linux/lib/test_bpf.c
Sumitra Sharma da1a055d01 lib/test_bpf: Call page_address() on page acquired with GFP_KERNEL flag
generate_test_data() acquires a page with alloc_page(GFP_KERNEL).
The GFP_KERNEL is typical for kernel-internal allocations. The
caller requires ZONE_NORMAL or a lower zone for direct access.

Therefore the page cannot come from ZONE_HIGHMEM. Thus there's no
need to map it with kmap().

Also, the kmap() is being deprecated in favor of kmap_local_page() [1].

Hence, use a plain page_address() directly.

Since the page passed to the page_address() is not from the highmem
zone, the page_address() function will always return a valid kernel
virtual address and will not return NULL. Hence, remove the check
'if (!ptr)'.

Remove the unused variable 'ptr' and label 'err_free_page'.

  [1] https://lore.kernel.org/all/20220813220034.806698-1-ira.weiny@intel.com/

Reported-by: kernel test robot <lkp@intel.com>
Suggested-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Signed-off-by: Sumitra Sharma <sumitraartsy@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/bpf/20230623151644.GA434468@sumitra.com
2023-06-29 15:32:25 +02:00

15355 lines
356 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Testsuite for BPF interpreter and BPF JIT compiler
*
* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/module.h>
#include <linux/filter.h>
#include <linux/bpf.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/if_vlan.h>
#include <linux/random.h>
#include <linux/highmem.h>
#include <linux/sched.h>
/* General test specific settings */
#define MAX_SUBTESTS 3
#define MAX_TESTRUNS 1000
#define MAX_DATA 128
#define MAX_INSNS 512
#define MAX_K 0xffffFFFF
/* Few constants used to init test 'skb' */
#define SKB_TYPE 3
#define SKB_MARK 0x1234aaaa
#define SKB_HASH 0x1234aaab
#define SKB_QUEUE_MAP 123
#define SKB_VLAN_TCI 0xffff
#define SKB_VLAN_PRESENT 1
#define SKB_DEV_IFINDEX 577
#define SKB_DEV_TYPE 588
/* Redefine REGs to make tests less verbose */
#define R0 BPF_REG_0
#define R1 BPF_REG_1
#define R2 BPF_REG_2
#define R3 BPF_REG_3
#define R4 BPF_REG_4
#define R5 BPF_REG_5
#define R6 BPF_REG_6
#define R7 BPF_REG_7
#define R8 BPF_REG_8
#define R9 BPF_REG_9
#define R10 BPF_REG_10
/* Flags that can be passed to test cases */
#define FLAG_NO_DATA BIT(0)
#define FLAG_EXPECTED_FAIL BIT(1)
#define FLAG_SKB_FRAG BIT(2)
#define FLAG_VERIFIER_ZEXT BIT(3)
#define FLAG_LARGE_MEM BIT(4)
enum {
CLASSIC = BIT(6), /* Old BPF instructions only. */
INTERNAL = BIT(7), /* Extended instruction set. */
};
#define TEST_TYPE_MASK (CLASSIC | INTERNAL)
struct bpf_test {
const char *descr;
union {
struct sock_filter insns[MAX_INSNS];
struct bpf_insn insns_int[MAX_INSNS];
struct {
void *insns;
unsigned int len;
} ptr;
} u;
__u8 aux;
__u8 data[MAX_DATA];
struct {
int data_size;
__u32 result;
} test[MAX_SUBTESTS];
int (*fill_helper)(struct bpf_test *self);
int expected_errcode; /* used when FLAG_EXPECTED_FAIL is set in the aux */
__u8 frag_data[MAX_DATA];
int stack_depth; /* for eBPF only, since tests don't call verifier */
int nr_testruns; /* Custom run count, defaults to MAX_TESTRUNS if 0 */
};
/* Large test cases need separate allocation and fill handler. */
static int bpf_fill_maxinsns1(struct bpf_test *self)
{
unsigned int len = BPF_MAXINSNS;
struct sock_filter *insn;
__u32 k = ~0;
int i;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
for (i = 0; i < len; i++, k--)
insn[i] = __BPF_STMT(BPF_RET | BPF_K, k);
self->u.ptr.insns = insn;
self->u.ptr.len = len;
return 0;
}
static int bpf_fill_maxinsns2(struct bpf_test *self)
{
unsigned int len = BPF_MAXINSNS;
struct sock_filter *insn;
int i;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
for (i = 0; i < len; i++)
insn[i] = __BPF_STMT(BPF_RET | BPF_K, 0xfefefefe);
self->u.ptr.insns = insn;
self->u.ptr.len = len;
return 0;
}
static int bpf_fill_maxinsns3(struct bpf_test *self)
{
unsigned int len = BPF_MAXINSNS;
struct sock_filter *insn;
struct rnd_state rnd;
int i;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
prandom_seed_state(&rnd, 3141592653589793238ULL);
for (i = 0; i < len - 1; i++) {
__u32 k = prandom_u32_state(&rnd);
insn[i] = __BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, k);
}
insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0);
self->u.ptr.insns = insn;
self->u.ptr.len = len;
return 0;
}
static int bpf_fill_maxinsns4(struct bpf_test *self)
{
unsigned int len = BPF_MAXINSNS + 1;
struct sock_filter *insn;
int i;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
for (i = 0; i < len; i++)
insn[i] = __BPF_STMT(BPF_RET | BPF_K, 0xfefefefe);
self->u.ptr.insns = insn;
self->u.ptr.len = len;
return 0;
}
static int bpf_fill_maxinsns5(struct bpf_test *self)
{
unsigned int len = BPF_MAXINSNS;
struct sock_filter *insn;
int i;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
insn[0] = __BPF_JUMP(BPF_JMP | BPF_JA, len - 2, 0, 0);
for (i = 1; i < len - 1; i++)
insn[i] = __BPF_STMT(BPF_RET | BPF_K, 0xfefefefe);
insn[len - 1] = __BPF_STMT(BPF_RET | BPF_K, 0xabababab);
self->u.ptr.insns = insn;
self->u.ptr.len = len;
return 0;
}
static int bpf_fill_maxinsns6(struct bpf_test *self)
{
unsigned int len = BPF_MAXINSNS;
struct sock_filter *insn;
int i;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
for (i = 0; i < len - 1; i++)
insn[i] = __BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF +
SKF_AD_VLAN_TAG_PRESENT);
insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0);
self->u.ptr.insns = insn;
self->u.ptr.len = len;
return 0;
}
static int bpf_fill_maxinsns7(struct bpf_test *self)
{
unsigned int len = BPF_MAXINSNS;
struct sock_filter *insn;
int i;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
for (i = 0; i < len - 4; i++)
insn[i] = __BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF +
SKF_AD_CPU);
insn[len - 4] = __BPF_STMT(BPF_MISC | BPF_TAX, 0);
insn[len - 3] = __BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF +
SKF_AD_CPU);
insn[len - 2] = __BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0);
insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0);
self->u.ptr.insns = insn;
self->u.ptr.len = len;
return 0;
}
static int bpf_fill_maxinsns8(struct bpf_test *self)
{
unsigned int len = BPF_MAXINSNS;
struct sock_filter *insn;
int i, jmp_off = len - 3;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
insn[0] = __BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff);
for (i = 1; i < len - 1; i++)
insn[i] = __BPF_JUMP(BPF_JMP | BPF_JGT, 0xffffffff, jmp_off--, 0);
insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0);
self->u.ptr.insns = insn;
self->u.ptr.len = len;
return 0;
}
static int bpf_fill_maxinsns9(struct bpf_test *self)
{
unsigned int len = BPF_MAXINSNS;
struct bpf_insn *insn;
int i;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
insn[0] = BPF_JMP_IMM(BPF_JA, 0, 0, len - 2);
insn[1] = BPF_ALU32_IMM(BPF_MOV, R0, 0xcbababab);
insn[2] = BPF_EXIT_INSN();
for (i = 3; i < len - 2; i++)
insn[i] = BPF_ALU32_IMM(BPF_MOV, R0, 0xfefefefe);
insn[len - 2] = BPF_EXIT_INSN();
insn[len - 1] = BPF_JMP_IMM(BPF_JA, 0, 0, -(len - 1));
self->u.ptr.insns = insn;
self->u.ptr.len = len;
return 0;
}
static int bpf_fill_maxinsns10(struct bpf_test *self)
{
unsigned int len = BPF_MAXINSNS, hlen = len - 2;
struct bpf_insn *insn;
int i;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
for (i = 0; i < hlen / 2; i++)
insn[i] = BPF_JMP_IMM(BPF_JA, 0, 0, hlen - 2 - 2 * i);
for (i = hlen - 1; i > hlen / 2; i--)
insn[i] = BPF_JMP_IMM(BPF_JA, 0, 0, hlen - 1 - 2 * i);
insn[hlen / 2] = BPF_JMP_IMM(BPF_JA, 0, 0, hlen / 2 - 1);
insn[hlen] = BPF_ALU32_IMM(BPF_MOV, R0, 0xabababac);
insn[hlen + 1] = BPF_EXIT_INSN();
self->u.ptr.insns = insn;
self->u.ptr.len = len;
return 0;
}
static int __bpf_fill_ja(struct bpf_test *self, unsigned int len,
unsigned int plen)
{
struct sock_filter *insn;
unsigned int rlen;
int i, j;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
rlen = (len % plen) - 1;
for (i = 0; i + plen < len; i += plen)
for (j = 0; j < plen; j++)
insn[i + j] = __BPF_JUMP(BPF_JMP | BPF_JA,
plen - 1 - j, 0, 0);
for (j = 0; j < rlen; j++)
insn[i + j] = __BPF_JUMP(BPF_JMP | BPF_JA, rlen - 1 - j,
0, 0);
insn[len - 1] = __BPF_STMT(BPF_RET | BPF_K, 0xababcbac);
self->u.ptr.insns = insn;
self->u.ptr.len = len;
return 0;
}
static int bpf_fill_maxinsns11(struct bpf_test *self)
{
/* Hits 70 passes on x86_64 and triggers NOPs padding. */
return __bpf_fill_ja(self, BPF_MAXINSNS, 68);
}
static int bpf_fill_maxinsns12(struct bpf_test *self)
{
unsigned int len = BPF_MAXINSNS;
struct sock_filter *insn;
int i = 0;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
insn[0] = __BPF_JUMP(BPF_JMP | BPF_JA, len - 2, 0, 0);
for (i = 1; i < len - 1; i++)
insn[i] = __BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0);
insn[len - 1] = __BPF_STMT(BPF_RET | BPF_K, 0xabababab);
self->u.ptr.insns = insn;
self->u.ptr.len = len;
return 0;
}
static int bpf_fill_maxinsns13(struct bpf_test *self)
{
unsigned int len = BPF_MAXINSNS;
struct sock_filter *insn;
int i = 0;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
for (i = 0; i < len - 3; i++)
insn[i] = __BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0);
insn[len - 3] = __BPF_STMT(BPF_LD | BPF_IMM, 0xabababab);
insn[len - 2] = __BPF_STMT(BPF_ALU | BPF_XOR | BPF_X, 0);
insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0);
self->u.ptr.insns = insn;
self->u.ptr.len = len;
return 0;
}
static int bpf_fill_ja(struct bpf_test *self)
{
/* Hits exactly 11 passes on x86_64 JIT. */
return __bpf_fill_ja(self, 12, 9);
}
static int bpf_fill_ld_abs_get_processor_id(struct bpf_test *self)
{
unsigned int len = BPF_MAXINSNS;
struct sock_filter *insn;
int i;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
for (i = 0; i < len - 1; i += 2) {
insn[i] = __BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 0);
insn[i + 1] = __BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_CPU);
}
insn[len - 1] = __BPF_STMT(BPF_RET | BPF_K, 0xbee);
self->u.ptr.insns = insn;
self->u.ptr.len = len;
return 0;
}
static int __bpf_fill_stxdw(struct bpf_test *self, int size)
{
unsigned int len = BPF_MAXINSNS;
struct bpf_insn *insn;
int i;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
insn[0] = BPF_ALU32_IMM(BPF_MOV, R0, 1);
insn[1] = BPF_ST_MEM(size, R10, -40, 42);
for (i = 2; i < len - 2; i++)
insn[i] = BPF_STX_XADD(size, R10, R0, -40);
insn[len - 2] = BPF_LDX_MEM(size, R0, R10, -40);
insn[len - 1] = BPF_EXIT_INSN();
self->u.ptr.insns = insn;
self->u.ptr.len = len;
self->stack_depth = 40;
return 0;
}
static int bpf_fill_stxw(struct bpf_test *self)
{
return __bpf_fill_stxdw(self, BPF_W);
}
static int bpf_fill_stxdw(struct bpf_test *self)
{
return __bpf_fill_stxdw(self, BPF_DW);
}
static int __bpf_ld_imm64(struct bpf_insn insns[2], u8 reg, s64 imm64)
{
struct bpf_insn tmp[] = {BPF_LD_IMM64(reg, imm64)};
memcpy(insns, tmp, sizeof(tmp));
return 2;
}
/*
* Branch conversion tests. Complex operations can expand to a lot
* of instructions when JITed. This in turn may cause jump offsets
* to overflow the field size of the native instruction, triggering
* a branch conversion mechanism in some JITs.
*/
static int __bpf_fill_max_jmp(struct bpf_test *self, int jmp, int imm)
{
struct bpf_insn *insns;
int len = S16_MAX + 5;
int i;
insns = kmalloc_array(len, sizeof(*insns), GFP_KERNEL);
if (!insns)
return -ENOMEM;
i = __bpf_ld_imm64(insns, R1, 0x0123456789abcdefULL);
insns[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1);
insns[i++] = BPF_JMP_IMM(jmp, R0, imm, S16_MAX);
insns[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 2);
insns[i++] = BPF_EXIT_INSN();
while (i < len - 1) {
static const int ops[] = {
BPF_LSH, BPF_RSH, BPF_ARSH, BPF_ADD,
BPF_SUB, BPF_MUL, BPF_DIV, BPF_MOD,
};
int op = ops[(i >> 1) % ARRAY_SIZE(ops)];
if (i & 1)
insns[i++] = BPF_ALU32_REG(op, R0, R1);
else
insns[i++] = BPF_ALU64_REG(op, R0, R1);
}
insns[i++] = BPF_EXIT_INSN();
self->u.ptr.insns = insns;
self->u.ptr.len = len;
BUG_ON(i != len);
return 0;
}
/* Branch taken by runtime decision */
static int bpf_fill_max_jmp_taken(struct bpf_test *self)
{
return __bpf_fill_max_jmp(self, BPF_JEQ, 1);
}
/* Branch not taken by runtime decision */
static int bpf_fill_max_jmp_not_taken(struct bpf_test *self)
{
return __bpf_fill_max_jmp(self, BPF_JEQ, 0);
}
/* Branch always taken, known at JIT time */
static int bpf_fill_max_jmp_always_taken(struct bpf_test *self)
{
return __bpf_fill_max_jmp(self, BPF_JGE, 0);
}
/* Branch never taken, known at JIT time */
static int bpf_fill_max_jmp_never_taken(struct bpf_test *self)
{
return __bpf_fill_max_jmp(self, BPF_JLT, 0);
}
/* ALU result computation used in tests */
static bool __bpf_alu_result(u64 *res, u64 v1, u64 v2, u8 op)
{
*res = 0;
switch (op) {
case BPF_MOV:
*res = v2;
break;
case BPF_AND:
*res = v1 & v2;
break;
case BPF_OR:
*res = v1 | v2;
break;
case BPF_XOR:
*res = v1 ^ v2;
break;
case BPF_LSH:
*res = v1 << v2;
break;
case BPF_RSH:
*res = v1 >> v2;
break;
case BPF_ARSH:
*res = v1 >> v2;
if (v2 > 0 && v1 > S64_MAX)
*res |= ~0ULL << (64 - v2);
break;
case BPF_ADD:
*res = v1 + v2;
break;
case BPF_SUB:
*res = v1 - v2;
break;
case BPF_MUL:
*res = v1 * v2;
break;
case BPF_DIV:
if (v2 == 0)
return false;
*res = div64_u64(v1, v2);
break;
case BPF_MOD:
if (v2 == 0)
return false;
div64_u64_rem(v1, v2, res);
break;
}
return true;
}
/* Test an ALU shift operation for all valid shift values */
static int __bpf_fill_alu_shift(struct bpf_test *self, u8 op,
u8 mode, bool alu32)
{
static const s64 regs[] = {
0x0123456789abcdefLL, /* dword > 0, word < 0 */
0xfedcba9876543210LL, /* dowrd < 0, word > 0 */
0xfedcba0198765432LL, /* dowrd < 0, word < 0 */
0x0123458967abcdefLL, /* dword > 0, word > 0 */
};
int bits = alu32 ? 32 : 64;
int len = (2 + 7 * bits) * ARRAY_SIZE(regs) + 3;
struct bpf_insn *insn;
int imm, k;
int i = 0;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 0);
for (k = 0; k < ARRAY_SIZE(regs); k++) {
s64 reg = regs[k];
i += __bpf_ld_imm64(&insn[i], R3, reg);
for (imm = 0; imm < bits; imm++) {
u64 val;
/* Perform operation */
insn[i++] = BPF_ALU64_REG(BPF_MOV, R1, R3);
insn[i++] = BPF_ALU64_IMM(BPF_MOV, R2, imm);
if (alu32) {
if (mode == BPF_K)
insn[i++] = BPF_ALU32_IMM(op, R1, imm);
else
insn[i++] = BPF_ALU32_REG(op, R1, R2);
if (op == BPF_ARSH)
reg = (s32)reg;
else
reg = (u32)reg;
__bpf_alu_result(&val, reg, imm, op);
val = (u32)val;
} else {
if (mode == BPF_K)
insn[i++] = BPF_ALU64_IMM(op, R1, imm);
else
insn[i++] = BPF_ALU64_REG(op, R1, R2);
__bpf_alu_result(&val, reg, imm, op);
}
/*
* When debugging a JIT that fails this test, one
* can write the immediate value to R0 here to find
* out which operand values that fail.
*/
/* Load reference and check the result */
i += __bpf_ld_imm64(&insn[i], R4, val);
insn[i++] = BPF_JMP_REG(BPF_JEQ, R1, R4, 1);
insn[i++] = BPF_EXIT_INSN();
}
}
insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1);
insn[i++] = BPF_EXIT_INSN();
self->u.ptr.insns = insn;
self->u.ptr.len = len;
BUG_ON(i != len);
return 0;
}
static int bpf_fill_alu64_lsh_imm(struct bpf_test *self)
{
return __bpf_fill_alu_shift(self, BPF_LSH, BPF_K, false);
}
static int bpf_fill_alu64_rsh_imm(struct bpf_test *self)
{
return __bpf_fill_alu_shift(self, BPF_RSH, BPF_K, false);
}
static int bpf_fill_alu64_arsh_imm(struct bpf_test *self)
{
return __bpf_fill_alu_shift(self, BPF_ARSH, BPF_K, false);
}
static int bpf_fill_alu64_lsh_reg(struct bpf_test *self)
{
return __bpf_fill_alu_shift(self, BPF_LSH, BPF_X, false);
}
static int bpf_fill_alu64_rsh_reg(struct bpf_test *self)
{
return __bpf_fill_alu_shift(self, BPF_RSH, BPF_X, false);
}
static int bpf_fill_alu64_arsh_reg(struct bpf_test *self)
{
return __bpf_fill_alu_shift(self, BPF_ARSH, BPF_X, false);
}
static int bpf_fill_alu32_lsh_imm(struct bpf_test *self)
{
return __bpf_fill_alu_shift(self, BPF_LSH, BPF_K, true);
}
static int bpf_fill_alu32_rsh_imm(struct bpf_test *self)
{
return __bpf_fill_alu_shift(self, BPF_RSH, BPF_K, true);
}
static int bpf_fill_alu32_arsh_imm(struct bpf_test *self)
{
return __bpf_fill_alu_shift(self, BPF_ARSH, BPF_K, true);
}
static int bpf_fill_alu32_lsh_reg(struct bpf_test *self)
{
return __bpf_fill_alu_shift(self, BPF_LSH, BPF_X, true);
}
static int bpf_fill_alu32_rsh_reg(struct bpf_test *self)
{
return __bpf_fill_alu_shift(self, BPF_RSH, BPF_X, true);
}
static int bpf_fill_alu32_arsh_reg(struct bpf_test *self)
{
return __bpf_fill_alu_shift(self, BPF_ARSH, BPF_X, true);
}
/*
* Test an ALU register shift operation for all valid shift values
* for the case when the source and destination are the same.
*/
static int __bpf_fill_alu_shift_same_reg(struct bpf_test *self, u8 op,
bool alu32)
{
int bits = alu32 ? 32 : 64;
int len = 3 + 6 * bits;
struct bpf_insn *insn;
int i = 0;
u64 val;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 0);
for (val = 0; val < bits; val++) {
u64 res;
/* Perform operation */
insn[i++] = BPF_ALU64_IMM(BPF_MOV, R1, val);
if (alu32)
insn[i++] = BPF_ALU32_REG(op, R1, R1);
else
insn[i++] = BPF_ALU64_REG(op, R1, R1);
/* Compute the reference result */
__bpf_alu_result(&res, val, val, op);
if (alu32)
res = (u32)res;
i += __bpf_ld_imm64(&insn[i], R2, res);
/* Check the actual result */
insn[i++] = BPF_JMP_REG(BPF_JEQ, R1, R2, 1);
insn[i++] = BPF_EXIT_INSN();
}
insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1);
insn[i++] = BPF_EXIT_INSN();
self->u.ptr.insns = insn;
self->u.ptr.len = len;
BUG_ON(i != len);
return 0;
}
static int bpf_fill_alu64_lsh_same_reg(struct bpf_test *self)
{
return __bpf_fill_alu_shift_same_reg(self, BPF_LSH, false);
}
static int bpf_fill_alu64_rsh_same_reg(struct bpf_test *self)
{
return __bpf_fill_alu_shift_same_reg(self, BPF_RSH, false);
}
static int bpf_fill_alu64_arsh_same_reg(struct bpf_test *self)
{
return __bpf_fill_alu_shift_same_reg(self, BPF_ARSH, false);
}
static int bpf_fill_alu32_lsh_same_reg(struct bpf_test *self)
{
return __bpf_fill_alu_shift_same_reg(self, BPF_LSH, true);
}
static int bpf_fill_alu32_rsh_same_reg(struct bpf_test *self)
{
return __bpf_fill_alu_shift_same_reg(self, BPF_RSH, true);
}
static int bpf_fill_alu32_arsh_same_reg(struct bpf_test *self)
{
return __bpf_fill_alu_shift_same_reg(self, BPF_ARSH, true);
}
/*
* Common operand pattern generator for exhaustive power-of-two magnitudes
* tests. The block size parameters can be adjusted to increase/reduce the
* number of combinatons tested and thereby execution speed and memory
* footprint.
*/
static inline s64 value(int msb, int delta, int sign)
{
return sign * (1LL << msb) + delta;
}
static int __bpf_fill_pattern(struct bpf_test *self, void *arg,
int dbits, int sbits, int block1, int block2,
int (*emit)(struct bpf_test*, void*,
struct bpf_insn*, s64, s64))
{
static const int sgn[][2] = {{1, 1}, {1, -1}, {-1, 1}, {-1, -1}};
struct bpf_insn *insns;
int di, si, bt, db, sb;
int count, len, k;
int extra = 1 + 2;
int i = 0;
/* Total number of iterations for the two pattern */
count = (dbits - 1) * (sbits - 1) * block1 * block1 * ARRAY_SIZE(sgn);
count += (max(dbits, sbits) - 1) * block2 * block2 * ARRAY_SIZE(sgn);
/* Compute the maximum number of insns and allocate the buffer */
len = extra + count * (*emit)(self, arg, NULL, 0, 0);
insns = kmalloc_array(len, sizeof(*insns), GFP_KERNEL);
if (!insns)
return -ENOMEM;
/* Add head instruction(s) */
insns[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 0);
/*
* Pattern 1: all combinations of power-of-two magnitudes and sign,
* and with a block of contiguous values around each magnitude.
*/
for (di = 0; di < dbits - 1; di++) /* Dst magnitudes */
for (si = 0; si < sbits - 1; si++) /* Src magnitudes */
for (k = 0; k < ARRAY_SIZE(sgn); k++) /* Sign combos */
for (db = -(block1 / 2);
db < (block1 + 1) / 2; db++)
for (sb = -(block1 / 2);
sb < (block1 + 1) / 2; sb++) {
s64 dst, src;
dst = value(di, db, sgn[k][0]);
src = value(si, sb, sgn[k][1]);
i += (*emit)(self, arg,
&insns[i],
dst, src);
}
/*
* Pattern 2: all combinations for a larger block of values
* for each power-of-two magnitude and sign, where the magnitude is
* the same for both operands.
