax_dev.net_dev;
/*
* Make sure we stop TXs and down the carrier before
* resetting; this is needed to avoid things like
* i2400m_wake_tx() scheduling stuff in parallel.
*/
if (net_dev->reg_state == NETREG_REGISTERED) {
netif_tx_disable(net_dev);
netif_carrier_off(net_dev);
}
return i2400m->bus_reset(i2400m, rt);
}
EXPORT_SYMBOL_GPL(i2400m_reset);
/**
* i2400m_setup - bus-generic setup function for the i2400m device
*
* @i2400m: device descriptor (bus-specific parts have been initialized)
*
* Returns: 0 if ok, < 0 errno code on error.
*
* Sets up basic device comunication infrastructure, boots the ROM to
* read the MAC address, registers with the WiMAX and network stacks
* and then brings up the device.
*/
int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
{
int result = -ENODEV;
struct device *dev = i2400m_dev(i2400m);
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
struct net_device *net_dev = i2400m->wimax_dev.net_dev;
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
snprintf(wimax_dev->name, sizeof(wimax_dev->name),
"i2400m-%s:%s", dev->bus->name, dev_name(dev));
result = i2400m_bm_buf_alloc(i2400m);
if (result < 0) {
dev_err(dev, "cannot allocate bootmode scratch buffers\n");
goto error_bm_buf_alloc;
}
if (i2400m->bus_setup) {
result = i2400m->bus_setup(i2400m);
if (result < 0) {
dev_err(dev, "bus-specific setup failed: %d\n",
result);
goto error_bus_setup;
}
}
result = i2400m_bootrom_init(i2400m, bm_flags);
if (result < 0) {
dev_err(dev, "read mac addr: bootrom init "
"failed: %d\n", result);
goto error_bootrom_init;
}
result = i2400m_read_mac_addr(i2400m);
if (result < 0)
goto error_read_mac_addr;
random_ether_addr(i2400m->src_mac_addr);
i2400m->pm_notifier.notifier_call = i2400m_pm_notifier;
register_pm_notifier(&i2400m->pm_notifier);
result = register_netdev(net_dev); /* Okey dokey, bring it up */
if (result < 0) {
dev_err(dev, "cannot register i2400m network device: %d\n",
result);
goto error_register_netdev;
}
netif_carrier_off(net_dev);
i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
i2400m->wimax_dev.op_reset = i2400m_op_reset;
result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
if (result < 0)
goto error_wimax_dev_add;
/* Now setup all that requires a registered net and wimax device. */
result = sysfs_create_group(&net_dev->dev.kobj, &i2400m_dev_attr_group);
if (result < 0) {
dev_err(dev, "cannot setup i2400m's sysfs: %d\n", result);
goto error_sysfs_setup;
}
result = i2400m_debugfs_add(i2400m);
if (result < 0) {
dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result);
goto error_debugfs_setup;
}
result = i2400m_dev_start(i2400m, bm_flags);
if (result < 0)
goto error_dev_start;
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
return result;
error_dev_start:
i2400m_debugfs_rm(i2400m);
error_debugfs_setup:
sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
&i2400m_dev_attr_group);
error_sysfs_setup:
wimax_dev_rm(&i2400m->wimax_dev);
error_wimax_dev_add:
unregister_netdev(net_dev);
error_register_netdev:
unregister_pm_notifier(&i2400m->pm_notifier);
error_read_mac_addr:
error_bootrom_init:
if (i2400m->bus_release)
i2400m->bus_release(i2400m);
error_bus_setup:
i2400m_bm_buf_free(i2400m);
error_bm_buf_alloc:
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
return result;
}
EXPORT_SYMBOL_GPL(i2400m_setup);
/**
* i2400m_release - release the bus-generic driver resources
*
* Sends a disconnect message and undoes any setup done by i2400m_setup()
*/
void i2400m_release(struct i2400m *i2400m)
{
struct device *dev = i2400m_dev(i2400m);
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
netif_stop_queue(i2400m->wimax_dev.net_dev);
i2400m_dev_stop(i2400m);
i2400m_debugfs_rm(i2400m);
sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
&i2400m_dev_attr_group);
wimax_dev_rm(&i2400m->wimax_dev);
unregister_netdev(i2400m->wimax_dev.net_dev);
unregister_pm_notifier(&i2400m->pm_notifier);
if (i2400m->bus_release)
i2400m->bus_release(i2400m);
i2400m_bm_buf_free(i2400m);
d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
}
EXPORT_SYMBOL_GPL(i2400m_release);
/*
* Debug levels control; see debug.h
*/
struct d_level D_LEVEL[] = {
D_SUBMODULE_DEFINE(control),
D_SUBMODULE_DEFINE(driver),
D_SUBMODULE_DEFINE(debugfs),
D_SUBMODULE_DEFINE(fw),
D_SUBMODULE_DEFINE(netdev),
D_SUBMODULE_DEFINE(rfkill),
D_SUBMODULE_DEFINE(rx),
D_SUBMODULE_DEFINE(sysfs),
D_SUBMODULE_DEFINE(tx),
};
size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL);
static
int __init i2400m_driver_init(void)
{
d_parse_params(D_LEVEL, D_LEVEL_SIZE, i2400m_debug_params,
"i2400m.debug");
return i2400m_barker_db_init(i2400m_barkers_params);
}
module_init(i2400m_driver_init);
static
void __exit i2400m_driver_exit(void)
{
/* for scheds i2400m_dev_reset_handle() */
flush_scheduled_work();
i2400m_barker_db_exit();
return;
}
module_exit(i2400m_driver_exit);
MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
MODULE_LICENSE("GPL");