mirror of
https://github.com/torvalds/linux.git
synced 2024-12-22 10:56:40 +00:00
033d9959ed
Pull workqueue changes from Tejun Heo: "This is workqueue updates for v3.7-rc1. A lot of activities this round including considerable API and behavior cleanups. * delayed_work combines a timer and a work item. The handling of the timer part has always been a bit clunky leading to confusing cancelation API with weird corner-case behaviors. delayed_work is updated to use new IRQ safe timer and cancelation now works as expected. * Another deficiency of delayed_work was lack of the counterpart of mod_timer() which led to cancel+queue combinations or open-coded timer+work usages. mod_delayed_work[_on]() are added. These two delayed_work changes make delayed_work provide interface and behave like timer which is executed with process context. * A work item could be executed concurrently on multiple CPUs, which is rather unintuitive and made flush_work() behavior confusing and half-broken under certain circumstances. This problem doesn't exist for non-reentrant workqueues. While non-reentrancy check isn't free, the overhead is incurred only when a work item bounces across different CPUs and even in simulated pathological scenario the overhead isn't too high. All workqueues are made non-reentrant. This removes the distinction between flush_[delayed_]work() and flush_[delayed_]_work_sync(). The former is now as strong as the latter and the specified work item is guaranteed to have finished execution of any previous queueing on return. * In addition to the various bug fixes, Lai redid and simplified CPU hotplug handling significantly. * Joonsoo introduced system_highpri_wq and used it during CPU hotplug. There are two merge commits - one to pull in IRQ safe timer from tip/timers/core and the other to pull in CPU hotplug fixes from wq/for-3.6-fixes as Lai's hotplug restructuring depended on them." Fixed a number of trivial conflicts, but the more interesting conflicts were silent ones where the deprecated interfaces had been used by new code in the merge window, and thus didn't cause any real data conflicts. Tejun pointed out a few of them, I fixed a couple more. * 'for-3.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: (46 commits) workqueue: remove spurious WARN_ON_ONCE(in_irq()) from try_to_grab_pending() workqueue: use cwq_set_max_active() helper for workqueue_set_max_active() workqueue: introduce cwq_set_max_active() helper for thaw_workqueues() workqueue: remove @delayed from cwq_dec_nr_in_flight() workqueue: fix possible stall on try_to_grab_pending() of a delayed work item workqueue: use hotcpu_notifier() for workqueue_cpu_down_callback() workqueue: use __cpuinit instead of __devinit for cpu callbacks workqueue: rename manager_mutex to assoc_mutex workqueue: WORKER_REBIND is no longer necessary for idle rebinding workqueue: WORKER_REBIND is no longer necessary for busy rebinding workqueue: reimplement idle worker rebinding workqueue: deprecate __cancel_delayed_work() workqueue: reimplement cancel_delayed_work() using try_to_grab_pending() workqueue: use mod_delayed_work() instead of __cancel + queue workqueue: use irqsafe timer for delayed_work workqueue: clean up delayed_work initializers and add missing one workqueue: make deferrable delayed_work initializer names consistent workqueue: cosmetic whitespace updates for macro definitions workqueue: deprecate system_nrt[_freezable]_wq workqueue: deprecate flush[_delayed]_work_sync() ...
3787 lines
96 KiB
C
3787 lines
96 KiB
C
/*
|
|
* core.c -- Voltage/Current Regulator framework.
|
|
*
|
|
* Copyright 2007, 2008 Wolfson Microelectronics PLC.
|
|
* Copyright 2008 SlimLogic Ltd.
|
|
*
|
|
* Author: Liam Girdwood <lrg@slimlogic.co.uk>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/async.h>
|
|
#include <linux/err.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/gpio.h>
|
|
#include <linux/of.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/regulator/of_regulator.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/regulator/driver.h>
|
|
#include <linux/regulator/machine.h>
|
|
#include <linux/module.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/regulator.h>
|
|
|
|
#include "dummy.h"
|
|
|
|
#define rdev_crit(rdev, fmt, ...) \
|
|
pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
|
|
#define rdev_err(rdev, fmt, ...) \
|
|
pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
|
|
#define rdev_warn(rdev, fmt, ...) \
|
|
pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
|
|
#define rdev_info(rdev, fmt, ...) \
|
|
pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
|
|
#define rdev_dbg(rdev, fmt, ...) \
|
|
pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
|
|
|
|
static DEFINE_MUTEX(regulator_list_mutex);
|
|
static LIST_HEAD(regulator_list);
|
|
static LIST_HEAD(regulator_map_list);
|
|
static bool has_full_constraints;
|
|
static bool board_wants_dummy_regulator;
|
|
|
|
static struct dentry *debugfs_root;
|
|
|
|
/*
|
|
* struct regulator_map
|
|
*
|
|
* Used to provide symbolic supply names to devices.
|
|
*/
|
|
struct regulator_map {
|
|
struct list_head list;
|
|
const char *dev_name; /* The dev_name() for the consumer */
|
|
const char *supply;
|
|
struct regulator_dev *regulator;
|
|
};
|
|
|
|
/*
|
|
* struct regulator
|
|
*
|
|
* One for each consumer device.
|
|
*/
|
|
struct regulator {
|
|
struct device *dev;
|
|
struct list_head list;
|
|
unsigned int always_on:1;
|
|
unsigned int bypass:1;
|
|
int uA_load;
|
|
int min_uV;
|
|
int max_uV;
|
|
char *supply_name;
|
|
struct device_attribute dev_attr;
|
|
struct regulator_dev *rdev;
|
|
struct dentry *debugfs;
|
|
};
|
|
|
|
static int _regulator_is_enabled(struct regulator_dev *rdev);
|
|
static int _regulator_disable(struct regulator_dev *rdev);
|
|
static int _regulator_get_voltage(struct regulator_dev *rdev);
|
|
static int _regulator_get_current_limit(struct regulator_dev *rdev);
|
|
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
|
|
static void _notifier_call_chain(struct regulator_dev *rdev,
|
|
unsigned long event, void *data);
|
|
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV);
|
|
static struct regulator *create_regulator(struct regulator_dev *rdev,
|
|
struct device *dev,
|
|
const char *supply_name);
|
|
|
|
static const char *rdev_get_name(struct regulator_dev *rdev)
|
|
{
|
|
if (rdev->constraints && rdev->constraints->name)
|
|
return rdev->constraints->name;
|
|
else if (rdev->desc->name)
|
|
return rdev->desc->name;
|
|
else
|
|
return "";
|
|
}
|
|
|
|
/**
|
|
* of_get_regulator - get a regulator device node based on supply name
|
|
* @dev: Device pointer for the consumer (of regulator) device
|
|
* @supply: regulator supply name
|
|
*
|
|
* Extract the regulator device node corresponding to the supply name.
|
|
* retruns the device node corresponding to the regulator if found, else
|
|
* returns NULL.
|
|
*/
|
|
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
|
|
{
|
|
struct device_node *regnode = NULL;
|
|
char prop_name[32]; /* 32 is max size of property name */
|
|
|
|
dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
|
|
|
|
snprintf(prop_name, 32, "%s-supply", supply);
|
|
regnode = of_parse_phandle(dev->of_node, prop_name, 0);
|
|
|
|
if (!regnode) {
|
|
dev_dbg(dev, "Looking up %s property in node %s failed",
|
|
prop_name, dev->of_node->full_name);
|
|
return NULL;
|
|
}
|
|
return regnode;
|
|
}
|
|
|
|
static int _regulator_can_change_status(struct regulator_dev *rdev)
|
|
{
|
|
if (!rdev->constraints)
|
|
return 0;
|
|
|
|
if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Platform voltage constraint check */
|
|
static int regulator_check_voltage(struct regulator_dev *rdev,
|
|
int *min_uV, int *max_uV)
|
|
{
|
|
BUG_ON(*min_uV > *max_uV);
|
|
|
|
if (!rdev->constraints) {
|
|
rdev_err(rdev, "no constraints\n");
|
|
return -ENODEV;
|
|
}
|
|
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
|
|
rdev_err(rdev, "operation not allowed\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
if (*max_uV > rdev->constraints->max_uV)
|
|
*max_uV = rdev->constraints->max_uV;
|
|
if (*min_uV < rdev->constraints->min_uV)
|
|
*min_uV = rdev->constraints->min_uV;
|
|
|
|
if (*min_uV > *max_uV) {
|
|
rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
|
|
*min_uV, *max_uV);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Make sure we select a voltage that suits the needs of all
|
|
* regulator consumers
|
|
*/
|
|
static int regulator_check_consumers(struct regulator_dev *rdev,
|
|
int *min_uV, int *max_uV)
|
|
{
|
|
struct regulator *regulator;
|
|
|
|
list_for_each_entry(regulator, &rdev->consumer_list, list) {
|
|
/*
|
|
* Assume consumers that didn't say anything are OK
|
|
* with anything in the constraint range.
|
|
*/
|
|
if (!regulator->min_uV && !regulator->max_uV)
|
|
continue;
|
|
|
|
if (*max_uV > regulator->max_uV)
|
|
*max_uV = regulator->max_uV;
|
|
if (*min_uV < regulator->min_uV)
|
|
*min_uV = regulator->min_uV;
|
|
}
|
|
|
|
if (*min_uV > *max_uV)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* current constraint check */
|
|
static int regulator_check_current_limit(struct regulator_dev *rdev,
|
|
int *min_uA, int *max_uA)
|
|
{
|
|
BUG_ON(*min_uA > *max_uA);
|
|
|
|
if (!rdev->constraints) {
|
|
rdev_err(rdev, "no constraints\n");
|
|
return -ENODEV;
|
|
}
|
|
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
|
|
rdev_err(rdev, "operation not allowed\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
if (*max_uA > rdev->constraints->max_uA)
|
|
*max_uA = rdev->constraints->max_uA;
|
|
if (*min_uA < rdev->constraints->min_uA)
|
|
*min_uA = rdev->constraints->min_uA;
|
|
|
|
if (*min_uA > *max_uA) {
|
|
rdev_err(rdev, "unsupportable current range: %d-%duA\n",
|
|
*min_uA, *max_uA);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* operating mode constraint check */
|
|
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
|
|
{
|
|
switch (*mode) {
|
|
case REGULATOR_MODE_FAST:
|
|
case REGULATOR_MODE_NORMAL:
|
|
case REGULATOR_MODE_IDLE:
|
|
case REGULATOR_MODE_STANDBY:
|
|
break;
|
|
default:
|
|
rdev_err(rdev, "invalid mode %x specified\n", *mode);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!rdev->constraints) {
|
|
rdev_err(rdev, "no constraints\n");
|
|
return -ENODEV;
|
|
}
|
|
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
|
|
rdev_err(rdev, "operation not allowed\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
/* The modes are bitmasks, the most power hungry modes having
|
|
* the lowest values. If the requested mode isn't supported
|
|
* try higher modes. */
|
|
while (*mode) {
|
|
if (rdev->constraints->valid_modes_mask & *mode)
|
|
return 0;
|
|
*mode /= 2;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* dynamic regulator mode switching constraint check */
|
|
static int regulator_check_drms(struct regulator_dev *rdev)
|
|
{
|
|
if (!rdev->constraints) {
|
|
rdev_err(rdev, "no constraints\n");
|
|
return -ENODEV;
|
|
}
|
|
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
|
|
rdev_err(rdev, "operation not allowed\n");
|
|
return -EPERM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t regulator_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
ssize_t ret;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
return ret;
|
|
}
|
|
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
|
|
|
|
static ssize_t regulator_uA_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
|
|
}
|
|
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
|
|
|
|
static ssize_t regulator_name_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%s\n", rdev_get_name(rdev));
|
|
}
|
|
|
|
static ssize_t regulator_print_opmode(char *buf, int mode)
|
|
{
|
|
switch (mode) {
|
|
case REGULATOR_MODE_FAST:
|
|
return sprintf(buf, "fast\n");
|
|
case REGULATOR_MODE_NORMAL:
|
|
return sprintf(buf, "normal\n");
|
|
case REGULATOR_MODE_IDLE:
|
|
return sprintf(buf, "idle\n");
|
|
case REGULATOR_MODE_STANDBY:
|
|
return sprintf(buf, "standby\n");
|
|
}
|
|
return sprintf(buf, "unknown\n");
|
|
}
|
|
|
|
static ssize_t regulator_opmode_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_opmode(buf, _regulator_get_mode(rdev));
|
|
}
|
|
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
|
|
|
|
static ssize_t regulator_print_state(char *buf, int state)
|
|
{
|
|
if (state > 0)
|
|
return sprintf(buf, "enabled\n");
|
|
else if (state == 0)
|
|
return sprintf(buf, "disabled\n");
|
|
else
|
|
return sprintf(buf, "unknown\n");
|
|
}
|
|
|
|
static ssize_t regulator_state_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
ssize_t ret;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
return ret;
|
|
}
|
|
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
|
|
|
|
static ssize_t regulator_status_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
int status;
|
|
char *label;
|
|
|
|
status = rdev->desc->ops->get_status(rdev);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
switch (status) {
|
|
case REGULATOR_STATUS_OFF:
|
|
label = "off";
|
|
break;
|
|
case REGULATOR_STATUS_ON:
|
|
label = "on";
|
|
break;
|
|
case REGULATOR_STATUS_ERROR:
|
|
label = "error";
|
|
break;
|
|
case REGULATOR_STATUS_FAST:
|
|
label = "fast";
|
|
break;
|
|
case REGULATOR_STATUS_NORMAL:
|
|
label = "normal";
|
|
break;
|
|
case REGULATOR_STATUS_IDLE:
|
|
label = "idle";
|
|
break;
|
|
case REGULATOR_STATUS_STANDBY:
|
|
label = "standby";
|
|
break;
|
|