*/
for (bt = 0; bt < max(dbits, sbits) - 1; bt++) /* Magnitude */
for (k = 0; k < ARRAY_SIZE(sgn); k++) /* Sign combos */
for (db = -(block2 / 2); db < (block2 + 1) / 2; db++)
for (sb = -(block2 / 2);
sb < (block2 + 1) / 2; sb++) {
s64 dst, src;
dst = value(bt % dbits, db, sgn[k][0]);
src = value(bt % sbits, sb, sgn[k][1]);
i += (*emit)(self, arg, &insns[i],
dst, src);
}
/* Append tail instructions */
insns[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1);
insns[i++] = BPF_EXIT_INSN();
BUG_ON(i > len);
self->u.ptr.insns = insns;
self->u.ptr.len = i;
return 0;
}
/*
* Block size parameters used in pattern tests below. une as needed to
* increase/reduce the number combinations tested, see following examples.
* block values per operand MSB
* ----------------------------------------
* 0 none
* 1 (1 << MSB)
* 2 (1 << MSB) + [-1, 0]
* 3 (1 << MSB) + [-1, 0, 1]
*/
#define PATTERN_BLOCK1 1
#define PATTERN_BLOCK2 5
/* Number of test runs for a pattern test */
#define NR_PATTERN_RUNS 1
/*
* Exhaustive tests of ALU operations for all combinations of power-of-two
* magnitudes of the operands, both for positive and negative values. The
* test is designed to verify e.g. the ALU and ALU64 operations for JITs that
* emit different code depending on the magnitude of the immediate value.
*/
static int __bpf_emit_alu64_imm(struct bpf_test *self, void *arg,
struct bpf_insn *insns, s64 dst, s64 imm)
{
int op = *(int *)arg;
int i = 0;
u64 res;
if (!insns)
return 7;
if (__bpf_alu_result(&res, dst, (s32)imm, op)) {
i += __bpf_ld_imm64(&insns[i], R1, dst);
i += __bpf_ld_imm64(&insns[i], R3, res);
insns[i++] = BPF_ALU64_IMM(op, R1, imm);
insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1);
insns[i++] = BPF_EXIT_INSN();
}
return i;
}
static int __bpf_emit_alu32_imm(struct bpf_test *self, void *arg,
struct bpf_insn *insns, s64 dst, s64 imm)
{
int op = *(int *)arg;
int i = 0;
u64 res;
if (!insns)
return 7;
if (__bpf_alu_result(&res, (u32)dst, (u32)imm, op)) {
i += __bpf_ld_imm64(&insns[i], R1, dst);
i += __bpf_ld_imm64(&insns[i], R3, (u32)res);
insns[i++] = BPF_ALU32_IMM(op, R1, imm);
insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1);
insns[i++] = BPF_EXIT_INSN();
}
return i;
}
static int __bpf_emit_alu64_reg(struct bpf_test *self, void *arg,
struct bpf_insn *insns, s64 dst, s64 src)
{
int op = *(int *)arg;
int i = 0;
u64 res;
if (!insns)
return 9;
if (__bpf_alu_result(&res, dst, src, op)) {
i += __bpf_ld_imm64(&insns[i], R1, dst);
i += __bpf_ld_imm64(&insns[i], R2, src);
i += __bpf_ld_imm64(&insns[i], R3, res);
insns[i++] = BPF_ALU64_REG(op, R1, R2);
insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1);
insns[i++] = BPF_EXIT_INSN();
}
return i;
}
static int __bpf_emit_alu32_reg(struct bpf_test *self, void *arg,
struct bpf_insn *insns, s64 dst, s64 src)
{
int op = *(int *)arg;
int i = 0;
u64 res;
if (!insns)
return 9;
if (__bpf_alu_result(&res, (u32)dst, (u32)src, op)) {
i += __bpf_ld_imm64(&insns[i], R1, dst);
i += __bpf_ld_imm64(&insns[i], R2, src);
i += __bpf_ld_imm64(&insns[i], R3, (u32)res);
insns[i++] = BPF_ALU32_REG(op, R1, R2);
insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1);
insns[i++] = BPF_EXIT_INSN();
}
return i;
}
static int __bpf_fill_alu64_imm(struct bpf_test *self, int op)
{
return __bpf_fill_pattern(self, &op, 64, 32,
PATTERN_BLOCK1, PATTERN_BLOCK2,
&__bpf_emit_alu64_imm);
}
static int __bpf_fill_alu32_imm(struct bpf_test *self, int op)
{
return __bpf_fill_pattern(self, &op, 64, 32,
PATTERN_BLOCK1, PATTERN_BLOCK2,
&__bpf_emit_alu32_imm);
}
static int __bpf_fill_alu64_reg(struct bpf_test *self, int op)
{
return __bpf_fill_pattern(self, &op, 64, 64,
PATTERN_BLOCK1, PATTERN_BLOCK2,
&__bpf_emit_alu64_reg);
}
static int __bpf_fill_alu32_reg(struct bpf_test *self, int op)
{
return __bpf_fill_pattern(self, &op, 64, 64,
PATTERN_BLOCK1, PATTERN_BLOCK2,
&__bpf_emit_alu32_reg);
}
/* ALU64 immediate operations */
static int bpf_fill_alu64_mov_imm(struct bpf_test *self)
{
return __bpf_fill_alu64_imm(self, BPF_MOV);
}
static int bpf_fill_alu64_and_imm(struct bpf_test *self)
{
return __bpf_fill_alu64_imm(self, BPF_AND);
}
static int bpf_fill_alu64_or_imm(struct bpf_test *self)
{
return __bpf_fill_alu64_imm(self, BPF_OR);
}
static int bpf_fill_alu64_xor_imm(struct bpf_test *self)
{
return __bpf_fill_alu64_imm(self, BPF_XOR);
}
static int bpf_fill_alu64_add_imm(struct bpf_test *self)
{
return __bpf_fill_alu64_imm(self, BPF_ADD);
}
static int bpf_fill_alu64_sub_imm(struct bpf_test *self)
{
return __bpf_fill_alu64_imm(self, BPF_SUB);
}
static int bpf_fill_alu64_mul_imm(struct bpf_test *self)
{
return __bpf_fill_alu64_imm(self, BPF_MUL);
}
static int bpf_fill_alu64_div_imm(struct bpf_test *self)
{
return __bpf_fill_alu64_imm(self, BPF_DIV);
}
static int bpf_fill_alu64_mod_imm(struct bpf_test *self)
{
return __bpf_fill_alu64_imm(self, BPF_MOD);
}
/* ALU32 immediate operations */
static int bpf_fill_alu32_mov_imm(struct bpf_test *self)
{
return __bpf_fill_alu32_imm(self, BPF_MOV);
}
static int bpf_fill_alu32_and_imm(struct bpf_test *self)
{
return __bpf_fill_alu32_imm(self, BPF_AND);
}
static int bpf_fill_alu32_or_imm(struct bpf_test *self)
{
return __bpf_fill_alu32_imm(self, BPF_OR);
}
static int bpf_fill_alu32_xor_imm(struct bpf_test *self)
{
return __bpf_fill_alu32_imm(self, BPF_XOR);
}
static int bpf_fill_alu32_add_imm(struct bpf_test *self)
{
return __bpf_fill_alu32_imm(self, BPF_ADD);
}
static int bpf_fill_alu32_sub_imm(struct bpf_test *self)
{
return __bpf_fill_alu32_imm(self, BPF_SUB);
}
static int bpf_fill_alu32_mul_imm(struct bpf_test *self)
{
return __bpf_fill_alu32_imm(self, BPF_MUL);
}
static int bpf_fill_alu32_div_imm(struct bpf_test *self)
{
return __bpf_fill_alu32_imm(self, BPF_DIV);
}
static int bpf_fill_alu32_mod_imm(struct bpf_test *self)
{
return __bpf_fill_alu32_imm(self, BPF_MOD);
}
/* ALU64 register operations */
static int bpf_fill_alu64_mov_reg(struct bpf_test *self)
{
return __bpf_fill_alu64_reg(self, BPF_MOV);
}
static int bpf_fill_alu64_and_reg(struct bpf_test *self)
{
return __bpf_fill_alu64_reg(self, BPF_AND);
}
static int bpf_fill_alu64_or_reg(struct bpf_test *self)
{
return __bpf_fill_alu64_reg(self, BPF_OR);
}
static int bpf_fill_alu64_xor_reg(struct bpf_test *self)
{
return __bpf_fill_alu64_reg(self, BPF_XOR);
}
static int bpf_fill_alu64_add_reg(struct bpf_test *self)
{
return __bpf_fill_alu64_reg(self, BPF_ADD);
}
static int bpf_fill_alu64_sub_reg(struct bpf_test *self)
{
return __bpf_fill_alu64_reg(self, BPF_SUB);
}
static int bpf_fill_alu64_mul_reg(struct bpf_test *self)
{
return __bpf_fill_alu64_reg(self, BPF_MUL);
}
static int bpf_fill_alu64_div_reg(struct bpf_test *self)
{
return __bpf_fill_alu64_reg(self, BPF_DIV);
}
static int bpf_fill_alu64_mod_reg(struct bpf_test *self)
{
return __bpf_fill_alu64_reg(self, BPF_MOD);
}
/* ALU32 register operations */
static int bpf_fill_alu32_mov_reg(struct bpf_test *self)
{
return __bpf_fill_alu32_reg(self, BPF_MOV);
}
static int bpf_fill_alu32_and_reg(struct bpf_test *self)
{
return __bpf_fill_alu32_reg(self, BPF_AND);
}
static int bpf_fill_alu32_or_reg(struct bpf_test *self)
{
return __bpf_fill_alu32_reg(self, BPF_OR);
}
static int bpf_fill_alu32_xor_reg(struct bpf_test *self)
{
return __bpf_fill_alu32_reg(self, BPF_XOR);
}
static int bpf_fill_alu32_add_reg(struct bpf_test *self)
{
return __bpf_fill_alu32_reg(self, BPF_ADD);
}
static int bpf_fill_alu32_sub_reg(struct bpf_test *self)
{
return __bpf_fill_alu32_reg(self, BPF_SUB);
}
static int bpf_fill_alu32_mul_reg(struct bpf_test *self)
{
return __bpf_fill_alu32_reg(self, BPF_MUL);
}
static int bpf_fill_alu32_div_reg(struct bpf_test *self)
{
return __bpf_fill_alu32_reg(self, BPF_DIV);
}
static int bpf_fill_alu32_mod_reg(struct bpf_test *self)
{
return __bpf_fill_alu32_reg(self, BPF_MOD);
}
/*
* Test JITs that implement complex ALU operations as function
* calls, and must re-arrange operands for argument passing.
*/
static int __bpf_fill_alu_imm_regs(struct bpf_test *self, u8 op, bool alu32)
{
int len = 2 + 10 * 10;
struct bpf_insn *insns;
u64 dst, res;
int i = 0;
u32 imm;
int rd;
insns = kmalloc_array(len, sizeof(*insns), GFP_KERNEL);
if (!insns)
return -ENOMEM;
/* Operand and result values according to operation */
if (alu32)
dst = 0x76543210U;
else
dst = 0x7edcba9876543210ULL;
imm = 0x01234567U;
if (op == BPF_LSH || op == BPF_RSH || op == BPF_ARSH)
imm &= 31;
__bpf_alu_result(&res, dst, imm, op);
if (alu32)
res = (u32)res;
/* Check all operand registers */
for (rd = R0; rd <= R9; rd++) {
i += __bpf_ld_imm64(&insns[i], rd, dst);
if (alu32)
insns[i++] = BPF_ALU32_IMM(op, rd, imm);
else
insns[i++] = BPF_ALU64_IMM(op, rd, imm);
insns[i++] = BPF_JMP32_IMM(BPF_JEQ, rd, res, 2);
insns[i++] = BPF_MOV64_IMM(R0, __LINE__);
insns[i++] = BPF_EXIT_INSN();
insns[i++] = BPF_ALU64_IMM(BPF_RSH, rd, 32);
insns[i++] = BPF_JMP32_IMM(BPF_JEQ, rd, res >> 32, 2);
insns[i++] = BPF_MOV64_IMM(R0, __LINE__);
insns[i++] = BPF_EXIT_INSN();
}
insns[i++] = BPF_MOV64_IMM(R0, 1);
insns[i++] = BPF_EXIT_INSN();
self->u.ptr.insns = insns;
self->u.ptr.len = len;
BUG_ON(i != len);
return 0;
}
/* ALU64 K registers */
static int bpf_fill_alu64_mov_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_MOV, false);
}
static int bpf_fill_alu64_and_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_AND, false);
}
static int bpf_fill_alu64_or_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_OR, false);
}
static int bpf_fill_alu64_xor_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_XOR, false);
}
static int bpf_fill_alu64_lsh_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_LSH, false);
}
static int bpf_fill_alu64_rsh_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_RSH, false);
}
static int bpf_fill_alu64_arsh_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_ARSH, false);
}
static int bpf_fill_alu64_add_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_ADD, false);
}
static int bpf_fill_alu64_sub_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_SUB, false);
}
static int bpf_fill_alu64_mul_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_MUL, false);
}
static int bpf_fill_alu64_div_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_DIV, false);
}
static int bpf_fill_alu64_mod_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_MOD, false);
}
/* ALU32 K registers */
static int bpf_fill_alu32_mov_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_MOV, true);
}
static int bpf_fill_alu32_and_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_AND, true);
}
static int bpf_fill_alu32_or_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_OR, true);
}
static int bpf_fill_alu32_xor_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_XOR, true);
}
static int bpf_fill_alu32_lsh_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_LSH, true);
}
static int bpf_fill_alu32_rsh_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_RSH, true);
}
static int bpf_fill_alu32_arsh_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_ARSH, true);
}
static int bpf_fill_alu32_add_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_ADD, true);
}
static int bpf_fill_alu32_sub_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_SUB, true);
}
static int bpf_fill_alu32_mul_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_MUL, true);
}
static int bpf_fill_alu32_div_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_DIV, true);
}
static int bpf_fill_alu32_mod_imm_regs(struct bpf_test *self)
{
return __bpf_fill_alu_imm_regs(self, BPF_MOD, true);
}
/*
* Test JITs that implement complex ALU operations as function
* calls, and must re-arrange operands for argument passing.
*/
static int __bpf_fill_alu_reg_pairs(struct bpf_test *self, u8 op, bool alu32)
{
int len = 2 + 10 * 10 * 12;
u64 dst, src, res, same;
struct bpf_insn *insns;
int rd, rs;
int i = 0;
insns = kmalloc_array(len, sizeof(*insns), GFP_KERNEL);
if (!insns)
return -ENOMEM;
/* Operand and result values according to operation */
if (alu32) {
dst = 0x76543210U;
src = 0x01234567U;
} else {
dst = 0x7edcba9876543210ULL;
src = 0x0123456789abcdefULL;
}
if (op == BPF_LSH || op == BPF_RSH || op == BPF_ARSH)
src &= 31;
__bpf_alu_result(&res, dst, src, op);
__bpf_alu_result(&same, src, src, op);
if (alu32) {
res = (u32)res;
same = (u32)same;
}
/* Check all combinations of operand registers */
for (rd = R0; rd <= R9; rd++) {
for (rs = R0; rs <= R9; rs++) {
u64 val = rd == rs ? same : res;
i += __bpf_ld_imm64(&insns[i], rd, dst);
i += __bpf_ld_imm64(&insns[i], rs, src);
if (alu32)
insns[i++] = BPF_ALU32_REG(op, rd, rs);
else
insns[i++] = BPF_ALU64_REG(op, rd, rs);
insns[i++] = BPF_JMP32_IMM(BPF_JEQ, rd, val, 2);
insns[i++] = BPF_MOV64_IMM(R0, __LINE__);
insns[i++] = BPF_EXIT_INSN();
insns[i++] = BPF_ALU64_IMM(BPF_RSH, rd, 32);
insns[i++] = BPF_JMP32_IMM(BPF_JEQ, rd, val >> 32, 2);
insns[i++] = BPF_MOV64_IMM(R0, __LINE__);
insns[i++] = BPF_EXIT_INSN();
}
}
insns[i++] = BPF_MOV64_IMM(R0, 1);
insns[i++] = BPF_EXIT_INSN();
self->u.ptr.insns = insns;
self->u.ptr.len = len;
BUG_ON(i != len);
return 0;
}
/* ALU64 X register combinations */
static int bpf_fill_alu64_mov_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_MOV, false);
}
static int bpf_fill_alu64_and_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_AND, false);
}
static int bpf_fill_alu64_or_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_OR, false);
}
static int bpf_fill_alu64_xor_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_XOR, false);
}
static int bpf_fill_alu64_lsh_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_LSH, false);
}
static int bpf_fill_alu64_rsh_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_RSH, false);
}
static int bpf_fill_alu64_arsh_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_ARSH, false);
}
static int bpf_fill_alu64_add_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_ADD, false);
}
static int bpf_fill_alu64_sub_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_SUB, false);
}
static int bpf_fill_alu64_mul_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_MUL, false);
}
static int bpf_fill_alu64_div_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_DIV, false);
}
static int bpf_fill_alu64_mod_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_MOD, false);
}
/* ALU32 X register combinations */
static int bpf_fill_alu32_mov_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_MOV, true);
}
static int bpf_fill_alu32_and_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_AND, true);
}
static int bpf_fill_alu32_or_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_OR, true);
}
static int bpf_fill_alu32_xor_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_XOR, true);
}
static int bpf_fill_alu32_lsh_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_LSH, true);
}
static int bpf_fill_alu32_rsh_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_RSH, true);
}
static int bpf_fill_alu32_arsh_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_ARSH, true);
}
static int bpf_fill_alu32_add_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_ADD, true);
}
static int bpf_fill_alu32_sub_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_SUB, true);
}
static int bpf_fill_alu32_mul_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_MUL, true);
}
static int bpf_fill_alu32_div_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_DIV, true);
}
static int bpf_fill_alu32_mod_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_alu_reg_pairs(self, BPF_MOD, true);
}
/*
* Exhaustive tests of atomic operations for all power-of-two operand
* magnitudes, both for positive and negative values.
*/
static int __bpf_emit_atomic64(struct bpf_test *self, void *arg,
struct bpf_insn *insns, s64 dst, s64 src)
{
int op = *(int *)arg;
u64 keep, fetch, res;
int i = 0;
if (!insns)
return 21;
switch (op) {
case BPF_XCHG:
res = src;
break;
default:
__bpf_alu_result(&res, dst, src, BPF_OP(op));
}
keep = 0x0123456789abcdefULL;
if (op & BPF_FETCH)
fetch = dst;
else
fetch = src;
i += __bpf_ld_imm64(&insns[i], R0, keep);
i += __bpf_ld_imm64(&insns[i], R1, dst);
i += __bpf_ld_imm64(&insns[i], R2, src);
i += __bpf_ld_imm64(&insns[i], R3, res);
i += __bpf_ld_imm64(&insns[i], R4, fetch);
i += __bpf_ld_imm64(&insns[i], R5, keep);
insns[i++] = BPF_STX_MEM(BPF_DW, R10, R1, -8);
insns[i++] = BPF_ATOMIC_OP(BPF_DW, op, R10, R2, -8);
insns[i++] = BPF_LDX_MEM(BPF_DW, R1, R10, -8);
insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1);
insns[i++] = BPF_EXIT_INSN();
insns[i++] = BPF_JMP_REG(BPF_JEQ, R2, R4, 1);
insns[i++] = BPF_EXIT_INSN();
insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R5, 1);
insns[i++] = BPF_EXIT_INSN();
return i;
}
static int __bpf_emit_atomic32(struct bpf_test *self, void *arg,
struct bpf_insn *insns, s64 dst, s64 src)
{
int op = *(int *)arg;
u64 keep, fetch, res;
int i = 0;
if (!insns)
return 21;
switch (op) {
case BPF_XCHG:
res = src;
break;
default:
__bpf_alu_result(&res, (u32)dst, (u32)src, BPF_OP(op));
}
keep = 0x0123456789abcdefULL;
if (op & BPF_FETCH)
fetch = (u32)dst;
else
fetch = src;
i += __bpf_ld_imm64(&insns[i], R0, keep);
i += __bpf_ld_imm64(&insns[i], R1, (u32)dst);
i += __bpf_ld_imm64(&insns[i], R2, src);
i += __bpf_ld_imm64(&insns[i], R3, (u32)res);
i += __bpf_ld_imm64(&insns[i], R4, fetch);
i += __bpf_ld_imm64(&insns[i], R5, keep);
insns[i++] = BPF_STX_MEM(BPF_W, R10, R1, -4);
insns[i++] = BPF_ATOMIC_OP(BPF_W, op, R10, R2, -4);
insns[i++] = BPF_LDX_MEM(BPF_W, R1, R10, -4);
insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1);
insns[i++] = BPF_EXIT_INSN();
insns[i++] = BPF_JMP_REG(BPF_JEQ, R2, R4, 1);
insns[i++] = BPF_EXIT_INSN();
insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R5, 1);
insns[i++] = BPF_EXIT_INSN();
return i;
}
static int __bpf_emit_cmpxchg64(struct bpf_test *self, void *arg,
struct bpf_insn *insns, s64 dst, s64 src)
{
int i = 0;
if (!insns)
return 23;
i += __bpf_ld_imm64(&insns[i], R0, ~dst);
i += __bpf_ld_imm64(&insns[i], R1, dst);
i += __bpf_ld_imm64(&insns[i], R2, src);
/* Result unsuccessful */
insns[i++] = BPF_STX_MEM(BPF_DW, R10, R1, -8);
insns[i++] = BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -8);
insns[i++] = BPF_LDX_MEM(BPF_DW, R3, R10, -8);
insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 2);
insns[i++] = BPF_MOV64_IMM(R0, __LINE__);
insns[i++] = BPF_EXIT_INSN();
insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R3, 2);
insns[i++] = BPF_MOV64_IMM(R0, __LINE__);
insns[i++] = BPF_EXIT_INSN();
/* Result successful */
insns[i++] = BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -8);
insns[i++] = BPF_LDX_MEM(BPF_DW, R3, R10, -8);
insns[i++] = BPF_JMP_REG(BPF_JEQ, R2, R3, 2);
insns[i++] = BPF_MOV64_IMM(R0, __LINE__);
insns[i++] = BPF_EXIT_INSN();
insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R1, 2);
insns[i++] = BPF_MOV64_IMM(R0, __LINE__);
insns[i++] = BPF_EXIT_INSN();
return i;
}
static int __bpf_emit_cmpxchg32(struct bpf_test *self, void *arg,
struct bpf_insn *insns, s64 dst, s64 src)
{
int i = 0;
if (!insns)
return 27;
i += __bpf_ld_imm64(&insns[i], R0, ~dst);
i += __bpf_ld_imm64(&insns[i], R1, (u32)dst);
i += __bpf_ld_imm64(&insns[i], R2, src);
/* Result unsuccessful */
insns[i++] = BPF_STX_MEM(BPF_W, R10, R1, -4);
insns[i++] = BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R2, -4);
insns[i++] = BPF_ZEXT_REG(R0), /* Zext always inserted by verifier */
insns[i++] = BPF_LDX_MEM(BPF_W, R3, R10, -4);
insns[i++] = BPF_JMP32_REG(BPF_JEQ, R1, R3, 2);
insns[i++] = BPF_MOV32_IMM(R0, __LINE__);
insns[i++] = BPF_EXIT_INSN();
insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R3, 2);
insns[i++] = BPF_MOV32_IMM(R0, __LINE__);
insns[i++] = BPF_EXIT_INSN();
/* Result successful */
i += __bpf_ld_imm64(&insns[i], R0, dst);
insns[i++] = BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R2, -4);
insns[i++] = BPF_ZEXT_REG(R0), /* Zext always inserted by verifier */
insns[i++] = BPF_LDX_MEM(BPF_W, R3, R10, -4);
insns[i++] = BPF_JMP32_REG(BPF_JEQ, R2, R3, 2);
insns[i++] = BPF_MOV32_IMM(R0, __LINE__);
insns[i++] = BPF_EXIT_INSN();
insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R1, 2);
insns[i++] = BPF_MOV32_IMM(R0, __LINE__);
insns[i++] = BPF_EXIT_INSN();
return i;
}
static int __bpf_fill_atomic64(struct bpf_test *self, int op)
{
return __bpf_fill_pattern(self, &op, 64, 64,
0, PATTERN_BLOCK2,
&__bpf_emit_atomic64);
}
static int __bpf_fill_atomic32(struct bpf_test *self, int op)
{
return __bpf_fill_pattern(self, &op, 64, 64,
0, PATTERN_BLOCK2,
&__bpf_emit_atomic32);
}
/* 64-bit atomic operations */
static int bpf_fill_atomic64_add(struct bpf_test *self)
{
return __bpf_fill_atomic64(self, BPF_ADD);
}
static int bpf_fill_atomic64_and(struct bpf_test *self)
{
return __bpf_fill_atomic64(self, BPF_AND);
}
static int bpf_fill_atomic64_or(struct bpf_test *self)
{
return __bpf_fill_atomic64(self, BPF_OR);
}
static int bpf_fill_atomic64_xor(struct bpf_test *self)
{
return __bpf_fill_atomic64(self, BPF_XOR);
}
static int bpf_fill_atomic64_add_fetch(struct bpf_test *self)
{
return __bpf_fill_atomic64(self, BPF_ADD | BPF_FETCH);
}
static int bpf_fill_atomic64_and_fetch(struct bpf_test *self)
{
return __bpf_fill_atomic64(self, BPF_AND | BPF_FETCH);
}
static int bpf_fill_atomic64_or_fetch(struct bpf_test *self)
{
return __bpf_fill_atomic64(self, BPF_OR | BPF_FETCH);
}
static int bpf_fill_atomic64_xor_fetch(struct bpf_test *self)
{
return __bpf_fill_atomic64(self, BPF_XOR | BPF_FETCH);
}
static int bpf_fill_atomic64_xchg(struct bpf_test *self)
{
return __bpf_fill_atomic64(self, BPF_XCHG);
}
static int bpf_fill_cmpxchg64(struct bpf_test *self)
{
return __bpf_fill_pattern(self, NULL, 64, 64, 0, PATTERN_BLOCK2,
&__bpf_emit_cmpxchg64);
}
/* 32-bit atomic operations */
static int bpf_fill_atomic32_add(struct bpf_test *self)
{
return __bpf_fill_atomic32(self, BPF_ADD);
}
static int bpf_fill_atomic32_and(struct bpf_test *self)
{
return __bpf_fill_atomic32(self, BPF_AND);
}
static int bpf_fill_atomic32_or(struct bpf_test *self)
{
return __bpf_fill_atomic32(self, BPF_OR);
}
static int bpf_fill_atomic32_xor(struct bpf_test *self)
{
return __bpf_fill_atomic32(self, BPF_XOR);
}
static int bpf_fill_atomic32_add_fetch(struct bpf_test *self)
{
return __bpf_fill_atomic32(self, BPF_ADD | BPF_FETCH);
}
static int bpf_fill_atomic32_and_fetch(struct bpf_test *self)
{
return __bpf_fill_atomic32(self, BPF_AND | BPF_FETCH);
}
static int bpf_fill_atomic32_or_fetch(struct bpf_test *self)
{
return __bpf_fill_atomic32(self, BPF_OR | BPF_FETCH);
}
static int bpf_fill_atomic32_xor_fetch(struct bpf_test *self)
{
return __bpf_fill_atomic32(self, BPF_XOR | BPF_FETCH);
}
static int bpf_fill_atomic32_xchg(struct bpf_test *self)
{
return __bpf_fill_atomic32(self, BPF_XCHG);
}
static int bpf_fill_cmpxchg32(struct bpf_test *self)
{
return __bpf_fill_pattern(self, NULL, 64, 64, 0, PATTERN_BLOCK2,
&__bpf_emit_cmpxchg32);
}
/*
* Test JITs that implement ATOMIC operations as function calls or
* other primitives, and must re-arrange operands for argument passing.
