mirror of
https://github.com/torvalds/linux.git
synced 2024-12-24 11:51:27 +00:00
e430f34ee5
The macro 'A' used in internal BPF interpreter: #define A regs[insn->a_reg] was easily confused with the name of classic BPF register 'A', since 'A' would mean two different things depending on context. This patch is trying to clean up the naming and clarify its usage in the following way: - A and X are names of two classic BPF registers - BPF_REG_A denotes internal BPF register R0 used to map classic register A in internal BPF programs generated from classic - BPF_REG_X denotes internal BPF register R7 used to map classic register X in internal BPF programs generated from classic - internal BPF instruction format: struct sock_filter_int { __u8 code; /* opcode */ __u8 dst_reg:4; /* dest register */ __u8 src_reg:4; /* source register */ __s16 off; /* signed offset */ __s32 imm; /* signed immediate constant */ }; - BPF_X/BPF_K is 1 bit used to encode source operand of instruction In classic: BPF_X - means use register X as source operand BPF_K - means use 32-bit immediate as source operand In internal: BPF_X - means use 'src_reg' register as source operand BPF_K - means use 32-bit immediate as source operand Suggested-by: Chema Gonzalez <chema@google.com> Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Daniel Borkmann <dborkman@redhat.com> Acked-by: Chema Gonzalez <chema@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
953 lines
25 KiB
C
953 lines
25 KiB
C
/* bpf_jit_comp.c : BPF JIT compiler
|
|
*
|
|
* Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
|
|
* Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; version 2
|
|
* of the License.
|
|
*/
|
|
#include <linux/moduleloader.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/random.h>
|
|
|
|
int bpf_jit_enable __read_mostly;
|
|
|
|
/*
|
|
* assembly code in arch/x86/net/bpf_jit.S
|
|
*/
|
|
extern u8 sk_load_word[], sk_load_half[], sk_load_byte[];
|
|
extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
|
|
extern u8 sk_load_byte_positive_offset[];
|
|
extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
|
|
extern u8 sk_load_byte_negative_offset[];
|
|
|
|
static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
|
|
{
|
|
if (len == 1)
|
|
*ptr = bytes;
|
|
else if (len == 2)
|
|
*(u16 *)ptr = bytes;
|
|
else {
|
|
*(u32 *)ptr = bytes;
|
|
barrier();
|
|
}
|
|
return ptr + len;
|
|
}
|
|
|
|
#define EMIT(bytes, len) do { prog = emit_code(prog, bytes, len); } while (0)
|
|
|
|
#define EMIT1(b1) EMIT(b1, 1)
|
|
#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
|
|
#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
|
|
#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
|
|
#define EMIT1_off32(b1, off) \
|
|
do {EMIT1(b1); EMIT(off, 4); } while (0)
|
|
#define EMIT2_off32(b1, b2, off) \
|
|
do {EMIT2(b1, b2); EMIT(off, 4); } while (0)
|
|
#define EMIT3_off32(b1, b2, b3, off) \
|
|
do {EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
|
|
#define EMIT4_off32(b1, b2, b3, b4, off) \
|
|
do {EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
|
|
|
|
static inline bool is_imm8(int value)
|
|
{
|
|
return value <= 127 && value >= -128;
|
|
}
|
|
|
|
static inline bool is_simm32(s64 value)
|
|
{
|
|
return value == (s64) (s32) value;
|
|
}
|
|
|
|
/* mov dst, src */
|
|
#define EMIT_mov(DST, SRC) \
|
|
do {if (DST != SRC) \
|
|
EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
|
|
} while (0)
|
|
|
|
static int bpf_size_to_x86_bytes(int bpf_size)
|
|
{
|
|
if (bpf_size == BPF_W)
|
|
return 4;
|
|
else if (bpf_size == BPF_H)
|
|
return 2;
|
|
else if (bpf_size == BPF_B)
|
|
return 1;
|
|
else if (bpf_size == BPF_DW)
|
|
return 4; /* imm32 */
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* list of x86 cond jumps opcodes (. + s8)
|
|
* Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
|
|
*/
|
|
#define X86_JB 0x72
|
|
#define X86_JAE 0x73
|
|
#define X86_JE 0x74
|
|
#define X86_JNE 0x75
|
|
#define X86_JBE 0x76
|
|
#define X86_JA 0x77
|
|
#define X86_JGE 0x7D
|
|
#define X86_JG 0x7F
|
|
|
|
static inline void bpf_flush_icache(void *start, void *end)
|
|
{
|
|
mm_segment_t old_fs = get_fs();
|
|
|
|
set_fs(KERNEL_DS);
|
|
smp_wmb();
|
|
flush_icache_range((unsigned long)start, (unsigned long)end);
|
|
set_fs(old_fs);
|
|
}
|
|
|
|
#define CHOOSE_LOAD_FUNC(K, func) \
|
|
((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
|
|
|
|
struct bpf_binary_header {
|
|
unsigned int pages;
|
|
/* Note : for security reasons, bpf code will follow a randomly
|
|
* sized amount of int3 instructions
|
|
*/
|
|
u8 image[];
|
|
};
|
|
|
|
static struct bpf_binary_header *bpf_alloc_binary(unsigned int proglen,
|
|
u8 **image_ptr)
|
|
{
|
|
unsigned int sz, hole;
|
|
struct bpf_binary_header *header;
|
|
|
|
/* Most of BPF filters are really small,
|
|
* but if some of them fill a page, allow at least
|
|
* 128 extra bytes to insert a random section of int3
|
|
*/
|
|
sz = round_up(proglen + sizeof(*header) + 128, PAGE_SIZE);
|
|
header = module_alloc(sz);
|
|
if (!header)
|
|
return NULL;
|
|
|
|
memset(header, 0xcc, sz); /* fill whole space with int3 instructions */
|
|
|
|
header->pages = sz / PAGE_SIZE;
|
|
hole = min(sz - (proglen + sizeof(*header)), PAGE_SIZE - sizeof(*header));
|
|
|
|
/* insert a random number of int3 instructions before BPF code */
|
|
*image_ptr = &header->image[prandom_u32() % hole];
|
|
return header;
|
|
}
|
|
|
|
/* pick a register outside of BPF range for JIT internal work */
|
|
#define AUX_REG (MAX_BPF_REG + 1)
|
|
|
|
/* the following table maps BPF registers to x64 registers.