case REGULATOR_STATUS_BYPASS:
|
|
label = "bypass";
|
|
break;
|
|
case REGULATOR_STATUS_UNDEFINED:
|
|
label = "undefined";
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
return sprintf(buf, "%s\n", label);
|
|
}
|
|
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
|
|
|
|
static ssize_t regulator_min_uA_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
if (!rdev->constraints)
|
|
return sprintf(buf, "constraint not defined\n");
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->min_uA);
|
|
}
|
|
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
|
|
|
|
static ssize_t regulator_max_uA_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
if (!rdev->constraints)
|
|
return sprintf(buf, "constraint not defined\n");
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->max_uA);
|
|
}
|
|
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
|
|
|
|
static ssize_t regulator_min_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
if (!rdev->constraints)
|
|
return sprintf(buf, "constraint not defined\n");
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->min_uV);
|
|
}
|
|
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
|
|
|
|
static ssize_t regulator_max_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
if (!rdev->constraints)
|
|
return sprintf(buf, "constraint not defined\n");
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->max_uV);
|
|
}
|
|
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
|
|
|
|
static ssize_t regulator_total_uA_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
struct regulator *regulator;
|
|
int uA = 0;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
list_for_each_entry(regulator, &rdev->consumer_list, list)
|
|
uA += regulator->uA_load;
|
|
mutex_unlock(&rdev->mutex);
|
|
return sprintf(buf, "%d\n", uA);
|
|
}
|
|
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
|
|
|
|
static ssize_t regulator_num_users_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
return sprintf(buf, "%d\n", rdev->use_count);
|
|
}
|
|
|
|
static ssize_t regulator_type_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
switch (rdev->desc->type) {
|
|
case REGULATOR_VOLTAGE:
|
|
return sprintf(buf, "voltage\n");
|
|
case REGULATOR_CURRENT:
|
|
return sprintf(buf, "current\n");
|
|
}
|
|
return sprintf(buf, "unknown\n");
|
|
}
|
|
|
|
static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
|
|
}
|
|
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
|
|
regulator_suspend_mem_uV_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
|
|
}
|
|
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
|
|
regulator_suspend_disk_uV_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
|
|
}
|
|
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
|
|
regulator_suspend_standby_uV_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_opmode(buf,
|
|
rdev->constraints->state_mem.mode);
|
|
}
|
|
static DEVICE_ATTR(suspend_mem_mode, 0444,
|
|
regulator_suspend_mem_mode_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_opmode(buf,
|
|
rdev->constraints->state_disk.mode);
|
|
}
|
|
static DEVICE_ATTR(suspend_disk_mode, 0444,
|
|
regulator_suspend_disk_mode_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_opmode(buf,
|
|
rdev->constraints->state_standby.mode);
|
|
}
|
|
static DEVICE_ATTR(suspend_standby_mode, 0444,
|
|
regulator_suspend_standby_mode_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_mem_state_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_state(buf,
|
|
rdev->constraints->state_mem.enabled);
|
|
}
|
|
static DEVICE_ATTR(suspend_mem_state, 0444,
|
|
regulator_suspend_mem_state_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_disk_state_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_state(buf,
|
|
rdev->constraints->state_disk.enabled);
|
|
}
|
|
static DEVICE_ATTR(suspend_disk_state, 0444,
|
|
regulator_suspend_disk_state_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_standby_state_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_state(buf,
|
|
rdev->constraints->state_standby.enabled);
|
|
}
|
|
static DEVICE_ATTR(suspend_standby_state, 0444,
|
|
regulator_suspend_standby_state_show, NULL);
|
|
|
|
static ssize_t regulator_bypass_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
const char *report;
|
|
bool bypass;
|
|
int ret;
|
|
|
|
ret = rdev->desc->ops->get_bypass(rdev, &bypass);
|
|
|
|
if (ret != 0)
|
|
report = "unknown";
|
|
else if (bypass)
|
|
report = "enabled";
|
|
else
|
|
report = "disabled";
|
|
|
|
return sprintf(buf, "%s\n", report);
|
|
}
|
|
static DEVICE_ATTR(bypass, 0444,
|
|
regulator_bypass_show, NULL);
|
|
|
|
/*
|
|
* These are the only attributes are present for all regulators.
|
|
* Other attributes are a function of regulator functionality.
|
|
*/
|
|
static struct device_attribute regulator_dev_attrs[] = {
|
|
__ATTR(name, 0444, regulator_name_show, NULL),
|
|
__ATTR(num_users, 0444, regulator_num_users_show, NULL),
|
|
__ATTR(type, 0444, regulator_type_show, NULL),
|
|
__ATTR_NULL,
|
|
};
|
|
|
|
static void regulator_dev_release(struct device *dev)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
kfree(rdev);
|
|
}
|
|
|
|
static struct class regulator_class = {
|
|
.name = "regulator",
|
|
.dev_release = regulator_dev_release,
|
|
.dev_attrs = regulator_dev_attrs,
|
|
};
|
|
|
|
/* Calculate the new optimum regulator operating mode based on the new total
|
|
* consumer load. All locks held by caller */
|
|
static void drms_uA_update(struct regulator_dev *rdev)
|
|
{
|
|
struct regulator *sibling;
|
|
int current_uA = 0, output_uV, input_uV, err;
|
|
unsigned int mode;
|
|
|
|
err = regulator_check_drms(rdev);
|
|
if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
|
|
(!rdev->desc->ops->get_voltage &&
|
|
!rdev->desc->ops->get_voltage_sel) ||
|
|
!rdev->desc->ops->set_mode)
|
|
return;
|
|
|
|
/* get output voltage */
|
|
output_uV = _regulator_get_voltage(rdev);
|
|
if (output_uV <= 0)
|
|
return;
|
|
|
|
/* get input voltage */
|
|
input_uV = 0;
|
|
if (rdev->supply)
|
|
input_uV = regulator_get_voltage(rdev->supply);
|
|
if (input_uV <= 0)
|
|
input_uV = rdev->constraints->input_uV;
|
|
if (input_uV <= 0)
|
|
return;
|
|
|
|
/* calc total requested load */
|
|
list_for_each_entry(sibling, &rdev->consumer_list, list)
|
|
current_uA += sibling->uA_load;
|
|
|
|
/* now get the optimum mode for our new total regulator load */
|
|
mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
|
|
output_uV, current_uA);
|
|
|
|
/* check the new mode is allowed */
|
|
err = regulator_mode_constrain(rdev, &mode);
|
|
if (err == 0)
|
|
rdev->desc->ops->set_mode(rdev, mode);
|
|
}
|
|
|
|
static int suspend_set_state(struct regulator_dev *rdev,
|
|
struct regulator_state *rstate)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* If we have no suspend mode configration don't set anything;
|
|
* only warn if the driver implements set_suspend_voltage or
|
|
* set_suspend_mode callback.
|
|
*/
|
|
if (!rstate->enabled && !rstate->disabled) {
|
|
if (rdev->desc->ops->set_suspend_voltage ||
|
|
rdev->desc->ops->set_suspend_mode)
|
|
rdev_warn(rdev, "No configuration\n");
|
|
return 0;
|
|
}
|
|
|
|
if (rstate->enabled && rstate->disabled) {
|
|
rdev_err(rdev, "invalid configuration\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
|
|
ret = rdev->desc->ops->set_suspend_enable(rdev);
|
|
else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
|
|
ret = rdev->desc->ops->set_suspend_disable(rdev);
|
|
else /* OK if set_suspend_enable or set_suspend_disable is NULL */
|
|
ret = 0;
|
|
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to enabled/disable\n");
|
|
return ret;
|
|
}
|
|
|
|
if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
|
|
ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set voltage\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
|
|
ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set mode\n");
|
|
return ret;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* locks held by caller */
|
|
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
|
|
{
|
|
if (!rdev->constraints)
|
|
return -EINVAL;
|
|
|
|
switch (state) {
|
|
case PM_SUSPEND_STANDBY:
|
|
return suspend_set_state(rdev,
|
|
&rdev->constraints->state_standby);
|
|
case PM_SUSPEND_MEM:
|
|
return suspend_set_state(rdev,
|
|
&rdev->constraints->state_mem);
|
|
case PM_SUSPEND_MAX:
|
|
return suspend_set_state(rdev,
|
|
&rdev->constraints->state_disk);
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static void print_constraints(struct regulator_dev *rdev)
|
|
{
|
|
struct regulation_constraints *constraints = rdev->constraints;
|
|
char buf[80] = "";
|
|
int count = 0;
|
|
int ret;
|
|
|
|
if (constraints->min_uV && constraints->max_uV) {
|
|
if (constraints->min_uV == constraints->max_uV)
|
|
count += sprintf(buf + count, "%d mV ",
|
|
constraints->min_uV / 1000);
|
|
else
|
|
count += sprintf(buf + count, "%d <--> %d mV ",
|
|
constraints->min_uV / 1000,
|
|
constraints->max_uV / 1000);
|
|
}
|
|
|
|
if (!constraints->min_uV ||
|
|
constraints->min_uV != constraints->max_uV) {
|
|
ret = _regulator_get_voltage(rdev);
|
|
if (ret > 0)
|
|
count += sprintf(buf + count, "at %d mV ", ret / 1000);
|
|
}
|
|
|
|
if (constraints->uV_offset)
|
|
count += sprintf(buf, "%dmV offset ",
|
|
constraints->uV_offset / 1000);
|
|
|
|
if (constraints->min_uA && constraints->max_uA) {
|
|
if (constraints->min_uA == constraints->max_uA)
|
|
count += sprintf(buf + count, "%d mA ",
|
|
constraints->min_uA / 1000);
|
|
else
|
|
count += sprintf(buf + count, "%d <--> %d mA ",
|
|
constraints->min_uA / 1000,
|
|
constraints->max_uA / 1000);
|
|
}
|
|
|
|
if (!constraints->min_uA ||
|
|
constraints->min_uA != constraints->max_uA) {
|
|
ret = _regulator_get_current_limit(rdev);
|
|
if (ret > 0)
|
|
count += sprintf(buf + count, "at %d mA ", ret / 1000);
|
|
}
|
|
|
|
if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
|
|
count += sprintf(buf + count, "fast ");
|
|
if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
|
|
count += sprintf(buf + count, "normal ");
|
|
if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
|
|
count += sprintf(buf + count, "idle ");
|
|
if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
|
|
count += sprintf(buf + count, "standby");
|
|
|
|
if (!count)
|
|
sprintf(buf, "no parameters");
|
|
|
|
rdev_info(rdev, "%s\n", buf);
|
|
|
|
if ((constraints->min_uV != constraints->max_uV) &&
|
|
!(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
|
|
rdev_warn(rdev,
|
|
"Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
|
|
}
|
|
|
|
static int machine_constraints_voltage(struct regulator_dev *rdev,
|
|
struct regulation_constraints *constraints)
|
|
{
|
|
struct regulator_ops *ops = rdev->desc->ops;
|
|
int ret;
|
|
|
|
/* do we need to apply the constraint voltage */
|
|
if (rdev->constraints->apply_uV &&
|
|
rdev->constraints->min_uV == rdev->constraints->max_uV) {
|
|
ret = _regulator_do_set_voltage(rdev,
|
|
rdev->constraints->min_uV,
|
|
rdev->constraints->max_uV);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to apply %duV constraint\n",
|
|
rdev->constraints->min_uV);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* constrain machine-level voltage specs to fit
|
|
* the actual range supported by this regulator.
|
|
*/
|
|
if (ops->list_voltage && rdev->desc->n_voltages) {
|
|
int count = rdev->desc->n_voltages;
|
|
int i;
|
|
int min_uV = INT_MAX;
|
|
int max_uV = INT_MIN;
|
|
int cmin = constraints->min_uV;
|
|
int cmax = constraints->max_uV;
|
|
|
|
/* it's safe to autoconfigure fixed-voltage supplies
|
|
and the constraints are used by list_voltage. */
|
|
if (count == 1 && !cmin) {
|
|
cmin = 1;
|
|
cmax = INT_MAX;
|
|
constraints->min_uV = cmin;
|
|
constraints->max_uV = cmax;
|
|
}
|
|
|
|
/* voltage constraints are optional */
|
|
if ((cmin == 0) && (cmax == 0))
|
|
return 0;
|
|
|
|
/* else require explicit machine-level constraints */
|
|
if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
|
|
rdev_err(rdev, "invalid voltage constraints\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
|
|
for (i = 0; i < count; i++) {
|
|
int value;
|
|
|
|
value = ops->list_voltage(rdev, i);
|
|
if (value <= 0)
|
|
continue;
|
|
|
|
/* maybe adjust [min_uV..max_uV] */
|
|
if (value >= cmin && value < min_uV)
|
|
min_uV = value;
|
|
if (value <= cmax && value > max_uV)
|
|
max_uV = value;
|
|
}
|
|
|
|
/* final: [min_uV..max_uV] valid iff constraints valid */
|
|
if (max_uV < min_uV) {
|
|
rdev_err(rdev, "unsupportable voltage constraints\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* use regulator's subset of machine constraints */
|
|
if (constraints->min_uV < min_uV) {
|
|
rdev_dbg(rdev, "override min_uV, %d -> %d\n",
|
|
constraints->min_uV, min_uV);
|
|
constraints->min_uV = min_uV;
|
|
}
|
|
if (constraints->max_uV > max_uV) {
|
|
rdev_dbg(rdev, "override max_uV, %d -> %d\n",
|
|
constraints->max_uV, max_uV);
|
|
constraints->max_uV = max_uV;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* set_machine_constraints - sets regulator constraints
|
|
* @rdev: regulator source
|
|
* @constraints: constraints to apply
|
|
*
|
|
* Allows platform initialisation code to define and constrain
|
|
* regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
|
|
* Constraints *must* be set by platform code in order for some
|
|
* regulator operations to proceed i.e. set_voltage, set_current_limit,
|
|
* set_mode.