*/
static int __bpf_fill_atomic_reg_pairs(struct bpf_test *self, u8 width, u8 op)
{
struct bpf_insn *insn;
int len = 2 + 34 * 10 * 10;
u64 mem, upd, res;
int rd, rs, i = 0;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
/* Operand and memory values */
if (width == BPF_DW) {
mem = 0x0123456789abcdefULL;
upd = 0xfedcba9876543210ULL;
} else { /* BPF_W */
mem = 0x01234567U;
upd = 0x76543210U;
}
/* Memory updated according to operation */
switch (op) {
case BPF_XCHG:
res = upd;
break;
case BPF_CMPXCHG:
res = mem;
break;
default:
__bpf_alu_result(&res, mem, upd, BPF_OP(op));
}
/* Test all operand registers */
for (rd = R0; rd <= R9; rd++) {
for (rs = R0; rs <= R9; rs++) {
u64 cmp, src;
/* Initialize value in memory */
i += __bpf_ld_imm64(&insn[i], R0, mem);
insn[i++] = BPF_STX_MEM(width, R10, R0, -8);
/* Initialize registers in order */
i += __bpf_ld_imm64(&insn[i], R0, ~mem);
i += __bpf_ld_imm64(&insn[i], rs, upd);
insn[i++] = BPF_MOV64_REG(rd, R10);
/* Perform atomic operation */
insn[i++] = BPF_ATOMIC_OP(width, op, rd, rs, -8);
if (op == BPF_CMPXCHG && width == BPF_W)
insn[i++] = BPF_ZEXT_REG(R0);
/* Check R0 register value */
if (op == BPF_CMPXCHG)
cmp = mem; /* Expect value from memory */
else if (R0 == rd || R0 == rs)
cmp = 0; /* Aliased, checked below */
else
cmp = ~mem; /* Expect value to be preserved */
if (cmp) {
insn[i++] = BPF_JMP32_IMM(BPF_JEQ, R0,
(u32)cmp, 2);
insn[i++] = BPF_MOV32_IMM(R0, __LINE__);
insn[i++] = BPF_EXIT_INSN();
insn[i++] = BPF_ALU64_IMM(BPF_RSH, R0, 32);
insn[i++] = BPF_JMP32_IMM(BPF_JEQ, R0,
cmp >> 32, 2);
insn[i++] = BPF_MOV32_IMM(R0, __LINE__);
insn[i++] = BPF_EXIT_INSN();
}
/* Check source register value */
if (rs == R0 && op == BPF_CMPXCHG)
src = 0; /* Aliased with R0, checked above */
else if (rs == rd && (op == BPF_CMPXCHG ||
!(op & BPF_FETCH)))
src = 0; /* Aliased with rd, checked below */
else if (op == BPF_CMPXCHG)
src = upd; /* Expect value to be preserved */
else if (op & BPF_FETCH)
src = mem; /* Expect fetched value from mem */
else /* no fetch */
src = upd; /* Expect value to be preserved */
if (src) {
insn[i++] = BPF_JMP32_IMM(BPF_JEQ, rs,
(u32)src, 2);
insn[i++] = BPF_MOV32_IMM(R0, __LINE__);
insn[i++] = BPF_EXIT_INSN();
insn[i++] = BPF_ALU64_IMM(BPF_RSH, rs, 32);
insn[i++] = BPF_JMP32_IMM(BPF_JEQ, rs,
src >> 32, 2);
insn[i++] = BPF_MOV32_IMM(R0, __LINE__);
insn[i++] = BPF_EXIT_INSN();
}
/* Check destination register value */
if (!(rd == R0 && op == BPF_CMPXCHG) &&
!(rd == rs && (op & BPF_FETCH))) {
insn[i++] = BPF_JMP_REG(BPF_JEQ, rd, R10, 2);
insn[i++] = BPF_MOV32_IMM(R0, __LINE__);
insn[i++] = BPF_EXIT_INSN();
}
/* Check value in memory */
if (rs != rd) { /* No aliasing */
i += __bpf_ld_imm64(&insn[i], R1, res);
} else if (op == BPF_XCHG) { /* Aliased, XCHG */
insn[i++] = BPF_MOV64_REG(R1, R10);
} else if (op == BPF_CMPXCHG) { /* Aliased, CMPXCHG */
i += __bpf_ld_imm64(&insn[i], R1, mem);
} else { /* Aliased, ALU oper */
i += __bpf_ld_imm64(&insn[i], R1, mem);
insn[i++] = BPF_ALU64_REG(BPF_OP(op), R1, R10);
}
insn[i++] = BPF_LDX_MEM(width, R0, R10, -8);
if (width == BPF_DW)
insn[i++] = BPF_JMP_REG(BPF_JEQ, R0, R1, 2);
else /* width == BPF_W */
insn[i++] = BPF_JMP32_REG(BPF_JEQ, R0, R1, 2);
insn[i++] = BPF_MOV32_IMM(R0, __LINE__);
insn[i++] = BPF_EXIT_INSN();
}
}
insn[i++] = BPF_MOV64_IMM(R0, 1);
insn[i++] = BPF_EXIT_INSN();
self->u.ptr.insns = insn;
self->u.ptr.len = i;
BUG_ON(i > len);
return 0;
}
/* 64-bit atomic register tests */
static int bpf_fill_atomic64_add_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_ADD);
}
static int bpf_fill_atomic64_and_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_AND);
}
static int bpf_fill_atomic64_or_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_OR);
}
static int bpf_fill_atomic64_xor_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_XOR);
}
static int bpf_fill_atomic64_add_fetch_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_ADD | BPF_FETCH);
}
static int bpf_fill_atomic64_and_fetch_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_AND | BPF_FETCH);
}
static int bpf_fill_atomic64_or_fetch_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_OR | BPF_FETCH);
}
static int bpf_fill_atomic64_xor_fetch_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_XOR | BPF_FETCH);
}
static int bpf_fill_atomic64_xchg_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_XCHG);
}
static int bpf_fill_atomic64_cmpxchg_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_CMPXCHG);
}
/* 32-bit atomic register tests */
static int bpf_fill_atomic32_add_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_ADD);
}
static int bpf_fill_atomic32_and_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_AND);
}
static int bpf_fill_atomic32_or_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_OR);
}
static int bpf_fill_atomic32_xor_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_XOR);
}
static int bpf_fill_atomic32_add_fetch_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_ADD | BPF_FETCH);
}
static int bpf_fill_atomic32_and_fetch_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_AND | BPF_FETCH);
}
static int bpf_fill_atomic32_or_fetch_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_OR | BPF_FETCH);
}
static int bpf_fill_atomic32_xor_fetch_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_XOR | BPF_FETCH);
}
static int bpf_fill_atomic32_xchg_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_XCHG);
}
static int bpf_fill_atomic32_cmpxchg_reg_pairs(struct bpf_test *self)
{
return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_CMPXCHG);
}
/*
* Test the two-instruction 64-bit immediate load operation for all
* power-of-two magnitudes of the immediate operand. For each MSB, a block
* of immediate values centered around the power-of-two MSB are tested,
* both for positive and negative values. The test is designed to verify
* the operation for JITs that emit different code depending on the magnitude
* of the immediate value. This is often the case if the native instruction
* immediate field width is narrower than 32 bits.
*/
static int bpf_fill_ld_imm64_magn(struct bpf_test *self)
{
int block = 64; /* Increase for more tests per MSB position */
int len = 3 + 8 * 63 * block * 2;
struct bpf_insn *insn;
int bit, adj, sign;
int i = 0;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 0);
for (bit = 0; bit <= 62; bit++) {
for (adj = -block / 2; adj < block / 2; adj++) {
for (sign = -1; sign <= 1; sign += 2) {
s64 imm = sign * ((1LL << bit) + adj);
/* Perform operation */
i += __bpf_ld_imm64(&insn[i], R1, imm);
/* Load reference */
insn[i++] = BPF_ALU32_IMM(BPF_MOV, R2, imm);
insn[i++] = BPF_ALU32_IMM(BPF_MOV, R3,
(u32)(imm >> 32));
insn[i++] = BPF_ALU64_IMM(BPF_LSH, R3, 32);
insn[i++] = BPF_ALU64_REG(BPF_OR, R2, R3);
/* Check result */
insn[i++] = BPF_JMP_REG(BPF_JEQ, R1, R2, 1);
insn[i++] = BPF_EXIT_INSN();
}
}
}
insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1);
insn[i++] = BPF_EXIT_INSN();
self->u.ptr.insns = insn;
self->u.ptr.len = len;
BUG_ON(i != len);
return 0;
}
/*
* Test the two-instruction 64-bit immediate load operation for different
* combinations of bytes. Each byte in the 64-bit word is constructed as
* (base & mask) | (rand() & ~mask), where rand() is a deterministic LCG.
* All patterns (base1, mask1) and (base2, mask2) bytes are tested.
*/
static int __bpf_fill_ld_imm64_bytes(struct bpf_test *self,
u8 base1, u8 mask1,
u8 base2, u8 mask2)
{
struct bpf_insn *insn;
int len = 3 + 8 * BIT(8);
int pattern, index;
u32 rand = 1;
int i = 0;
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 0);
for (pattern = 0; pattern < BIT(8); pattern++) {
u64 imm = 0;
for (index = 0; index < 8; index++) {
int byte;
if (pattern & BIT(index))
byte = (base1 & mask1) | (rand & ~mask1);
else
byte = (base2 & mask2) | (rand & ~mask2);
imm = (imm << 8) | byte;
}
/* Update our LCG */
rand = rand * 1664525 + 1013904223;
/* Perform operation */
i += __bpf_ld_imm64(&insn[i], R1, imm);
/* Load reference */
insn[i++] = BPF_ALU32_IMM(BPF_MOV, R2, imm);
insn[i++] = BPF_ALU32_IMM(BPF_MOV, R3, (u32)(imm >> 32));
insn[i++] = BPF_ALU64_IMM(BPF_LSH, R3, 32);
insn[i++] = BPF_ALU64_REG(BPF_OR, R2, R3);
/* Check result */
insn[i++] = BPF_JMP_REG(BPF_JEQ, R1, R2, 1);
insn[i++] = BPF_EXIT_INSN();
}
insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1);
insn[i++] = BPF_EXIT_INSN();
self->u.ptr.insns = insn;
self->u.ptr.len = len;
BUG_ON(i != len);
return 0;
}
static int bpf_fill_ld_imm64_checker(struct bpf_test *self)
{
return __bpf_fill_ld_imm64_bytes(self, 0, 0xff, 0xff, 0xff);
}
static int bpf_fill_ld_imm64_pos_neg(struct bpf_test *self)
{
return __bpf_fill_ld_imm64_bytes(self, 1, 0x81, 0x80, 0x80);
}
static int bpf_fill_ld_imm64_pos_zero(struct bpf_test *self)
{
return __bpf_fill_ld_imm64_bytes(self, 1, 0x81, 0, 0xff);
}
static int bpf_fill_ld_imm64_neg_zero(struct bpf_test *self)
{
return __bpf_fill_ld_imm64_bytes(self, 0x80, 0x80, 0, 0xff);
}
/*
* Exhaustive tests of JMP operations for all combinations of power-of-two
* magnitudes of the operands, both for positive and negative values. The
* test is designed to verify e.g. the JMP and JMP32 operations for JITs that
* emit different code depending on the magnitude of the immediate value.
*/
static bool __bpf_match_jmp_cond(s64 v1, s64 v2, u8 op)
{
switch (op) {
case BPF_JSET:
return !!(v1 & v2);
case BPF_JEQ:
return v1 == v2;
case BPF_JNE:
return v1 != v2;
case BPF_JGT:
return (u64)v1 > (u64)v2;
case BPF_JGE:
return (u64)v1 >= (u64)v2;
case BPF_JLT:
return (u64)v1 < (u64)v2;
case BPF_JLE:
return (u64)v1 <= (u64)v2;
case BPF_JSGT:
return v1 > v2;
case BPF_JSGE:
return v1 >= v2;
case BPF_JSLT:
return v1 < v2;
case BPF_JSLE:
return v1 <= v2;
}
return false;
}
static int __bpf_emit_jmp_imm(struct bpf_test *self, void *arg,
struct bpf_insn *insns, s64 dst, s64 imm)
{
int op = *(int *)arg;
if (insns) {
bool match = __bpf_match_jmp_cond(dst, (s32)imm, op);
int i = 0;
insns[i++] = BPF_ALU32_IMM(BPF_MOV, R0, match);
i += __bpf_ld_imm64(&insns[i], R1, dst);
insns[i++] = BPF_JMP_IMM(op, R1, imm, 1);
if (!match)
insns[i++] = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
insns[i++] = BPF_EXIT_INSN();
return i;
}
return 5 + 1;
}
static int __bpf_emit_jmp32_imm(struct bpf_test *self, void *arg,
struct bpf_insn *insns, s64 dst, s64 imm)
{
int op = *(int *)arg;
if (insns) {
bool match = __bpf_match_jmp_cond((s32)dst, (s32)imm, op);
int i = 0;
i += __bpf_ld_imm64(&insns[i], R1, dst);
insns[i++] = BPF_JMP32_IMM(op, R1, imm, 1);
if (!match)
insns[i++] = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
insns[i++] = BPF_EXIT_INSN();
return i;
}
return 5;
}
static int __bpf_emit_jmp_reg(struct bpf_test *self, void *arg,
struct bpf_insn *insns, s64 dst, s64 src)
{
int op = *(int *)arg;
if (insns) {
bool match = __bpf_match_jmp_cond(dst, src, op);
int i = 0;
i += __bpf_ld_imm64(&insns[i], R1, dst);
i += __bpf_ld_imm64(&insns[i], R2, src);
insns[i++] = BPF_JMP_REG(op, R1, R2, 1);
if (!match)
insns[i++] = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
insns[i++] = BPF_EXIT_INSN();
return i;
}
return 7;
}
static int __bpf_emit_jmp32_reg(struct bpf_test *self, void *arg,
struct bpf_insn *insns, s64 dst, s64 src)
{
int op = *(int *)arg;
if (insns) {
bool match = __bpf_match_jmp_cond((s32)dst, (s32)src, op);
int i = 0;
i += __bpf_ld_imm64(&insns[i], R1, dst);
i += __bpf_ld_imm64(&insns[i], R2, src);
insns[i++] = BPF_JMP32_REG(op, R1, R2, 1);
if (!match)
insns[i++] = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
insns[i++] = BPF_EXIT_INSN();
return i;
}
return 7;
}
static int __bpf_fill_jmp_imm(struct bpf_test *self, int op)
{
return __bpf_fill_pattern(self, &op, 64, 32,
PATTERN_BLOCK1, PATTERN_BLOCK2,
&__bpf_emit_jmp_imm);
}
static int __bpf_fill_jmp32_imm(struct bpf_test *self, int op)
{
return __bpf_fill_pattern(self, &op, 64, 32,
PATTERN_BLOCK1, PATTERN_BLOCK2,
&__bpf_emit_jmp32_imm);
}
static int __bpf_fill_jmp_reg(struct bpf_test *self, int op)
{
return __bpf_fill_pattern(self, &op, 64, 64,
PATTERN_BLOCK1, PATTERN_BLOCK2,
&__bpf_emit_jmp_reg);
}
static int __bpf_fill_jmp32_reg(struct bpf_test *self, int op)
{
return __bpf_fill_pattern(self, &op, 64, 64,
PATTERN_BLOCK1, PATTERN_BLOCK2,
&__bpf_emit_jmp32_reg);
}
/* JMP immediate tests */
static int bpf_fill_jmp_jset_imm(struct bpf_test *self)
{
return __bpf_fill_jmp_imm(self, BPF_JSET);
}
static int bpf_fill_jmp_jeq_imm(struct bpf_test *self)
{
return __bpf_fill_jmp_imm(self, BPF_JEQ);
}
static int bpf_fill_jmp_jne_imm(struct bpf_test *self)
{
return __bpf_fill_jmp_imm(self, BPF_JNE);
}
static int bpf_fill_jmp_jgt_imm(struct bpf_test *self)
{
return __bpf_fill_jmp_imm(self, BPF_JGT);
}
static int bpf_fill_jmp_jge_imm(struct bpf_test *self)
{
return __bpf_fill_jmp_imm(self, BPF_JGE);
}
static int bpf_fill_jmp_jlt_imm(struct bpf_test *self)
{
return __bpf_fill_jmp_imm(self, BPF_JLT);
}
static int bpf_fill_jmp_jle_imm(struct bpf_test *self)
{
return __bpf_fill_jmp_imm(self, BPF_JLE);
}
static int bpf_fill_jmp_jsgt_imm(struct bpf_test *self)
{
return __bpf_fill_jmp_imm(self, BPF_JSGT);
}
static int bpf_fill_jmp_jsge_imm(struct bpf_test *self)
{
return __bpf_fill_jmp_imm(self, BPF_JSGE);
}
static int bpf_fill_jmp_jslt_imm(struct bpf_test *self)
{
return __bpf_fill_jmp_imm(self, BPF_JSLT);
}
static int bpf_fill_jmp_jsle_imm(struct bpf_test *self)
{
return __bpf_fill_jmp_imm(self, BPF_JSLE);
}
/* JMP32 immediate tests */
static int bpf_fill_jmp32_jset_imm(struct bpf_test *self)
{
return __bpf_fill_jmp32_imm(self, BPF_JSET);
}
static int bpf_fill_jmp32_jeq_imm(struct bpf_test *self)
{
return __bpf_fill_jmp32_imm(self, BPF_JEQ);
}
static int bpf_fill_jmp32_jne_imm(struct bpf_test *self)
{
return __bpf_fill_jmp32_imm(self, BPF_JNE);
}
static int bpf_fill_jmp32_jgt_imm(struct bpf_test *self)
{
return __bpf_fill_jmp32_imm(self, BPF_JGT);
}
static int bpf_fill_jmp32_jge_imm(struct bpf_test *self)
{
return __bpf_fill_jmp32_imm(self, BPF_JGE);
}
static int bpf_fill_jmp32_jlt_imm(struct bpf_test *self)
{
return __bpf_fill_jmp32_imm(self, BPF_JLT);
}
static int bpf_fill_jmp32_jle_imm(struct bpf_test *self)
{
return __bpf_fill_jmp32_imm(self, BPF_JLE);
}
static int bpf_fill_jmp32_jsgt_imm(struct bpf_test *self)
{
return __bpf_fill_jmp32_imm(self, BPF_JSGT);
}
static int bpf_fill_jmp32_jsge_imm(struct bpf_test *self)
{
return __bpf_fill_jmp32_imm(self, BPF_JSGE);
}
static int bpf_fill_jmp32_jslt_imm(struct bpf_test *self)
{
return __bpf_fill_jmp32_imm(self, BPF_JSLT);
}
static int bpf_fill_jmp32_jsle_imm(struct bpf_test *self)
{
return __bpf_fill_jmp32_imm(self, BPF_JSLE);
}
/* JMP register tests */
static int bpf_fill_jmp_jset_reg(struct bpf_test *self)
{
return __bpf_fill_jmp_reg(self, BPF_JSET);
}
static int bpf_fill_jmp_jeq_reg(struct bpf_test *self)
{
return __bpf_fill_jmp_reg(self, BPF_JEQ);
}
static int bpf_fill_jmp_jne_reg(struct bpf_test *self)
{
return __bpf_fill_jmp_reg(self, BPF_JNE);
}
static int bpf_fill_jmp_jgt_reg(struct bpf_test *self)
{
return __bpf_fill_jmp_reg(self, BPF_JGT);
}
static int bpf_fill_jmp_jge_reg(struct bpf_test *self)
{
return __bpf_fill_jmp_reg(self, BPF_JGE);
}
static int bpf_fill_jmp_jlt_reg(struct bpf_test *self)
{
return __bpf_fill_jmp_reg(self, BPF_JLT);
}
static int bpf_fill_jmp_jle_reg(struct bpf_test *self)
{
return __bpf_fill_jmp_reg(self, BPF_JLE);
}
static int bpf_fill_jmp_jsgt_reg(struct bpf_test *self)
{
return __bpf_fill_jmp_reg(self, BPF_JSGT);
}
static int bpf_fill_jmp_jsge_reg(struct bpf_test *self)
{
return __bpf_fill_jmp_reg(self, BPF_JSGE);
}
static int bpf_fill_jmp_jslt_reg(struct bpf_test *self)
{
return __bpf_fill_jmp_reg(self, BPF_JSLT);
}
static int bpf_fill_jmp_jsle_reg(struct bpf_test *self)
{
return __bpf_fill_jmp_reg(self, BPF_JSLE);
}
/* JMP32 register tests */
static int bpf_fill_jmp32_jset_reg(struct bpf_test *self)
{
return __bpf_fill_jmp32_reg(self, BPF_JSET);
}
static int bpf_fill_jmp32_jeq_reg(struct bpf_test *self)
{
return __bpf_fill_jmp32_reg(self, BPF_JEQ);
}
static int bpf_fill_jmp32_jne_reg(struct bpf_test *self)
{
return __bpf_fill_jmp32_reg(self, BPF_JNE);
}
static int bpf_fill_jmp32_jgt_reg(struct bpf_test *self)
{
return __bpf_fill_jmp32_reg(self, BPF_JGT);
}
static int bpf_fill_jmp32_jge_reg(struct bpf_test *self)
{
return __bpf_fill_jmp32_reg(self, BPF_JGE);
}
static int bpf_fill_jmp32_jlt_reg(struct bpf_test *self)
{
return __bpf_fill_jmp32_reg(self, BPF_JLT);
}
static int bpf_fill_jmp32_jle_reg(struct bpf_test *self)
{
return __bpf_fill_jmp32_reg(self, BPF_JLE);
}
static int bpf_fill_jmp32_jsgt_reg(struct bpf_test *self)
{
return __bpf_fill_jmp32_reg(self, BPF_JSGT);
}
static int bpf_fill_jmp32_jsge_reg(struct bpf_test *self)
{
return __bpf_fill_jmp32_reg(self, BPF_JSGE);
}
static int bpf_fill_jmp32_jslt_reg(struct bpf_test *self)
{
return __bpf_fill_jmp32_reg(self, BPF_JSLT);
}
static int bpf_fill_jmp32_jsle_reg(struct bpf_test *self)
{
return __bpf_fill_jmp32_reg(self, BPF_JSLE);
}
/*
* Set up a sequence of staggered jumps, forwards and backwards with
* increasing offset. This tests the conversion of relative jumps to
* JITed native jumps. On some architectures, for example MIPS, a large
* PC-relative jump offset may overflow the immediate field of the native
* conditional branch instruction, triggering a conversion to use an
* absolute jump instead. Since this changes the jump offsets, another
* offset computation pass is necessary, and that may in turn trigger
* another branch conversion. This jump sequence is particularly nasty
* in that regard.