|
|
* x64 register r12 is unused, since if used as base address register
|
|
* in load/store instructions, it always needs an extra byte of encoding
|
|
*/
|
|
static const int reg2hex[] = {
|
|
[BPF_REG_0] = 0, /* rax */
|
|
[BPF_REG_1] = 7, /* rdi */
|
|
[BPF_REG_2] = 6, /* rsi */
|
|
[BPF_REG_3] = 2, /* rdx */
|
|
[BPF_REG_4] = 1, /* rcx */
|
|
[BPF_REG_5] = 0, /* r8 */
|
|
[BPF_REG_6] = 3, /* rbx callee saved */
|
|
[BPF_REG_7] = 5, /* r13 callee saved */
|
|
[BPF_REG_8] = 6, /* r14 callee saved */
|
|
[BPF_REG_9] = 7, /* r15 callee saved */
|
|
[BPF_REG_FP] = 5, /* rbp readonly */
|
|
[AUX_REG] = 3, /* r11 temp register */
|
|
};
|
|
|
|
/* is_ereg() == true if BPF register 'reg' maps to x64 r8..r15
|
|
* which need extra byte of encoding.
|
|
* rax,rcx,...,rbp have simpler encoding
|
|
*/
|
|
static inline bool is_ereg(u32 reg)
|
|
{
|
|
if (reg == BPF_REG_5 || reg == AUX_REG ||
|
|
(reg >= BPF_REG_7 && reg <= BPF_REG_9))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/* add modifiers if 'reg' maps to x64 registers r8..r15 */
|
|
static inline u8 add_1mod(u8 byte, u32 reg)
|
|
{
|
|
if (is_ereg(reg))
|
|
byte |= 1;
|
|
return byte;
|
|
}
|
|
|
|
static inline u8 add_2mod(u8 byte, u32 r1, u32 r2)
|
|
{
|
|
if (is_ereg(r1))
|
|
byte |= 1;
|
|
if (is_ereg(r2))
|
|
byte |= 4;
|
|
return byte;
|
|
}
|
|
|
|
/* encode 'dst_reg' register into x64 opcode 'byte' */
|
|
static inline u8 add_1reg(u8 byte, u32 dst_reg)
|
|
{
|
|
return byte + reg2hex[dst_reg];
|
|
}
|
|
|
|
/* encode 'dst_reg' and 'src_reg' registers into x64 opcode 'byte' */
|
|
static inline u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
|
|
{
|
|
return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
|
|
}
|
|
|
|
struct jit_context {
|
|
unsigned int cleanup_addr; /* epilogue code offset */
|
|
bool seen_ld_abs;
|
|
};
|
|
|
|
static int do_jit(struct sk_filter *bpf_prog, int *addrs, u8 *image,
|
|
int oldproglen, struct jit_context *ctx)
|
|
{
|
|
struct sock_filter_int *insn = bpf_prog->insnsi;
|
|
int insn_cnt = bpf_prog->len;
|
|
u8 temp[64];
|
|
int i;
|
|
int proglen = 0;
|
|
u8 *prog = temp;
|
|
int stacksize = MAX_BPF_STACK +
|
|
32 /* space for rbx, r13, r14, r15 */ +
|
|
8 /* space for skb_copy_bits() buffer */;
|
|
|
|
EMIT1(0x55); /* push rbp */
|
|
EMIT3(0x48, 0x89, 0xE5); /* mov rbp,rsp */
|
|
|
|
/* sub rsp, stacksize */
|
|
EMIT3_off32(0x48, 0x81, 0xEC, stacksize);
|
|
|
|
/* all classic BPF filters use R6(rbx) save it */
|
|
|
|
/* mov qword ptr [rbp-X],rbx */
|
|
EMIT3_off32(0x48, 0x89, 0x9D, -stacksize);
|
|
|
|
/* sk_convert_filter() maps classic BPF register X to R7 and uses R8
|
|
* as temporary, so all tcpdump filters need to spill/fill R7(r13) and
|
|
* R8(r14). R9(r15) spill could be made conditional, but there is only
|
|
* one 'bpf_error' return path out of helper functions inside bpf_jit.S
|
|
* The overhead of extra spill is negligible for any filter other
|
|
* than synthetic ones. Therefore not worth adding complexity.