|
|
*/
|
|
static int set_machine_constraints(struct regulator_dev *rdev,
|
|
const struct regulation_constraints *constraints)
|
|
{
|
|
int ret = 0;
|
|
struct regulator_ops *ops = rdev->desc->ops;
|
|
|
|
if (constraints)
|
|
rdev->constraints = kmemdup(constraints, sizeof(*constraints),
|
|
GFP_KERNEL);
|
|
else
|
|
rdev->constraints = kzalloc(sizeof(*constraints),
|
|
GFP_KERNEL);
|
|
if (!rdev->constraints)
|
|
return -ENOMEM;
|
|
|
|
ret = machine_constraints_voltage(rdev, rdev->constraints);
|
|
if (ret != 0)
|
|
goto out;
|
|
|
|
/* do we need to setup our suspend state */
|
|
if (rdev->constraints->initial_state) {
|
|
ret = suspend_prepare(rdev, rdev->constraints->initial_state);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set suspend state\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (rdev->constraints->initial_mode) {
|
|
if (!ops->set_mode) {
|
|
rdev_err(rdev, "no set_mode operation\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set initial mode: %d\n", ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* If the constraints say the regulator should be on at this point
|
|
* and we have control then make sure it is enabled.
|
|
*/
|
|
if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
|
|
ops->enable) {
|
|
ret = ops->enable(rdev);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to enable\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
|
|
ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set ramp_delay\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
print_constraints(rdev);
|
|
return 0;
|
|
out:
|
|
kfree(rdev->constraints);
|
|
rdev->constraints = NULL;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* set_supply - set regulator supply regulator
|
|
* @rdev: regulator name
|
|
* @supply_rdev: supply regulator name
|
|
*
|
|
* Called by platform initialisation code to set the supply regulator for this
|
|
* regulator. This ensures that a regulators supply will also be enabled by the
|
|
* core if it's child is enabled.
|
|
*/
|
|
static int set_supply(struct regulator_dev *rdev,
|
|
struct regulator_dev *supply_rdev)
|
|
{
|
|
int err;
|
|
|
|
rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
|
|
|
|
rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
|
|
if (rdev->supply == NULL) {
|
|
err = -ENOMEM;
|
|
return err;
|
|
}
|
|
supply_rdev->open_count++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* set_consumer_device_supply - Bind a regulator to a symbolic supply
|
|
* @rdev: regulator source
|
|
* @consumer_dev_name: dev_name() string for device supply applies to
|
|
* @supply: symbolic name for supply
|
|
*
|
|
* Allows platform initialisation code to map physical regulator
|
|
* sources to symbolic names for supplies for use by devices. Devices
|
|
* should use these symbolic names to request regulators, avoiding the
|
|
* need to provide board-specific regulator names as platform data.
|
|
*/
|
|
static int set_consumer_device_supply(struct regulator_dev *rdev,
|
|
const char *consumer_dev_name,
|
|
const char *supply)
|
|
{
|
|
struct regulator_map *node;
|
|
int has_dev;
|
|
|
|
if (supply == NULL)
|
|
return -EINVAL;
|
|
|
|
if (consumer_dev_name != NULL)
|
|
has_dev = 1;
|
|
else
|
|
has_dev = 0;
|
|
|
|
list_for_each_entry(node, ®ulator_map_list, list) {
|
|
if (node->dev_name && consumer_dev_name) {
|
|
if (strcmp(node->dev_name, consumer_dev_name) != 0)
|
|
continue;
|
|
} else if (node->dev_name || consumer_dev_name) {
|
|
continue;
|
|
}
|
|
|
|
if (strcmp(node->supply, supply) != 0)
|
|
continue;
|
|
|
|
pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
|
|
consumer_dev_name,
|
|
dev_name(&node->regulator->dev),
|
|
node->regulator->desc->name,
|
|
supply,
|
|
dev_name(&rdev->dev), rdev_get_name(rdev));
|
|
return -EBUSY;
|
|
}
|
|
|
|
node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
|
|
if (node == NULL)
|
|
return -ENOMEM;
|
|
|
|
node->regulator = rdev;
|
|
node->supply = supply;
|
|
|
|
if (has_dev) {
|
|
node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
|
|
if (node->dev_name == NULL) {
|
|
kfree(node);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
list_add(&node->list, ®ulator_map_list);
|
|
return 0;
|
|
}
|
|
|
|
static void unset_regulator_supplies(struct regulator_dev *rdev)
|
|
{
|
|
struct regulator_map *node, *n;
|
|
|
|
list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
|
|
if (rdev == node->regulator) {
|
|
list_del(&node->list);
|
|
kfree(node->dev_name);
|
|
kfree(node);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define REG_STR_SIZE 64
|
|
|
|
static struct regulator *create_regulator(struct regulator_dev *rdev,
|
|
struct device *dev,
|
|
const char *supply_name)
|
|
{
|
|
struct regulator *regulator;
|
|
char buf[REG_STR_SIZE];
|
|
int err, size;
|
|
|
|
regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
|
|
if (regulator == NULL)
|
|
return NULL;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
regulator->rdev = rdev;
|
|
list_add(®ulator->list, &rdev->consumer_list);
|
|
|
|
if (dev) {
|
|
regulator->dev = dev;
|
|
|
|
/* Add a link to the device sysfs entry */
|
|
size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
|
|
dev->kobj.name, supply_name);
|
|
if (size >= REG_STR_SIZE)
|
|
goto overflow_err;
|
|
|
|
regulator->supply_name = kstrdup(buf, GFP_KERNEL);
|
|
if (regulator->supply_name == NULL)
|
|
goto overflow_err;
|
|
|
|
err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
|
|
buf);
|
|
if (err) {
|
|
rdev_warn(rdev, "could not add device link %s err %d\n",
|
|
dev->kobj.name, err);
|
|
/* non-fatal */
|
|
}
|
|
} else {
|
|
regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
|
|
if (regulator->supply_name == NULL)
|
|
goto overflow_err;
|
|
}
|
|
|
|
regulator->debugfs = debugfs_create_dir(regulator->supply_name,
|
|
rdev->debugfs);
|
|
if (!regulator->debugfs) {
|
|
rdev_warn(rdev, "Failed to create debugfs directory\n");
|
|
} else {
|
|
debugfs_create_u32("uA_load", 0444, regulator->debugfs,
|
|
®ulator->uA_load);
|
|
debugfs_create_u32("min_uV", 0444, regulator->debugfs,
|
|
®ulator->min_uV);
|
|
debugfs_create_u32("max_uV", 0444, regulator->debugfs,
|
|
®ulator->max_uV);
|
|
}
|
|
|
|
/*
|
|
* Check now if the regulator is an always on regulator - if
|
|
* it is then we don't need to do nearly so much work for
|
|
* enable/disable calls.
|
|
*/
|
|
if (!_regulator_can_change_status(rdev) &&
|
|
_regulator_is_enabled(rdev))
|
|
regulator->always_on = true;
|
|
|
|
mutex_unlock(&rdev->mutex);
|
|
return regulator;
|
|
overflow_err:
|
|
list_del(®ulator->list);
|
|
kfree(regulator);
|
|
mutex_unlock(&rdev->mutex);
|
|
return NULL;
|
|
}
|
|
|
|
static int _regulator_get_enable_time(struct regulator_dev *rdev)
|
|
{
|
|
if (!rdev->desc->ops->enable_time)
|
|
return rdev->desc->enable_time;
|
|
return rdev->desc->ops->enable_time(rdev);
|
|
}
|
|
|
|
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
|
|
const char *supply,
|
|
int *ret)
|
|
{
|
|
struct regulator_dev *r;
|
|
struct device_node *node;
|
|
struct regulator_map *map;
|
|
const char *devname = NULL;
|
|
|
|
/* first do a dt based lookup */
|
|
if (dev && dev->of_node) {
|
|
node = of_get_regulator(dev, supply);
|
|
if (node) {
|
|
list_for_each_entry(r, ®ulator_list, list)
|
|
if (r->dev.parent &&
|
|
node == r->dev.of_node)
|
|
return r;
|
|
} else {
|
|
/*
|
|
* If we couldn't even get the node then it's
|
|
* not just that the device didn't register
|
|
* yet, there's no node and we'll never
|
|
* succeed.
|
|
*/
|
|
*ret = -ENODEV;
|
|
}
|
|
}
|
|
|
|
/* if not found, try doing it non-dt way */
|
|
if (dev)
|
|
devname = dev_name(dev);
|
|
|
|
list_for_each_entry(r, ®ulator_list, list)
|
|
if (strcmp(rdev_get_name(r), supply) == 0)
|
|
return r;
|
|
|
|
list_for_each_entry(map, ®ulator_map_list, list) {
|
|
/* If the mapping has a device set up it must match */
|
|
if (map->dev_name &&
|
|
(!devname || strcmp(map->dev_name, devname)))
|
|
continue;
|
|
|
|
if (strcmp(map->supply, supply) == 0)
|
|
return map->regulator;
|
|
}
|
|
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Internal regulator request function */
|
|
static struct regulator *_regulator_get(struct device *dev, const char *id,
|
|
int exclusive)
|
|
{
|
|
struct regulator_dev *rdev;
|
|
struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
|
|
const char *devname = NULL;
|
|
int ret;
|
|
|
|
if (id == NULL) {
|
|
pr_err("get() with no identifier\n");
|
|
return regulator;
|
|
}
|
|
|
|
if (dev)
|
|
devname = dev_name(dev);
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
|
|
rdev = regulator_dev_lookup(dev, id, &ret);
|
|
if (rdev)
|
|
goto found;
|
|
|
|
if (board_wants_dummy_regulator) {
|
|
rdev = dummy_regulator_rdev;
|
|
goto found;
|
|
}
|
|
|
|
#ifdef CONFIG_REGULATOR_DUMMY
|
|
if (!devname)
|
|
devname = "deviceless";
|
|
|
|
/* If the board didn't flag that it was fully constrained then
|
|
* substitute in a dummy regulator so consumers can continue.
|
|
*/
|
|
if (!has_full_constraints) {
|
|
pr_warn("%s supply %s not found, using dummy regulator\n",
|
|
devname, id);
|
|
rdev = dummy_regulator_rdev;
|
|
goto found;
|
|
}
|
|
#endif
|
|
|
|
mutex_unlock(®ulator_list_mutex);
|
|
return regulator;
|
|
|
|
found:
|
|
if (rdev->exclusive) {
|
|
regulator = ERR_PTR(-EPERM);
|
|
goto out;
|
|
}
|
|
|
|
if (exclusive && rdev->open_count) {
|
|
regulator = ERR_PTR(-EBUSY);
|
|
goto out;
|
|
}
|
|
|
|
if (!try_module_get(rdev->owner))
|
|
goto out;
|
|
|
|
regulator = create_regulator(rdev, dev, id);
|
|
if (regulator == NULL) {
|
|
regulator = ERR_PTR(-ENOMEM);
|
|
module_put(rdev->owner);
|
|
goto out;
|
|
}
|
|
|
|
rdev->open_count++;
|
|
if (exclusive) {
|
|
rdev->exclusive = 1;
|
|
|
|
ret = _regulator_is_enabled(rdev);
|
|
if (ret > 0)
|
|
rdev->use_count = 1;
|
|
else
|
|
rdev->use_count = 0;
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(®ulator_list_mutex);
|
|
|
|
return regulator;
|
|
}
|
|
|
|
/**
|
|
* regulator_get - lookup and obtain a reference to a regulator.
|
|
* @dev: device for regulator "consumer"
|
|
* @id: Supply name or regulator ID.
|
|
*
|
|
* Returns a struct regulator corresponding to the regulator producer,
|
|
* or IS_ERR() condition containing errno.
|
|
*
|
|
* Use of supply names configured via regulator_set_device_supply() is
|
|
* strongly encouraged. It is recommended that the supply name used
|
|
* should match the name used for the supply and/or the relevant
|
|
* device pins in the datasheet.
|
|
*/
|
|
struct regulator *regulator_get(struct device *dev, const char *id)
|
|
{
|
|
return _regulator_get(dev, id, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get);
|
|
|
|
static void devm_regulator_release(struct device *dev, void *res)
|
|
{
|
|
regulator_put(*(struct regulator **)res);
|
|
}
|
|
|
|
/**
|
|
* devm_regulator_get - Resource managed regulator_get()
|
|
* @dev: device for regulator "consumer"
|
|
* @id: Supply name or regulator ID.
|
|
*
|
|
* Managed regulator_get(). Regulators returned from this function are
|
|
* automatically regulator_put() on driver detach. See regulator_get() for more
|
|
* information.
|
|
*/
|
|
struct regulator *devm_regulator_get(struct device *dev, const char *id)
|
|
{
|
|
struct regulator **ptr, *regulator;
|
|
|
|
ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
|
|
if (!ptr)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
regulator = regulator_get(dev, id);
|
|
if (!IS_ERR(regulator)) {
|
|
*ptr = regulator;
|
|
devres_add(dev, ptr);
|
|
} else {
|
|
devres_free(ptr);
|
|
}
|
|
|
|
return regulator;
|
|
}
|
|
EXPORT_SYMBOL_GPL(devm_regulator_get);
|
|
|
|
/**
|
|
* regulator_get_exclusive - obtain exclusive access to a regulator.
|
|
* @dev: device for regulator "consumer"
|
|
* @id: Supply name or regulator ID.
|
|
*
|
|
* Returns a struct regulator corresponding to the regulator producer,
|
|
* or IS_ERR() condition containing errno. Other consumers will be
|
|
* unable to obtain this reference is held and the use count for the
|
|
* regulator will be initialised to reflect the current state of the
|
|
* regulator.