*
* The sequence generation is parameterized by size and jump type.
* The size must be even, and the expected result is always size + 1.
* Below is an example with size=8 and result=9.
*
* ________________________Start
* R0 = 0
* R1 = r1
* R2 = r2
* ,------- JMP +4 * 3______________Preamble: 4 insns
* ,----------|-ind 0- if R0 != 7 JMP 8 * 3 + 1 <--------------------.
* | | R0 = 8 |
* | | JMP +7 * 3 ------------------------.
* | ,--------|-----1- if R0 != 5 JMP 7 * 3 + 1 <--------------. | |
* | | | R0 = 6 | | |
* | | | JMP +5 * 3 ------------------. | |
* | | ,------|-----2- if R0 != 3 JMP 6 * 3 + 1 <--------. | | | |
* | | | | R0 = 4 | | | | |
* | | | | JMP +3 * 3 ------------. | | | |
* | | | ,----|-----3- if R0 != 1 JMP 5 * 3 + 1 <--. | | | | | |
* | | | | | R0 = 2 | | | | | | |
* | | | | | JMP +1 * 3 ------. | | | | | |
* | | | | ,--t=====4> if R0 != 0 JMP 4 * 3 + 1 1 2 3 4 5 6 7 8 loc
* | | | | | R0 = 1 -1 +2 -3 +4 -5 +6 -7 +8 off
* | | | | | JMP -2 * 3 ---' | | | | | | |
* | | | | | ,------5- if R0 != 2 JMP 3 * 3 + 1 <-----' | | | | | |
* | | | | | | R0 = 3 | | | | | |
* | | | | | | JMP -4 * 3 ---------' | | | | |
* | | | | | | ,----6- if R0 != 4 JMP 2 * 3 + 1 <-----------' | | | |
* | | | | | | | R0 = 5 | | | |
* | | | | | | | JMP -6 * 3 ---------------' | | |
* | | | | | | | ,--7- if R0 != 6 JMP 1 * 3 + 1 <-----------------' | |
* | | | | | | | | R0 = 7 | |
* | | Error | | | JMP -8 * 3 ---------------------' |
* | | paths | | | ,8- if R0 != 8 JMP 0 * 3 + 1 <-----------------------'
* | | | | | | | | | R0 = 9__________________Sequence: 3 * size - 1 insns
* `-+-+-+-+-+-+-+-+-> EXIT____________________Return: 1 insn
*
*/
/* The maximum size parameter */
#define MAX_STAGGERED_JMP_SIZE ((0x7fff / 3) & ~1)
/* We use a reduced number of iterations to get a reasonable execution time */
#define NR_STAGGERED_JMP_RUNS 10
static int __bpf_fill_staggered_jumps(struct bpf_test *self,
const struct bpf_insn *jmp,
u64 r1, u64 r2)
{
int size = self->test[0].result - 1;
int len = 4 + 3 * (size + 1);
struct bpf_insn *insns;
int off, ind;
insns = kmalloc_array(len, sizeof(*insns), GFP_KERNEL);
if (!insns)
return -ENOMEM;
/* Preamble */
insns[0] = BPF_ALU64_IMM(BPF_MOV, R0, 0);
insns[1] = BPF_ALU64_IMM(BPF_MOV, R1, r1);
insns[2] = BPF_ALU64_IMM(BPF_MOV, R2, r2);
insns[3] = BPF_JMP_IMM(BPF_JA, 0, 0, 3 * size / 2);
/* Sequence */
for (ind = 0, off = size; ind <= size; ind++, off -= 2) {
struct bpf_insn *ins = &insns[4 + 3 * ind];
int loc;
if (off == 0)
off--;
loc = abs(off);
ins[0] = BPF_JMP_IMM(BPF_JNE, R0, loc - 1,
3 * (size - ind) + 1);
ins[1] = BPF_ALU64_IMM(BPF_MOV, R0, loc);
ins[2] = *jmp;
ins[2].off = 3 * (off - 1);
}
/* Return */
insns[len - 1] = BPF_EXIT_INSN();
self->u.ptr.insns = insns;
self->u.ptr.len = len;
return 0;
}
/* 64-bit unconditional jump */
static int bpf_fill_staggered_ja(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 0, 0);
}
/* 64-bit immediate jumps */
static int bpf_fill_staggered_jeq_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_IMM(BPF_JEQ, R1, 1234, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0);
}
static int bpf_fill_staggered_jne_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_IMM(BPF_JNE, R1, 1234, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 4321, 0);
}
static int bpf_fill_staggered_jset_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_IMM(BPF_JSET, R1, 0x82, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 0x86, 0);
}
static int bpf_fill_staggered_jgt_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_IMM(BPF_JGT, R1, 1234, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 0x80000000, 0);
}
static int bpf_fill_staggered_jge_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_IMM(BPF_JGE, R1, 1234, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0);
}
static int bpf_fill_staggered_jlt_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_IMM(BPF_JLT, R1, 0x80000000, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0);
}
static int bpf_fill_staggered_jle_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_IMM(BPF_JLE, R1, 1234, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0);
}
static int bpf_fill_staggered_jsgt_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_IMM(BPF_JSGT, R1, -2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, -1, 0);
}
static int bpf_fill_staggered_jsge_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_IMM(BPF_JSGE, R1, -2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, -2, 0);
}
static int bpf_fill_staggered_jslt_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_IMM(BPF_JSLT, R1, -1, 0);
return __bpf_fill_staggered_jumps(self, &jmp, -2, 0);
}
static int bpf_fill_staggered_jsle_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_IMM(BPF_JSLE, R1, -1, 0);
return __bpf_fill_staggered_jumps(self, &jmp, -1, 0);
}
/* 64-bit register jumps */
static int bpf_fill_staggered_jeq_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_REG(BPF_JEQ, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234);
}
static int bpf_fill_staggered_jne_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_REG(BPF_JNE, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 4321, 1234);
}
static int bpf_fill_staggered_jset_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_REG(BPF_JSET, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 0x86, 0x82);
}
static int bpf_fill_staggered_jgt_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_REG(BPF_JGT, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 0x80000000, 1234);
}
static int bpf_fill_staggered_jge_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_REG(BPF_JGE, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234);
}
static int bpf_fill_staggered_jlt_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_REG(BPF_JLT, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0x80000000);
}
static int bpf_fill_staggered_jle_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_REG(BPF_JLE, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234);
}
static int bpf_fill_staggered_jsgt_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_REG(BPF_JSGT, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, -1, -2);
}
static int bpf_fill_staggered_jsge_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_REG(BPF_JSGE, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, -2, -2);
}
static int bpf_fill_staggered_jslt_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_REG(BPF_JSLT, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, -2, -1);
}
static int bpf_fill_staggered_jsle_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP_REG(BPF_JSLE, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, -1, -1);
}
/* 32-bit immediate jumps */
static int bpf_fill_staggered_jeq32_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JEQ, R1, 1234, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0);
}
static int bpf_fill_staggered_jne32_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JNE, R1, 1234, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 4321, 0);
}
static int bpf_fill_staggered_jset32_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JSET, R1, 0x82, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 0x86, 0);
}
static int bpf_fill_staggered_jgt32_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JGT, R1, 1234, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 0x80000000, 0);
}
static int bpf_fill_staggered_jge32_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JGE, R1, 1234, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0);
}
static int bpf_fill_staggered_jlt32_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JLT, R1, 0x80000000, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0);
}
static int bpf_fill_staggered_jle32_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JLE, R1, 1234, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0);
}
static int bpf_fill_staggered_jsgt32_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JSGT, R1, -2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, -1, 0);
}
static int bpf_fill_staggered_jsge32_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JSGE, R1, -2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, -2, 0);
}
static int bpf_fill_staggered_jslt32_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JSLT, R1, -1, 0);
return __bpf_fill_staggered_jumps(self, &jmp, -2, 0);
}
static int bpf_fill_staggered_jsle32_imm(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JSLE, R1, -1, 0);
return __bpf_fill_staggered_jumps(self, &jmp, -1, 0);
}
/* 32-bit register jumps */
static int bpf_fill_staggered_jeq32_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_REG(BPF_JEQ, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234);
}
static int bpf_fill_staggered_jne32_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_REG(BPF_JNE, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 4321, 1234);
}
static int bpf_fill_staggered_jset32_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_REG(BPF_JSET, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 0x86, 0x82);
}
static int bpf_fill_staggered_jgt32_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_REG(BPF_JGT, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 0x80000000, 1234);
}
static int bpf_fill_staggered_jge32_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_REG(BPF_JGE, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234);
}
static int bpf_fill_staggered_jlt32_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_REG(BPF_JLT, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0x80000000);
}
static int bpf_fill_staggered_jle32_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_REG(BPF_JLE, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234);
}
static int bpf_fill_staggered_jsgt32_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_REG(BPF_JSGT, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, -1, -2);
}
static int bpf_fill_staggered_jsge32_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_REG(BPF_JSGE, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, -2, -2);
}
static int bpf_fill_staggered_jslt32_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_REG(BPF_JSLT, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, -2, -1);
}
static int bpf_fill_staggered_jsle32_reg(struct bpf_test *self)
{
struct bpf_insn jmp = BPF_JMP32_REG(BPF_JSLE, R1, R2, 0);
return __bpf_fill_staggered_jumps(self, &jmp, -1, -1);
}
static struct bpf_test tests[] = {
{
"TAX",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_ALU | BPF_NEG, 0), /* A == -3 */
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_LEN, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_MISC | BPF_TAX, 0), /* X == len - 3 */
BPF_STMT(BPF_LD | BPF_B | BPF_IND, 1),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ 10, 20, 30, 40, 50 },
{ { 2, 10 }, { 3, 20 }, { 4, 30 } },
},
{
"TXA",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0) /* A == len * 2 */
},
CLASSIC,
{ 10, 20, 30, 40, 50 },
{ { 1, 2 }, { 3, 6 }, { 4, 8 } },
},
{
"ADD_SUB_MUL_K",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 1),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 2),
BPF_STMT(BPF_LDX | BPF_IMM, 3),
BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 0xffffffff),
BPF_STMT(BPF_ALU | BPF_MUL | BPF_K, 3),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 0xfffffffd } }
},
{
"DIV_MOD_KX",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 8),
BPF_STMT(BPF_ALU | BPF_DIV | BPF_K, 2),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff),
BPF_STMT(BPF_ALU | BPF_DIV | BPF_X, 0),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff),
BPF_STMT(BPF_ALU | BPF_DIV | BPF_K, 0x70000000),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff),
BPF_STMT(BPF_ALU | BPF_MOD | BPF_X, 0),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff),
BPF_STMT(BPF_ALU | BPF_MOD | BPF_K, 0x70000000),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 0x20000000 } }
},
{
"AND_OR_LSH_K",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 0xff),
BPF_STMT(BPF_ALU | BPF_AND | BPF_K, 0xf0),
BPF_STMT(BPF_ALU | BPF_LSH | BPF_K, 27),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_IMM, 0xf),
BPF_STMT(BPF_ALU | BPF_OR | BPF_K, 0xf0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 0x800000ff }, { 1, 0x800000ff } },
},
{
"LD_IMM_0",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 0), /* ld #0 */
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 0),
BPF_STMT(BPF_RET | BPF_K, 1),
},
CLASSIC,
{ },
{ { 1, 1 } },
},
{
"LD_IND",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_IND, MAX_K),
BPF_STMT(BPF_RET | BPF_K, 1)
},
CLASSIC,
{ },
{ { 1, 0 }, { 10, 0 }, { 60, 0 } },
},
{
"LD_ABS",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS, 1000),
BPF_STMT(BPF_RET | BPF_K, 1)
},
CLASSIC,
{ },
{ { 1, 0 }, { 10, 0 }, { 60, 0 } },
},
{
"LD_ABS_LL",
.u.insns = {
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, SKF_LL_OFF),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, SKF_LL_OFF + 1),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ 1, 2, 3 },
{ { 1, 0 }, { 2, 3 } },
},
{
"LD_IND_LL",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, SKF_LL_OFF - 1),
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_IND, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ 1, 2, 3, 0xff },
{ { 1, 1 }, { 3, 3 }, { 4, 0xff } },
},
{
"LD_ABS_NET",
.u.insns = {
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, SKF_NET_OFF),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, SKF_NET_OFF + 1),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3 },
{ { 15, 0 }, { 16, 3 } },
},
{
"LD_IND_NET",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, SKF_NET_OFF - 15),
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_IND, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3 },
{ { 14, 0 }, { 15, 1 }, { 17, 3 } },
},
{
"LD_PKTTYPE",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PKTTYPE),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, SKB_TYPE, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 1),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PKTTYPE),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, SKB_TYPE, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 1),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PKTTYPE),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, SKB_TYPE, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 1),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 1, 3 }, { 10, 3 } },
},
{
"LD_MARK",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_MARK),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 1, SKB_MARK}, { 10, SKB_MARK} },
},
{
"LD_RXHASH",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_RXHASH),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 1, SKB_HASH}, { 10, SKB_HASH} },
},
{
"LD_QUEUE",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_QUEUE),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 1, SKB_QUEUE_MAP }, { 10, SKB_QUEUE_MAP } },
},
{
"LD_PROTOCOL",
.u.insns = {
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 1),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 20, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 0),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PROTOCOL),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 30, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 0),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ 10, 20, 30 },
{ { 10, ETH_P_IP }, { 100, ETH_P_IP } },
},
{
"LD_VLAN_TAG",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_VLAN_TAG),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{
{ 1, SKB_VLAN_TCI },
{ 10, SKB_VLAN_TCI }
},
},
{
"LD_VLAN_TAG_PRESENT",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{
{ 1, SKB_VLAN_PRESENT },
{ 10, SKB_VLAN_PRESENT }
},
},
{
"LD_IFINDEX",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_IFINDEX),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 1, SKB_DEV_IFINDEX }, { 10, SKB_DEV_IFINDEX } },
},
{
"LD_HATYPE",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_HATYPE),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 1, SKB_DEV_TYPE }, { 10, SKB_DEV_TYPE } },
},
{
"LD_CPU",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_CPU),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_CPU),
BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 1, 0 }, { 10, 0 } },
},
{
"LD_NLATTR",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 2),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_LDX | BPF_IMM, 3),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
#ifdef __BIG_ENDIAN
{ 0xff, 0xff, 0, 4, 0, 2, 0, 4, 0, 3 },
#else
{ 0xff, 0xff, 4, 0, 2, 0, 4, 0, 3, 0 },
#endif
{ { 4, 0 }, { 20, 6 } },
},
{
"LD_NLATTR_NEST",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_LDX | BPF_IMM, 3),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR_NEST),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR_NEST),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR_NEST),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR_NEST),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR_NEST),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR_NEST),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR_NEST),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR_NEST),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
#ifdef __BIG_ENDIAN
{ 0xff, 0xff, 0, 12, 0, 1, 0, 4, 0, 2, 0, 4, 0, 3 },
#else
{ 0xff, 0xff, 12, 0, 1, 0, 4, 0, 2, 0, 4, 0, 3, 0 },
#endif
{ { 4, 0 }, { 20, 10 } },
},
{
"LD_PAYLOAD_OFF",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PAY_OFFSET),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PAY_OFFSET),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PAY_OFFSET),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PAY_OFFSET),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PAY_OFFSET),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
/* 00:00:00:00:00:00 > 00:00:00:00:00:00, ethtype IPv4 (0x0800),
* length 98: 127.0.0.1 > 127.0.0.1: ICMP echo request,
* id 9737, seq 1, length 64
*/
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x08, 0x00,
0x45, 0x00, 0x00, 0x54, 0xac, 0x8b, 0x40, 0x00, 0x40,
0x01, 0x90, 0x1b, 0x7f, 0x00, 0x00, 0x01 },
{ { 30, 0 }, { 100, 42 } },
},
{
"LD_ANC_XOR",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 10),
BPF_STMT(BPF_LDX | BPF_IMM, 300),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_ALU_XOR_X),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 4, 0xA ^ 300 }, { 20, 0xA ^ 300 } },
},
{
"SPILL_FILL",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_ALU | BPF_RSH, 1),
BPF_STMT(BPF_ALU | BPF_XOR | BPF_X, 0),
BPF_STMT(BPF_ST, 1), /* M1 = 1 ^ len */
BPF_STMT(BPF_ALU | BPF_XOR | BPF_K, 0x80000000),
BPF_STMT(BPF_ST, 2), /* M2 = 1 ^ len ^ 0x80000000 */
BPF_STMT(BPF_STX, 15), /* M3 = len */
BPF_STMT(BPF_LDX | BPF_MEM, 1),
BPF_STMT(BPF_LD | BPF_MEM, 2),
BPF_STMT(BPF_ALU | BPF_XOR | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 15),
BPF_STMT(BPF_ALU | BPF_XOR | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 1, 0x80000001 }, { 2, 0x80000002 }, { 60, 0x80000000 ^ 60 } }
},
{
"JEQ",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_X, 0, 0, 1),
BPF_STMT(BPF_RET | BPF_K, 1),
BPF_STMT(BPF_RET | BPF_K, MAX_K)
},
CLASSIC,
{ 3, 3, 3, 3, 3 },
{ { 1, 0 }, { 3, 1 }, { 4, MAX_K } },
},
{
"JGT",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2),
BPF_JUMP(BPF_JMP | BPF_JGT | BPF_X, 0, 0, 1),
BPF_STMT(BPF_RET | BPF_K, 1),
BPF_STMT(BPF_RET | BPF_K, MAX_K)
},
CLASSIC,
{ 4, 4, 4, 3, 3 },
{ { 2, 0 }, { 3, 1 }, { 4, MAX_K } },
},
{
"JGE (jt 0), test 1",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2),
BPF_JUMP(BPF_JMP | BPF_JGE | BPF_X, 0, 0, 1),
BPF_STMT(BPF_RET | BPF_K, 1),
BPF_STMT(BPF_RET | BPF_K, MAX_K)
},
CLASSIC,
{ 4, 4, 4, 3, 3 },
{ { 2, 0 }, { 3, 1 }, { 4, 1 } },
},
{
"JGE (jt 0), test 2",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2),
BPF_JUMP(BPF_JMP | BPF_JGE | BPF_X, 0, 0, 1),
BPF_STMT(BPF_RET | BPF_K, 1),
BPF_STMT(BPF_RET | BPF_K, MAX_K)
},
CLASSIC,
{ 4, 4, 5, 3, 3 },
{ { 4, 1 }, { 5, 1 }, { 6, MAX_K } },
},
{
"JGE",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_IND, MAX_K),
BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 1, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 10),
BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 2, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 20),
BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 3, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 30),
BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 4, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 40),
BPF_STMT(BPF_RET | BPF_K, MAX_K)
},
CLASSIC,
{ 1, 2, 3, 4, 5 },
{ { 1, 20 }, { 3, 40 }, { 5, MAX_K } },
},
{
"JSET",
.u.insns = {
BPF_JUMP(BPF_JMP | BPF_JA, 0, 0, 0),
BPF_JUMP(BPF_JMP | BPF_JA, 1, 1, 1),
BPF_JUMP(BPF_JMP | BPF_JA, 0, 0, 0),
BPF_JUMP(BPF_JMP | BPF_JA, 0, 0, 0),
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_SUB | BPF_K, 4),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_W | BPF_IND, 0),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 1, 0, 1),
BPF_STMT(BPF_RET | BPF_K, 10),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0x80000000, 0, 1),
BPF_STMT(BPF_RET | BPF_K, 20),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 30),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 30),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 30),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 30),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 30),
BPF_STMT(BPF_RET | BPF_K, MAX_K)
},
CLASSIC,
{ 0, 0xAA, 0x55, 1 },
{ { 4, 10 }, { 5, 20 }, { 6, MAX_K } },
},
{
"tcpdump port 22",
.u.insns = {
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 12),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x86dd, 0, 8), /* IPv6 */
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 20),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x84, 2, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x6, 1, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x11, 0, 17),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 54),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 14, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 56),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 12, 13),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x0800, 0, 12), /* IPv4 */
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 23),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x84, 2, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x6, 1, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x11, 0, 8),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 20),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0x1fff, 6, 0),
BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 14),
BPF_STMT(BPF_LD | BPF_H | BPF_IND, 14),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 2, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_IND, 16),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 0, 1),
BPF_STMT(BPF_RET | BPF_K, 0xffff),
BPF_STMT(BPF_RET | BPF_K, 0),
},
CLASSIC,
/* 3c:07:54:43:e5:76 > 10:bf:48:d6:43:d6, ethertype IPv4(0x0800)
* length 114: 10.1.1.149.49700 > 10.1.2.10.22: Flags [P.],
* seq 1305692979:1305693027, ack 3650467037, win 65535,
* options [nop,nop,TS val 2502645400 ecr 3971138], length 48
*/
{ 0x10, 0xbf, 0x48, 0xd6, 0x43, 0xd6,
0x3c, 0x07, 0x54, 0x43, 0xe5, 0x76,
0x08, 0x00,
0x45, 0x10, 0x00, 0x64, 0x75, 0xb5,
0x40, 0x00, 0x40, 0x06, 0xad, 0x2e, /* IP header */
0x0a, 0x01, 0x01, 0x95, /* ip src */
0x0a, 0x01, 0x02, 0x0a, /* ip dst */
0xc2, 0x24,
0x00, 0x16 /* dst port */ },
{ { 10, 0 }, { 30, 0 }, { 100, 65535 } },
},
{
"tcpdump complex",
.u.insns = {
/* tcpdump -nei eth0 'tcp port 22 and (((ip[2:2] -
* ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0) and
* (len > 115 or len < 30000000000)' -d
*/
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 12),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x86dd, 30, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x800, 0, 29),
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 23),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x6, 0, 27),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 20),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0x1fff, 25, 0),
BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 14),
BPF_STMT(BPF_LD | BPF_H | BPF_IND, 14),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 2, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_IND, 16),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 0, 20),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 16),
BPF_STMT(BPF_ST, 1),
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 14),
BPF_STMT(BPF_ALU | BPF_AND | BPF_K, 0xf),
BPF_STMT(BPF_ALU | BPF_LSH | BPF_K, 2),
BPF_STMT(BPF_MISC | BPF_TAX, 0x5), /* libpcap emits K on TAX */
BPF_STMT(BPF_LD | BPF_MEM, 1),
BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0),
BPF_STMT(BPF_ST, 5),
BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 14),
BPF_STMT(BPF_LD | BPF_B | BPF_IND, 26),
BPF_STMT(BPF_ALU | BPF_AND | BPF_K, 0xf0),
BPF_STMT(BPF_ALU | BPF_RSH | BPF_K, 2),
BPF_STMT(BPF_MISC | BPF_TAX, 0x9), /* libpcap emits K on TAX */
BPF_STMT(BPF_LD | BPF_MEM, 5),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_X, 0, 4, 0),
BPF_STMT(BPF_LD | BPF_LEN, 0),
BPF_JUMP(BPF_JMP | BPF_JGT | BPF_K, 0x73, 1, 0),
BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 0xfc23ac00, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 0xffff),
BPF_STMT(BPF_RET | BPF_K, 0),
},
CLASSIC,
{ 0x10, 0xbf, 0x48, 0xd6, 0x43, 0xd6,
0x3c, 0x07, 0x54, 0x43, 0xe5, 0x76,
0x08, 0x00,
0x45, 0x10, 0x00, 0x64, 0x75, 0xb5,
0x40, 0x00, 0x40, 0x06, 0xad, 0x2e, /* IP header */
0x0a, 0x01, 0x01, 0x95, /* ip src */
0x0a, 0x01, 0x02, 0x0a, /* ip dst */
0xc2, 0x24,
0x00, 0x16 /* dst port */ },
{ { 10, 0 }, { 30, 0 }, { 100, 65535 } },
},
{
"RET_A",
.u.insns = {
/* check that uninitialized X and A contain zeros */
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ {1, 0}, {2, 0} },
},
{
"INT: ADD trivial",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R1, 1),
BPF_ALU64_IMM(BPF_ADD, R1, 2),
BPF_ALU64_IMM(BPF_MOV, R2, 3),
BPF_ALU64_REG(BPF_SUB, R1, R2),
BPF_ALU64_IMM(BPF_ADD, R1, -1),
BPF_ALU64_IMM(BPF_MUL, R1, 3),
BPF_ALU64_REG(BPF_MOV, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfffffffd } }
},
{
"INT: MUL_X",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, -1),
BPF_ALU64_IMM(BPF_MOV, R1, -1),
BPF_ALU64_IMM(BPF_MOV, R2, 3),
BPF_ALU64_REG(BPF_MUL, R1, R2),
BPF_JMP_IMM(BPF_JEQ, R1, 0xfffffffd, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
{
"INT: MUL_X2",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -1),
BPF_ALU32_IMM(BPF_MOV, R1, -1),
BPF_ALU32_IMM(BPF_MOV, R2, 3),
BPF_ALU64_REG(BPF_MUL, R1, R2),
BPF_ALU64_IMM(BPF_RSH, R1, 8),
BPF_JMP_IMM(BPF_JEQ, R1, 0x2ffffff, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
{
"INT: MUL32_X",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -1),
BPF_ALU64_IMM(BPF_MOV, R1, -1),
BPF_ALU32_IMM(BPF_MOV, R2, 3),
BPF_ALU32_REG(BPF_MUL, R1, R2),
BPF_ALU64_IMM(BPF_RSH, R1, 8),
BPF_JMP_IMM(BPF_JEQ, R1, 0xffffff, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
{
/* Have to test all register combinations, since
* JITing of different registers will produce
* different asm code.