|
|
*/
|
|
|
|
/* mov qword ptr [rbp-X],r13 */
|
|
EMIT3_off32(0x4C, 0x89, 0xAD, -stacksize + 8);
|
|
/* mov qword ptr [rbp-X],r14 */
|
|
EMIT3_off32(0x4C, 0x89, 0xB5, -stacksize + 16);
|
|
/* mov qword ptr [rbp-X],r15 */
|
|
EMIT3_off32(0x4C, 0x89, 0xBD, -stacksize + 24);
|
|
|
|
/* clear A and X registers */
|
|
EMIT2(0x31, 0xc0); /* xor eax, eax */
|
|
EMIT3(0x4D, 0x31, 0xED); /* xor r13, r13 */
|
|
|
|
if (ctx->seen_ld_abs) {
|
|
/* r9d : skb->len - skb->data_len (headlen)
|
|
* r10 : skb->data
|
|
*/
|
|
if (is_imm8(offsetof(struct sk_buff, len)))
|
|
/* mov %r9d, off8(%rdi) */
|
|
EMIT4(0x44, 0x8b, 0x4f,
|
|
offsetof(struct sk_buff, len));
|
|
else
|
|
/* mov %r9d, off32(%rdi) */
|
|
EMIT3_off32(0x44, 0x8b, 0x8f,
|
|
offsetof(struct sk_buff, len));
|
|
|
|
if (is_imm8(offsetof(struct sk_buff, data_len)))
|
|
/* sub %r9d, off8(%rdi) */
|
|
EMIT4(0x44, 0x2b, 0x4f,
|
|
offsetof(struct sk_buff, data_len));
|
|
else
|
|
EMIT3_off32(0x44, 0x2b, 0x8f,
|
|
offsetof(struct sk_buff, data_len));
|
|
|
|
if (is_imm8(offsetof(struct sk_buff, data)))
|
|
/* mov %r10, off8(%rdi) */
|
|
EMIT4(0x4c, 0x8b, 0x57,
|
|
offsetof(struct sk_buff, data));
|
|
else
|
|
/* mov %r10, off32(%rdi) */
|
|
EMIT3_off32(0x4c, 0x8b, 0x97,
|
|
offsetof(struct sk_buff, data));
|
|
}
|
|
|
|
for (i = 0; i < insn_cnt; i++, insn++) {
|
|
const s32 imm32 = insn->imm;
|
|
u32 dst_reg = insn->dst_reg;
|
|
u32 src_reg = insn->src_reg;
|
|
u8 b1 = 0, b2 = 0, b3 = 0;
|
|
s64 jmp_offset;
|
|
u8 jmp_cond;
|
|
int ilen;
|
|
u8 *func;
|
|
|
|
switch (insn->code) {
|
|
/* ALU */
|
|
case BPF_ALU | BPF_ADD | BPF_X:
|
|
case BPF_ALU | BPF_SUB | BPF_X:
|
|
case BPF_ALU | BPF_AND | BPF_X:
|
|
case BPF_ALU | BPF_OR | BPF_X:
|
|
case BPF_ALU | BPF_XOR | BPF_X:
|
|
case BPF_ALU64 | BPF_ADD | BPF_X:
|
|
case BPF_ALU64 | BPF_SUB | BPF_X:
|
|
case BPF_ALU64 | BPF_AND | BPF_X:
|
|
case BPF_ALU64 | BPF_OR | BPF_X:
|
|
case BPF_ALU64 | BPF_XOR | BPF_X:
|
|
switch (BPF_OP(insn->code)) {
|
|
case BPF_ADD: b2 = 0x01; break;
|
|
case BPF_SUB: b2 = 0x29; break;
|
|
case BPF_AND: b2 = 0x21; break;
|
|
case BPF_OR: b2 = 0x09; break;
|
|
case BPF_XOR: b2 = 0x31; break;
|
|
}
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
|
EMIT1(add_2mod(0x48, dst_reg, src_reg));
|
|
else if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT1(add_2mod(0x40, dst_reg, src_reg));
|
|
EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
|
|
break;
|
|
|
|
/* mov dst, src */
|
|
case BPF_ALU64 | BPF_MOV | BPF_X:
|
|
EMIT_mov(dst_reg, src_reg);
|
|
break;
|
|
|
|
/* mov32 dst, src */
|
|
case BPF_ALU | BPF_MOV | BPF_X:
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT1(add_2mod(0x40, dst_reg, src_reg));
|
|
EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
|
|
break;
|
|
|
|
/* neg dst */
|
|
case BPF_ALU | BPF_NEG:
|
|
case BPF_ALU64 | BPF_NEG:
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
|
else if (is_ereg(dst_reg))
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
|
EMIT2(0xF7, add_1reg(0xD8, dst_reg));
|
|
break;
|
|
|
|
case BPF_ALU | BPF_ADD | BPF_K:
|
|
case BPF_ALU | BPF_SUB | BPF_K:
|
|
case BPF_ALU | BPF_AND | BPF_K:
|
|
case BPF_ALU | BPF_OR | BPF_K:
|
|
case BPF_ALU | BPF_XOR | BPF_K:
|