|
|
*
|
|
* This is intended for use by consumers which cannot tolerate shared
|
|
* use of the regulator such as those which need to force the
|
|
* regulator off for correct operation of the hardware they are
|
|
* controlling.
|
|
*
|
|
* Use of supply names configured via regulator_set_device_supply() is
|
|
* strongly encouraged. It is recommended that the supply name used
|
|
* should match the name used for the supply and/or the relevant
|
|
* device pins in the datasheet.
|
|
*/
|
|
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
|
|
{
|
|
return _regulator_get(dev, id, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_exclusive);
|
|
|
|
/**
|
|
* regulator_put - "free" the regulator source
|
|
* @regulator: regulator source
|
|
*
|
|
* Note: drivers must ensure that all regulator_enable calls made on this
|
|
* regulator source are balanced by regulator_disable calls prior to calling
|
|
* this function.
|
|
*/
|
|
void regulator_put(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev;
|
|
|
|
if (regulator == NULL || IS_ERR(regulator))
|
|
return;
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
rdev = regulator->rdev;
|
|
|
|
debugfs_remove_recursive(regulator->debugfs);
|
|
|
|
/* remove any sysfs entries */
|
|
if (regulator->dev)
|
|
sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
|
|
kfree(regulator->supply_name);
|
|
list_del(®ulator->list);
|
|
kfree(regulator);
|
|
|
|
rdev->open_count--;
|
|
rdev->exclusive = 0;
|
|
|
|
module_put(rdev->owner);
|
|
mutex_unlock(®ulator_list_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_put);
|
|
|
|
static int devm_regulator_match(struct device *dev, void *res, void *data)
|
|
{
|
|
struct regulator **r = res;
|
|
if (!r || !*r) {
|
|
WARN_ON(!r || !*r);
|
|
return 0;
|
|
}
|
|
return *r == data;
|
|
}
|
|
|
|
/**
|
|
* devm_regulator_put - Resource managed regulator_put()
|
|
* @regulator: regulator to free
|
|
*
|
|
* Deallocate a regulator allocated with devm_regulator_get(). Normally
|
|
* this function will not need to be called and the resource management
|
|
* code will ensure that the resource is freed.
|
|
*/
|
|
void devm_regulator_put(struct regulator *regulator)
|
|
{
|
|
int rc;
|
|
|
|
rc = devres_release(regulator->dev, devm_regulator_release,
|
|
devm_regulator_match, regulator);
|
|
if (rc != 0)
|
|
WARN_ON(rc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(devm_regulator_put);
|
|
|
|
static int _regulator_do_enable(struct regulator_dev *rdev)
|
|
{
|
|
int ret, delay;
|
|
|
|
/* Query before enabling in case configuration dependent. */
|
|
ret = _regulator_get_enable_time(rdev);
|
|
if (ret >= 0) {
|
|
delay = ret;
|
|
} else {
|
|
rdev_warn(rdev, "enable_time() failed: %d\n", ret);
|
|
delay = 0;
|
|
}
|
|
|
|
trace_regulator_enable(rdev_get_name(rdev));
|
|
|
|
if (rdev->ena_gpio) {
|
|
gpio_set_value_cansleep(rdev->ena_gpio,
|
|
!rdev->ena_gpio_invert);
|
|
rdev->ena_gpio_state = 1;
|
|
} else if (rdev->desc->ops->enable) {
|
|
ret = rdev->desc->ops->enable(rdev);
|
|
if (ret < 0)
|
|
return ret;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Allow the regulator to ramp; it would be useful to extend
|
|
* this for bulk operations so that the regulators can ramp
|
|
* together. */
|
|
trace_regulator_enable_delay(rdev_get_name(rdev));
|
|
|
|
if (delay >= 1000) {
|
|
mdelay(delay / 1000);
|
|
udelay(delay % 1000);
|
|
} else if (delay) {
|
|
udelay(delay);
|
|
}
|
|
|
|
trace_regulator_enable_complete(rdev_get_name(rdev));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* locks held by regulator_enable() */
|
|
static int _regulator_enable(struct regulator_dev *rdev)
|
|
{
|
|
int ret;
|
|
|
|
/* check voltage and requested load before enabling */
|
|
if (rdev->constraints &&
|
|
(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
|
|
drms_uA_update(rdev);
|
|
|
|
if (rdev->use_count == 0) {
|
|
/* The regulator may on if it's not switchable or left on */
|
|
ret = _regulator_is_enabled(rdev);
|
|
if (ret == -EINVAL || ret == 0) {
|
|
if (!_regulator_can_change_status(rdev))
|
|
return -EPERM;
|
|
|
|
ret = _regulator_do_enable(rdev);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
} else if (ret < 0) {
|
|
rdev_err(rdev, "is_enabled() failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
/* Fallthrough on positive return values - already enabled */
|
|
}
|
|
|
|
rdev->use_count++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* regulator_enable - enable regulator output
|
|
* @regulator: regulator source
|
|
*
|
|
* Request that the regulator be enabled with the regulator output at
|
|
* the predefined voltage or current value. Calls to regulator_enable()
|
|
* must be balanced with calls to regulator_disable().
|
|
*
|
|
* NOTE: the output value can be set by other drivers, boot loader or may be
|
|
* hardwired in the regulator.
|
|
*/
|
|
int regulator_enable(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret = 0;
|
|
|
|
if (regulator->always_on)
|
|
return 0;
|
|
|
|
if (rdev->supply) {
|
|
ret = regulator_enable(rdev->supply);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
ret = _regulator_enable(rdev);
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
if (ret != 0 && rdev->supply)
|
|
regulator_disable(rdev->supply);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_enable);
|
|
|
|
static int _regulator_do_disable(struct regulator_dev *rdev)
|
|
{
|
|
int ret;
|
|
|
|
trace_regulator_disable(rdev_get_name(rdev));
|
|
|
|
if (rdev->ena_gpio) {
|
|
gpio_set_value_cansleep(rdev->ena_gpio,
|
|
rdev->ena_gpio_invert);
|
|
rdev->ena_gpio_state = 0;
|
|
|
|
} else if (rdev->desc->ops->disable) {
|
|
ret = rdev->desc->ops->disable(rdev);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
|
|
trace_regulator_disable_complete(rdev_get_name(rdev));
|
|
|
|
_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
|
|
NULL);
|
|
return 0;
|
|
}
|
|
|
|
/* locks held by regulator_disable() */
|
|
static int _regulator_disable(struct regulator_dev *rdev)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (WARN(rdev->use_count <= 0,
|
|
"unbalanced disables for %s\n", rdev_get_name(rdev)))
|
|
return -EIO;
|
|
|
|
/* are we the last user and permitted to disable ? */
|
|
if (rdev->use_count == 1 &&
|
|
(rdev->constraints && !rdev->constraints->always_on)) {
|
|
|
|
/* we are last user */
|
|
if (_regulator_can_change_status(rdev)) {
|
|
ret = _regulator_do_disable(rdev);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to disable\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
rdev->use_count = 0;
|
|
} else if (rdev->use_count > 1) {
|
|
|
|
if (rdev->constraints &&
|
|
(rdev->constraints->valid_ops_mask &
|
|
REGULATOR_CHANGE_DRMS))
|
|
drms_uA_update(rdev);
|
|
|
|
rdev->use_count--;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* regulator_disable - disable regulator output
|
|
* @regulator: regulator source
|
|
*
|
|
* Disable the regulator output voltage or current. Calls to
|
|
* regulator_enable() must be balanced with calls to
|
|
* regulator_disable().
|
|
*
|
|
* NOTE: this will only disable the regulator output if no other consumer
|
|
* devices have it enabled, the regulator device supports disabling and
|
|
* machine constraints permit this operation.
|
|
*/
|
|
int regulator_disable(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret = 0;
|
|
|
|
if (regulator->always_on)
|
|
return 0;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
ret = _regulator_disable(rdev);
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
if (ret == 0 && rdev->supply)
|
|
regulator_disable(rdev->supply);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_disable);
|
|
|
|
/* locks held by regulator_force_disable() */
|
|
static int _regulator_force_disable(struct regulator_dev *rdev)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* force disable */
|
|
if (rdev->desc->ops->disable) {
|
|
/* ah well, who wants to live forever... */
|
|
ret = rdev->desc->ops->disable(rdev);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to force disable\n");
|
|
return ret;
|
|
}
|
|
/* notify other consumers that power has been forced off */
|
|
_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
|
|
REGULATOR_EVENT_DISABLE, NULL);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* regulator_force_disable - force disable regulator output
|
|
* @regulator: regulator source
|
|
*
|
|
* Forcibly disable the regulator output voltage or current.
|
|
* NOTE: this *will* disable the regulator output even if other consumer
|
|
* devices have it enabled. This should be used for situations when device
|
|
* damage will likely occur if the regulator is not disabled (e.g. over temp).
|
|
*/
|
|
int regulator_force_disable(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
regulator->uA_load = 0;
|
|
ret = _regulator_force_disable(regulator->rdev);
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
if (rdev->supply)
|
|
while (rdev->open_count--)
|
|
regulator_disable(rdev->supply);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_force_disable);
|
|
|
|
static void regulator_disable_work(struct work_struct *work)
|
|
{
|
|
struct regulator_dev *rdev = container_of(work, struct regulator_dev,
|
|
disable_work.work);
|
|
int count, i, ret;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
BUG_ON(!rdev->deferred_disables);
|
|
|
|
count = rdev->deferred_disables;
|
|
rdev->deferred_disables = 0;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
ret = _regulator_disable(rdev);
|
|
if (ret != 0)
|
|
rdev_err(rdev, "Deferred disable failed: %d\n", ret);
|
|
}
|
|
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
if (rdev->supply) {
|
|
for (i = 0; i < count; i++) {
|
|
ret = regulator_disable(rdev->supply);
|
|
if (ret != 0) {
|
|
rdev_err(rdev,
|
|
"Supply disable failed: %d\n", ret);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* regulator_disable_deferred - disable regulator output with delay
|
|
* @regulator: regulator source
|
|
* @ms: miliseconds until the regulator is disabled
|
|
*
|
|
* Execute regulator_disable() on the regulator after a delay. This
|
|
* is intended for use with devices that require some time to quiesce.
|
|
*
|
|
* NOTE: this will only disable the regulator output if no other consumer
|
|
* devices have it enabled, the regulator device supports disabling and
|
|
* machine constraints permit this operation.
|
|
*/
|
|
int regulator_disable_deferred(struct regulator *regulator, int ms)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret;
|
|
|
|
if (regulator->always_on)
|
|
return 0;
|
|
|
|
if (!ms)
|
|
return regulator_disable(regulator);
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
rdev->deferred_disables++;
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
ret = schedule_delayed_work(&rdev->disable_work,
|
|
msecs_to_jiffies(ms));
|
|
if (ret < 0)
|
|
return ret;
|
|
else
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_disable_deferred);
|
|
|
|
/**
|
|
* regulator_is_enabled_regmap - standard is_enabled() for regmap users
|
|
*
|
|
* @rdev: regulator to operate on
|
|
*
|
|
* Regulators that use regmap for their register I/O can set the
|
|
* enable_reg and enable_mask fields in their descriptor and then use
|
|
* this as their is_enabled operation, saving some code.
|
|
*/
|
|
int regulator_is_enabled_regmap(struct regulator_dev *rdev)
|
|
{
|
|
unsigned int val;
|
|
int ret;
|
|
|
|
ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
return (val & rdev->desc->enable_mask) != 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
|
|
|
|
/**
|
|
* regulator_enable_regmap - standard enable() for regmap users
|
|
*
|
|
* @rdev: regulator to operate on
|
|
*
|
|
* Regulators that use regmap for their register I/O can set the
|
|
* enable_reg and enable_mask fields in their descriptor and then use
|
|
* this as their enable() operation, saving some code.
|
|
*/
|
|
int regulator_enable_regmap(struct regulator_dev *rdev)
|
|
{
|
|
return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
|
|
rdev->desc->enable_mask,
|
|
rdev->desc->enable_mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_enable_regmap);
|
|
|
|
/**
|
|
* regulator_disable_regmap - standard disable() for regmap users
|
|
*
|
|
* @rdev: regulator to operate on
|
|
*
|
|
* Regulators that use regmap for their register I/O can set the
|
|
* enable_reg and enable_mask fields in their descriptor and then use
|
|
* this as their disable() operation, saving some code.
|
|
*/
|
|
int regulator_disable_regmap(struct regulator_dev *rdev)
|
|
{
|
|
return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
|
|
rdev->desc->enable_mask, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_disable_regmap);
|
|
|
|
static int _regulator_is_enabled(struct regulator_dev *rdev)
|
|
{
|
|
/* A GPIO control always takes precedence */
|
|
if (rdev->ena_gpio)
|
|
return rdev->ena_gpio_state;
|
|
|
|
/* If we don't know then assume that the regulator is always on */
|
|
if (!rdev->desc->ops->is_enabled)
|
|
return 1;
|
|
|
|
return rdev->desc->ops->is_enabled(rdev);
|
|
}
|
|
|
|
/**
|
|
* regulator_is_enabled - is the regulator output enabled
|
|
* @regulator: regulator source
|
|
*
|
|
* Returns positive if the regulator driver backing the source/client
|
|
* has requested that the device be enabled, zero if it hasn't, else a
|
|
* negative errno code.
|
|
*
|
|
* Note that the device backing this regulator handle can have multiple
|
|
* users, so it might be enabled even if regulator_enable() was never
|
|
* called for this particular source.