*/
"INT: ADD 64-bit",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_ALU64_IMM(BPF_MOV, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R2, 2),
BPF_ALU64_IMM(BPF_MOV, R3, 3),
BPF_ALU64_IMM(BPF_MOV, R4, 4),
BPF_ALU64_IMM(BPF_MOV, R5, 5),
BPF_ALU64_IMM(BPF_MOV, R6, 6),
BPF_ALU64_IMM(BPF_MOV, R7, 7),
BPF_ALU64_IMM(BPF_MOV, R8, 8),
BPF_ALU64_IMM(BPF_MOV, R9, 9),
BPF_ALU64_IMM(BPF_ADD, R0, 20),
BPF_ALU64_IMM(BPF_ADD, R1, 20),
BPF_ALU64_IMM(BPF_ADD, R2, 20),
BPF_ALU64_IMM(BPF_ADD, R3, 20),
BPF_ALU64_IMM(BPF_ADD, R4, 20),
BPF_ALU64_IMM(BPF_ADD, R5, 20),
BPF_ALU64_IMM(BPF_ADD, R6, 20),
BPF_ALU64_IMM(BPF_ADD, R7, 20),
BPF_ALU64_IMM(BPF_ADD, R8, 20),
BPF_ALU64_IMM(BPF_ADD, R9, 20),
BPF_ALU64_IMM(BPF_SUB, R0, 10),
BPF_ALU64_IMM(BPF_SUB, R1, 10),
BPF_ALU64_IMM(BPF_SUB, R2, 10),
BPF_ALU64_IMM(BPF_SUB, R3, 10),
BPF_ALU64_IMM(BPF_SUB, R4, 10),
BPF_ALU64_IMM(BPF_SUB, R5, 10),
BPF_ALU64_IMM(BPF_SUB, R6, 10),
BPF_ALU64_IMM(BPF_SUB, R7, 10),
BPF_ALU64_IMM(BPF_SUB, R8, 10),
BPF_ALU64_IMM(BPF_SUB, R9, 10),
BPF_ALU64_REG(BPF_ADD, R0, R0),
BPF_ALU64_REG(BPF_ADD, R0, R1),
BPF_ALU64_REG(BPF_ADD, R0, R2),
BPF_ALU64_REG(BPF_ADD, R0, R3),
BPF_ALU64_REG(BPF_ADD, R0, R4),
BPF_ALU64_REG(BPF_ADD, R0, R5),
BPF_ALU64_REG(BPF_ADD, R0, R6),
BPF_ALU64_REG(BPF_ADD, R0, R7),
BPF_ALU64_REG(BPF_ADD, R0, R8),
BPF_ALU64_REG(BPF_ADD, R0, R9), /* R0 == 155 */
BPF_JMP_IMM(BPF_JEQ, R0, 155, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R1, R0),
BPF_ALU64_REG(BPF_ADD, R1, R1),
BPF_ALU64_REG(BPF_ADD, R1, R2),
BPF_ALU64_REG(BPF_ADD, R1, R3),
BPF_ALU64_REG(BPF_ADD, R1, R4),
BPF_ALU64_REG(BPF_ADD, R1, R5),
BPF_ALU64_REG(BPF_ADD, R1, R6),
BPF_ALU64_REG(BPF_ADD, R1, R7),
BPF_ALU64_REG(BPF_ADD, R1, R8),
BPF_ALU64_REG(BPF_ADD, R1, R9), /* R1 == 456 */
BPF_JMP_IMM(BPF_JEQ, R1, 456, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R2, R0),
BPF_ALU64_REG(BPF_ADD, R2, R1),
BPF_ALU64_REG(BPF_ADD, R2, R2),
BPF_ALU64_REG(BPF_ADD, R2, R3),
BPF_ALU64_REG(BPF_ADD, R2, R4),
BPF_ALU64_REG(BPF_ADD, R2, R5),
BPF_ALU64_REG(BPF_ADD, R2, R6),
BPF_ALU64_REG(BPF_ADD, R2, R7),
BPF_ALU64_REG(BPF_ADD, R2, R8),
BPF_ALU64_REG(BPF_ADD, R2, R9), /* R2 == 1358 */
BPF_JMP_IMM(BPF_JEQ, R2, 1358, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R3, R0),
BPF_ALU64_REG(BPF_ADD, R3, R1),
BPF_ALU64_REG(BPF_ADD, R3, R2),
BPF_ALU64_REG(BPF_ADD, R3, R3),
BPF_ALU64_REG(BPF_ADD, R3, R4),
BPF_ALU64_REG(BPF_ADD, R3, R5),
BPF_ALU64_REG(BPF_ADD, R3, R6),
BPF_ALU64_REG(BPF_ADD, R3, R7),
BPF_ALU64_REG(BPF_ADD, R3, R8),
BPF_ALU64_REG(BPF_ADD, R3, R9), /* R3 == 4063 */
BPF_JMP_IMM(BPF_JEQ, R3, 4063, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R4, R0),
BPF_ALU64_REG(BPF_ADD, R4, R1),
BPF_ALU64_REG(BPF_ADD, R4, R2),
BPF_ALU64_REG(BPF_ADD, R4, R3),
BPF_ALU64_REG(BPF_ADD, R4, R4),
BPF_ALU64_REG(BPF_ADD, R4, R5),
BPF_ALU64_REG(BPF_ADD, R4, R6),
BPF_ALU64_REG(BPF_ADD, R4, R7),
BPF_ALU64_REG(BPF_ADD, R4, R8),
BPF_ALU64_REG(BPF_ADD, R4, R9), /* R4 == 12177 */
BPF_JMP_IMM(BPF_JEQ, R4, 12177, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R5, R0),
BPF_ALU64_REG(BPF_ADD, R5, R1),
BPF_ALU64_REG(BPF_ADD, R5, R2),
BPF_ALU64_REG(BPF_ADD, R5, R3),
BPF_ALU64_REG(BPF_ADD, R5, R4),
BPF_ALU64_REG(BPF_ADD, R5, R5),
BPF_ALU64_REG(BPF_ADD, R5, R6),
BPF_ALU64_REG(BPF_ADD, R5, R7),
BPF_ALU64_REG(BPF_ADD, R5, R8),
BPF_ALU64_REG(BPF_ADD, R5, R9), /* R5 == 36518 */
BPF_JMP_IMM(BPF_JEQ, R5, 36518, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R6, R0),
BPF_ALU64_REG(BPF_ADD, R6, R1),
BPF_ALU64_REG(BPF_ADD, R6, R2),
BPF_ALU64_REG(BPF_ADD, R6, R3),
BPF_ALU64_REG(BPF_ADD, R6, R4),
BPF_ALU64_REG(BPF_ADD, R6, R5),
BPF_ALU64_REG(BPF_ADD, R6, R6),
BPF_ALU64_REG(BPF_ADD, R6, R7),
BPF_ALU64_REG(BPF_ADD, R6, R8),
BPF_ALU64_REG(BPF_ADD, R6, R9), /* R6 == 109540 */
BPF_JMP_IMM(BPF_JEQ, R6, 109540, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R7, R0),
BPF_ALU64_REG(BPF_ADD, R7, R1),
BPF_ALU64_REG(BPF_ADD, R7, R2),
BPF_ALU64_REG(BPF_ADD, R7, R3),
BPF_ALU64_REG(BPF_ADD, R7, R4),
BPF_ALU64_REG(BPF_ADD, R7, R5),
BPF_ALU64_REG(BPF_ADD, R7, R6),
BPF_ALU64_REG(BPF_ADD, R7, R7),
BPF_ALU64_REG(BPF_ADD, R7, R8),
BPF_ALU64_REG(BPF_ADD, R7, R9), /* R7 == 328605 */
BPF_JMP_IMM(BPF_JEQ, R7, 328605, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R8, R0),
BPF_ALU64_REG(BPF_ADD, R8, R1),
BPF_ALU64_REG(BPF_ADD, R8, R2),
BPF_ALU64_REG(BPF_ADD, R8, R3),
BPF_ALU64_REG(BPF_ADD, R8, R4),
BPF_ALU64_REG(BPF_ADD, R8, R5),
BPF_ALU64_REG(BPF_ADD, R8, R6),
BPF_ALU64_REG(BPF_ADD, R8, R7),
BPF_ALU64_REG(BPF_ADD, R8, R8),
BPF_ALU64_REG(BPF_ADD, R8, R9), /* R8 == 985799 */
BPF_JMP_IMM(BPF_JEQ, R8, 985799, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R9, R0),
BPF_ALU64_REG(BPF_ADD, R9, R1),
BPF_ALU64_REG(BPF_ADD, R9, R2),
BPF_ALU64_REG(BPF_ADD, R9, R3),
BPF_ALU64_REG(BPF_ADD, R9, R4),
BPF_ALU64_REG(BPF_ADD, R9, R5),
BPF_ALU64_REG(BPF_ADD, R9, R6),
BPF_ALU64_REG(BPF_ADD, R9, R7),
BPF_ALU64_REG(BPF_ADD, R9, R8),
BPF_ALU64_REG(BPF_ADD, R9, R9), /* R9 == 2957380 */
BPF_ALU64_REG(BPF_MOV, R0, R9),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2957380 } }
},
{
"INT: ADD 32-bit",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 20),
BPF_ALU32_IMM(BPF_MOV, R1, 1),
BPF_ALU32_IMM(BPF_MOV, R2, 2),
BPF_ALU32_IMM(BPF_MOV, R3, 3),
BPF_ALU32_IMM(BPF_MOV, R4, 4),
BPF_ALU32_IMM(BPF_MOV, R5, 5),
BPF_ALU32_IMM(BPF_MOV, R6, 6),
BPF_ALU32_IMM(BPF_MOV, R7, 7),
BPF_ALU32_IMM(BPF_MOV, R8, 8),
BPF_ALU32_IMM(BPF_MOV, R9, 9),
BPF_ALU64_IMM(BPF_ADD, R1, 10),
BPF_ALU64_IMM(BPF_ADD, R2, 10),
BPF_ALU64_IMM(BPF_ADD, R3, 10),
BPF_ALU64_IMM(BPF_ADD, R4, 10),
BPF_ALU64_IMM(BPF_ADD, R5, 10),
BPF_ALU64_IMM(BPF_ADD, R6, 10),
BPF_ALU64_IMM(BPF_ADD, R7, 10),
BPF_ALU64_IMM(BPF_ADD, R8, 10),
BPF_ALU64_IMM(BPF_ADD, R9, 10),
BPF_ALU32_REG(BPF_ADD, R0, R1),
BPF_ALU32_REG(BPF_ADD, R0, R2),
BPF_ALU32_REG(BPF_ADD, R0, R3),
BPF_ALU32_REG(BPF_ADD, R0, R4),
BPF_ALU32_REG(BPF_ADD, R0, R5),
BPF_ALU32_REG(BPF_ADD, R0, R6),
BPF_ALU32_REG(BPF_ADD, R0, R7),
BPF_ALU32_REG(BPF_ADD, R0, R8),
BPF_ALU32_REG(BPF_ADD, R0, R9), /* R0 == 155 */
BPF_JMP_IMM(BPF_JEQ, R0, 155, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R1, R0),
BPF_ALU32_REG(BPF_ADD, R1, R1),
BPF_ALU32_REG(BPF_ADD, R1, R2),
BPF_ALU32_REG(BPF_ADD, R1, R3),
BPF_ALU32_REG(BPF_ADD, R1, R4),
BPF_ALU32_REG(BPF_ADD, R1, R5),
BPF_ALU32_REG(BPF_ADD, R1, R6),
BPF_ALU32_REG(BPF_ADD, R1, R7),
BPF_ALU32_REG(BPF_ADD, R1, R8),
BPF_ALU32_REG(BPF_ADD, R1, R9), /* R1 == 456 */
BPF_JMP_IMM(BPF_JEQ, R1, 456, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R2, R0),
BPF_ALU32_REG(BPF_ADD, R2, R1),
BPF_ALU32_REG(BPF_ADD, R2, R2),
BPF_ALU32_REG(BPF_ADD, R2, R3),
BPF_ALU32_REG(BPF_ADD, R2, R4),
BPF_ALU32_REG(BPF_ADD, R2, R5),
BPF_ALU32_REG(BPF_ADD, R2, R6),
BPF_ALU32_REG(BPF_ADD, R2, R7),
BPF_ALU32_REG(BPF_ADD, R2, R8),
BPF_ALU32_REG(BPF_ADD, R2, R9), /* R2 == 1358 */
BPF_JMP_IMM(BPF_JEQ, R2, 1358, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R3, R0),
BPF_ALU32_REG(BPF_ADD, R3, R1),
BPF_ALU32_REG(BPF_ADD, R3, R2),
BPF_ALU32_REG(BPF_ADD, R3, R3),
BPF_ALU32_REG(BPF_ADD, R3, R4),
BPF_ALU32_REG(BPF_ADD, R3, R5),
BPF_ALU32_REG(BPF_ADD, R3, R6),
BPF_ALU32_REG(BPF_ADD, R3, R7),
BPF_ALU32_REG(BPF_ADD, R3, R8),
BPF_ALU32_REG(BPF_ADD, R3, R9), /* R3 == 4063 */
BPF_JMP_IMM(BPF_JEQ, R3, 4063, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R4, R0),
BPF_ALU32_REG(BPF_ADD, R4, R1),
BPF_ALU32_REG(BPF_ADD, R4, R2),
BPF_ALU32_REG(BPF_ADD, R4, R3),
BPF_ALU32_REG(BPF_ADD, R4, R4),
BPF_ALU32_REG(BPF_ADD, R4, R5),
BPF_ALU32_REG(BPF_ADD, R4, R6),
BPF_ALU32_REG(BPF_ADD, R4, R7),
BPF_ALU32_REG(BPF_ADD, R4, R8),
BPF_ALU32_REG(BPF_ADD, R4, R9), /* R4 == 12177 */
BPF_JMP_IMM(BPF_JEQ, R4, 12177, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R5, R0),
BPF_ALU32_REG(BPF_ADD, R5, R1),
BPF_ALU32_REG(BPF_ADD, R5, R2),
BPF_ALU32_REG(BPF_ADD, R5, R3),
BPF_ALU32_REG(BPF_ADD, R5, R4),
BPF_ALU32_REG(BPF_ADD, R5, R5),
BPF_ALU32_REG(BPF_ADD, R5, R6),
BPF_ALU32_REG(BPF_ADD, R5, R7),
BPF_ALU32_REG(BPF_ADD, R5, R8),
BPF_ALU32_REG(BPF_ADD, R5, R9), /* R5 == 36518 */
BPF_JMP_IMM(BPF_JEQ, R5, 36518, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R6, R0),
BPF_ALU32_REG(BPF_ADD, R6, R1),
BPF_ALU32_REG(BPF_ADD, R6, R2),
BPF_ALU32_REG(BPF_ADD, R6, R3),
BPF_ALU32_REG(BPF_ADD, R6, R4),
BPF_ALU32_REG(BPF_ADD, R6, R5),
BPF_ALU32_REG(BPF_ADD, R6, R6),
BPF_ALU32_REG(BPF_ADD, R6, R7),
BPF_ALU32_REG(BPF_ADD, R6, R8),
BPF_ALU32_REG(BPF_ADD, R6, R9), /* R6 == 109540 */
BPF_JMP_IMM(BPF_JEQ, R6, 109540, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R7, R0),
BPF_ALU32_REG(BPF_ADD, R7, R1),
BPF_ALU32_REG(BPF_ADD, R7, R2),
BPF_ALU32_REG(BPF_ADD, R7, R3),
BPF_ALU32_REG(BPF_ADD, R7, R4),
BPF_ALU32_REG(BPF_ADD, R7, R5),
BPF_ALU32_REG(BPF_ADD, R7, R6),
BPF_ALU32_REG(BPF_ADD, R7, R7),
BPF_ALU32_REG(BPF_ADD, R7, R8),
BPF_ALU32_REG(BPF_ADD, R7, R9), /* R7 == 328605 */
BPF_JMP_IMM(BPF_JEQ, R7, 328605, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R8, R0),
BPF_ALU32_REG(BPF_ADD, R8, R1),
BPF_ALU32_REG(BPF_ADD, R8, R2),
BPF_ALU32_REG(BPF_ADD, R8, R3),
BPF_ALU32_REG(BPF_ADD, R8, R4),
BPF_ALU32_REG(BPF_ADD, R8, R5),
BPF_ALU32_REG(BPF_ADD, R8, R6),
BPF_ALU32_REG(BPF_ADD, R8, R7),
BPF_ALU32_REG(BPF_ADD, R8, R8),
BPF_ALU32_REG(BPF_ADD, R8, R9), /* R8 == 985799 */
BPF_JMP_IMM(BPF_JEQ, R8, 985799, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R9, R0),
BPF_ALU32_REG(BPF_ADD, R9, R1),
BPF_ALU32_REG(BPF_ADD, R9, R2),
BPF_ALU32_REG(BPF_ADD, R9, R3),
BPF_ALU32_REG(BPF_ADD, R9, R4),
BPF_ALU32_REG(BPF_ADD, R9, R5),
BPF_ALU32_REG(BPF_ADD, R9, R6),
BPF_ALU32_REG(BPF_ADD, R9, R7),
BPF_ALU32_REG(BPF_ADD, R9, R8),
BPF_ALU32_REG(BPF_ADD, R9, R9), /* R9 == 2957380 */
BPF_ALU32_REG(BPF_MOV, R0, R9),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2957380 } }
},
{ /* Mainly checking JIT here. */
"INT: SUB",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_ALU64_IMM(BPF_MOV, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R2, 2),
BPF_ALU64_IMM(BPF_MOV, R3, 3),
BPF_ALU64_IMM(BPF_MOV, R4, 4),
BPF_ALU64_IMM(BPF_MOV, R5, 5),
BPF_ALU64_IMM(BPF_MOV, R6, 6),
BPF_ALU64_IMM(BPF_MOV, R7, 7),
BPF_ALU64_IMM(BPF_MOV, R8, 8),
BPF_ALU64_IMM(BPF_MOV, R9, 9),
BPF_ALU64_REG(BPF_SUB, R0, R0),
BPF_ALU64_REG(BPF_SUB, R0, R1),
BPF_ALU64_REG(BPF_SUB, R0, R2),
BPF_ALU64_REG(BPF_SUB, R0, R3),
BPF_ALU64_REG(BPF_SUB, R0, R4),
BPF_ALU64_REG(BPF_SUB, R0, R5),
BPF_ALU64_REG(BPF_SUB, R0, R6),
BPF_ALU64_REG(BPF_SUB, R0, R7),
BPF_ALU64_REG(BPF_SUB, R0, R8),
BPF_ALU64_REG(BPF_SUB, R0, R9),
BPF_ALU64_IMM(BPF_SUB, R0, 10),
BPF_JMP_IMM(BPF_JEQ, R0, -55, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R1, R0),
BPF_ALU64_REG(BPF_SUB, R1, R2),
BPF_ALU64_REG(BPF_SUB, R1, R3),
BPF_ALU64_REG(BPF_SUB, R1, R4),
BPF_ALU64_REG(BPF_SUB, R1, R5),
BPF_ALU64_REG(BPF_SUB, R1, R6),
BPF_ALU64_REG(BPF_SUB, R1, R7),
BPF_ALU64_REG(BPF_SUB, R1, R8),
BPF_ALU64_REG(BPF_SUB, R1, R9),
BPF_ALU64_IMM(BPF_SUB, R1, 10),
BPF_ALU64_REG(BPF_SUB, R2, R0),
BPF_ALU64_REG(BPF_SUB, R2, R1),
BPF_ALU64_REG(BPF_SUB, R2, R3),
BPF_ALU64_REG(BPF_SUB, R2, R4),
BPF_ALU64_REG(BPF_SUB, R2, R5),
BPF_ALU64_REG(BPF_SUB, R2, R6),
BPF_ALU64_REG(BPF_SUB, R2, R7),
BPF_ALU64_REG(BPF_SUB, R2, R8),
BPF_ALU64_REG(BPF_SUB, R2, R9),
BPF_ALU64_IMM(BPF_SUB, R2, 10),
BPF_ALU64_REG(BPF_SUB, R3, R0),
BPF_ALU64_REG(BPF_SUB, R3, R1),
BPF_ALU64_REG(BPF_SUB, R3, R2),
BPF_ALU64_REG(BPF_SUB, R3, R4),
BPF_ALU64_REG(BPF_SUB, R3, R5),
BPF_ALU64_REG(BPF_SUB, R3, R6),
BPF_ALU64_REG(BPF_SUB, R3, R7),
BPF_ALU64_REG(BPF_SUB, R3, R8),
BPF_ALU64_REG(BPF_SUB, R3, R9),
BPF_ALU64_IMM(BPF_SUB, R3, 10),
BPF_ALU64_REG(BPF_SUB, R4, R0),
BPF_ALU64_REG(BPF_SUB, R4, R1),
BPF_ALU64_REG(BPF_SUB, R4, R2),
BPF_ALU64_REG(BPF_SUB, R4, R3),
BPF_ALU64_REG(BPF_SUB, R4, R5),
BPF_ALU64_REG(BPF_SUB, R4, R6),
BPF_ALU64_REG(BPF_SUB, R4, R7),
BPF_ALU64_REG(BPF_SUB, R4, R8),
BPF_ALU64_REG(BPF_SUB, R4, R9),
BPF_ALU64_IMM(BPF_SUB, R4, 10),
BPF_ALU64_REG(BPF_SUB, R5, R0),
BPF_ALU64_REG(BPF_SUB, R5, R1),
BPF_ALU64_REG(BPF_SUB, R5, R2),
BPF_ALU64_REG(BPF_SUB, R5, R3),
BPF_ALU64_REG(BPF_SUB, R5, R4),
BPF_ALU64_REG(BPF_SUB, R5, R6),
BPF_ALU64_REG(BPF_SUB, R5, R7),
BPF_ALU64_REG(BPF_SUB, R5, R8),
BPF_ALU64_REG(BPF_SUB, R5, R9),
BPF_ALU64_IMM(BPF_SUB, R5, 10),
BPF_ALU64_REG(BPF_SUB, R6, R0),
BPF_ALU64_REG(BPF_SUB, R6, R1),
BPF_ALU64_REG(BPF_SUB, R6, R2),
BPF_ALU64_REG(BPF_SUB, R6, R3),
BPF_ALU64_REG(BPF_SUB, R6, R4),
BPF_ALU64_REG(BPF_SUB, R6, R5),
BPF_ALU64_REG(BPF_SUB, R6, R7),
BPF_ALU64_REG(BPF_SUB, R6, R8),
BPF_ALU64_REG(BPF_SUB, R6, R9),
BPF_ALU64_IMM(BPF_SUB, R6, 10),
BPF_ALU64_REG(BPF_SUB, R7, R0),
BPF_ALU64_REG(BPF_SUB, R7, R1),
BPF_ALU64_REG(BPF_SUB, R7, R2),
BPF_ALU64_REG(BPF_SUB, R7, R3),
BPF_ALU64_REG(BPF_SUB, R7, R4),
BPF_ALU64_REG(BPF_SUB, R7, R5),
BPF_ALU64_REG(BPF_SUB, R7, R6),
BPF_ALU64_REG(BPF_SUB, R7, R8),
BPF_ALU64_REG(BPF_SUB, R7, R9),
BPF_ALU64_IMM(BPF_SUB, R7, 10),
BPF_ALU64_REG(BPF_SUB, R8, R0),
BPF_ALU64_REG(BPF_SUB, R8, R1),
BPF_ALU64_REG(BPF_SUB, R8, R2),
BPF_ALU64_REG(BPF_SUB, R8, R3),
BPF_ALU64_REG(BPF_SUB, R8, R4),
BPF_ALU64_REG(BPF_SUB, R8, R5),
BPF_ALU64_REG(BPF_SUB, R8, R6),
BPF_ALU64_REG(BPF_SUB, R8, R7),
BPF_ALU64_REG(BPF_SUB, R8, R9),
BPF_ALU64_IMM(BPF_SUB, R8, 10),
BPF_ALU64_REG(BPF_SUB, R9, R0),
BPF_ALU64_REG(BPF_SUB, R9, R1),
BPF_ALU64_REG(BPF_SUB, R9, R2),
BPF_ALU64_REG(BPF_SUB, R9, R3),
BPF_ALU64_REG(BPF_SUB, R9, R4),
BPF_ALU64_REG(BPF_SUB, R9, R5),
BPF_ALU64_REG(BPF_SUB, R9, R6),
BPF_ALU64_REG(BPF_SUB, R9, R7),
BPF_ALU64_REG(BPF_SUB, R9, R8),
BPF_ALU64_IMM(BPF_SUB, R9, 10),
BPF_ALU64_IMM(BPF_SUB, R0, 10),
BPF_ALU64_IMM(BPF_NEG, R0, 0),
BPF_ALU64_REG(BPF_SUB, R0, R1),
BPF_ALU64_REG(BPF_SUB, R0, R2),
BPF_ALU64_REG(BPF_SUB, R0, R3),
BPF_ALU64_REG(BPF_SUB, R0, R4),
BPF_ALU64_REG(BPF_SUB, R0, R5),
BPF_ALU64_REG(BPF_SUB, R0, R6),
BPF_ALU64_REG(BPF_SUB, R0, R7),
BPF_ALU64_REG(BPF_SUB, R0, R8),
BPF_ALU64_REG(BPF_SUB, R0, R9),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 11 } }
},
{ /* Mainly checking JIT here. */
"INT: XOR",
.u.insns_int = {
BPF_ALU64_REG(BPF_SUB, R0, R0),
BPF_ALU64_REG(BPF_XOR, R1, R1),
BPF_JMP_REG(BPF_JEQ, R0, R1, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_MOV, R0, 10),
BPF_ALU64_IMM(BPF_MOV, R1, -1),
BPF_ALU64_REG(BPF_SUB, R1, R1),
BPF_ALU64_REG(BPF_XOR, R2, R2),
BPF_JMP_REG(BPF_JEQ, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R2, R2),
BPF_ALU64_REG(BPF_XOR, R3, R3),
BPF_ALU64_IMM(BPF_MOV, R0, 10),
BPF_ALU64_IMM(BPF_MOV, R1, -1),
BPF_JMP_REG(BPF_JEQ, R2, R3, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R3, R3),
BPF_ALU64_REG(BPF_XOR, R4, R4),
BPF_ALU64_IMM(BPF_MOV, R2, 1),
BPF_ALU64_IMM(BPF_MOV, R5, -1),
BPF_JMP_REG(BPF_JEQ, R3, R4, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R4, R4),
BPF_ALU64_REG(BPF_XOR, R5, R5),
BPF_ALU64_IMM(BPF_MOV, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R7, -1),
BPF_JMP_REG(BPF_JEQ, R5, R4, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_MOV, R5, 1),
BPF_ALU64_REG(BPF_SUB, R5, R5),
BPF_ALU64_REG(BPF_XOR, R6, R6),
BPF_ALU64_IMM(BPF_MOV, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R8, -1),
BPF_JMP_REG(BPF_JEQ, R5, R6, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R6, R6),
BPF_ALU64_REG(BPF_XOR, R7, R7),
BPF_JMP_REG(BPF_JEQ, R7, R6, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R7, R7),
BPF_ALU64_REG(BPF_XOR, R8, R8),
BPF_JMP_REG(BPF_JEQ, R7, R8, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R8, R8),
BPF_ALU64_REG(BPF_XOR, R9, R9),
BPF_JMP_REG(BPF_JEQ, R9, R8, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R9, R9),
BPF_ALU64_REG(BPF_XOR, R0, R0),
BPF_JMP_REG(BPF_JEQ, R9, R0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R1, R1),
BPF_ALU64_REG(BPF_XOR, R0, R0),
BPF_JMP_REG(BPF_JEQ, R9, R0, 2),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
{ /* Mainly checking JIT here. */
"INT: MUL",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 11),
BPF_ALU64_IMM(BPF_MOV, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R2, 2),
BPF_ALU64_IMM(BPF_MOV, R3, 3),
BPF_ALU64_IMM(BPF_MOV, R4, 4),
BPF_ALU64_IMM(BPF_MOV, R5, 5),
BPF_ALU64_IMM(BPF_MOV, R6, 6),
BPF_ALU64_IMM(BPF_MOV, R7, 7),
BPF_ALU64_IMM(BPF_MOV, R8, 8),
BPF_ALU64_IMM(BPF_MOV, R9, 9),
BPF_ALU64_REG(BPF_MUL, R0, R0),
BPF_ALU64_REG(BPF_MUL, R0, R1),
BPF_ALU64_REG(BPF_MUL, R0, R2),
BPF_ALU64_REG(BPF_MUL, R0, R3),
BPF_ALU64_REG(BPF_MUL, R0, R4),
BPF_ALU64_REG(BPF_MUL, R0, R5),
BPF_ALU64_REG(BPF_MUL, R0, R6),
BPF_ALU64_REG(BPF_MUL, R0, R7),
BPF_ALU64_REG(BPF_MUL, R0, R8),
BPF_ALU64_REG(BPF_MUL, R0, R9),
BPF_ALU64_IMM(BPF_MUL, R0, 10),
BPF_JMP_IMM(BPF_JEQ, R0, 439084800, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_MUL, R1, R0),
BPF_ALU64_REG(BPF_MUL, R1, R2),
BPF_ALU64_REG(BPF_MUL, R1, R3),
BPF_ALU64_REG(BPF_MUL, R1, R4),
BPF_ALU64_REG(BPF_MUL, R1, R5),
BPF_ALU64_REG(BPF_MUL, R1, R6),
BPF_ALU64_REG(BPF_MUL, R1, R7),
BPF_ALU64_REG(BPF_MUL, R1, R8),
BPF_ALU64_REG(BPF_MUL, R1, R9),
BPF_ALU64_IMM(BPF_MUL, R1, 10),
BPF_ALU64_REG(BPF_MOV, R2, R1),
BPF_ALU64_IMM(BPF_RSH, R2, 32),
BPF_JMP_IMM(BPF_JEQ, R2, 0x5a924, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_LSH, R1, 32),
BPF_ALU64_IMM(BPF_ARSH, R1, 32),
BPF_JMP_IMM(BPF_JEQ, R1, 0xebb90000, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_MUL, R2, R0),
BPF_ALU64_REG(BPF_MUL, R2, R1),
BPF_ALU64_REG(BPF_MUL, R2, R3),
BPF_ALU64_REG(BPF_MUL, R2, R4),
BPF_ALU64_REG(BPF_MUL, R2, R5),
BPF_ALU64_REG(BPF_MUL, R2, R6),
BPF_ALU64_REG(BPF_MUL, R2, R7),
BPF_ALU64_REG(BPF_MUL, R2, R8),
BPF_ALU64_REG(BPF_MUL, R2, R9),
BPF_ALU64_IMM(BPF_MUL, R2, 10),
BPF_ALU64_IMM(BPF_RSH, R2, 32),
BPF_ALU64_REG(BPF_MOV, R0, R2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x35d97ef2 } }
},
{ /* Mainly checking JIT here. */
"MOV REG64",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xffffffffffffffffLL),
BPF_MOV64_REG(R1, R0),
BPF_MOV64_REG(R2, R1),
BPF_MOV64_REG(R3, R2),
BPF_MOV64_REG(R4, R3),
BPF_MOV64_REG(R5, R4),
BPF_MOV64_REG(R6, R5),
BPF_MOV64_REG(R7, R6),
BPF_MOV64_REG(R8, R7),
BPF_MOV64_REG(R9, R8),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_ALU64_IMM(BPF_MOV, R1, 0),
BPF_ALU64_IMM(BPF_MOV, R2, 0),
BPF_ALU64_IMM(BPF_MOV, R3, 0),
BPF_ALU64_IMM(BPF_MOV, R4, 0),
BPF_ALU64_IMM(BPF_MOV, R5, 0),
BPF_ALU64_IMM(BPF_MOV, R6, 0),
BPF_ALU64_IMM(BPF_MOV, R7, 0),
BPF_ALU64_IMM(BPF_MOV, R8, 0),
BPF_ALU64_IMM(BPF_MOV, R9, 0),
BPF_ALU64_REG(BPF_ADD, R0, R0),
BPF_ALU64_REG(BPF_ADD, R0, R1),
BPF_ALU64_REG(BPF_ADD, R0, R2),
BPF_ALU64_REG(BPF_ADD, R0, R3),
BPF_ALU64_REG(BPF_ADD, R0, R4),
BPF_ALU64_REG(BPF_ADD, R0, R5),
BPF_ALU64_REG(BPF_ADD, R0, R6),
BPF_ALU64_REG(BPF_ADD, R0, R7),
BPF_ALU64_REG(BPF_ADD, R0, R8),
BPF_ALU64_REG(BPF_ADD, R0, R9),
BPF_ALU64_IMM(BPF_ADD, R0, 0xfefe),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfefe } }
},
{ /* Mainly checking JIT here. */
"MOV REG32",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xffffffffffffffffLL),
BPF_MOV64_REG(R1, R0),
BPF_MOV64_REG(R2, R1),
BPF_MOV64_REG(R3, R2),
BPF_MOV64_REG(R4, R3),
BPF_MOV64_REG(R5, R4),
BPF_MOV64_REG(R6, R5),
BPF_MOV64_REG(R7, R6),
BPF_MOV64_REG(R8, R7),
BPF_MOV64_REG(R9, R8),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_ALU32_IMM(BPF_MOV, R1, 0),
BPF_ALU32_IMM(BPF_MOV, R2, 0),
BPF_ALU32_IMM(BPF_MOV, R3, 0),
BPF_ALU32_IMM(BPF_MOV, R4, 0),
BPF_ALU32_IMM(BPF_MOV, R5, 0),
BPF_ALU32_IMM(BPF_MOV, R6, 0),
BPF_ALU32_IMM(BPF_MOV, R7, 0),
BPF_ALU32_IMM(BPF_MOV, R8, 0),
BPF_ALU32_IMM(BPF_MOV, R9, 0),
BPF_ALU64_REG(BPF_ADD, R0, R0),
BPF_ALU64_REG(BPF_ADD, R0, R1),
BPF_ALU64_REG(BPF_ADD, R0, R2),
BPF_ALU64_REG(BPF_ADD, R0, R3),
BPF_ALU64_REG(BPF_ADD, R0, R4),
BPF_ALU64_REG(BPF_ADD, R0, R5),
BPF_ALU64_REG(BPF_ADD, R0, R6),
BPF_ALU64_REG(BPF_ADD, R0, R7),
BPF_ALU64_REG(BPF_ADD, R0, R8),
BPF_ALU64_REG(BPF_ADD, R0, R9),
BPF_ALU64_IMM(BPF_ADD, R0, 0xfefe),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfefe } }
},
{ /* Mainly checking JIT here. */
"LD IMM64",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xffffffffffffffffLL),
BPF_MOV64_REG(R1, R0),
BPF_MOV64_REG(R2, R1),
BPF_MOV64_REG(R3, R2),
BPF_MOV64_REG(R4, R3),
BPF_MOV64_REG(R5, R4),
BPF_MOV64_REG(R6, R5),
BPF_MOV64_REG(R7, R6),
BPF_MOV64_REG(R8, R7),
BPF_MOV64_REG(R9, R8),
BPF_LD_IMM64(R0, 0x0LL),
BPF_LD_IMM64(R1, 0x0LL),
BPF_LD_IMM64(R2, 0x0LL),
BPF_LD_IMM64(R3, 0x0LL),
BPF_LD_IMM64(R4, 0x0LL),
BPF_LD_IMM64(R5, 0x0LL),
BPF_LD_IMM64(R6, 0x0LL),
BPF_LD_IMM64(R7, 0x0LL),
BPF_LD_IMM64(R8, 0x0LL),
BPF_LD_IMM64(R9, 0x0LL),
BPF_ALU64_REG(BPF_ADD, R0, R0),
BPF_ALU64_REG(BPF_ADD, R0, R1),
BPF_ALU64_REG(BPF_ADD, R0, R2),
BPF_ALU64_REG(BPF_ADD, R0, R3),
BPF_ALU64_REG(BPF_ADD, R0, R4),
BPF_ALU64_REG(BPF_ADD, R0, R5),
BPF_ALU64_REG(BPF_ADD, R0, R6),
BPF_ALU64_REG(BPF_ADD, R0, R7),
BPF_ALU64_REG(BPF_ADD, R0, R8),
BPF_ALU64_REG(BPF_ADD, R0, R9),
BPF_ALU64_IMM(BPF_ADD, R0, 0xfefe),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfefe } }
},
{
"INT: ALU MIX",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 11),
BPF_ALU64_IMM(BPF_ADD, R0, -1),
BPF_ALU64_IMM(BPF_MOV, R2, 2),
BPF_ALU64_IMM(BPF_XOR, R2, 3),
BPF_ALU64_REG(BPF_DIV, R0, R2),
BPF_JMP_IMM(BPF_JEQ, R0, 10, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_MOD, R0, 3),
BPF_JMP_IMM(BPF_JEQ, R0, 1, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_MOV, R0, -1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -1 } }
},
{
"INT: shifts by register",