|
case BPF_ALU64 | BPF_ADD | BPF_K:
|
|
case BPF_ALU64 | BPF_SUB | BPF_K:
|
|
case BPF_ALU64 | BPF_AND | BPF_K:
|
|
case BPF_ALU64 | BPF_OR | BPF_K:
|
|
case BPF_ALU64 | BPF_XOR | BPF_K:
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
|
else if (is_ereg(dst_reg))
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
|
|
|
switch (BPF_OP(insn->code)) {
|
|
case BPF_ADD: b3 = 0xC0; break;
|
|
case BPF_SUB: b3 = 0xE8; break;
|
|
case BPF_AND: b3 = 0xE0; break;
|
|
case BPF_OR: b3 = 0xC8; break;
|
|
case BPF_XOR: b3 = 0xF0; break;
|
|
}
|
|
|
|
if (is_imm8(imm32))
|
|
EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
|
|
else
|
|
EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
|
|
break;
|
|
|
|
case BPF_ALU64 | BPF_MOV | BPF_K:
|
|
/* optimization: if imm32 is positive,
|
|
* use 'mov eax, imm32' (which zero-extends imm32)
|
|
* to save 2 bytes
|
|
*/
|
|
if (imm32 < 0) {
|
|
/* 'mov rax, imm32' sign extends imm32 */
|
|
b1 = add_1mod(0x48, dst_reg);
|
|
b2 = 0xC7;
|
|
b3 = 0xC0;
|
|
EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
|
|
break;
|
|
}
|
|
|
|
case BPF_ALU | BPF_MOV | BPF_K:
|
|
/* mov %eax, imm32 */
|
|
if (is_ereg(dst_reg))
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
|
EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
|
|
break;
|
|
|
|
/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
|
|
case BPF_ALU | BPF_MOD | BPF_X:
|
|
case BPF_ALU | BPF_DIV | BPF_X:
|
|
case BPF_ALU | BPF_MOD | BPF_K:
|
|
case BPF_ALU | BPF_DIV | BPF_K:
|
|
case BPF_ALU64 | BPF_MOD | BPF_X:
|
|
case BPF_ALU64 | BPF_DIV | BPF_X:
|
|
case BPF_ALU64 | BPF_MOD | BPF_K:
|
|
case BPF_ALU64 | BPF_DIV | BPF_K:
|
|
EMIT1(0x50); /* push rax */
|
|
EMIT1(0x52); /* push rdx */
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X)
|
|
/* mov r11, src_reg */
|
|
EMIT_mov(AUX_REG, src_reg);
|
|
else
|
|
/* mov r11, imm32 */
|
|
EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
|
|
|
|
/* mov rax, dst_reg */
|
|
EMIT_mov(BPF_REG_0, dst_reg);
|
|
|
|
/* xor edx, edx
|
|
* equivalent to 'xor rdx, rdx', but one byte less
|
|
*/
|
|
EMIT2(0x31, 0xd2);
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X) {
|
|
/* if (src_reg == 0) return 0 */
|
|
|
|
/* cmp r11, 0 */
|
|
EMIT4(0x49, 0x83, 0xFB, 0x00);
|
|
|
|
/* jne .+9 (skip over pop, pop, xor and jmp) */
|
|
EMIT2(X86_JNE, 1 + 1 + 2 + 5);
|
|
EMIT1(0x5A); /* pop rdx */
|
|
EMIT1(0x58); /* pop rax */
|
|
EMIT2(0x31, 0xc0); /* xor eax, eax */
|
|
|
|
/* jmp cleanup_addr
|
|
* addrs[i] - 11, because there are 11 bytes
|
|
* after this insn: div, mov, pop, pop, mov
|
|
*/
|
|
jmp_offset = ctx->cleanup_addr - (addrs[i] - 11);
|
|
EMIT1_off32(0xE9, jmp_offset);
|
|
}
|
|
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
|
/* div r11 */
|
|
EMIT3(0x49, 0xF7, 0xF3);
|
|
else
|
|
/* div r11d */
|
|
EMIT3(0x41, 0xF7, 0xF3);
|
|
|
|
if (BPF_OP(insn->code) == BPF_MOD)
|
|
/* mov r11, rdx */
|
|
EMIT3(0x49, 0x89, 0xD3);
|
|
else
|
|
/* mov r11, rax */
|
|
EMIT3(0x49, 0x89, 0xC3);
|
|
|
|
EMIT1(0x5A); /* pop rdx */
|
|
EMIT1(0x58); /* pop rax */
|
|
|
|
/* mov dst_reg, r11 */
|
|
EMIT_mov(dst_reg, AUX_REG);
|
|
break;
|
|
|
|
case BPF_ALU | BPF_MUL | BPF_K:
|
|
case BPF_ALU | BPF_MUL | BPF_X:
|
|
case BPF_ALU64 | BPF_MUL | BPF_K:
|
|
case BPF_ALU64 | BPF_MUL | BPF_X:
|
|
EMIT1(0x50); /* push rax */
|
|
EMIT1(0x52); /* push rdx */
|
|
|
|
/* mov r11, dst_reg */
|
|
EMIT_mov(AUX_REG, dst_reg);
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X)
|
|
/* mov rax, src_reg */
|
|
EMIT_mov(BPF_REG_0, src_reg);
|
|
else
|
|
/* mov rax, imm32 */
|
|
EMIT3_off32(0x48, 0xC7, 0xC0, imm32);
|
|
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
|
EMIT1(add_1mod(0x48, AUX_REG));
|
|
else if (is_ereg(AUX_REG))
|
|
EMIT1(add_1mod(0x40, AUX_REG));
|
|
/* mul(q) r11 */
|
|
EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
|
|
|
|
/* mov r11, rax */
|
|
EMIT_mov(AUX_REG, BPF_REG_0);
|
|
|
|
EMIT1(0x5A); /* pop rdx */
|
|
EMIT1(0x58); /* pop rax */
|
|
|
|
/* mov dst_reg, r11 */
|
|
EMIT_mov(dst_reg, AUX_REG);
|
|
break;
|
|
|
|
/* shifts */
|
|
case BPF_ALU | BPF_LSH | BPF_K:
|
|
case BPF_ALU | BPF_RSH | BPF_K:
|
|
case BPF_ALU | BPF_ARSH | BPF_K:
|
|
case BPF_ALU64 | BPF_LSH | BPF_K:
|
|
case BPF_ALU64 | BPF_RSH | BPF_K:
|
|
case BPF_ALU64 | BPF_ARSH | BPF_K:
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
|
else if (is_ereg(dst_reg))
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
|
|
|
switch (BPF_OP(insn->code)) {
|
|
case BPF_LSH: b3 = 0xE0; break;
|
|
case BPF_RSH: b3 = 0xE8; break;
|
|
case BPF_ARSH: b3 = 0xF8; break;
|
|
}
|
|
EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
|
|
break;
|
|
|
|
case BPF_ALU | BPF_END | BPF_FROM_BE:
|
|
switch (imm32) {
|
|
case 16:
|
|
/* emit 'ror %ax, 8' to swap lower 2 bytes */
|
|
EMIT1(0x66);
|
|
if (is_ereg(dst_reg))
|
|
EMIT1(0x41);
|
|
EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
|
|
break;
|
|
case 32:
|
|
/* emit 'bswap eax' to swap lower 4 bytes */
|
|
if (is_ereg(dst_reg))
|
|
EMIT2(0x41, 0x0F);
|
|
else
|
|
EMIT1(0x0F);
|
|
EMIT1(add_1reg(0xC8, dst_reg));
|
|
break;
|
|
case 64:
|
|
/* emit 'bswap rax' to swap 8 bytes */
|
|
EMIT3(add_1mod(0x48, dst_reg), 0x0F,
|
|
add_1reg(0xC8, dst_reg));
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case BPF_ALU | BPF_END | BPF_FROM_LE:
|
|
break;
|
|
|
|
/* ST: *(u8*)(dst_reg + off) = imm */
|
|
case BPF_ST | BPF_MEM | BPF_B:
|
|
if (is_ereg(dst_reg))
|
|
EMIT2(0x41, 0xC6);
|
|
else
|
|
EMIT1(0xC6);
|
|
goto st;
|
|
case BPF_ST | BPF_MEM | BPF_H:
|
|
if (is_ereg(dst_reg))
|
|
EMIT3(0x66, 0x41, 0xC7);
|
|
else
|
|
EMIT2(0x66, 0xC7);
|
|
goto st;
|
|
case BPF_ST | BPF_MEM | BPF_W:
|
|
if (is_ereg(dst_reg))
|
|
EMIT2(0x41, 0xC7);
|
|
else
|
|
EMIT1(0xC7);
|
|
goto st;
|
|
case BPF_ST | BPF_MEM | BPF_DW:
|
|
EMIT2(add_1mod(0x48, dst_reg), 0xC7);
|
|
|
|
st: if (is_imm8(insn->off))
|
|
EMIT2(add_1reg(0x40, dst_reg), insn->off);
|
|
else
|
|
EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
|
|
|
|
EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
|
|
break;
|
|
|
|
/* STX: *(u8*)(dst_reg + off) = src_reg */
|
|
case BPF_STX | BPF_MEM | BPF_B:
|
|
/* emit 'mov byte ptr [rax + off], al' */
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg) ||
|
|
/* have to add extra byte for x86 SIL, DIL regs */
|
|
src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
|
|
EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