|
|
*/
|
|
int regulator_is_enabled(struct regulator *regulator)
|
|
{
|
|
int ret;
|
|
|
|
if (regulator->always_on)
|
|
return 1;
|
|
|
|
mutex_lock(®ulator->rdev->mutex);
|
|
ret = _regulator_is_enabled(regulator->rdev);
|
|
mutex_unlock(®ulator->rdev->mutex);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_is_enabled);
|
|
|
|
/**
|
|
* regulator_count_voltages - count regulator_list_voltage() selectors
|
|
* @regulator: regulator source
|
|
*
|
|
* Returns number of selectors, or negative errno. Selectors are
|
|
* numbered starting at zero, and typically correspond to bitfields
|
|
* in hardware registers.
|
|
*/
|
|
int regulator_count_voltages(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
|
|
return rdev->desc->n_voltages ? : -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_count_voltages);
|
|
|
|
/**
|
|
* regulator_list_voltage_linear - List voltages with simple calculation
|
|
*
|
|
* @rdev: Regulator device
|
|
* @selector: Selector to convert into a voltage
|
|
*
|
|
* Regulators with a simple linear mapping between voltages and
|
|
* selectors can set min_uV and uV_step in the regulator descriptor
|
|
* and then use this function as their list_voltage() operation,
|
|
*/
|
|
int regulator_list_voltage_linear(struct regulator_dev *rdev,
|
|
unsigned int selector)
|
|
{
|
|
if (selector >= rdev->desc->n_voltages)
|
|
return -EINVAL;
|
|
|
|
return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
|
|
|
|
/**
|
|
* regulator_list_voltage_table - List voltages with table based mapping
|
|
*
|
|
* @rdev: Regulator device
|
|
* @selector: Selector to convert into a voltage
|
|
*
|
|
* Regulators with table based mapping between voltages and
|
|
* selectors can set volt_table in the regulator descriptor
|
|
* and then use this function as their list_voltage() operation.
|
|
*/
|
|
int regulator_list_voltage_table(struct regulator_dev *rdev,
|
|
unsigned int selector)
|
|
{
|
|
if (!rdev->desc->volt_table) {
|
|
BUG_ON(!rdev->desc->volt_table);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (selector >= rdev->desc->n_voltages)
|
|
return -EINVAL;
|
|
|
|
return rdev->desc->volt_table[selector];
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
|
|
|
|
/**
|
|
* regulator_list_voltage - enumerate supported voltages
|
|
* @regulator: regulator source
|
|
* @selector: identify voltage to list
|
|
* Context: can sleep
|
|
*
|
|
* Returns a voltage that can be passed to @regulator_set_voltage(),
|
|
* zero if this selector code can't be used on this system, or a
|
|
* negative errno.
|
|
*/
|
|
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
struct regulator_ops *ops = rdev->desc->ops;
|
|
int ret;
|
|
|
|
if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
ret = ops->list_voltage(rdev, selector);
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
if (ret > 0) {
|
|
if (ret < rdev->constraints->min_uV)
|
|
ret = 0;
|
|
else if (ret > rdev->constraints->max_uV)
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_list_voltage);
|
|
|
|
/**
|
|
* regulator_is_supported_voltage - check if a voltage range can be supported
|
|
*
|
|
* @regulator: Regulator to check.
|
|
* @min_uV: Minimum required voltage in uV.
|
|
* @max_uV: Maximum required voltage in uV.
|
|
*
|
|
* Returns a boolean or a negative error code.
|
|
*/
|
|
int regulator_is_supported_voltage(struct regulator *regulator,
|
|
int min_uV, int max_uV)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int i, voltages, ret;
|
|
|
|
/* If we can't change voltage check the current voltage */
|
|
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
|
|
ret = regulator_get_voltage(regulator);
|
|
if (ret >= 0)
|
|
return (min_uV >= ret && ret <= max_uV);
|
|
else
|
|
return ret;
|
|
}
|
|
|
|
ret = regulator_count_voltages(regulator);
|
|
if (ret < 0)
|
|
return ret;
|
|
voltages = ret;
|
|
|
|
for (i = 0; i < voltages; i++) {
|
|
ret = regulator_list_voltage(regulator, i);
|
|
|
|
if (ret >= min_uV && ret <= max_uV)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
|
|
|
|
/**
|
|
* regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
|
|
*
|
|
* @rdev: regulator to operate on
|
|
*
|
|
* Regulators that use regmap for their register I/O can set the
|
|
* vsel_reg and vsel_mask fields in their descriptor and then use this
|
|
* as their get_voltage_vsel operation, saving some code.
|
|
*/
|
|
int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
|
|
{
|
|
unsigned int val;
|
|
int ret;
|
|
|
|
ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
val &= rdev->desc->vsel_mask;
|
|
val >>= ffs(rdev->desc->vsel_mask) - 1;
|
|
|
|
return val;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
|
|
|
|
/**
|
|
* regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
|
|
*
|
|
* @rdev: regulator to operate on
|
|
* @sel: Selector to set
|
|
*
|
|
* Regulators that use regmap for their register I/O can set the
|
|
* vsel_reg and vsel_mask fields in their descriptor and then use this
|
|
* as their set_voltage_vsel operation, saving some code.
|
|
*/
|
|
int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
|
|
{
|
|
sel <<= ffs(rdev->desc->vsel_mask) - 1;
|
|
|
|
return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
|
|
rdev->desc->vsel_mask, sel);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
|
|
|
|
/**
|
|
* regulator_map_voltage_iterate - map_voltage() based on list_voltage()
|
|
*
|
|
* @rdev: Regulator to operate on
|
|
* @min_uV: Lower bound for voltage
|
|
* @max_uV: Upper bound for voltage
|
|
*
|
|
* Drivers implementing set_voltage_sel() and list_voltage() can use
|
|
* this as their map_voltage() operation. It will find a suitable
|
|
* voltage by calling list_voltage() until it gets something in bounds
|
|
* for the requested voltages.
|
|
*/
|
|
int regulator_map_voltage_iterate(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV)
|
|
{
|
|
int best_val = INT_MAX;
|
|
int selector = 0;
|
|
int i, ret;
|
|
|
|
/* Find the smallest voltage that falls within the specified
|
|
* range.
|
|
*/
|
|
for (i = 0; i < rdev->desc->n_voltages; i++) {
|
|
ret = rdev->desc->ops->list_voltage(rdev, i);
|
|
if (ret < 0)
|
|
continue;
|
|
|
|
if (ret < best_val && ret >= min_uV && ret <= max_uV) {
|
|
best_val = ret;
|
|
selector = i;
|
|
}
|
|
}
|
|
|
|
if (best_val != INT_MAX)
|
|
return selector;
|
|
else
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
|
|
|
|
/**
|
|
* regulator_map_voltage_linear - map_voltage() for simple linear mappings
|
|
*
|
|
* @rdev: Regulator to operate on
|
|
* @min_uV: Lower bound for voltage
|
|
* @max_uV: Upper bound for voltage
|
|
*
|
|
* Drivers providing min_uV and uV_step in their regulator_desc can
|
|
* use this as their map_voltage() operation.
|
|
*/
|
|
int regulator_map_voltage_linear(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV)
|
|
{
|
|
int ret, voltage;
|
|
|
|
/* Allow uV_step to be 0 for fixed voltage */
|
|
if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
|
|
if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
|
|
return 0;
|
|
else
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!rdev->desc->uV_step) {
|
|
BUG_ON(!rdev->desc->uV_step);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (min_uV < rdev->desc->min_uV)
|
|
min_uV = rdev->desc->min_uV;
|
|
|
|
ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Map back into a voltage to verify we're still in bounds */
|
|
voltage = rdev->desc->ops->list_voltage(rdev, ret);
|
|
if (voltage < min_uV || voltage > max_uV)
|
|
return -EINVAL;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
|
|
|
|
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV)
|
|
{
|
|
int ret;
|
|
int delay = 0;
|
|
int best_val = 0;
|
|
unsigned int selector;
|
|
int old_selector = -1;
|
|
|
|
trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
|
|
|
|
min_uV += rdev->constraints->uV_offset;
|
|
max_uV += rdev->constraints->uV_offset;
|
|
|
|
/*
|
|
* If we can't obtain the old selector there is not enough
|
|
* info to call set_voltage_time_sel().
|
|
*/
|
|
if (_regulator_is_enabled(rdev) &&
|
|
rdev->desc->ops->set_voltage_time_sel &&
|
|
rdev->desc->ops->get_voltage_sel) {
|
|
old_selector = rdev->desc->ops->get_voltage_sel(rdev);
|
|
if (old_selector < 0)
|
|
return old_selector;
|
|
}
|
|
|
|
if (rdev->desc->ops->set_voltage) {
|
|
ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
|
|
&selector);
|
|
|
|
if (ret >= 0) {
|
|
if (rdev->desc->ops->list_voltage)
|
|
best_val = rdev->desc->ops->list_voltage(rdev,
|
|
selector);
|
|
else
|
|
best_val = _regulator_get_voltage(rdev);
|
|
}
|
|
|
|
} else if (rdev->desc->ops->set_voltage_sel) {
|
|
if (rdev->desc->ops->map_voltage) {
|
|
ret = rdev->desc->ops->map_voltage(rdev, min_uV,
|
|
max_uV);
|
|
} else {
|
|
if (rdev->desc->ops->list_voltage ==
|
|
regulator_list_voltage_linear)
|
|
ret = regulator_map_voltage_linear(rdev,
|
|
min_uV, max_uV);
|
|
else
|
|
ret = regulator_map_voltage_iterate(rdev,
|
|
min_uV, max_uV);
|
|
}
|
|
|
|
if (ret >= 0) {
|
|
best_val = rdev->desc->ops->list_voltage(rdev, ret);
|
|
if (min_uV <= best_val && max_uV >= best_val) {
|
|
selector = ret;
|
|
ret = rdev->desc->ops->set_voltage_sel(rdev,
|
|
ret);
|
|
} else {
|
|
ret = -EINVAL;
|
|
}
|
|
}
|
|
} else {
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/* Call set_voltage_time_sel if successfully obtained old_selector */
|
|
if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
|
|
rdev->desc->ops->set_voltage_time_sel) {
|
|
|
|
delay = rdev->desc->ops->set_voltage_time_sel(rdev,
|
|
old_selector, selector);
|
|
if (delay < 0) {
|
|
rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
|
|
delay);
|
|
delay = 0;
|
|
}
|
|
|
|
/* Insert any necessary delays */
|
|
if (delay >= 1000) {
|
|
mdelay(delay / 1000);
|
|
udelay(delay % 1000);
|
|
} else if (delay) {
|
|
udelay(delay);
|
|
}
|
|
}
|
|
|
|
if (ret == 0 && best_val >= 0) {
|
|
unsigned long data = best_val;
|
|
|
|
_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
|
|
(void *)data);
|
|
}
|
|
|
|
trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* regulator_set_voltage - set regulator output voltage
|
|
* @regulator: regulator source
|
|
* @min_uV: Minimum required voltage in uV
|
|
* @max_uV: Maximum acceptable voltage in uV
|
|
*
|
|
* Sets a voltage regulator to the desired output voltage. This can be set
|
|
* during any regulator state. IOW, regulator can be disabled or enabled.
|
|
*
|
|
* If the regulator is enabled then the voltage will change to the new value
|
|
* immediately otherwise if the regulator is disabled the regulator will
|
|
* output at the new voltage when enabled.
|
|
*
|
|
* NOTE: If the regulator is shared between several devices then the lowest
|
|
* request voltage that meets the system constraints will be used.
|
|
* Regulator system constraints must be set for this regulator before
|
|
* calling this function otherwise this call will fail.
|
|
*/
|
|
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
/* If we're setting the same range as last time the change
|
|
* should be a noop (some cpufreq implementations use the same
|
|
* voltage for multiple frequencies, for example).
|
|
*/
|
|
if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
|
|
goto out;
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->set_voltage &&
|
|
!rdev->desc->ops->set_voltage_sel) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* constraints check */
|
|
ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
|
|
if (ret < 0)
|
|
goto out;
|
|
regulator->min_uV = min_uV;
|
|
regulator->max_uV = max_uV;
|
|
|
|
ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
|
|
|
|
out:
|
|
mutex_unlock(&rdev->mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_voltage);
|
|
|
|
/**
|
|
* regulator_set_voltage_time - get raise/fall time
|
|
* @regulator: regulator source
|
|
* @old_uV: starting voltage in microvolts
|
|
* @new_uV: target voltage in microvolts
|
|
*
|
|
* Provided with the starting and ending voltage, this function attempts to
|
|
* calculate the time in microseconds required to rise or fall to this new
|
|
* voltage.
|
|
*/
|
|
int regulator_set_voltage_time(struct regulator *regulator,
|
|
int old_uV, int new_uV)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
struct regulator_ops *ops = rdev->desc->ops;
|
|
int old_sel = -1;
|
|
int new_sel = -1;
|
|
int voltage;
|
|
int i;
|
|
|
|
/* Currently requires operations to do this */
|
|
if (!ops->list_voltage || !ops->set_voltage_time_sel
|
|
|| !rdev->desc->n_voltages)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < rdev->desc->n_voltages; i++) {
|
|
/* We only look for exact voltage matches here */
|
|
voltage = regulator_list_voltage(regulator, i);
|
|
if (voltage < 0)
|
|
return -EINVAL;
|
|
if (voltage == 0)
|
|
continue;
|
|
if (voltage == old_uV)
|
|
old_sel = i;
|
|
if (voltage == new_uV)
|
|
new_sel = i;
|
|
}
|
|
|
|
if (old_sel < 0 || new_sel < 0)
|
|
return -EINVAL;
|
|
|
|
return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
|
|
|
|
/**
|
|
* regulator_set_voltage_time_sel - get raise/fall time
|
|
* @rdev: regulator source device
|
|
* @old_selector: selector for starting voltage
|
|
* @new_selector: selector for target voltage
|
|
*
|
|
* Provided with the starting and target voltage selectors, this function
|
|
* returns time in microseconds required to rise or fall to this new voltage
|
|
*
|
|
* Drivers providing ramp_delay in regulation_constraints can use this as their
|
|
* set_voltage_time_sel() operation.