.u.insns_int = {
BPF_MOV64_IMM(R0, -1234),
BPF_MOV64_IMM(R1, 1),
BPF_ALU32_REG(BPF_RSH, R0, R1),
BPF_JMP_IMM(BPF_JEQ, R0, 0x7ffffd97, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(R2, 1),
BPF_ALU64_REG(BPF_LSH, R0, R2),
BPF_MOV32_IMM(R4, -1234),
BPF_JMP_REG(BPF_JEQ, R0, R4, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_AND, R4, 63),
BPF_ALU64_REG(BPF_LSH, R0, R4), /* R0 <= 46 */
BPF_MOV64_IMM(R3, 47),
BPF_ALU64_REG(BPF_ARSH, R0, R3),
BPF_JMP_IMM(BPF_JEQ, R0, -617, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(R2, 1),
BPF_ALU64_REG(BPF_LSH, R4, R2), /* R4 = 46 << 1 */
BPF_JMP_IMM(BPF_JEQ, R4, 92, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(R4, 4),
BPF_ALU64_REG(BPF_LSH, R4, R4), /* R4 = 4 << 4 */
BPF_JMP_IMM(BPF_JEQ, R4, 64, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(R4, 5),
BPF_ALU32_REG(BPF_LSH, R4, R4), /* R4 = 5 << 5 */
BPF_JMP_IMM(BPF_JEQ, R4, 160, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(R0, -1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -1 } }
},
#ifdef CONFIG_32BIT
{
"INT: 32-bit context pointer word order and zero-extension",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_JMP32_IMM(BPF_JEQ, R1, 0, 3),
BPF_ALU64_IMM(BPF_RSH, R1, 32),
BPF_JMP32_IMM(BPF_JNE, R1, 0, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
#endif
{
"check: missing ret",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 1),
},
CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
{ },
{ },
.fill_helper = NULL,
.expected_errcode = -EINVAL,
},
{
"check: div_k_0",
.u.insns = {
BPF_STMT(BPF_ALU | BPF_DIV | BPF_K, 0),
BPF_STMT(BPF_RET | BPF_K, 0)
},
CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
{ },
{ },
.fill_helper = NULL,
.expected_errcode = -EINVAL,
},
{
"check: unknown insn",
.u.insns = {
/* seccomp insn, rejected in socket filter */
BPF_STMT(BPF_LDX | BPF_W | BPF_ABS, 0),
BPF_STMT(BPF_RET | BPF_K, 0)
},
CLASSIC | FLAG_EXPECTED_FAIL,
{ },
{ },
.fill_helper = NULL,
.expected_errcode = -EINVAL,
},
{
"check: out of range spill/fill",
.u.insns = {
BPF_STMT(BPF_STX, 16),
BPF_STMT(BPF_RET | BPF_K, 0)
},
CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
{ },
{ },
.fill_helper = NULL,
.expected_errcode = -EINVAL,
},
{
"JUMPS + HOLES",
.u.insns = {
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_JUMP(BPF_JMP | BPF_JGE, 0, 13, 15),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ, 0x90c2894d, 3, 4),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ, 0x90c2894d, 1, 2),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_JUMP(BPF_JMP | BPF_JGE, 0, 14, 15),
BPF_JUMP(BPF_JMP | BPF_JGE, 0, 13, 14),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ, 0x2ac28349, 2, 3),
BPF_JUMP(BPF_JMP | BPF_JEQ, 0x2ac28349, 1, 2),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_JUMP(BPF_JMP | BPF_JGE, 0, 14, 15),
BPF_JUMP(BPF_JMP | BPF_JGE, 0, 13, 14),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ, 0x90d2ff41, 2, 3),
BPF_JUMP(BPF_JMP | BPF_JEQ, 0x90d2ff41, 1, 2),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_RET | BPF_A, 0),
BPF_STMT(BPF_RET | BPF_A, 0),
},
CLASSIC,
{ 0x00, 0x1b, 0x21, 0x3c, 0x9d, 0xf8,
0x90, 0xe2, 0xba, 0x0a, 0x56, 0xb4,
0x08, 0x00,
0x45, 0x00, 0x00, 0x28, 0x00, 0x00,
0x20, 0x00, 0x40, 0x11, 0x00, 0x00, /* IP header */
0xc0, 0xa8, 0x33, 0x01,
0xc0, 0xa8, 0x33, 0x02,
0xbb, 0xb6,
0xa9, 0xfa,
0x00, 0x14, 0x00, 0x00,
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
0xcc, 0xcc, 0xcc, 0xcc },
{ { 88, 0x001b } }
},
{
"check: RET X",
.u.insns = {
BPF_STMT(BPF_RET | BPF_X, 0),
},
CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
{ },
{ },
.fill_helper = NULL,
.expected_errcode = -EINVAL,
},
{
"check: LDX + RET X",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 42),
BPF_STMT(BPF_RET | BPF_X, 0),
},
CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
{ },
{ },
.fill_helper = NULL,
.expected_errcode = -EINVAL,
},
{ /* Mainly checking JIT here. */
"M[]: alt STX + LDX",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 100),
BPF_STMT(BPF_STX, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 0),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 1),
BPF_STMT(BPF_LDX | BPF_MEM, 1),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 2),
BPF_STMT(BPF_LDX | BPF_MEM, 2),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 3),
BPF_STMT(BPF_LDX | BPF_MEM, 3),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 4),
BPF_STMT(BPF_LDX | BPF_MEM, 4),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 5),
BPF_STMT(BPF_LDX | BPF_MEM, 5),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 6),
BPF_STMT(BPF_LDX | BPF_MEM, 6),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 7),
BPF_STMT(BPF_LDX | BPF_MEM, 7),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 8),
BPF_STMT(BPF_LDX | BPF_MEM, 8),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 9),
BPF_STMT(BPF_LDX | BPF_MEM, 9),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 10),
BPF_STMT(BPF_LDX | BPF_MEM, 10),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 11),
BPF_STMT(BPF_LDX | BPF_MEM, 11),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 12),
BPF_STMT(BPF_LDX | BPF_MEM, 12),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 13),
BPF_STMT(BPF_LDX | BPF_MEM, 13),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 14),
BPF_STMT(BPF_LDX | BPF_MEM, 14),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 15),
BPF_STMT(BPF_LDX | BPF_MEM, 15),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_RET | BPF_A, 0),
},
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 116 } },
},
{ /* Mainly checking JIT here. */
"M[]: full STX + full LDX",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0xbadfeedb),
BPF_STMT(BPF_STX, 0),
BPF_STMT(BPF_LDX | BPF_IMM, 0xecabedae),
BPF_STMT(BPF_STX, 1),
BPF_STMT(BPF_LDX | BPF_IMM, 0xafccfeaf),
BPF_STMT(BPF_STX, 2),
BPF_STMT(BPF_LDX | BPF_IMM, 0xbffdcedc),
BPF_STMT(BPF_STX, 3),
BPF_STMT(BPF_LDX | BPF_IMM, 0xfbbbdccb),
BPF_STMT(BPF_STX, 4),
BPF_STMT(BPF_LDX | BPF_IMM, 0xfbabcbda),
BPF_STMT(BPF_STX, 5),
BPF_STMT(BPF_LDX | BPF_IMM, 0xaedecbdb),
BPF_STMT(BPF_STX, 6),
BPF_STMT(BPF_LDX | BPF_IMM, 0xadebbade),
BPF_STMT(BPF_STX, 7),
BPF_STMT(BPF_LDX | BPF_IMM, 0xfcfcfaec),
BPF_STMT(BPF_STX, 8),
BPF_STMT(BPF_LDX | BPF_IMM, 0xbcdddbdc),
BPF_STMT(BPF_STX, 9),
BPF_STMT(BPF_LDX | BPF_IMM, 0xfeefdfac),
BPF_STMT(BPF_STX, 10),
BPF_STMT(BPF_LDX | BPF_IMM, 0xcddcdeea),
BPF_STMT(BPF_STX, 11),
BPF_STMT(BPF_LDX | BPF_IMM, 0xaccfaebb),
BPF_STMT(BPF_STX, 12),
BPF_STMT(BPF_LDX | BPF_IMM, 0xbdcccdcf),
BPF_STMT(BPF_STX, 13),
BPF_STMT(BPF_LDX | BPF_IMM, 0xaaedecde),
BPF_STMT(BPF_STX, 14),
BPF_STMT(BPF_LDX | BPF_IMM, 0xfaeacdad),
BPF_STMT(BPF_STX, 15),
BPF_STMT(BPF_LDX | BPF_MEM, 0),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 1),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 2),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 3),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 4),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 5),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 6),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 7),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 8),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 9),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 10),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 11),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 12),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 13),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 14),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 15),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0),
},
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 0x2a5a5e5 } },
},
{
"check: SKF_AD_MAX",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_MAX),
BPF_STMT(BPF_RET | BPF_A, 0),
},
CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
{ },
{ },
.fill_helper = NULL,
.expected_errcode = -EINVAL,
},
{ /* Passes checker but fails during runtime. */
"LD [SKF_AD_OFF-1]",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF - 1),
BPF_STMT(BPF_RET | BPF_K, 1),
},
CLASSIC,
{ },
{ { 1, 0 } },
},
{
"load 64-bit immediate",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x567800001234LL),
BPF_MOV64_REG(R2, R1),
BPF_MOV64_REG(R3, R2),
BPF_ALU64_IMM(BPF_RSH, R2, 32),
BPF_ALU64_IMM(BPF_LSH, R3, 32),
BPF_ALU64_IMM(BPF_RSH, R3, 32),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_JMP_IMM(BPF_JEQ, R2, 0x5678, 1),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JEQ, R3, 0x1234, 1),
BPF_EXIT_INSN(),
BPF_LD_IMM64(R0, 0x1ffffffffLL),
BPF_ALU64_IMM(BPF_RSH, R0, 32), /* R0 = 1 */
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
/* BPF_ALU | BPF_MOV | BPF_X */
{
"ALU_MOV_X: dst = 2",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R1, 2),
BPF_ALU32_REG(BPF_MOV, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU_MOV_X: dst = 4294967295",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R1, 4294967295U),
BPF_ALU32_REG(BPF_MOV, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 4294967295U } },
},
{
"ALU64_MOV_X: dst = 2",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R1, 2),
BPF_ALU64_REG(BPF_MOV, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU64_MOV_X: dst = 4294967295",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R1, 4294967295U),
BPF_ALU64_REG(BPF_MOV, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 4294967295U } },
},
/* BPF_ALU | BPF_MOV | BPF_K */
{
"ALU_MOV_K: dst = 2",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU_MOV_K: dst = 4294967295",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 4294967295U),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 4294967295U } },
},
{
"ALU_MOV_K: 0x0000ffffffff0000 = 0x00000000ffffffff",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
BPF_LD_IMM64(R3, 0x00000000ffffffffLL),
BPF_ALU32_IMM(BPF_MOV, R2, 0xffffffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU_MOV_K: small negative",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -123),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -123 } }
},
{
"ALU_MOV_K: small negative zero extension",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -123),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } }
},
{
"ALU_MOV_K: large negative",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -123456789),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -123456789 } }
},
{
"ALU_MOV_K: large negative zero extension",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -123456789),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } }
},
{
"ALU64_MOV_K: dst = 2",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU64_MOV_K: dst = 2147483647",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 2147483647),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2147483647 } },
},
{
"ALU64_OR_K: dst = 0x0",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
BPF_LD_IMM64(R3, 0x0),
BPF_ALU64_IMM(BPF_MOV, R2, 0x0),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_MOV_K: dst = -1",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
BPF_ALU64_IMM(BPF_MOV, R2, 0xffffffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_MOV_K: small negative",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, -123),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -123 } }
},
{
"ALU64_MOV_K: small negative sign extension",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, -123),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffffffff } }
},
{
"ALU64_MOV_K: large negative",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, -123456789),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -123456789 } }
},
{
"ALU64_MOV_K: large negative sign extension",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, -123456789),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffffffff } }
},
/* BPF_ALU | BPF_ADD | BPF_X */
{
"ALU_ADD_X: 1 + 2 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_MOV, R1, 2),
BPF_ALU32_REG(BPF_ADD, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU_ADD_X: 1 + 4294967294 = 4294967295",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_MOV, R1, 4294967294U),
BPF_ALU32_REG(BPF_ADD, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 4294967295U } },
},
{
"ALU_ADD_X: 2 + 4294967294 = 0",
.u.insns_int = {
BPF_LD_IMM64(R0, 2),
BPF_LD_IMM64(R1, 4294967294U),
BPF_ALU32_REG(BPF_ADD, R0, R1),
BPF_JMP_IMM(BPF_JEQ, R0, 0, 2),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU64_ADD_X: 1 + 2 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_MOV, R1, 2),
BPF_ALU64_REG(BPF_ADD, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU64_ADD_X: 1 + 4294967294 = 4294967295",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_MOV, R1, 4294967294U),
BPF_ALU64_REG(BPF_ADD, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 4294967295U } },
},
{
"ALU64_ADD_X: 2 + 4294967294 = 4294967296",
.u.insns_int = {
BPF_LD_IMM64(R0, 2),
BPF_LD_IMM64(R1, 4294967294U),
BPF_LD_IMM64(R2, 4294967296ULL),
BPF_ALU64_REG(BPF_ADD, R0, R1),
BPF_JMP_REG(BPF_JEQ, R0, R2, 2),
BPF_MOV32_IMM(R0, 0),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_ALU | BPF_ADD | BPF_K */
{
"ALU_ADD_K: 1 + 2 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_ADD, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU_ADD_K: 3 + 0 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU32_IMM(BPF_ADD, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU_ADD_K: 1 + 4294967294 = 4294967295",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_ADD, R0, 4294967294U),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 4294967295U } },
},
{
"ALU_ADD_K: 4294967294 + 2 = 0",
.u.insns_int = {
BPF_LD_IMM64(R0, 4294967294U),
BPF_ALU32_IMM(BPF_ADD, R0, 2),
BPF_JMP_IMM(BPF_JEQ, R0, 0, 2),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU_ADD_K: 0 + (-1) = 0x00000000ffffffff",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0),
BPF_LD_IMM64(R3, 0x00000000ffffffff),
BPF_ALU32_IMM(BPF_ADD, R2, 0xffffffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU_ADD_K: 0 + 0xffff = 0xffff",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0),
BPF_LD_IMM64(R3, 0xffff),
BPF_ALU32_IMM(BPF_ADD, R2, 0xffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU_ADD_K: 0 + 0x7fffffff = 0x7fffffff",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0),
BPF_LD_IMM64(R3, 0x7fffffff),
BPF_ALU32_IMM(BPF_ADD, R2, 0x7fffffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU_ADD_K: 0 + 0x80000000 = 0x80000000",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0),
BPF_LD_IMM64(R3, 0x80000000),
BPF_ALU32_IMM(BPF_ADD, R2, 0x80000000),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU_ADD_K: 0 + 0x80008000 = 0x80008000",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0),
BPF_LD_IMM64(R3, 0x80008000),
BPF_ALU32_IMM(BPF_ADD, R2, 0x80008000),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_ADD_K: 1 + 2 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU64_IMM(BPF_ADD, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU64_ADD_K: 3 + 0 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU64_IMM(BPF_ADD, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU64_ADD_K: 1 + 2147483646 = 2147483647",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU64_IMM(BPF_ADD, R0, 2147483646),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2147483647 } },
},
{
"ALU64_ADD_K: 4294967294 + 2 = 4294967296",
.u.insns_int = {
BPF_LD_IMM64(R0, 4294967294U),
BPF_LD_IMM64(R1, 4294967296ULL),
BPF_ALU64_IMM(BPF_ADD, R0, 2),
BPF_JMP_REG(BPF_JEQ, R0, R1, 2),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU64_ADD_K: 2147483646 + -2147483647 = -1",
.u.insns_int = {
BPF_LD_IMM64(R0, 2147483646),
BPF_ALU64_IMM(BPF_ADD, R0, -2147483647),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -1 } },
},
{
"ALU64_ADD_K: 1 + 0 = 1",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x1),
BPF_LD_IMM64(R3, 0x1),
BPF_ALU64_IMM(BPF_ADD, R2, 0x0),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_ADD_K: 0 + (-1) = 0xffffffffffffffff",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0),
BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
BPF_ALU64_IMM(BPF_ADD, R2, 0xffffffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_ADD_K: 0 + 0xffff = 0xffff",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0),
BPF_LD_IMM64(R3, 0xffff),
BPF_ALU64_IMM(BPF_ADD, R2, 0xffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_ADD_K: 0 + 0x7fffffff = 0x7fffffff",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0),
BPF_LD_IMM64(R3, 0x7fffffff),
BPF_ALU64_IMM(BPF_ADD, R2, 0x7fffffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_ADD_K: 0 + 0x80000000 = 0xffffffff80000000",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0),
BPF_LD_IMM64(R3, 0xffffffff80000000LL),
BPF_ALU64_IMM(BPF_ADD, R2, 0x80000000),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU_ADD_K: 0 + 0x80008000 = 0xffffffff80008000",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0),
BPF_LD_IMM64(R3, 0xffffffff80008000LL),
BPF_ALU64_IMM(BPF_ADD, R2, 0x80008000),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
/* BPF_ALU | BPF_SUB | BPF_X */
{
"ALU_SUB_X: 3 - 1 = 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU32_IMM(BPF_MOV, R1, 1),
BPF_ALU32_REG(BPF_SUB, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU_SUB_X: 4294967295 - 4294967294 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 4294967295U),
BPF_ALU32_IMM(BPF_MOV, R1, 4294967294U),
BPF_ALU32_REG(BPF_SUB, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU64_SUB_X: 3 - 1 = 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU32_IMM(BPF_MOV, R1, 1),
BPF_ALU64_REG(BPF_SUB, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU64_SUB_X: 4294967295 - 4294967294 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 4294967295U),
BPF_ALU32_IMM(BPF_MOV, R1, 4294967294U),
BPF_ALU64_REG(BPF_SUB, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_ALU | BPF_SUB | BPF_K */
{
"ALU_SUB_K: 3 - 1 = 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU32_IMM(BPF_SUB, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU_SUB_K: 3 - 0 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU32_IMM(BPF_SUB, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU_SUB_K: 4294967295 - 4294967294 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 4294967295U),
BPF_ALU32_IMM(BPF_SUB, R0, 4294967294U),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU64_SUB_K: 3 - 1 = 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU64_IMM(BPF_SUB, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU64_SUB_K: 3 - 0 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU64_IMM(BPF_SUB, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU64_SUB_K: 4294967294 - 4294967295 = -1",
.u.insns_int = {
BPF_LD_IMM64(R0, 4294967294U),
BPF_ALU64_IMM(BPF_SUB, R0, 4294967295U),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -1 } },
},
{
"ALU64_ADD_K: 2147483646 - 2147483647 = -1",
.u.insns_int = {
BPF_LD_IMM64(R0, 2147483646),
BPF_ALU64_IMM(BPF_SUB, R0, 2147483647),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -1 } },
},
/* BPF_ALU | BPF_MUL | BPF_X */
{
"ALU_MUL_X: 2 * 3 = 6",
.u.insns_int = {
BPF_LD_IMM64(R0, 2),
BPF_ALU32_IMM(BPF_MOV, R1, 3),
BPF_ALU32_REG(BPF_MUL, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 6 } },
},
{
"ALU_MUL_X: 2 * 0x7FFFFFF8 = 0xFFFFFFF0",
.u.insns_int = {
BPF_LD_IMM64(R0, 2),
BPF_ALU32_IMM(BPF_MOV, R1, 0x7FFFFFF8),
BPF_ALU32_REG(BPF_MUL, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xFFFFFFF0 } },
},
{
"ALU_MUL_X: -1 * -1 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, -1),
BPF_ALU32_IMM(BPF_MOV, R1, -1),
BPF_ALU32_REG(BPF_MUL, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU64_MUL_X: 2 * 3 = 6",
.u.insns_int = {
BPF_LD_IMM64(R0, 2),
BPF_ALU32_IMM(BPF_MOV, R1, 3),
BPF_ALU64_REG(BPF_MUL, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 6 } },
},
{
"ALU64_MUL_X: 1 * 2147483647 = 2147483647",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_MOV, R1, 2147483647),
BPF_ALU64_REG(BPF_MUL, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2147483647 } },
},
{
"ALU64_MUL_X: 64x64 multiply, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0fedcba987654321LL),
BPF_LD_IMM64(R1, 0x123456789abcdef0LL),
BPF_ALU64_REG(BPF_MUL, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xe5618cf0 } }
},
{
"ALU64_MUL_X: 64x64 multiply, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0fedcba987654321LL),
BPF_LD_IMM64(R1, 0x123456789abcdef0LL),
BPF_ALU64_REG(BPF_MUL, R0, R1),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x2236d88f } }
},
/* BPF_ALU | BPF_MUL | BPF_K */
{
"ALU_MUL_K: 2 * 3 = 6",
.u.insns_int = {
BPF_LD_IMM64(R0, 2),
BPF_ALU32_IMM(BPF_MUL, R0, 3),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 6 } },
},
{
"ALU_MUL_K: 3 * 1 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU32_IMM(BPF_MUL, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU_MUL_K: 2 * 0x7FFFFFF8 = 0xFFFFFFF0",
.u.insns_int = {
BPF_LD_IMM64(R0, 2),
BPF_ALU32_IMM(BPF_MUL, R0, 0x7FFFFFF8),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xFFFFFFF0 } },
},
{
