linux/arch/s390/crypto/crc32be-vx.c
Heiko Carstens c59bf4de01 s390/crc32be: convert to C
Convert CRC-32 BE variant to C.

Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
2024-02-16 14:30:18 +01:00

175 lines
5.4 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Hardware-accelerated CRC-32 variants for Linux on z Systems
*
* Use the z/Architecture Vector Extension Facility to accelerate the
* computing of CRC-32 checksums.
*
* This CRC-32 implementation algorithm processes the most-significant
* bit first (BE).
*
* Copyright IBM Corp. 2015
* Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
*/
#include <linux/types.h>
#include <asm/fpu.h>
#include "crc32-vx.h"
/* Vector register range containing CRC-32 constants */
#define CONST_R1R2 9
#define CONST_R3R4 10
#define CONST_R5 11
#define CONST_R6 12
#define CONST_RU_POLY 13
#define CONST_CRC_POLY 14
/*
* The CRC-32 constant block contains reduction constants to fold and
* process particular chunks of the input data stream in parallel.
*
* For the CRC-32 variants, the constants are precomputed according to
* these definitions:
*
* R1 = x4*128+64 mod P(x)
* R2 = x4*128 mod P(x)
* R3 = x128+64 mod P(x)
* R4 = x128 mod P(x)
* R5 = x96 mod P(x)
* R6 = x64 mod P(x)
*
* Barret reduction constant, u, is defined as floor(x**64 / P(x)).
*
* where P(x) is the polynomial in the normal domain and the P'(x) is the
* polynomial in the reversed (bitreflected) domain.
*
* Note that the constant definitions below are extended in order to compute
* intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
* The rightmost doubleword can be 0 to prevent contribution to the result or
* can be multiplied by 1 to perform an XOR without the need for a separate
* VECTOR EXCLUSIVE OR instruction.
*
* CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
*
* P(x) = 0x04C11DB7
* P'(x) = 0xEDB88320
*/
static unsigned long constants_CRC_32_BE[] = {
0x08833794c, 0x0e6228b11, /* R1, R2 */
0x0c5b9cd4c, 0x0e8a45605, /* R3, R4 */
0x0f200aa66, 1UL << 32, /* R5, x32 */
0x0490d678d, 1, /* R6, 1 */
0x104d101df, 0, /* u */
0x104C11DB7, 0, /* P(x) */
};
/**
* crc32_be_vgfm_16 - Compute CRC-32 (BE variant) with vector registers
* @crc: Initial CRC value, typically ~0.
* @buf: Input buffer pointer, performance might be improved if the
* buffer is on a doubleword boundary.
* @size: Size of the buffer, must be 64 bytes or greater.
*
* Register usage:
* V0: Initial CRC value and intermediate constants and results.
* V1..V4: Data for CRC computation.
* V5..V8: Next data chunks that are fetched from the input buffer.
* V9..V14: CRC-32 constants.
*/
u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
{
/* Load CRC-32 constants */
fpu_vlm(CONST_R1R2, CONST_CRC_POLY, &constants_CRC_32_BE);
fpu_vzero(0);
/* Load the initial CRC value into the leftmost word of V0. */
fpu_vlvgf(0, crc, 0);
/* Load a 64-byte data chunk and XOR with CRC */
fpu_vlm(1, 4, buf);
fpu_vx(1, 0, 1);
buf += 64;
size -= 64;
while (size >= 64) {
/* Load the next 64-byte data chunk into V5 to V8 */
fpu_vlm(5, 8, buf);
/*
* Perform a GF(2) multiplication of the doublewords in V1 with
* the reduction constants in V0. The intermediate result is
* then folded (accumulated) with the next data chunk in V5 and
* stored in V1. Repeat this step for the register contents
* in V2, V3, and V4 respectively.
*/
fpu_vgfmag(1, CONST_R1R2, 1, 5);
fpu_vgfmag(2, CONST_R1R2, 2, 6);
fpu_vgfmag(3, CONST_R1R2, 3, 7);
fpu_vgfmag(4, CONST_R1R2, 4, 8);
buf += 64;
size -= 64;
}
/* Fold V1 to V4 into a single 128-bit value in V1 */
fpu_vgfmag(1, CONST_R3R4, 1, 2);
fpu_vgfmag(1, CONST_R3R4, 1, 3);
fpu_vgfmag(1, CONST_R3R4, 1, 4);
while (size >= 16) {
fpu_vl(2, buf);
fpu_vgfmag(1, CONST_R3R4, 1, 2);
buf += 16;
size -= 16;
}
/*
* The R5 constant is used to fold a 128-bit value into an 96-bit value
* that is XORed with the next 96-bit input data chunk. To use a single
* VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
* form an intermediate 96-bit value (with appended zeros) which is then
* XORed with the intermediate reduction result.
*/
fpu_vgfmg(1, CONST_R5, 1);
/*
* Further reduce the remaining 96-bit value to a 64-bit value using a
* single VGFMG, the rightmost doubleword is multiplied with 0x1. The
* intermediate result is then XORed with the product of the leftmost
* doubleword with R6. The result is a 64-bit value and is subject to
* the Barret reduction.
*/
fpu_vgfmg(1, CONST_R6, 1);
/*
* The input values to the Barret reduction are the degree-63 polynomial
* in V1 (R(x)), degree-32 generator polynomial, and the reduction
* constant u. The Barret reduction result is the CRC value of R(x) mod
* P(x).
*
* The Barret reduction algorithm is defined as:
*
* 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
* 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
* 3. C(x) = R(x) XOR T2(x) mod x^32
*
* Note: To compensate the division by x^32, use the vector unpack
* instruction to move the leftmost word into the leftmost doubleword
* of the vector register. The rightmost doubleword is multiplied
* with zero to not contribute to the intermediate results.
*/
/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
fpu_vupllf(2, 1);
fpu_vgfmg(2, CONST_RU_POLY, 2);
/*
* Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
* V2 and XOR the intermediate result, T2(x), with the value in V1.
* The final result is in the rightmost word of V2.
*/
fpu_vupllf(2, 2);
fpu_vgfmag(2, CONST_CRC_POLY, 2, 1);
return fpu_vlgvf(2, 3);
}