|
|
*/
|
|
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
|
|
unsigned int old_selector,
|
|
unsigned int new_selector)
|
|
{
|
|
unsigned int ramp_delay = 0;
|
|
int old_volt, new_volt;
|
|
|
|
if (rdev->constraints->ramp_delay)
|
|
ramp_delay = rdev->constraints->ramp_delay;
|
|
else if (rdev->desc->ramp_delay)
|
|
ramp_delay = rdev->desc->ramp_delay;
|
|
|
|
if (ramp_delay == 0) {
|
|
rdev_warn(rdev, "ramp_delay not set\n");
|
|
return 0;
|
|
}
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->list_voltage)
|
|
return -EINVAL;
|
|
|
|
old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
|
|
new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
|
|
|
|
return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
|
|
|
|
/**
|
|
* regulator_sync_voltage - re-apply last regulator output voltage
|
|
* @regulator: regulator source
|
|
*
|
|
* Re-apply the last configured voltage. This is intended to be used
|
|
* where some external control source the consumer is cooperating with
|
|
* has caused the configured voltage to change.
|
|
*/
|
|
int regulator_sync_voltage(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret, min_uV, max_uV;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
if (!rdev->desc->ops->set_voltage &&
|
|
!rdev->desc->ops->set_voltage_sel) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* This is only going to work if we've had a voltage configured. */
|
|
if (!regulator->min_uV && !regulator->max_uV) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
min_uV = regulator->min_uV;
|
|
max_uV = regulator->max_uV;
|
|
|
|
/* This should be a paranoia check... */
|
|
ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
|
|
|
|
out:
|
|
mutex_unlock(&rdev->mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_sync_voltage);
|
|
|
|
static int _regulator_get_voltage(struct regulator_dev *rdev)
|
|
{
|
|
int sel, ret;
|
|
|
|
if (rdev->desc->ops->get_voltage_sel) {
|
|
sel = rdev->desc->ops->get_voltage_sel(rdev);
|
|
if (sel < 0)
|
|
return sel;
|
|
ret = rdev->desc->ops->list_voltage(rdev, sel);
|
|
} else if (rdev->desc->ops->get_voltage) {
|
|
ret = rdev->desc->ops->get_voltage(rdev);
|
|
} else if (rdev->desc->ops->list_voltage) {
|
|
ret = rdev->desc->ops->list_voltage(rdev, 0);
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
return ret - rdev->constraints->uV_offset;
|
|
}
|
|
|
|
/**
|
|
* regulator_get_voltage - get regulator output voltage
|
|
* @regulator: regulator source
|
|
*
|
|
* This returns the current regulator voltage in uV.
|
|
*
|
|
* NOTE: If the regulator is disabled it will return the voltage value. This
|
|
* function should not be used to determine regulator state.
|
|
*/
|
|
int regulator_get_voltage(struct regulator *regulator)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(®ulator->rdev->mutex);
|
|
|
|
ret = _regulator_get_voltage(regulator->rdev);
|
|
|
|
mutex_unlock(®ulator->rdev->mutex);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_voltage);
|
|
|
|
/**
|
|
* regulator_set_current_limit - set regulator output current limit
|
|
* @regulator: regulator source
|
|
* @min_uA: Minimuum supported current in uA
|
|
* @max_uA: Maximum supported current in uA
|
|
*
|
|
* Sets current sink to the desired output current. This can be set during
|
|
* any regulator state. IOW, regulator can be disabled or enabled.
|
|
*
|
|
* If the regulator is enabled then the current will change to the new value
|
|
* immediately otherwise if the regulator is disabled the regulator will
|
|
* output at the new current when enabled.
|
|
*
|
|
* NOTE: Regulator system constraints must be set for this regulator before
|
|
* calling this function otherwise this call will fail.
|
|
*/
|
|
int regulator_set_current_limit(struct regulator *regulator,
|
|
int min_uA, int max_uA)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->set_current_limit) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* constraints check */
|
|
ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
|
|
out:
|
|
mutex_unlock(&rdev->mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_current_limit);
|
|
|
|
static int _regulator_get_current_limit(struct regulator_dev *rdev)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->get_current_limit) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = rdev->desc->ops->get_current_limit(rdev);
|
|
out:
|
|
mutex_unlock(&rdev->mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* regulator_get_current_limit - get regulator output current
|
|
* @regulator: regulator source
|
|
*
|
|
* This returns the current supplied by the specified current sink in uA.
|
|
*
|
|
* NOTE: If the regulator is disabled it will return the current value. This
|
|
* function should not be used to determine regulator state.
|
|
*/
|
|
int regulator_get_current_limit(struct regulator *regulator)
|
|
{
|
|
return _regulator_get_current_limit(regulator->rdev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_current_limit);
|
|
|
|
/**
|
|
* regulator_set_mode - set regulator operating mode
|
|
* @regulator: regulator source
|
|
* @mode: operating mode - one of the REGULATOR_MODE constants
|
|
*
|
|
* Set regulator operating mode to increase regulator efficiency or improve
|
|
* regulation performance.
|
|
*
|
|
* NOTE: Regulator system constraints must be set for this regulator before
|
|
* calling this function otherwise this call will fail.
|
|
*/
|
|
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret;
|
|
int regulator_curr_mode;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->set_mode) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* return if the same mode is requested */
|
|
if (rdev->desc->ops->get_mode) {
|
|
regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
|
|
if (regulator_curr_mode == mode) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* constraints check */
|
|
ret = regulator_mode_constrain(rdev, &mode);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = rdev->desc->ops->set_mode(rdev, mode);
|
|
out:
|
|
mutex_unlock(&rdev->mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_mode);
|
|
|
|
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->get_mode) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = rdev->desc->ops->get_mode(rdev);
|
|
out:
|
|
mutex_unlock(&rdev->mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* regulator_get_mode - get regulator operating mode
|
|
* @regulator: regulator source
|
|
*
|
|
* Get the current regulator operating mode.
|
|
*/
|
|
unsigned int regulator_get_mode(struct regulator *regulator)
|
|
{
|
|
return _regulator_get_mode(regulator->rdev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_mode);
|
|
|
|
/**
|
|
* regulator_set_optimum_mode - set regulator optimum operating mode
|
|
* @regulator: regulator source
|
|
* @uA_load: load current
|
|
*
|
|
* Notifies the regulator core of a new device load. This is then used by
|
|
* DRMS (if enabled by constraints) to set the most efficient regulator
|
|
* operating mode for the new regulator loading.
|
|
*
|
|
* Consumer devices notify their supply regulator of the maximum power
|
|
* they will require (can be taken from device datasheet in the power
|
|
* consumption tables) when they change operational status and hence power
|
|
* state. Examples of operational state changes that can affect power
|
|
* consumption are :-
|
|
*
|
|
* o Device is opened / closed.
|
|
* o Device I/O is about to begin or has just finished.
|
|
* o Device is idling in between work.
|
|
*
|
|
* This information is also exported via sysfs to userspace.
|
|
*
|
|
* DRMS will sum the total requested load on the regulator and change
|
|
* to the most efficient operating mode if platform constraints allow.
|
|
*
|
|
* Returns the new regulator mode or error.
|
|
*/
|
|
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
struct regulator *consumer;
|
|
int ret, output_uV, input_uV = 0, total_uA_load = 0;
|
|
unsigned int mode;
|
|
|
|
if (rdev->supply)
|
|
input_uV = regulator_get_voltage(rdev->supply);
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
/*
|
|
* first check to see if we can set modes at all, otherwise just
|
|
* tell the consumer everything is OK.
|
|
*/
|
|
regulator->uA_load = uA_load;
|
|
ret = regulator_check_drms(rdev);
|
|
if (ret < 0) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (!rdev->desc->ops->get_optimum_mode)
|
|
goto out;
|
|
|
|
/*
|
|
* we can actually do this so any errors are indicators of
|
|
* potential real failure.
|
|
*/
|
|
ret = -EINVAL;
|
|
|
|
if (!rdev->desc->ops->set_mode)
|
|
goto out;
|
|
|
|
/* get output voltage */
|
|
output_uV = _regulator_get_voltage(rdev);
|
|
if (output_uV <= 0) {
|
|
rdev_err(rdev, "invalid output voltage found\n");
|
|
goto out;
|
|
}
|
|
|
|
/* No supply? Use constraint voltage */
|
|
if (input_uV <= 0)
|
|
input_uV = rdev->constraints->input_uV;
|
|
if (input_uV <= 0) {
|
|
rdev_err(rdev, "invalid input voltage found\n");
|
|
goto out;
|
|
}
|
|
|
|
/* calc total requested load for this regulator */
|
|
list_for_each_entry(consumer, &rdev->consumer_list, list)
|
|
total_uA_load += consumer->uA_load;
|
|
|
|
mode = rdev->desc->ops->get_optimum_mode(rdev,
|
|
input_uV, output_uV,
|
|
total_uA_load);
|
|
ret = regulator_mode_constrain(rdev, &mode);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
|
|
total_uA_load, input_uV, output_uV);
|
|
goto out;
|
|
}
|
|
|
|
ret = rdev->desc->ops->set_mode(rdev, mode);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set optimum mode %x\n", mode);
|
|
goto out;
|
|
}
|
|
ret = mode;
|
|
out:
|
|
mutex_unlock(&rdev->mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
|
|
|
|
/**
|
|
* regulator_set_bypass_regmap - Default set_bypass() using regmap
|
|
*
|
|
* @rdev: device to operate on.
|
|
* @enable: state to set.
|
|
*/
|
|
int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
|
|
{
|
|
unsigned int val;
|
|
|
|
if (enable)
|
|
val = rdev->desc->bypass_mask;
|
|
else
|
|
val = 0;
|
|
|
|
return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
|
|
rdev->desc->bypass_mask, val);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
|
|
|
|
/**
|
|
* regulator_get_bypass_regmap - Default get_bypass() using regmap
|
|
*
|
|
* @rdev: device to operate on.
|
|
* @enable: current state.
|
|
*/
|
|
int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
|
|
{
|
|
unsigned int val;
|
|
int ret;
|
|
|
|
ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
*enable = val & rdev->desc->bypass_mask;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
|
|
|
|
/**
|
|
* regulator_allow_bypass - allow the regulator to go into bypass mode
|
|
*
|
|
* @regulator: Regulator to configure
|
|
* @allow: enable or disable bypass mode
|
|
*
|
|
* Allow the regulator to go into bypass mode if all other consumers
|
|
* for the regulator also enable bypass mode and the machine
|
|
* constraints allow this. Bypass mode means that the regulator is
|
|
* simply passing the input directly to the output with no regulation.
|
|
*/
|
|
int regulator_allow_bypass(struct regulator *regulator, bool enable)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret = 0;
|
|
|
|
if (!rdev->desc->ops->set_bypass)
|
|
return 0;
|
|
|
|
if (rdev->constraints &&
|
|
!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
|
|
return 0;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
if (enable && !regulator->bypass) {
|
|
rdev->bypass_count++;
|
|
|
|
if (rdev->bypass_count == rdev->open_count) {
|
|
ret = rdev->desc->ops->set_bypass(rdev, enable);
|
|
if (ret != 0)
|
|
rdev->bypass_count--;
|
|
}
|
|
|
|
} else if (!enable && regulator->bypass) {
|
|
rdev->bypass_count--;
|
|
|
|
if (rdev->bypass_count != rdev->open_count) {
|
|
ret = rdev->desc->ops->set_bypass(rdev, enable);
|
|
if (ret != 0)
|
|
rdev->bypass_count++;
|
|
}
|
|
}
|
|
|
|
if (ret == 0)
|
|
regulator->bypass = enable;
|
|
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_allow_bypass);
|
|
|
|
/**
|
|
* regulator_register_notifier - register regulator event notifier
|
|
* @regulator: regulator source
|
|
* @nb: notifier block
|
|
*
|
|
* Register notifier block to receive regulator events.
|
|
*/
|
|
int regulator_register_notifier(struct regulator *regulator,
|
|
struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_register(®ulator->rdev->notifier,
|
|
nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_register_notifier);
|
|
|
|
/**
|
|
* regulator_unregister_notifier - unregister regulator event notifier
|
|
* @regulator: regulator source
|
|
* @nb: notifier block
|
|
*
|
|
* Unregister regulator event notifier block.
|
|
*/
|
|
int regulator_unregister_notifier(struct regulator *regulator,
|
|
struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
|
|
nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
|
|
|
|
/* notify regulator consumers and downstream regulator consumers.
|
|
* Note mutex must be held by caller.
|
|
*/
|
|
static void _notifier_call_chain(struct regulator_dev *rdev,
|
|
unsigned long event, void *data)
|
|
{
|
|
/* call rdev chain first */
|
|
blocking_notifier_call_chain(&rdev->notifier, event, data);
|
|
}
|
|
|
|
/**
|
|
* regulator_bulk_get - get multiple regulator consumers
|
|
*
|
|
* @dev: Device to supply
|
|
* @num_consumers: Number of consumers to register
|
|
* @consumers: Configuration of consumers; clients are stored here.
|
|
*
|
|
* @return 0 on success, an errno on failure.
|
|
*
|
|
* This helper function allows drivers to get several regulator
|
|
* consumers in one operation. If any of the regulators cannot be
|
|
* acquired then any regulators that were allocated will be freed
|
|
* before returning to the caller.