"ALU_MUL_K: 1 * (-1) = 0x00000000ffffffff",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x1),
BPF_LD_IMM64(R3, 0x00000000ffffffff),
BPF_ALU32_IMM(BPF_MUL, R2, 0xffffffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_MUL_K: 2 * 3 = 6",
.u.insns_int = {
BPF_LD_IMM64(R0, 2),
BPF_ALU64_IMM(BPF_MUL, R0, 3),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 6 } },
},
{
"ALU64_MUL_K: 3 * 1 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU64_IMM(BPF_MUL, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU64_MUL_K: 1 * 2147483647 = 2147483647",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU64_IMM(BPF_MUL, R0, 2147483647),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2147483647 } },
},
{
"ALU64_MUL_K: 1 * -2147483647 = -2147483647",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU64_IMM(BPF_MUL, R0, -2147483647),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -2147483647 } },
},
{
"ALU64_MUL_K: 1 * (-1) = 0xffffffffffffffff",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x1),
BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
BPF_ALU64_IMM(BPF_MUL, R2, 0xffffffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_MUL_K: 64x32 multiply, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU64_IMM(BPF_MUL, R0, 0x12345678),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xe242d208 } }
},
{
"ALU64_MUL_K: 64x32 multiply, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU64_IMM(BPF_MUL, R0, 0x12345678),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xc28f5c28 } }
},
/* BPF_ALU | BPF_DIV | BPF_X */
{
"ALU_DIV_X: 6 / 2 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 6),
BPF_ALU32_IMM(BPF_MOV, R1, 2),
BPF_ALU32_REG(BPF_DIV, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU_DIV_X: 4294967295 / 4294967295 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 4294967295U),
BPF_ALU32_IMM(BPF_MOV, R1, 4294967295U),
BPF_ALU32_REG(BPF_DIV, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU64_DIV_X: 6 / 2 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 6),
BPF_ALU32_IMM(BPF_MOV, R1, 2),
BPF_ALU64_REG(BPF_DIV, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU64_DIV_X: 2147483647 / 2147483647 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 2147483647),
BPF_ALU32_IMM(BPF_MOV, R1, 2147483647),
BPF_ALU64_REG(BPF_DIV, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU64_DIV_X: 0xffffffffffffffff / (-1) = 0x0000000000000001",
.u.insns_int = {
BPF_LD_IMM64(R2, 0xffffffffffffffffLL),
BPF_LD_IMM64(R4, 0xffffffffffffffffLL),
BPF_LD_IMM64(R3, 0x0000000000000001LL),
BPF_ALU64_REG(BPF_DIV, R2, R4),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
/* BPF_ALU | BPF_DIV | BPF_K */
{
"ALU_DIV_K: 6 / 2 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 6),
BPF_ALU32_IMM(BPF_DIV, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU_DIV_K: 3 / 1 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU32_IMM(BPF_DIV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU_DIV_K: 4294967295 / 4294967295 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 4294967295U),
BPF_ALU32_IMM(BPF_DIV, R0, 4294967295U),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU_DIV_K: 0xffffffffffffffff / (-1) = 0x1",
.u.insns_int = {
BPF_LD_IMM64(R2, 0xffffffffffffffffLL),
BPF_LD_IMM64(R3, 0x1UL),
BPF_ALU32_IMM(BPF_DIV, R2, 0xffffffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_DIV_K: 6 / 2 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 6),
BPF_ALU64_IMM(BPF_DIV, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU64_DIV_K: 3 / 1 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU64_IMM(BPF_DIV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU64_DIV_K: 2147483647 / 2147483647 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 2147483647),
BPF_ALU64_IMM(BPF_DIV, R0, 2147483647),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU64_DIV_K: 0xffffffffffffffff / (-1) = 0x0000000000000001",
.u.insns_int = {
BPF_LD_IMM64(R2, 0xffffffffffffffffLL),
BPF_LD_IMM64(R3, 0x0000000000000001LL),
BPF_ALU64_IMM(BPF_DIV, R2, 0xffffffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
/* BPF_ALU | BPF_MOD | BPF_X */
{
"ALU_MOD_X: 3 % 2 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU32_IMM(BPF_MOV, R1, 2),
BPF_ALU32_REG(BPF_MOD, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU_MOD_X: 4294967295 % 4294967293 = 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 4294967295U),
BPF_ALU32_IMM(BPF_MOV, R1, 4294967293U),
BPF_ALU32_REG(BPF_MOD, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU64_MOD_X: 3 % 2 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU32_IMM(BPF_MOV, R1, 2),
BPF_ALU64_REG(BPF_MOD, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU64_MOD_X: 2147483647 % 2147483645 = 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 2147483647),
BPF_ALU32_IMM(BPF_MOV, R1, 2147483645),
BPF_ALU64_REG(BPF_MOD, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
/* BPF_ALU | BPF_MOD | BPF_K */
{
"ALU_MOD_K: 3 % 2 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU32_IMM(BPF_MOD, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU_MOD_K: 3 % 1 = 0",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU32_IMM(BPF_MOD, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
},
{
"ALU_MOD_K: 4294967295 % 4294967293 = 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 4294967295U),
BPF_ALU32_IMM(BPF_MOD, R0, 4294967293U),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU64_MOD_K: 3 % 2 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU64_IMM(BPF_MOD, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU64_MOD_K: 3 % 1 = 0",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU64_IMM(BPF_MOD, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
},
{
"ALU64_MOD_K: 2147483647 % 2147483645 = 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 2147483647),
BPF_ALU64_IMM(BPF_MOD, R0, 2147483645),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
/* BPF_ALU | BPF_AND | BPF_X */
{
"ALU_AND_X: 3 & 2 = 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU32_IMM(BPF_MOV, R1, 2),
BPF_ALU32_REG(BPF_AND, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU_AND_X: 0xffffffff & 0xffffffff = 0xffffffff",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xffffffff),
BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
BPF_ALU32_REG(BPF_AND, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffffffff } },
},
{
"ALU64_AND_X: 3 & 2 = 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU32_IMM(BPF_MOV, R1, 2),
BPF_ALU64_REG(BPF_AND, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU64_AND_X: 0xffffffff & 0xffffffff = 0xffffffff",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xffffffff),
BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
BPF_ALU64_REG(BPF_AND, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffffffff } },
},
/* BPF_ALU | BPF_AND | BPF_K */
{
"ALU_AND_K: 3 & 2 = 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU32_IMM(BPF_AND, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU_AND_K: 0xffffffff & 0xffffffff = 0xffffffff",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xffffffff),
BPF_ALU32_IMM(BPF_AND, R0, 0xffffffff),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffffffff } },
},
{
"ALU_AND_K: Small immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0x01020304),
BPF_ALU32_IMM(BPF_AND, R0, 15),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 4 } }
},
{
"ALU_AND_K: Large immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0xf1f2f3f4),
BPF_ALU32_IMM(BPF_AND, R0, 0xafbfcfdf),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xa1b2c3d4 } }
},
{
"ALU_AND_K: Zero extension",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_LD_IMM64(R1, 0x0000000080a0c0e0LL),
BPF_ALU32_IMM(BPF_AND, R0, 0xf0f0f0f0),
BPF_JMP_REG(BPF_JEQ, R0, R1, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
{
"ALU64_AND_K: 3 & 2 = 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU64_IMM(BPF_AND, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU64_AND_K: 0xffffffff & 0xffffffff = 0xffffffff",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xffffffff),
BPF_ALU64_IMM(BPF_AND, R0, 0xffffffff),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffffffff } },
},
{
"ALU64_AND_K: 0x0000ffffffff0000 & 0x0 = 0x0000000000000000",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
BPF_LD_IMM64(R3, 0x0000000000000000LL),
BPF_ALU64_IMM(BPF_AND, R2, 0x0),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_AND_K: 0x0000ffffffff0000 & -1 = 0x0000ffffffff0000",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
BPF_LD_IMM64(R3, 0x0000ffffffff0000LL),
BPF_ALU64_IMM(BPF_AND, R2, 0xffffffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_AND_K: 0xffffffffffffffff & -1 = 0xffffffffffffffff",
.u.insns_int = {
BPF_LD_IMM64(R2, 0xffffffffffffffffLL),
BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
BPF_ALU64_IMM(BPF_AND, R2, 0xffffffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_AND_K: Sign extension 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_LD_IMM64(R1, 0x00000000090b0d0fLL),
BPF_ALU64_IMM(BPF_AND, R0, 0x0f0f0f0f),
BPF_JMP_REG(BPF_JEQ, R0, R1, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
{
"ALU64_AND_K: Sign extension 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_LD_IMM64(R1, 0x0123456780a0c0e0LL),
BPF_ALU64_IMM(BPF_AND, R0, 0xf0f0f0f0),
BPF_JMP_REG(BPF_JEQ, R0, R1, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
/* BPF_ALU | BPF_OR | BPF_X */
{
"ALU_OR_X: 1 | 2 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_MOV, R1, 2),
BPF_ALU32_REG(BPF_OR, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU_OR_X: 0x0 | 0xffffffff = 0xffffffff",
.u.insns_int = {
BPF_LD_IMM64(R0, 0),
BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
BPF_ALU32_REG(BPF_OR, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffffffff } },
},
{
"ALU64_OR_X: 1 | 2 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_MOV, R1, 2),
BPF_ALU64_REG(BPF_OR, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU64_OR_X: 0 | 0xffffffff = 0xffffffff",
.u.insns_int = {
BPF_LD_IMM64(R0, 0),
BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
BPF_ALU64_REG(BPF_OR, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffffffff } },
},
/* BPF_ALU | BPF_OR | BPF_K */
{
"ALU_OR_K: 1 | 2 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_OR, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU_OR_K: 0 & 0xffffffff = 0xffffffff",
.u.insns_int = {
BPF_LD_IMM64(R0, 0),
BPF_ALU32_IMM(BPF_OR, R0, 0xffffffff),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffffffff } },
},
{
"ALU_OR_K: Small immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0x01020304),
BPF_ALU32_IMM(BPF_OR, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x01020305 } }
},
{
"ALU_OR_K: Large immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0x01020304),
BPF_ALU32_IMM(BPF_OR, R0, 0xa0b0c0d0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xa1b2c3d4 } }
},
{
"ALU_OR_K: Zero extension",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_LD_IMM64(R1, 0x00000000f9fbfdffLL),
BPF_ALU32_IMM(BPF_OR, R0, 0xf0f0f0f0),
BPF_JMP_REG(BPF_JEQ, R0, R1, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
{
"ALU64_OR_K: 1 | 2 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU64_IMM(BPF_OR, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU64_OR_K: 0 & 0xffffffff = 0xffffffff",
.u.insns_int = {
BPF_LD_IMM64(R0, 0),
BPF_ALU64_IMM(BPF_OR, R0, 0xffffffff),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffffffff } },
},
{
"ALU64_OR_K: 0x0000ffffffff0000 | 0x0 = 0x0000ffffffff0000",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
BPF_LD_IMM64(R3, 0x0000ffffffff0000LL),
BPF_ALU64_IMM(BPF_OR, R2, 0x0),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_OR_K: 0x0000ffffffff0000 | -1 = 0xffffffffffffffff",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
BPF_ALU64_IMM(BPF_OR, R2, 0xffffffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_OR_K: 0x000000000000000 | -1 = 0xffffffffffffffff",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0000000000000000LL),
BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
BPF_ALU64_IMM(BPF_OR, R2, 0xffffffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_OR_K: Sign extension 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_LD_IMM64(R1, 0x012345678fafcfefLL),
BPF_ALU64_IMM(BPF_OR, R0, 0x0f0f0f0f),
BPF_JMP_REG(BPF_JEQ, R0, R1, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
{
"ALU64_OR_K: Sign extension 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_LD_IMM64(R1, 0xfffffffff9fbfdffLL),
BPF_ALU64_IMM(BPF_OR, R0, 0xf0f0f0f0),
BPF_JMP_REG(BPF_JEQ, R0, R1, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
/* BPF_ALU | BPF_XOR | BPF_X */
{
"ALU_XOR_X: 5 ^ 6 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 5),
BPF_ALU32_IMM(BPF_MOV, R1, 6),
BPF_ALU32_REG(BPF_XOR, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU_XOR_X: 0x1 ^ 0xffffffff = 0xfffffffe",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
BPF_ALU32_REG(BPF_XOR, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfffffffe } },
},
{
"ALU64_XOR_X: 5 ^ 6 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 5),
BPF_ALU32_IMM(BPF_MOV, R1, 6),
BPF_ALU64_REG(BPF_XOR, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU64_XOR_X: 1 ^ 0xffffffff = 0xfffffffe",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
BPF_ALU64_REG(BPF_XOR, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfffffffe } },
},
/* BPF_ALU | BPF_XOR | BPF_K */
{
"ALU_XOR_K: 5 ^ 6 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 5),
BPF_ALU32_IMM(BPF_XOR, R0, 6),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU_XOR_K: 1 ^ 0xffffffff = 0xfffffffe",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_XOR, R0, 0xffffffff),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfffffffe } },
},
{
"ALU_XOR_K: Small immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0x01020304),
BPF_ALU32_IMM(BPF_XOR, R0, 15),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x0102030b } }
},
{
"ALU_XOR_K: Large immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0xf1f2f3f4),
BPF_ALU32_IMM(BPF_XOR, R0, 0xafbfcfdf),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x5e4d3c2b } }
},
{
"ALU_XOR_K: Zero extension",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_LD_IMM64(R1, 0x00000000795b3d1fLL),
BPF_ALU32_IMM(BPF_XOR, R0, 0xf0f0f0f0),
BPF_JMP_REG(BPF_JEQ, R0, R1, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
{
"ALU64_XOR_K: 5 ^ 6 = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, 5),
BPF_ALU64_IMM(BPF_XOR, R0, 6),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU64_XOR_K: 1 ^ 0xffffffff = 0xfffffffe",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU64_IMM(BPF_XOR, R0, 0xffffffff),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfffffffe } },
},
{
"ALU64_XOR_K: 0x0000ffffffff0000 ^ 0x0 = 0x0000ffffffff0000",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
BPF_LD_IMM64(R3, 0x0000ffffffff0000LL),
BPF_ALU64_IMM(BPF_XOR, R2, 0x0),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_XOR_K: 0x0000ffffffff0000 ^ -1 = 0xffff00000000ffff",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
BPF_LD_IMM64(R3, 0xffff00000000ffffLL),
BPF_ALU64_IMM(BPF_XOR, R2, 0xffffffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_XOR_K: 0x000000000000000 ^ -1 = 0xffffffffffffffff",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x0000000000000000LL),
BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
BPF_ALU64_IMM(BPF_XOR, R2, 0xffffffff),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
},
{
"ALU64_XOR_K: Sign extension 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_LD_IMM64(R1, 0x0123456786a4c2e0LL),
BPF_ALU64_IMM(BPF_XOR, R0, 0x0f0f0f0f),
BPF_JMP_REG(BPF_JEQ, R0, R1, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
{
"ALU64_XOR_K: Sign extension 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_LD_IMM64(R1, 0xfedcba98795b3d1fLL),
BPF_ALU64_IMM(BPF_XOR, R0, 0xf0f0f0f0),
BPF_JMP_REG(BPF_JEQ, R0, R1, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
/* BPF_ALU | BPF_LSH | BPF_X */
{
"ALU_LSH_X: 1 << 1 = 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_MOV, R1, 1),
BPF_ALU32_REG(BPF_LSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU_LSH_X: 1 << 31 = 0x80000000",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_MOV, R1, 31),
BPF_ALU32_REG(BPF_LSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x80000000 } },
},
{
"ALU_LSH_X: 0x12345678 << 12 = 0x45678000",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0x12345678),
BPF_ALU32_IMM(BPF_MOV, R1, 12),
BPF_ALU32_REG(BPF_LSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x45678000 } }
},
{
"ALU64_LSH_X: 1 << 1 = 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_MOV, R1, 1),
BPF_ALU64_REG(BPF_LSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU64_LSH_X: 1 << 31 = 0x80000000",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_MOV, R1, 31),
BPF_ALU64_REG(BPF_LSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x80000000 } },
},
{
"ALU64_LSH_X: Shift < 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 12),
BPF_ALU64_REG(BPF_LSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xbcdef000 } }
},
{
"ALU64_LSH_X: Shift < 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 12),
BPF_ALU64_REG(BPF_LSH, R0, R1),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x3456789a } }
},
{
"ALU64_LSH_X: Shift > 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 36),
BPF_ALU64_REG(BPF_LSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } }
},
{
"ALU64_LSH_X: Shift > 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 36),
BPF_ALU64_REG(BPF_LSH, R0, R1),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x9abcdef0 } }
},
{
"ALU64_LSH_X: Shift == 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 32),
BPF_ALU64_REG(BPF_LSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } }
},
{
"ALU64_LSH_X: Shift == 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 32),
BPF_ALU64_REG(BPF_LSH, R0, R1),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x89abcdef } }
},
{
"ALU64_LSH_X: Zero shift, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 0),
BPF_ALU64_REG(BPF_LSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x89abcdef } }
},
{
"ALU64_LSH_X: Zero shift, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 0),
BPF_ALU64_REG(BPF_LSH, R0, R1),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x01234567 } }
},
/* BPF_ALU | BPF_LSH | BPF_K */
{
"ALU_LSH_K: 1 << 1 = 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_LSH, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU_LSH_K: 1 << 31 = 0x80000000",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU32_IMM(BPF_LSH, R0, 31),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x80000000 } },
},
{
"ALU_LSH_K: 0x12345678 << 12 = 0x45678000",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0x12345678),
BPF_ALU32_IMM(BPF_LSH, R0, 12),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x45678000 } }
},
{
"ALU_LSH_K: 0x12345678 << 0 = 0x12345678",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0x12345678),
BPF_ALU32_IMM(BPF_LSH, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x12345678 } }
},
{
"ALU64_LSH_K: 1 << 1 = 2",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU64_IMM(BPF_LSH, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"ALU64_LSH_K: 1 << 31 = 0x80000000",
.u.insns_int = {
BPF_LD_IMM64(R0, 1),
BPF_ALU64_IMM(BPF_LSH, R0, 31),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x80000000 } },
},
{
"ALU64_LSH_K: Shift < 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU64_IMM(BPF_LSH, R0, 12),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xbcdef000 } }
},
{
"ALU64_LSH_K: Shift < 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU64_IMM(BPF_LSH, R0, 12),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x3456789a } }
},
{
"ALU64_LSH_K: Shift > 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU64_IMM(BPF_LSH, R0, 36),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } }
},
{
"ALU64_LSH_K: Shift > 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU64_IMM(BPF_LSH, R0, 36),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x9abcdef0 } }
},
{
"ALU64_LSH_K: Shift == 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU64_IMM(BPF_LSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } }
},
{
"ALU64_LSH_K: Shift == 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU64_IMM(BPF_LSH, R0, 32),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x89abcdef } }
},
{
"ALU64_LSH_K: Zero shift",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU64_IMM(BPF_LSH, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x89abcdef } }
},
/* BPF_ALU | BPF_RSH | BPF_X */
{
"ALU_RSH_X: 2 >> 1 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 2),
BPF_ALU32_IMM(BPF_MOV, R1, 1),
BPF_ALU32_REG(BPF_RSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU_RSH_X: 0x80000000 >> 31 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x80000000),
BPF_ALU32_IMM(BPF_MOV, R1, 31),
