linux/net/sctp/stream_sched.c
Xin Long 42d452e770 sctp: add weighted fair queueing stream scheduler
As it says in rfc8260#section-3.6 about the weighted fair queueing
scheduler:

   A Weighted Fair Queueing scheduler between the streams is used.  The
   weight is configurable per outgoing SCTP stream.  This scheduler
   considers the lengths of the messages of each stream and schedules
   them in a specific way to use the capacity according to the given
   weights.  If the weight of stream S1 is n times the weight of stream
   S2, the scheduler should assign to stream S1 n times the capacity it
   assigns to stream S2.  The details are implementation dependent.
   Interleaving user messages allows for a better realization of the
   capacity usage according to the given weights.

This patch adds Weighted Fair Queueing Scheduler actually based on
the code of Fair Capacity Scheduler by adding fc_weight into struct
sctp_stream_out_ext and taking it into account when sorting stream->
fc_list in sctp_sched_fc_sched() and sctp_sched_fc_dequeue_done().

Signed-off-by: Xin Long <lucien.xin@gmail.com>
Acked-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-03-09 11:31:44 +01:00

280 lines
6.2 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* SCTP kernel implementation
* (C) Copyright Red Hat Inc. 2017
*
* This file is part of the SCTP kernel implementation
*
* These functions manipulate sctp stream queue/scheduling.
*
* Please send any bug reports or fixes you make to the
* email addresched(es):
* lksctp developers <linux-sctp@vger.kernel.org>
*
* Written or modified by:
* Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
*/
#include <linux/list.h>
#include <net/sctp/sctp.h>
#include <net/sctp/sm.h>
#include <net/sctp/stream_sched.h>
/* First Come First Serve (a.k.a. FIFO)
* RFC DRAFT ndata Section 3.1
*/
static int sctp_sched_fcfs_set(struct sctp_stream *stream, __u16 sid,
__u16 value, gfp_t gfp)
{
return 0;
}
static int sctp_sched_fcfs_get(struct sctp_stream *stream, __u16 sid,
__u16 *value)
{
*value = 0;
return 0;
}
static int sctp_sched_fcfs_init(struct sctp_stream *stream)
{
return 0;
}
static int sctp_sched_fcfs_init_sid(struct sctp_stream *stream, __u16 sid,
gfp_t gfp)
{
return 0;
}
static void sctp_sched_fcfs_free_sid(struct sctp_stream *stream, __u16 sid)
{
}
static void sctp_sched_fcfs_enqueue(struct sctp_outq *q,
struct sctp_datamsg *msg)
{
}
static struct sctp_chunk *sctp_sched_fcfs_dequeue(struct sctp_outq *q)
{
struct sctp_stream *stream = &q->asoc->stream;
struct sctp_chunk *ch = NULL;
struct list_head *entry;
if (list_empty(&q->out_chunk_list))
goto out;
if (stream->out_curr) {
ch = list_entry(stream->out_curr->ext->outq.next,
struct sctp_chunk, stream_list);
} else {
entry = q->out_chunk_list.next;
ch = list_entry(entry, struct sctp_chunk, list);
}
sctp_sched_dequeue_common(q, ch);
out:
return ch;
}
static void sctp_sched_fcfs_dequeue_done(struct sctp_outq *q,
struct sctp_chunk *chunk)
{
}
static void sctp_sched_fcfs_sched_all(struct sctp_stream *stream)
{
}
static void sctp_sched_fcfs_unsched_all(struct sctp_stream *stream)
{
}
static struct sctp_sched_ops sctp_sched_fcfs = {
.set = sctp_sched_fcfs_set,
.get = sctp_sched_fcfs_get,
.init = sctp_sched_fcfs_init,
.init_sid = sctp_sched_fcfs_init_sid,
.free_sid = sctp_sched_fcfs_free_sid,
.enqueue = sctp_sched_fcfs_enqueue,
.dequeue = sctp_sched_fcfs_dequeue,
.dequeue_done = sctp_sched_fcfs_dequeue_done,
.sched_all = sctp_sched_fcfs_sched_all,
.unsched_all = sctp_sched_fcfs_unsched_all,
};
static void sctp_sched_ops_fcfs_init(void)
{
sctp_sched_ops_register(SCTP_SS_FCFS, &sctp_sched_fcfs);
}
/* API to other parts of the stack */