|
|
*/
|
|
int regulator_bulk_get(struct device *dev, int num_consumers,
|
|
struct regulator_bulk_data *consumers)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < num_consumers; i++)
|
|
consumers[i].consumer = NULL;
|
|
|
|
for (i = 0; i < num_consumers; i++) {
|
|
consumers[i].consumer = regulator_get(dev,
|
|
consumers[i].supply);
|
|
if (IS_ERR(consumers[i].consumer)) {
|
|
ret = PTR_ERR(consumers[i].consumer);
|
|
dev_err(dev, "Failed to get supply '%s': %d\n",
|
|
consumers[i].supply, ret);
|
|
consumers[i].consumer = NULL;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
while (--i >= 0)
|
|
regulator_put(consumers[i].consumer);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_get);
|
|
|
|
/**
|
|
* devm_regulator_bulk_get - managed get multiple regulator consumers
|
|
*
|
|
* @dev: Device to supply
|
|
* @num_consumers: Number of consumers to register
|
|
* @consumers: Configuration of consumers; clients are stored here.
|
|
*
|
|
* @return 0 on success, an errno on failure.
|
|
*
|
|
* This helper function allows drivers to get several regulator
|
|
* consumers in one operation with management, the regulators will
|
|
* automatically be freed when the device is unbound. If any of the
|
|
* regulators cannot be acquired then any regulators that were
|
|
* allocated will be freed before returning to the caller.
|
|
*/
|
|
int devm_regulator_bulk_get(struct device *dev, int num_consumers,
|
|
struct regulator_bulk_data *consumers)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < num_consumers; i++)
|
|
consumers[i].consumer = NULL;
|
|
|
|
for (i = 0; i < num_consumers; i++) {
|
|
consumers[i].consumer = devm_regulator_get(dev,
|
|
consumers[i].supply);
|
|
if (IS_ERR(consumers[i].consumer)) {
|
|
ret = PTR_ERR(consumers[i].consumer);
|
|
dev_err(dev, "Failed to get supply '%s': %d\n",
|
|
consumers[i].supply, ret);
|
|
consumers[i].consumer = NULL;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
for (i = 0; i < num_consumers && consumers[i].consumer; i++)
|
|
devm_regulator_put(consumers[i].consumer);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
|
|
|
|
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
|
|
{
|
|
struct regulator_bulk_data *bulk = data;
|
|
|
|
bulk->ret = regulator_enable(bulk->consumer);
|
|
}
|
|
|
|
/**
|
|
* regulator_bulk_enable - enable multiple regulator consumers
|
|
*
|
|
* @num_consumers: Number of consumers
|
|
* @consumers: Consumer data; clients are stored here.
|
|
* @return 0 on success, an errno on failure
|
|
*
|
|
* This convenience API allows consumers to enable multiple regulator
|
|
* clients in a single API call. If any consumers cannot be enabled
|
|
* then any others that were enabled will be disabled again prior to
|
|
* return.
|
|
*/
|
|
int regulator_bulk_enable(int num_consumers,
|
|
struct regulator_bulk_data *consumers)
|
|
{
|
|
ASYNC_DOMAIN_EXCLUSIVE(async_domain);
|
|
int i;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < num_consumers; i++) {
|
|
if (consumers[i].consumer->always_on)
|
|
consumers[i].ret = 0;
|
|
else
|
|
async_schedule_domain(regulator_bulk_enable_async,
|
|
&consumers[i], &async_domain);
|
|
}
|
|
|
|
async_synchronize_full_domain(&async_domain);
|
|
|
|
/* If any consumer failed we need to unwind any that succeeded */
|
|
for (i = 0; i < num_consumers; i++) {
|
|
if (consumers[i].ret != 0) {
|
|
ret = consumers[i].ret;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
|
|
while (--i >= 0)
|
|
regulator_disable(consumers[i].consumer);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_enable);
|
|
|
|
/**
|
|
* regulator_bulk_disable - disable multiple regulator consumers
|
|
*
|
|
* @num_consumers: Number of consumers
|
|
* @consumers: Consumer data; clients are stored here.
|
|
* @return 0 on success, an errno on failure
|
|
*
|
|
* This convenience API allows consumers to disable multiple regulator
|
|
* clients in a single API call. If any consumers cannot be disabled
|
|
* then any others that were disabled will be enabled again prior to
|
|
* return.
|
|
*/
|
|
int regulator_bulk_disable(int num_consumers,
|
|
struct regulator_bulk_data *consumers)
|
|
{
|
|
int i;
|
|
int ret, r;
|
|
|
|
for (i = num_consumers - 1; i >= 0; --i) {
|
|
ret = regulator_disable(consumers[i].consumer);
|
|
if (ret != 0)
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
|
|
for (++i; i < num_consumers; ++i) {
|
|
r = regulator_enable(consumers[i].consumer);
|
|
if (r != 0)
|
|
pr_err("Failed to reename %s: %d\n",
|
|
consumers[i].supply, r);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_disable);
|
|
|
|
/**
|
|
* regulator_bulk_force_disable - force disable multiple regulator consumers
|
|
*
|
|
* @num_consumers: Number of consumers
|
|
* @consumers: Consumer data; clients are stored here.
|
|
* @return 0 on success, an errno on failure
|
|
*
|
|
* This convenience API allows consumers to forcibly disable multiple regulator
|
|
* clients in a single API call.
|
|
* NOTE: This should be used for situations when device damage will
|
|
* likely occur if the regulators are not disabled (e.g. over temp).
|
|
* Although regulator_force_disable function call for some consumers can
|
|
* return error numbers, the function is called for all consumers.
|
|
*/
|
|
int regulator_bulk_force_disable(int num_consumers,
|
|
struct regulator_bulk_data *consumers)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < num_consumers; i++)
|
|
consumers[i].ret =
|
|
regulator_force_disable(consumers[i].consumer);
|
|
|
|
for (i = 0; i < num_consumers; i++) {
|
|
if (consumers[i].ret != 0) {
|
|
ret = consumers[i].ret;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
|
|
|
|
/**
|
|
* regulator_bulk_free - free multiple regulator consumers
|
|
*
|
|
* @num_consumers: Number of consumers
|
|
* @consumers: Consumer data; clients are stored here.
|
|
*
|
|
* This convenience API allows consumers to free multiple regulator
|
|
* clients in a single API call.
|
|
*/
|
|
void regulator_bulk_free(int num_consumers,
|
|
struct regulator_bulk_data *consumers)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_consumers; i++) {
|
|
regulator_put(consumers[i].consumer);
|
|
consumers[i].consumer = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_free);
|
|
|
|
/**
|
|
* regulator_notifier_call_chain - call regulator event notifier
|
|
* @rdev: regulator source
|
|
* @event: notifier block
|
|
* @data: callback-specific data.
|
|
*
|
|
* Called by regulator drivers to notify clients a regulator event has
|
|
* occurred. We also notify regulator clients downstream.
|
|
* Note lock must be held by caller.
|
|
*/
|
|
int regulator_notifier_call_chain(struct regulator_dev *rdev,
|
|
unsigned long event, void *data)
|
|
{
|
|
_notifier_call_chain(rdev, event, data);
|
|
return NOTIFY_DONE;
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
|
|
|
|
/**
|
|
* regulator_mode_to_status - convert a regulator mode into a status
|
|
*
|
|
* @mode: Mode to convert
|
|
*
|
|
* Convert a regulator mode into a status.
|
|
*/
|
|
int regulator_mode_to_status(unsigned int mode)
|
|
{
|
|
switch (mode) {
|
|
case REGULATOR_MODE_FAST:
|
|
return REGULATOR_STATUS_FAST;
|
|
case REGULATOR_MODE_NORMAL:
|
|
return REGULATOR_STATUS_NORMAL;
|
|
case REGULATOR_MODE_IDLE:
|
|
return REGULATOR_STATUS_IDLE;
|
|
case REGULATOR_MODE_STANDBY:
|
|
return REGULATOR_STATUS_STANDBY;
|
|
default:
|
|
return REGULATOR_STATUS_UNDEFINED;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_mode_to_status);
|
|
|
|
/*
|
|
* To avoid cluttering sysfs (and memory) with useless state, only
|
|
* create attributes that can be meaningfully displayed.
|
|
*/
|
|
static int add_regulator_attributes(struct regulator_dev *rdev)
|
|
{
|
|
struct device *dev = &rdev->dev;
|
|
struct regulator_ops *ops = rdev->desc->ops;
|
|
int status = 0;
|
|
|
|
/* some attributes need specific methods to be displayed */
|
|
if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
|
|
(ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
|
|
(ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
|
|
status = device_create_file(dev, &dev_attr_microvolts);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
if (ops->get_current_limit) {
|
|
status = device_create_file(dev, &dev_attr_microamps);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
if (ops->get_mode) {
|
|
status = device_create_file(dev, &dev_attr_opmode);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
if (ops->is_enabled) {
|
|
status = device_create_file(dev, &dev_attr_state);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
if (ops->get_status) {
|
|
status = device_create_file(dev, &dev_attr_status);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
if (ops->get_bypass) {
|
|
status = device_create_file(dev, &dev_attr_bypass);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
|
|
/* some attributes are type-specific */
|
|
if (rdev->desc->type == REGULATOR_CURRENT) {
|
|
status = device_create_file(dev, &dev_attr_requested_microamps);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
|
|
/* all the other attributes exist to support constraints;
|
|
* don't show them if there are no constraints, or if the
|
|
* relevant supporting methods are missing.
|
|
*/
|
|
if (!rdev->constraints)
|
|
return status;
|
|
|
|
/* constraints need specific supporting methods */
|
|
if (ops->set_voltage || ops->set_voltage_sel) {
|
|
status = device_create_file(dev, &dev_attr_min_microvolts);
|
|
if (status < 0)
|
|
return status;
|
|
status = device_create_file(dev, &dev_attr_max_microvolts);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
if (ops->set_current_limit) {
|
|
status = device_create_file(dev, &dev_attr_min_microamps);
|
|
if (status < 0)
|
|
return status;
|
|
status = device_create_file(dev, &dev_attr_max_microamps);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
|
|
status = device_create_file(dev, &dev_attr_suspend_standby_state);
|
|
if (status < 0)
|
|
return status;
|
|
status = device_create_file(dev, &dev_attr_suspend_mem_state);
|
|
if (status < 0)
|
|
return status;
|
|
status = device_create_file(dev, &dev_attr_suspend_disk_state);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
if (ops->set_suspend_voltage) {
|
|
status = device_create_file(dev,
|
|
&dev_attr_suspend_standby_microvolts);
|
|
if (status < 0)
|
|
return status;
|
|
status = device_create_file(dev,
|
|
&dev_attr_suspend_mem_microvolts);
|
|
if (status < 0)
|
|
return status;
|
|
status = device_create_file(dev,
|
|
&dev_attr_suspend_disk_microvolts);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
|
|
if (ops->set_suspend_mode) {
|
|
status = device_create_file(dev,
|
|
&dev_attr_suspend_standby_mode);
|
|
if (status < 0)
|
|
return status;
|
|
status = device_create_file(dev,
|
|
&dev_attr_suspend_mem_mode);
|
|
if (status < 0)
|
|
return status;
|
|
status = device_create_file(dev,
|
|
&dev_attr_suspend_disk_mode);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static void rdev_init_debugfs(struct regulator_dev *rdev)
|
|
{
|
|
rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
|
|
if (!rdev->debugfs) {
|
|
rdev_warn(rdev, "Failed to create debugfs directory\n");
|
|
return;
|
|
}
|
|
|
|
debugfs_create_u32("use_count", 0444, rdev->debugfs,
|
|
&rdev->use_count);
|
|
debugfs_create_u32("open_count", 0444, rdev->debugfs,
|
|
&rdev->open_count);
|
|
debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
|
|
&rdev->bypass_count);
|
|
}
|
|
|
|
/**
|
|
* regulator_register - register regulator
|
|
* @regulator_desc: regulator to register
|
|
* @config: runtime configuration for regulator
|
|
*
|
|
* Called by regulator drivers to register a regulator.
|
|
* Returns 0 on success.