|
|
else
|
|
EMIT1(0x88);
|
|
goto stx;
|
|
case BPF_STX | BPF_MEM | BPF_H:
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
|
|
else
|
|
EMIT2(0x66, 0x89);
|
|
goto stx;
|
|
case BPF_STX | BPF_MEM | BPF_W:
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
|
|
else
|
|
EMIT1(0x89);
|
|
goto stx;
|
|
case BPF_STX | BPF_MEM | BPF_DW:
|
|
EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
|
|
stx: if (is_imm8(insn->off))
|
|
EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
|
|
else
|
|
EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
|
|
insn->off);
|
|
break;
|
|
|
|
/* LDX: dst_reg = *(u8*)(src_reg + off) */
|
|
case BPF_LDX | BPF_MEM | BPF_B:
|
|
/* emit 'movzx rax, byte ptr [rax + off]' */
|
|
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
|
|
goto ldx;
|
|
case BPF_LDX | BPF_MEM | BPF_H:
|
|
/* emit 'movzx rax, word ptr [rax + off]' */
|
|
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
|
|
goto ldx;
|
|
case BPF_LDX | BPF_MEM | BPF_W:
|
|
/* emit 'mov eax, dword ptr [rax+0x14]' */
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
|
|
else
|
|
EMIT1(0x8B);
|
|
goto ldx;
|
|
case BPF_LDX | BPF_MEM | BPF_DW:
|
|
/* emit 'mov rax, qword ptr [rax+0x14]' */
|
|
EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
|
|
ldx: /* if insn->off == 0 we can save one extra byte, but
|
|
* special case of x86 r13 which always needs an offset
|
|
* is not worth the hassle
|
|
*/
|
|
if (is_imm8(insn->off))
|
|
EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
|
|
else
|
|
EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
|
|
insn->off);
|
|
break;
|
|
|
|
/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
|
|
case BPF_STX | BPF_XADD | BPF_W:
|
|
/* emit 'lock add dword ptr [rax + off], eax' */
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
|
|
else
|
|
EMIT2(0xF0, 0x01);
|
|
goto xadd;
|
|
case BPF_STX | BPF_XADD | BPF_DW:
|
|
EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
|
|
xadd: if (is_imm8(insn->off))
|
|
EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
|
|
else
|
|
EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
|
|
insn->off);
|
|
break;
|
|
|
|
/* call */
|
|
case BPF_JMP | BPF_CALL:
|
|
func = (u8 *) __bpf_call_base + imm32;
|
|
jmp_offset = func - (image + addrs[i]);
|
|
if (ctx->seen_ld_abs) {
|
|
EMIT2(0x41, 0x52); /* push %r10 */
|
|
EMIT2(0x41, 0x51); /* push %r9 */
|
|
/* need to adjust jmp offset, since
|
|
* pop %r9, pop %r10 take 4 bytes after call insn
|
|
*/
|
|
jmp_offset += 4;
|
|
}
|
|
if (!imm32 || !is_simm32(jmp_offset)) {
|
|
pr_err("unsupported bpf func %d addr %p image %p\n",
|
|
imm32, func, image);
|
|
return -EINVAL;
|
|
}
|
|
EMIT1_off32(0xE8, jmp_offset);
|
|
if (ctx->seen_ld_abs) {
|
|
EMIT2(0x41, 0x59); /* pop %r9 */
|
|
EMIT2(0x41, 0x5A); /* pop %r10 */
|
|
}
|
|
break;
|
|
|
|
/* cond jump */
|
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
|
case BPF_JMP | BPF_JNE | BPF_X:
|
|
case BPF_JMP | BPF_JGT | BPF_X:
|
|
case BPF_JMP | BPF_JGE | BPF_X:
|
|
case BPF_JMP | BPF_JSGT | BPF_X:
|
|
case BPF_JMP | BPF_JSGE | BPF_X:
|
|
/* cmp dst_reg, src_reg */
|
|
EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x39,
|
|