static struct sctp_sched_ops *sctp_sched_ops[SCTP_SS_MAX + 1];
void sctp_sched_ops_register(enum sctp_sched_type sched,
struct sctp_sched_ops *sched_ops)
{
sctp_sched_ops[sched] = sched_ops;
}
void sctp_sched_ops_init(void)
{
sctp_sched_ops_fcfs_init();
sctp_sched_ops_prio_init();
sctp_sched_ops_rr_init();
sctp_sched_ops_fc_init();
sctp_sched_ops_wfq_init();
}
static void sctp_sched_free_sched(struct sctp_stream *stream)
{
struct sctp_sched_ops *sched = sctp_sched_ops_from_stream(stream);
struct sctp_stream_out_ext *soute;
int i;
sched->unsched_all(stream);
for (i = 0; i < stream->outcnt; i++) {
soute = SCTP_SO(stream, i)->ext;
if (!soute)
continue;
sched->free_sid(stream, i);
/* Give the next scheduler a clean slate. */
memset_after(soute, 0, outq);
}
}
int sctp_sched_set_sched(struct sctp_association *asoc,
enum sctp_sched_type sched)
{
struct sctp_sched_ops *n = sctp_sched_ops[sched];
struct sctp_sched_ops *old = asoc->outqueue.sched;
struct sctp_datamsg *msg = NULL;
struct sctp_chunk *ch;
int i, ret = 0;
if (old == n)
return ret;
if (sched > SCTP_SS_MAX)
return -EINVAL;
if (old)
sctp_sched_free_sched(&asoc->stream);
asoc->outqueue.sched = n;
n->init(&asoc->stream);
for (i = 0; i < asoc->stream.outcnt; i++) {
if (!SCTP_SO(&asoc->stream, i)->ext)
continue;
ret = n->init_sid(&asoc->stream, i, GFP_ATOMIC);
if (ret)
goto err;
}
/* We have to requeue all chunks already queued. */
list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list) {
if (ch->msg == msg)
continue;
msg = ch->msg;
n->enqueue(&asoc->outqueue, msg);
}
return ret;
err:
sctp_sched_free_sched(&asoc->stream);
asoc->outqueue.sched = &sctp_sched_fcfs; /* Always safe */
return ret;
}
int sctp_sched_get_sched(struct sctp_association *asoc)
{
int i;
for (i = 0; i <= SCTP_SS_MAX; i++)
if (asoc->outqueue.sched == sctp_sched_ops[i])
return i;
return 0;
}
int sctp_sched_set_value(struct sctp_association *asoc, __u16 sid,
__u16 value, gfp_t gfp)
{
if (sid >= asoc->stream.outcnt)
return -EINVAL;
if (!SCTP_SO(&asoc->stream, sid)->ext) {
int ret;
ret = sctp_stream_init_ext(&asoc->stream, sid);
if (ret)
return ret;
}
return asoc->outqueue.sched->set(&asoc->stream, sid, value, gfp);
}
int sctp_sched_get_value(struct sctp_association *asoc, __u16 sid,
__u16 *value)
{
if (sid >= asoc->stream.outcnt)
return -EINVAL;
if (!SCTP_SO(&asoc->stream, sid)->ext)
return 0;
return asoc->outqueue.sched->get(&asoc->stream, sid, value);
}
void sctp_sched_dequeue_done(struct sctp_outq *q, struct sctp_chunk *ch)
{
if (!list_is_last(&ch->frag_list, &ch->msg->chunks) &&
!q->asoc->peer.intl_capable) {
struct sctp_stream_out *sout;
__u16 sid;
/* datamsg is not finish, so save it as current one,
* in case application switch scheduler or a higher
* priority stream comes in.
*/
sid = sctp_chunk_stream_no(ch);
sout = SCTP_SO(&q->asoc->stream, sid);
q->asoc->stream.out_curr = sout;
return;
}
q->asoc->stream.out_curr = NULL;
q->sched->dequeue_done(q, ch);
}
/* Auxiliary functions for the schedulers */
void sctp_sched_dequeue_common(struct sctp_outq *q, struct sctp_chunk *ch)
{
list_del_init(&ch->list);
list_del_init(&ch->stream_list);
q->out_qlen -= ch->skb->len;
}
int sctp_sched_init_sid(struct sctp_stream *stream, __u16 sid, gfp_t gfp)
{
struct sctp_sched_ops *sched = sctp_sched_ops_from_stream(stream);
struct sctp_stream_out_ext *ext = SCTP_SO(stream, sid)->ext;
INIT_LIST_HEAD(&ext->outq);
return sched->init_sid(stream, sid, gfp);
}
struct sctp_sched_ops *sctp_sched_ops_from_stream(struct sctp_stream *stream)
{
struct sctp_association *asoc;
asoc = container_of(stream, struct sctp_association, stream);
return asoc->outqueue.sched;
}