|
|
*/
|
|
struct regulator_dev *
|
|
regulator_register(const struct regulator_desc *regulator_desc,
|
|
const struct regulator_config *config)
|
|
{
|
|
const struct regulation_constraints *constraints = NULL;
|
|
const struct regulator_init_data *init_data;
|
|
static atomic_t regulator_no = ATOMIC_INIT(0);
|
|
struct regulator_dev *rdev;
|
|
struct device *dev;
|
|
int ret, i;
|
|
const char *supply = NULL;
|
|
|
|
if (regulator_desc == NULL || config == NULL)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
dev = config->dev;
|
|
WARN_ON(!dev);
|
|
|
|
if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (regulator_desc->type != REGULATOR_VOLTAGE &&
|
|
regulator_desc->type != REGULATOR_CURRENT)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* Only one of each should be implemented */
|
|
WARN_ON(regulator_desc->ops->get_voltage &&
|
|
regulator_desc->ops->get_voltage_sel);
|
|
WARN_ON(regulator_desc->ops->set_voltage &&
|
|
regulator_desc->ops->set_voltage_sel);
|
|
|
|
/* If we're using selectors we must implement list_voltage. */
|
|
if (regulator_desc->ops->get_voltage_sel &&
|
|
!regulator_desc->ops->list_voltage) {
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
if (regulator_desc->ops->set_voltage_sel &&
|
|
!regulator_desc->ops->list_voltage) {
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
init_data = config->init_data;
|
|
|
|
rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
|
|
if (rdev == NULL)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
|
|
mutex_init(&rdev->mutex);
|
|
rdev->reg_data = config->driver_data;
|
|
rdev->owner = regulator_desc->owner;
|
|
rdev->desc = regulator_desc;
|
|
if (config->regmap)
|
|
rdev->regmap = config->regmap;
|
|
else if (dev_get_regmap(dev, NULL))
|
|
rdev->regmap = dev_get_regmap(dev, NULL);
|
|
else if (dev->parent)
|
|
rdev->regmap = dev_get_regmap(dev->parent, NULL);
|
|
INIT_LIST_HEAD(&rdev->consumer_list);
|
|
INIT_LIST_HEAD(&rdev->list);
|
|
BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
|
|
INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
|
|
|
|
/* preform any regulator specific init */
|
|
if (init_data && init_data->regulator_init) {
|
|
ret = init_data->regulator_init(rdev->reg_data);
|
|
if (ret < 0)
|
|
goto clean;
|
|
}
|
|
|
|
/* register with sysfs */
|
|
rdev->dev.class = ®ulator_class;
|
|
rdev->dev.of_node = config->of_node;
|
|
rdev->dev.parent = dev;
|
|
dev_set_name(&rdev->dev, "regulator.%d",
|
|
atomic_inc_return(®ulator_no) - 1);
|
|
ret = device_register(&rdev->dev);
|
|
if (ret != 0) {
|
|
put_device(&rdev->dev);
|
|
goto clean;
|
|
}
|
|
|
|
dev_set_drvdata(&rdev->dev, rdev);
|
|
|
|
if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
|
|
ret = gpio_request_one(config->ena_gpio,
|
|
GPIOF_DIR_OUT | config->ena_gpio_flags,
|
|
rdev_get_name(rdev));
|
|
if (ret != 0) {
|
|
rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
|
|
config->ena_gpio, ret);
|
|
goto clean;
|
|
}
|
|
|
|
rdev->ena_gpio = config->ena_gpio;
|
|
rdev->ena_gpio_invert = config->ena_gpio_invert;
|
|
|
|
if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
|
|
rdev->ena_gpio_state = 1;
|
|
|
|
if (rdev->ena_gpio_invert)
|
|
rdev->ena_gpio_state = !rdev->ena_gpio_state;
|
|
}
|
|
|
|
/* set regulator constraints */
|
|
if (init_data)
|
|
constraints = &init_data->constraints;
|
|
|
|
ret = set_machine_constraints(rdev, constraints);
|
|
if (ret < 0)
|
|
goto scrub;
|
|
|
|
/* add attributes supported by this regulator */
|
|
ret = add_regulator_attributes(rdev);
|
|
if (ret < 0)
|
|
goto scrub;
|
|
|
|
if (init_data && init_data->supply_regulator)
|
|
supply = init_data->supply_regulator;
|
|
else if (regulator_desc->supply_name)
|
|
supply = regulator_desc->supply_name;
|
|
|
|
if (supply) {
|
|
struct regulator_dev *r;
|
|
|
|
r = regulator_dev_lookup(dev, supply, &ret);
|
|
|
|
if (!r) {
|
|
dev_err(dev, "Failed to find supply %s\n", supply);
|
|
ret = -EPROBE_DEFER;
|
|
goto scrub;
|
|
}
|
|
|
|
ret = set_supply(rdev, r);
|
|
if (ret < 0)
|
|
goto scrub;
|
|
|
|
/* Enable supply if rail is enabled */
|
|
if (_regulator_is_enabled(rdev)) {
|
|
ret = regulator_enable(rdev->supply);
|
|
if (ret < 0)
|
|
goto scrub;
|
|
}
|
|
}
|
|
|
|
/* add consumers devices */
|
|
if (init_data) {
|
|
for (i = 0; i < init_data->num_consumer_supplies; i++) {
|
|
ret = set_consumer_device_supply(rdev,
|
|
init_data->consumer_supplies[i].dev_name,
|
|
init_data->consumer_supplies[i].supply);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Failed to set supply %s\n",
|
|
init_data->consumer_supplies[i].supply);
|
|
goto unset_supplies;
|
|
}
|
|
}
|
|
}
|
|
|
|
list_add(&rdev->list, ®ulator_list);
|
|
|
|
rdev_init_debugfs(rdev);
|
|
out:
|
|
mutex_unlock(®ulator_list_mutex);
|
|
return rdev;
|
|
|
|
unset_supplies:
|
|
unset_regulator_supplies(rdev);
|
|
|
|
scrub:
|
|
if (rdev->supply)
|
|
regulator_put(rdev->supply);
|
|
if (rdev->ena_gpio)
|
|
gpio_free(rdev->ena_gpio);
|
|
kfree(rdev->constraints);
|
|
device_unregister(&rdev->dev);
|
|
/* device core frees rdev */
|
|
rdev = ERR_PTR(ret);
|
|
goto out;
|
|
|
|
clean:
|
|
kfree(rdev);
|
|
rdev = ERR_PTR(ret);
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_register);
|
|
|
|
/**
|
|
* regulator_unregister - unregister regulator
|
|
* @rdev: regulator to unregister
|
|
*
|
|
* Called by regulator drivers to unregister a regulator.
|
|
*/
|
|
void regulator_unregister(struct regulator_dev *rdev)
|
|
{
|
|
if (rdev == NULL)
|
|
return;
|
|
|
|
if (rdev->supply)
|
|
regulator_put(rdev->supply);
|
|
mutex_lock(®ulator_list_mutex);
|
|
debugfs_remove_recursive(rdev->debugfs);
|
|
flush_work(&rdev->disable_work.work);
|
|
WARN_ON(rdev->open_count);
|
|
unset_regulator_supplies(rdev);
|
|
list_del(&rdev->list);
|
|
kfree(rdev->constraints);
|
|
if (rdev->ena_gpio)
|
|
gpio_free(rdev->ena_gpio);
|
|
device_unregister(&rdev->dev);
|
|
mutex_unlock(®ulator_list_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_unregister);
|
|
|
|
/**
|
|
* regulator_suspend_prepare - prepare regulators for system wide suspend
|
|
* @state: system suspend state
|
|
*
|
|
* Configure each regulator with it's suspend operating parameters for state.
|
|
* This will usually be called by machine suspend code prior to supending.
|
|
*/
|
|
int regulator_suspend_prepare(suspend_state_t state)
|
|
{
|
|
struct regulator_dev *rdev;
|
|
int ret = 0;
|
|
|
|
/* ON is handled by regulator active state */
|
|
if (state == PM_SUSPEND_ON)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
list_for_each_entry(rdev, ®ulator_list, list) {
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
ret = suspend_prepare(rdev, state);
|
|
mutex_unlock(&rdev->mutex);
|
|
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to prepare\n");
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
mutex_unlock(®ulator_list_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
|
|
|
|
/**
|
|
* regulator_suspend_finish - resume regulators from system wide suspend
|
|
*
|
|
* Turn on regulators that might be turned off by regulator_suspend_prepare
|
|
* and that should be turned on according to the regulators properties.
|
|
*/
|
|
int regulator_suspend_finish(void)
|
|
{
|
|
struct regulator_dev *rdev;
|
|
int ret = 0, error;
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
list_for_each_entry(rdev, ®ulator_list, list) {
|
|
struct regulator_ops *ops = rdev->desc->ops;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
|
|
ops->enable) {
|
|
error = ops->enable(rdev);
|
|
if (error)
|
|
ret = error;
|
|
} else {
|
|
if (!has_full_constraints)
|
|
goto unlock;
|
|
if (!ops->disable)
|
|
goto unlock;
|
|
if (!_regulator_is_enabled(rdev))
|
|
goto unlock;
|
|
|
|
error = ops->disable(rdev);
|
|
if (error)
|
|
ret = error;
|
|
}
|
|
unlock:
|
|
mutex_unlock(&rdev->mutex);
|
|
}
|
|
mutex_unlock(®ulator_list_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_suspend_finish);
|
|
|
|
/**
|
|
* regulator_has_full_constraints - the system has fully specified constraints
|
|
*
|
|
* Calling this function will cause the regulator API to disable all
|
|
* regulators which have a zero use count and don't have an always_on
|
|
* constraint in a late_initcall.
|
|
*
|
|
* The intention is that this will become the default behaviour in a
|
|
* future kernel release so users are encouraged to use this facility
|
|
* now.
|
|
*/
|
|
void regulator_has_full_constraints(void)
|
|
{
|
|
has_full_constraints = 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
|
|
|
|
/**
|
|
* regulator_use_dummy_regulator - Provide a dummy regulator when none is found
|
|
*
|
|
* Calling this function will cause the regulator API to provide a
|
|
* dummy regulator to consumers if no physical regulator is found,
|
|
* allowing most consumers to proceed as though a regulator were
|
|
* configured. This allows systems such as those with software
|
|
* controllable regulators for the CPU core only to be brought up more
|
|
* readily.
|
|
*/
|
|
void regulator_use_dummy_regulator(void)
|
|
{
|
|
board_wants_dummy_regulator = true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
|
|
|
|
/**
|
|
* rdev_get_drvdata - get rdev regulator driver data
|
|
* @rdev: regulator
|
|
*
|
|
* Get rdev regulator driver private data. This call can be used in the
|
|
* regulator driver context.
|
|
*/
|
|
void *rdev_get_drvdata(struct regulator_dev *rdev)
|
|
{
|
|
return rdev->reg_data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rdev_get_drvdata);
|
|
|
|
/**
|
|
* regulator_get_drvdata - get regulator driver data
|
|
* @regulator: regulator
|
|
*
|
|
* Get regulator driver private data. This call can be used in the consumer
|
|
* driver context when non API regulator specific functions need to be called.
|
|
*/
|
|
void *regulator_get_drvdata(struct regulator *regulator)
|
|
{
|
|
return regulator->rdev->reg_data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_drvdata);
|
|
|
|
/**
|
|
* regulator_set_drvdata - set regulator driver data
|
|
* @regulator: regulator
|
|
* @data: data
|
|
*/
|
|
void regulator_set_drvdata(struct regulator *regulator, void *data)
|
|
{
|
|
regulator->rdev->reg_data = data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_drvdata);
|
|
|
|
/**
|
|
* regulator_get_id - get regulator ID
|
|
* @rdev: regulator
|
|
*/
|
|
int rdev_get_id(struct regulator_dev *rdev)
|
|
{
|
|
return rdev->desc->id;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rdev_get_id);
|
|
|
|
struct device *rdev_get_dev(struct regulator_dev *rdev)
|
|
{
|
|
return &rdev->dev;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rdev_get_dev);
|
|
|
|
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
|
|
{
|
|
return reg_init_data->driver_data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
|
|
ssize_t len, ret = 0;
|
|
struct regulator_map *map;
|
|
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
list_for_each_entry(map, ®ulator_map_list, list) {
|
|
len = snprintf(buf + ret, PAGE_SIZE - ret,
|
|
"%s -> %s.%s\n",
|
|
rdev_get_name(map->regulator), map->dev_name,
|
|
map->supply);
|
|
if (len >= 0)
|
|
ret += len;
|
|
if (ret > PAGE_SIZE) {
|
|
ret = PAGE_SIZE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
|
|
|
|
kfree(buf);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static const struct file_operations supply_map_fops = {
|
|
#ifdef CONFIG_DEBUG_FS
|
|
.read = supply_map_read_file,
|
|
.llseek = default_llseek,
|
|
#endif
|
|
};
|
|
|
|
static int __init regulator_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = class_register(®ulator_class);
|
|
|
|
debugfs_root = debugfs_create_dir("regulator", NULL);
|
|
if (!debugfs_root)
|
|
pr_warn("regulator: Failed to create debugfs directory\n");
|
|
|
|
debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
|
|
&supply_map_fops);
|
|
|
|
regulator_dummy_init();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* init early to allow our consumers to complete system booting */
|
|
core_initcall(regulator_init);
|
|
|
|
static int __init regulator_init_complete(void)
|
|
{
|
|
struct regulator_dev *rdev;
|
|
struct regulator_ops *ops;
|
|
struct regulation_constraints *c;
|
|
int enabled, ret;
|
|
|
|
/*
|
|
* Since DT doesn't provide an idiomatic mechanism for
|
|
* enabling full constraints and since it's much more natural
|
|
* with DT to provide them just assume that a DT enabled
|
|
* system has full constraints.
|
|
*/
|
|
if (of_have_populated_dt())
|
|
has_full_constraints = true;
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
|
|
/* If we have a full configuration then disable any regulators
|
|
* which are not in use or always_on. This will become the
|
|
* default behaviour in the future.
|
|
*/
|
|
list_for_each_entry(rdev, ®ulator_list, list) {
|
|
ops = rdev->desc->ops;
|
|
c = rdev->constraints;
|
|
|
|
if (!ops->disable || (c && c->always_on))
|
|
continue;
|
|
|
|
mutex_lock(&rdev->mutex);
|
|
|
|
if (rdev->use_count)
|
|
goto unlock;
|
|
|
|
/* If we can't read the status assume it's on. */
|
|
if (ops->is_enabled)
|
|
enabled = ops->is_enabled(rdev);
|
|
else
|
|
enabled = 1;
|
|
|
|
if (!enabled)
|
|
goto unlock;
|
|
|
|
if (has_full_constraints) {
|
|
/* We log since this may kill the system if it
|
|
* goes wrong. */
|
|
rdev_info(rdev, "disabling\n");
|
|
ret = ops->disable(rdev);
|
|
if (ret != 0) {
|
|
rdev_err(rdev, "couldn't disable: %d\n", ret);
|
|
}
|
|
} else {
|
|
/* The intention is that in future we will
|
|
* assume that full constraints are provided
|
|
* so warn even if we aren't going to do
|
|
* anything here.
|
|
*/
|
|
rdev_warn(rdev, "incomplete constraints, leaving on\n");
|
|
}
|
|
|
|
unlock:
|
|
mutex_unlock(&rdev->mutex);
|
|
}
|
|
|
|
mutex_unlock(®ulator_list_mutex);
|
|
|
|
return 0;
|
|
}
|
|
late_initcall(regulator_init_complete);
|