add_2reg(0xC0, dst_reg, src_reg));
|
|
goto emit_cond_jmp;
|
|
|
|
case BPF_JMP | BPF_JSET | BPF_X:
|
|
/* test dst_reg, src_reg */
|
|
EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x85,
|
|
add_2reg(0xC0, dst_reg, src_reg));
|
|
goto emit_cond_jmp;
|
|
|
|
case BPF_JMP | BPF_JSET | BPF_K:
|
|
/* test dst_reg, imm32 */
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
|
EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
|
|
goto emit_cond_jmp;
|
|
|
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
|
case BPF_JMP | BPF_JNE | BPF_K:
|
|
case BPF_JMP | BPF_JGT | BPF_K:
|
|
case BPF_JMP | BPF_JGE | BPF_K:
|
|
case BPF_JMP | BPF_JSGT | BPF_K:
|
|
case BPF_JMP | BPF_JSGE | BPF_K:
|
|
/* cmp dst_reg, imm8/32 */
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
|
|
|
if (is_imm8(imm32))
|
|
EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
|
|
else
|
|
EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
|
|
|
|
emit_cond_jmp: /* convert BPF opcode to x86 */
|
|
switch (BPF_OP(insn->code)) {
|
|
case BPF_JEQ:
|
|
jmp_cond = X86_JE;
|
|
break;
|
|
case BPF_JSET:
|
|
case BPF_JNE:
|
|
jmp_cond = X86_JNE;
|
|
break;
|
|
case BPF_JGT:
|
|
/* GT is unsigned '>', JA in x86 */
|
|
jmp_cond = X86_JA;
|
|
break;
|
|
case BPF_JGE:
|
|
/* GE is unsigned '>=', JAE in x86 */
|
|
jmp_cond = X86_JAE;
|
|
break;
|
|
case BPF_JSGT:
|
|
/* signed '>', GT in x86 */
|
|
jmp_cond = X86_JG;
|
|
break;
|
|
case BPF_JSGE:
|
|
/* signed '>=', GE in x86 */
|
|
jmp_cond = X86_JGE;
|
|
break;
|
|
default: /* to silence gcc warning */
|
|
return -EFAULT;
|
|
}
|
|
jmp_offset = addrs[i + insn->off] - addrs[i];
|
|
if (is_imm8(jmp_offset)) {
|
|
EMIT2(jmp_cond, jmp_offset);
|
|
} else if (is_simm32(jmp_offset)) {
|
|
EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
|
|
} else {
|
|
pr_err("cond_jmp gen bug %llx\n", jmp_offset);
|
|
return -EFAULT;
|
|
}
|
|
|
|
break;
|
|
|
|
case BPF_JMP | BPF_JA:
|
|
jmp_offset = addrs[i + insn->off] - addrs[i];
|
|
if (!jmp_offset)
|
|
/* optimize out nop jumps */
|
|
break;
|
|
emit_jmp:
|
|
if (is_imm8(jmp_offset)) {
|
|
EMIT2(0xEB, jmp_offset);
|
|
} else if (is_simm32(jmp_offset)) {
|
|
EMIT1_off32(0xE9, jmp_offset);
|
|
} else {
|
|
pr_err("jmp gen bug %llx\n", jmp_offset);
|
|
return -EFAULT;
|
|
}
|
|
break;
|
|
|
|
case BPF_LD | BPF_IND | BPF_W:
|
|
func = sk_load_word;
|
|
goto common_load;
|
|
case BPF_LD | BPF_ABS | BPF_W:
|
|
func = CHOOSE_LOAD_FUNC(imm32, sk_load_word);
|
|
common_load: ctx->seen_ld_abs = true;
|
|
jmp_offset = func - (image + addrs[i]);
|
|
if (!func || !is_simm32(jmp_offset)) {
|
|
pr_err("unsupported bpf func %d addr %p image %p\n",
|
|
imm32, func, image);
|
|
return -EINVAL;
|
|
}
|
|
if (BPF_MODE(insn->code) == BPF_ABS) {
|
|
/* mov %esi, imm32 */
|
|
EMIT1_off32(0xBE, imm32);
|
|
} else {
|
|
/* mov %rsi, src_reg */
|
|
EMIT_mov(BPF_REG_2, src_reg);
|
|
if (imm32) {
|
|
if (is_imm8(imm32))
|
|
/* add %esi, imm8 */
|
|
EMIT3(0x83, 0xC6, imm32);
|
|
else
|
|
/* add %esi, imm32 */
|
|
EMIT2_off32(0x81, 0xC6, imm32);
|
|
}
|
|
}
|
|
/* skb pointer is in R6 (%rbx), it will be copied into
|
|
* %rdi if skb_copy_bits() call is necessary.
|
|
* sk_load_* helpers also use %r10 and %r9d.
|
|
* See bpf_jit.S
|
|
*/
|
|
EMIT1_off32(0xE8, jmp_offset); /* call */
|
|
break;
|
|
|
|
case BPF_LD | BPF_IND | BPF_H:
|
|
func = sk_load_half;
|
|
goto common_load;
|
|
case BPF_LD | BPF_ABS | BPF_H:
|
|
func = CHOOSE_LOAD_FUNC(imm32, sk_load_half);
|
|
goto common_load;
|
|
case BPF_LD | BPF_IND | BPF_B:
|
|
func = sk_load_byte;
|
|
goto common_load;
|
|
case BPF_LD | BPF_ABS | BPF_B:
|
|
func = CHOOSE_LOAD_FUNC(imm32, sk_load_byte);
|
|
goto common_load;
|
|
|
|
case BPF_JMP | BPF_EXIT:
|
|
if (i != insn_cnt - 1) {
|
|
jmp_offset = ctx->cleanup_addr - addrs[i];
|
|
goto emit_jmp;
|
|
}
|
|
/* update cleanup_addr */
|
|
ctx->cleanup_addr = proglen;
|
|
/* mov rbx, qword ptr [rbp-X] */
|
|
EMIT3_off32(0x48, 0x8B, 0x9D, -stacksize);
|
|
/* mov r13, qword ptr [rbp-X] */
|
|
EMIT3_off32(0x4C, 0x8B, 0xAD, -stacksize + 8);
|
|
/* mov r14, qword ptr [rbp-X] */
|
|
EMIT3_off32(0x4C, 0x8B, 0xB5, -stacksize + 16);
|
|
/* mov r15, qword ptr [rbp-X] */
|
|
EMIT3_off32(0x4C, 0x8B, 0xBD, -stacksize + 24);
|
|
|
|
EMIT1(0xC9); /* leave */
|
|
EMIT1(0xC3); /* ret */
|
|
break;
|
|
|
|
default:
|
|
/* By design x64 JIT should support all BPF instructions
|
|
* This error will be seen if new instruction was added
|
|
* to interpreter, but not to JIT
|
|
* or if there is junk in sk_filter
|
|
*/
|
|
pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ilen = prog - temp;
|
|
if (image) {
|
|
if (unlikely(proglen + ilen > oldproglen)) {
|
|
pr_err("bpf_jit_compile fatal error\n");
|
|
return -EFAULT;
|
|
}
|
|
memcpy(image + proglen, temp, ilen);
|
|
}
|
|
proglen += ilen;
|
|
addrs[i] = proglen;
|
|
prog = temp;
|
|
}
|
|
return proglen;
|
|
}
|
|
|
|
void bpf_jit_compile(struct sk_filter *prog)
|
|
{
|
|
}
|
|
|
|
void bpf_int_jit_compile(struct sk_filter *prog)
|
|
{
|
|
struct bpf_binary_header *header = NULL;
|
|
int proglen, oldproglen = 0;
|
|
struct jit_context ctx = {};
|
|
u8 *image = NULL;
|
|
int *addrs;
|
|
int pass;
|
|
int i;
|
|
|
|
if (!bpf_jit_enable)
|
|
return;
|
|
|
|
if (!prog || !prog->len)
|
|
return;
|
|
|
|
addrs = kmalloc(prog->len * sizeof(*addrs), GFP_KERNEL);
|
|
if (!addrs)
|
|
return;
|
|
|
|
/* Before first pass, make a rough estimation of addrs[]
|
|
* each bpf instruction is translated to less than 64 bytes
|
|
*/
|
|
for (proglen = 0, i = 0; i < prog->len; i++) {
|
|
proglen += 64;
|
|
addrs[i] = proglen;
|
|
}
|
|
ctx.cleanup_addr = proglen;
|
|
|
|
for (pass = 0; pass < 10; pass++) {
|
|
proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
|
|
if (proglen <= 0) {
|
|
image = NULL;
|
|
if (header)
|
|
module_free(NULL, header);
|
|
goto out;
|
|
}
|
|
if (image) {
|
|
if (proglen != oldproglen)
|
|
pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
|
|
proglen, oldproglen);
|
|
break;
|
|
}
|
|
if (proglen == oldproglen) {
|
|
header = bpf_alloc_binary(proglen, &image);
|
|
if (!header)
|
|
goto out;
|
|
}
|
|
oldproglen = proglen;
|
|
}
|
|
|
|
if (bpf_jit_enable > 1)
|
|
bpf_jit_dump(prog->len, proglen, 0, image);
|
|
|
|
if (image) {
|
|
bpf_flush_icache(header, image + proglen);
|
|
set_memory_ro((unsigned long)header, header->pages);
|
|
prog->bpf_func = (void *)image;
|
|
prog->jited = 1;
|
|
}
|
|
out:
|
|
kfree(addrs);
|
|
}
|
|
|
|
static void bpf_jit_free_deferred(struct work_struct *work)
|
|
{
|
|
struct sk_filter *fp = container_of(work, struct sk_filter, work);
|
|
unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
|
|
struct bpf_binary_header *header = (void *)addr;
|
|
|
|
set_memory_rw(addr, header->pages);
|
|
module_free(NULL, header);
|
|
kfree(fp);
|
|
}
|
|
|
|
void bpf_jit_free(struct sk_filter *fp)
|
|
{
|
|
if (fp->jited) {
|
|
INIT_WORK(&fp->work, bpf_jit_free_deferred);
|
|
schedule_work(&fp->work);
|
|
} else {
|
|
kfree(fp);
|
|
}
|
|
}
|