BPF_ALU32_REG(BPF_RSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU_RSH_X: 0x12345678 >> 20 = 0x123",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0x12345678),
BPF_ALU32_IMM(BPF_MOV, R1, 20),
BPF_ALU32_REG(BPF_RSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x123 } }
},
{
"ALU64_RSH_X: 2 >> 1 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 2),
BPF_ALU32_IMM(BPF_MOV, R1, 1),
BPF_ALU64_REG(BPF_RSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU64_RSH_X: 0x80000000 >> 31 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x80000000),
BPF_ALU32_IMM(BPF_MOV, R1, 31),
BPF_ALU64_REG(BPF_RSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU64_RSH_X: Shift < 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 12),
BPF_ALU64_REG(BPF_RSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x56789abc } }
},
{
"ALU64_RSH_X: Shift < 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 12),
BPF_ALU64_REG(BPF_RSH, R0, R1),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x00081234 } }
},
{
"ALU64_RSH_X: Shift > 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 36),
BPF_ALU64_REG(BPF_RSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x08123456 } }
},
{
"ALU64_RSH_X: Shift > 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 36),
BPF_ALU64_REG(BPF_RSH, R0, R1),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } }
},
{
"ALU64_RSH_X: Shift == 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 32),
BPF_ALU64_REG(BPF_RSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x81234567 } }
},
{
"ALU64_RSH_X: Shift == 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 32),
BPF_ALU64_REG(BPF_RSH, R0, R1),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } }
},
{
"ALU64_RSH_X: Zero shift, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 0),
BPF_ALU64_REG(BPF_RSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x89abcdef } }
},
{
"ALU64_RSH_X: Zero shift, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 0),
BPF_ALU64_REG(BPF_RSH, R0, R1),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x81234567 } }
},
/* BPF_ALU | BPF_RSH | BPF_K */
{
"ALU_RSH_K: 2 >> 1 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 2),
BPF_ALU32_IMM(BPF_RSH, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU_RSH_K: 0x80000000 >> 31 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x80000000),
BPF_ALU32_IMM(BPF_RSH, R0, 31),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU_RSH_K: 0x12345678 >> 20 = 0x123",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0x12345678),
BPF_ALU32_IMM(BPF_RSH, R0, 20),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x123 } }
},
{
"ALU_RSH_K: 0x12345678 >> 0 = 0x12345678",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0x12345678),
BPF_ALU32_IMM(BPF_RSH, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x12345678 } }
},
{
"ALU64_RSH_K: 2 >> 1 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 2),
BPF_ALU64_IMM(BPF_RSH, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU64_RSH_K: 0x80000000 >> 31 = 1",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x80000000),
BPF_ALU64_IMM(BPF_RSH, R0, 31),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"ALU64_RSH_K: Shift < 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU64_IMM(BPF_RSH, R0, 12),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x56789abc } }
},
{
"ALU64_RSH_K: Shift < 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU64_IMM(BPF_RSH, R0, 12),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x00081234 } }
},
{
"ALU64_RSH_K: Shift > 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU64_IMM(BPF_RSH, R0, 36),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x08123456 } }
},
{
"ALU64_RSH_K: Shift > 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU64_IMM(BPF_RSH, R0, 36),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } }
},
{
"ALU64_RSH_K: Shift == 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x81234567 } }
},
{
"ALU64_RSH_K: Shift == 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } }
},
{
"ALU64_RSH_K: Zero shift",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ALU64_IMM(BPF_RSH, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x89abcdef } }
},
/* BPF_ALU | BPF_ARSH | BPF_X */
{
"ALU32_ARSH_X: -1234 >> 7 = -10",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -1234),
BPF_ALU32_IMM(BPF_MOV, R1, 7),
BPF_ALU32_REG(BPF_ARSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -10 } }
},
{
"ALU64_ARSH_X: 0xff00ff0000000000 >> 40 = 0xffffffffffff00ff",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xff00ff0000000000LL),
BPF_ALU32_IMM(BPF_MOV, R1, 40),
BPF_ALU64_REG(BPF_ARSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffff00ff } },
},
{
"ALU64_ARSH_X: Shift < 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 12),
BPF_ALU64_REG(BPF_ARSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x56789abc } }
},
{
"ALU64_ARSH_X: Shift < 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 12),
BPF_ALU64_REG(BPF_ARSH, R0, R1),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfff81234 } }
},
{
"ALU64_ARSH_X: Shift > 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 36),
BPF_ALU64_REG(BPF_ARSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xf8123456 } }
},
{
"ALU64_ARSH_X: Shift > 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 36),
BPF_ALU64_REG(BPF_ARSH, R0, R1),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -1 } }
},
{
"ALU64_ARSH_X: Shift == 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 32),
BPF_ALU64_REG(BPF_ARSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x81234567 } }
},
{
"ALU64_ARSH_X: Shift == 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 32),
BPF_ALU64_REG(BPF_ARSH, R0, R1),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -1 } }
},
{
"ALU64_ARSH_X: Zero shift, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 0),
BPF_ALU64_REG(BPF_ARSH, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x89abcdef } }
},
{
"ALU64_ARSH_X: Zero shift, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU32_IMM(BPF_MOV, R1, 0),
BPF_ALU64_REG(BPF_ARSH, R0, R1),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x81234567 } }
},
/* BPF_ALU | BPF_ARSH | BPF_K */
{
"ALU32_ARSH_K: -1234 >> 7 = -10",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -1234),
BPF_ALU32_IMM(BPF_ARSH, R0, 7),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -10 } }
},
{
"ALU32_ARSH_K: -1234 >> 0 = -1234",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -1234),
BPF_ALU32_IMM(BPF_ARSH, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -1234 } }
},
{
"ALU64_ARSH_K: 0xff00ff0000000000 >> 40 = 0xffffffffffff00ff",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xff00ff0000000000LL),
BPF_ALU64_IMM(BPF_ARSH, R0, 40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffff00ff } },
},
{
"ALU64_ARSH_K: Shift < 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU64_IMM(BPF_RSH, R0, 12),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x56789abc } }
},
{
"ALU64_ARSH_K: Shift < 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU64_IMM(BPF_ARSH, R0, 12),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfff81234 } }
},
{
"ALU64_ARSH_K: Shift > 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU64_IMM(BPF_ARSH, R0, 36),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xf8123456 } }
},
{
"ALU64_ARSH_K: Shift > 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xf123456789abcdefLL),
BPF_ALU64_IMM(BPF_ARSH, R0, 36),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -1 } }
},
{
"ALU64_ARSH_K: Shift == 32, low word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU64_IMM(BPF_ARSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x81234567 } }
},
{
"ALU64_ARSH_K: Shift == 32, high word",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU64_IMM(BPF_ARSH, R0, 32),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -1 } }
},
{
"ALU64_ARSH_K: Zero shift",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x8123456789abcdefLL),
BPF_ALU64_IMM(BPF_ARSH, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x89abcdef } }
},
/* BPF_ALU | BPF_NEG */
{
"ALU_NEG: -(3) = -3",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 3),
BPF_ALU32_IMM(BPF_NEG, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -3 } },
},
{
"ALU_NEG: -(-3) = 3",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -3),
BPF_ALU32_IMM(BPF_NEG, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
{
"ALU64_NEG: -(3) = -3",
.u.insns_int = {
BPF_LD_IMM64(R0, 3),
BPF_ALU64_IMM(BPF_NEG, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -3 } },
},
{
"ALU64_NEG: -(-3) = 3",
.u.insns_int = {
BPF_LD_IMM64(R0, -3),
BPF_ALU64_IMM(BPF_NEG, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 3 } },
},
/* BPF_ALU | BPF_END | BPF_FROM_BE */
{
"ALU_END_FROM_BE 16: 0x0123456789abcdef -> 0xcdef",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ENDIAN(BPF_FROM_BE, R0, 16),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, cpu_to_be16(0xcdef) } },
},
{
"ALU_END_FROM_BE 32: 0x0123456789abcdef -> 0x89abcdef",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ENDIAN(BPF_FROM_BE, R0, 32),
BPF_ALU64_REG(BPF_MOV, R1, R0),
BPF_ALU64_IMM(BPF_RSH, R1, 32),
BPF_ALU32_REG(BPF_ADD, R0, R1), /* R1 = 0 */
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, cpu_to_be32(0x89abcdef) } },
},
{
"ALU_END_FROM_BE 64: 0x0123456789abcdef -> 0x89abcdef",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ENDIAN(BPF_FROM_BE, R0, 64),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, (u32) cpu_to_be64(0x0123456789abcdefLL) } },
},
{
"ALU_END_FROM_BE 64: 0x0123456789abcdef >> 32 -> 0x01234567",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ENDIAN(BPF_FROM_BE, R0, 64),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, (u32) (cpu_to_be64(0x0123456789abcdefLL) >> 32) } },
},
/* BPF_ALU | BPF_END | BPF_FROM_BE, reversed */
{
"ALU_END_FROM_BE 16: 0xfedcba9876543210 -> 0x3210",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
BPF_ENDIAN(BPF_FROM_BE, R0, 16),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, cpu_to_be16(0x3210) } },
},
{
"ALU_END_FROM_BE 32: 0xfedcba9876543210 -> 0x76543210",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
BPF_ENDIAN(BPF_FROM_BE, R0, 32),
BPF_ALU64_REG(BPF_MOV, R1, R0),
BPF_ALU64_IMM(BPF_RSH, R1, 32),
BPF_ALU32_REG(BPF_ADD, R0, R1), /* R1 = 0 */
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, cpu_to_be32(0x76543210) } },
},
{
"ALU_END_FROM_BE 64: 0xfedcba9876543210 -> 0x76543210",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
BPF_ENDIAN(BPF_FROM_BE, R0, 64),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, (u32) cpu_to_be64(0xfedcba9876543210ULL) } },
},
{
"ALU_END_FROM_BE 64: 0xfedcba9876543210 >> 32 -> 0xfedcba98",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
BPF_ENDIAN(BPF_FROM_BE, R0, 64),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, (u32) (cpu_to_be64(0xfedcba9876543210ULL) >> 32) } },
},
/* BPF_ALU | BPF_END | BPF_FROM_LE */
{
"ALU_END_FROM_LE 16: 0x0123456789abcdef -> 0xefcd",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ENDIAN(BPF_FROM_LE, R0, 16),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, cpu_to_le16(0xcdef) } },
},
{
"ALU_END_FROM_LE 32: 0x0123456789abcdef -> 0xefcdab89",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ENDIAN(BPF_FROM_LE, R0, 32),
BPF_ALU64_REG(BPF_MOV, R1, R0),
BPF_ALU64_IMM(BPF_RSH, R1, 32),
BPF_ALU32_REG(BPF_ADD, R0, R1), /* R1 = 0 */
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, cpu_to_le32(0x89abcdef) } },
},
{
"ALU_END_FROM_LE 64: 0x0123456789abcdef -> 0x67452301",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ENDIAN(BPF_FROM_LE, R0, 64),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, (u32) cpu_to_le64(0x0123456789abcdefLL) } },
},
{
"ALU_END_FROM_LE 64: 0x0123456789abcdef >> 32 -> 0xefcdab89",
.u.insns_int = {
BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
BPF_ENDIAN(BPF_FROM_LE, R0, 64),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, (u32) (cpu_to_le64(0x0123456789abcdefLL) >> 32) } },
},
/* BPF_ALU | BPF_END | BPF_FROM_LE, reversed */
{
"ALU_END_FROM_LE 16: 0xfedcba9876543210 -> 0x1032",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
BPF_ENDIAN(BPF_FROM_LE, R0, 16),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, cpu_to_le16(0x3210) } },
},
{
"ALU_END_FROM_LE 32: 0xfedcba9876543210 -> 0x10325476",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
BPF_ENDIAN(BPF_FROM_LE, R0, 32),
BPF_ALU64_REG(BPF_MOV, R1, R0),
BPF_ALU64_IMM(BPF_RSH, R1, 32),
BPF_ALU32_REG(BPF_ADD, R0, R1), /* R1 = 0 */
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, cpu_to_le32(0x76543210) } },
},
{
"ALU_END_FROM_LE 64: 0xfedcba9876543210 -> 0x10325476",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
BPF_ENDIAN(BPF_FROM_LE, R0, 64),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, (u32) cpu_to_le64(0xfedcba9876543210ULL) } },
},
{
"ALU_END_FROM_LE 64: 0xfedcba9876543210 >> 32 -> 0x98badcfe",
.u.insns_int = {
BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
BPF_ENDIAN(BPF_FROM_LE, R0, 64),
BPF_ALU64_IMM(BPF_RSH, R0, 32),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, (u32) (cpu_to_le64(0xfedcba9876543210ULL) >> 32) } },
},
/* BPF_LDX_MEM B/H/W/DW */
{
"BPF_LDX_MEM | BPF_B, base",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x0102030405060708ULL),
BPF_LD_IMM64(R2, 0x0000000000000008ULL),
BPF_STX_MEM(BPF_DW, R10, R1, -8),
#ifdef __BIG_ENDIAN
BPF_LDX_MEM(BPF_B, R0, R10, -1),
#else
BPF_LDX_MEM(BPF_B, R0, R10, -8),
#endif
BPF_JMP_REG(BPF_JNE, R0, R2, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 8,
},
{
"BPF_LDX_MEM | BPF_B, MSB set",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x8182838485868788ULL),
BPF_LD_IMM64(R2, 0x0000000000000088ULL),
BPF_STX_MEM(BPF_DW, R10, R1, -8),
#ifdef __BIG_ENDIAN
BPF_LDX_MEM(BPF_B, R0, R10, -1),
#else
BPF_LDX_MEM(BPF_B, R0, R10, -8),
#endif
BPF_JMP_REG(BPF_JNE, R0, R2, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 8,
},
{
"BPF_LDX_MEM | BPF_B, negative offset",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_LD_IMM64(R3, 0x0000000000000088ULL),
BPF_ALU64_IMM(BPF_ADD, R1, 512),
BPF_STX_MEM(BPF_B, R1, R2, -256),
BPF_LDX_MEM(BPF_B, R0, R1, -256),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_LARGE_MEM,
{ },
{ { 512, 0 } },
.stack_depth = 0,
},
{
"BPF_LDX_MEM | BPF_B, small positive offset",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_LD_IMM64(R3, 0x0000000000000088ULL),
BPF_STX_MEM(BPF_B, R1, R2, 256),
BPF_LDX_MEM(BPF_B, R0, R1, 256),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_LARGE_MEM,
{ },
{ { 512, 0 } },
.stack_depth = 0,
},
{
"BPF_LDX_MEM | BPF_B, large positive offset",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_LD_IMM64(R3, 0x0000000000000088ULL),
BPF_STX_MEM(BPF_B, R1, R2, 4096),
BPF_LDX_MEM(BPF_B, R0, R1, 4096),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_LARGE_MEM,
{ },
{ { 4096 + 16, 0 } },
.stack_depth = 0,
},
{
"BPF_LDX_MEM | BPF_H, base",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x0102030405060708ULL),
BPF_LD_IMM64(R2, 0x0000000000000708ULL),
BPF_STX_MEM(BPF_DW, R10, R1, -8),
#ifdef __BIG_ENDIAN
BPF_LDX_MEM(BPF_H, R0, R10, -2),
#else
BPF_LDX_MEM(BPF_H, R0, R10, -8),
#endif
BPF_JMP_REG(BPF_JNE, R0, R2, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 8,
},
{
"BPF_LDX_MEM | BPF_H, MSB set",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x8182838485868788ULL),
BPF_LD_IMM64(R2, 0x0000000000008788ULL),
BPF_STX_MEM(BPF_DW, R10, R1, -8),
#ifdef __BIG_ENDIAN
BPF_LDX_MEM(BPF_H, R0, R10, -2),
#else
BPF_LDX_MEM(BPF_H, R0, R10, -8),
#endif
BPF_JMP_REG(BPF_JNE, R0, R2, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 8,
},
{
"BPF_LDX_MEM | BPF_H, negative offset",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_LD_IMM64(R3, 0x0000000000008788ULL),
BPF_ALU64_IMM(BPF_ADD, R1, 512),
BPF_STX_MEM(BPF_H, R1, R2, -256),
BPF_LDX_MEM(BPF_H, R0, R1, -256),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_LARGE_MEM,
{ },
{ { 512, 0 } },
.stack_depth = 0,
},
{
"BPF_LDX_MEM | BPF_H, small positive offset",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_LD_IMM64(R3, 0x0000000000008788ULL),
BPF_STX_MEM(BPF_H, R1, R2, 256),
BPF_LDX_MEM(BPF_H, R0, R1, 256),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_LARGE_MEM,
{ },
{ { 512, 0 } },
.stack_depth = 0,
},
{
"BPF_LDX_MEM | BPF_H, large positive offset",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_LD_IMM64(R3, 0x0000000000008788ULL),
BPF_STX_MEM(BPF_H, R1, R2, 8192),
BPF_LDX_MEM(BPF_H, R0, R1, 8192),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_LARGE_MEM,
{ },
{ { 8192 + 16, 0 } },
.stack_depth = 0,
},
{
"BPF_LDX_MEM | BPF_H, unaligned positive offset",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_LD_IMM64(R3, 0x0000000000008788ULL),
BPF_STX_MEM(BPF_H, R1, R2, 13),
BPF_LDX_MEM(BPF_H, R0, R1, 13),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_LARGE_MEM,
{ },
{ { 32, 0 } },
.stack_depth = 0,
},
{
"BPF_LDX_MEM | BPF_W, base",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x0102030405060708ULL),
BPF_LD_IMM64(R2, 0x0000000005060708ULL),
BPF_STX_MEM(BPF_DW, R10, R1, -8),
#ifdef __BIG_ENDIAN
BPF_LDX_MEM(BPF_W, R0, R10, -4),
#else
BPF_LDX_MEM(BPF_W, R0, R10, -8),
#endif
BPF_JMP_REG(BPF_JNE, R0, R2, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 8,
},
{
"BPF_LDX_MEM | BPF_W, MSB set",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x8182838485868788ULL),
BPF_LD_IMM64(R2, 0x0000000085868788ULL),
BPF_STX_MEM(BPF_DW, R10, R1, -8),
#ifdef __BIG_ENDIAN
BPF_LDX_MEM(BPF_W, R0, R10, -4),
#else
BPF_LDX_MEM(BPF_W, R0, R10, -8),
#endif
BPF_JMP_REG(BPF_JNE, R0, R2, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 8,
},
{
"BPF_LDX_MEM | BPF_W, negative offset",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_LD_IMM64(R3, 0x0000000085868788ULL),
BPF_ALU64_IMM(BPF_ADD, R1, 512),
BPF_STX_MEM(BPF_W, R1, R2, -256),
BPF_LDX_MEM(BPF_W, R0, R1, -256),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_LARGE_MEM,
{ },
{ { 512, 0 } },
.stack_depth = 0,
},
{
"BPF_LDX_MEM | BPF_W, small positive offset",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_LD_IMM64(R3, 0x0000000085868788ULL),
BPF_STX_MEM(BPF_W, R1, R2, 256),
BPF_LDX_MEM(BPF_W, R0, R1, 256),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_LARGE_MEM,
{ },
{ { 512, 0 } },
.stack_depth = 0,
},
{
"BPF_LDX_MEM | BPF_W, large positive offset",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_LD_IMM64(R3, 0x0000000085868788ULL),
BPF_STX_MEM(BPF_W, R1, R2, 16384),
BPF_LDX_MEM(BPF_W, R0, R1, 16384),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_LARGE_MEM,
{ },
{ { 16384 + 16, 0 } },
.stack_depth = 0,
},
{
"BPF_LDX_MEM | BPF_W, unaligned positive offset",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_LD_IMM64(R3, 0x0000000085868788ULL),
BPF_STX_MEM(BPF_W, R1, R2, 13),
BPF_LDX_MEM(BPF_W, R0, R1, 13),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_LARGE_MEM,
{ },
{ { 32, 0 } },
.stack_depth = 0,
},
{
"BPF_LDX_MEM | BPF_DW, base",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x0102030405060708ULL),
BPF_STX_MEM(BPF_DW, R10, R1, -8),
BPF_LDX_MEM(BPF_DW, R0, R10, -8),
BPF_JMP_REG(BPF_JNE, R0, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 8,
},
{
"BPF_LDX_MEM | BPF_DW, MSB set",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x8182838485868788ULL),
BPF_STX_MEM(BPF_DW, R10, R1, -8),
BPF_LDX_MEM(BPF_DW, R0, R10, -8),
BPF_JMP_REG(BPF_JNE, R0, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 8,
},
{
"BPF_LDX_MEM | BPF_DW, negative offset",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_ALU64_IMM(BPF_ADD, R1, 512),
BPF_STX_MEM(BPF_DW, R1, R2, -256),
BPF_LDX_MEM(BPF_DW, R0, R1, -256),
BPF_JMP_REG(BPF_JNE, R0, R2, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_LARGE_MEM,
{ },
{ { 512, 0 } },
.stack_depth = 0,
},
{
"BPF_LDX_MEM | BPF_DW, small positive offset",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_STX_MEM(BPF_DW, R1, R2, 256),
BPF_LDX_MEM(BPF_DW, R0, R1, 256),
BPF_JMP_REG(BPF_JNE, R0, R2, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_LARGE_MEM,
{ },
{ { 512, 0 } },
.stack_depth = 8,
},
{
"BPF_LDX_MEM | BPF_DW, large positive offset",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_STX_MEM(BPF_DW, R1, R2, 32760),
BPF_LDX_MEM(BPF_DW, R0, R1, 32760),
BPF_JMP_REG(BPF_JNE, R0, R2, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_LARGE_MEM,
{ },
{ { 32768, 0 } },
.stack_depth = 0,
},
{
"BPF_LDX_MEM | BPF_DW, unaligned positive offset",
.u.insns_int = {
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_STX_MEM(BPF_DW, R1, R2, 13),
BPF_LDX_MEM(BPF_DW, R0, R1, 13),
BPF_JMP_REG(BPF_JNE, R0, R2, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_LARGE_MEM,
{ },
{ { 32, 0 } },
.stack_depth = 0,
},
/* BPF_STX_MEM B/H/W/DW */
{
"BPF_STX_MEM | BPF_B",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL),
BPF_LD_IMM64(R2, 0x0102030405060708ULL),
BPF_LD_IMM64(R3, 0x8090a0b0c0d0e008ULL),
BPF_STX_MEM(BPF_DW, R10, R1, -8),
#ifdef __BIG_ENDIAN
BPF_STX_MEM(BPF_B, R10, R2, -1),
#else
BPF_STX_MEM(BPF_B, R10, R2, -8),
#endif
BPF_LDX_MEM(BPF_DW, R0, R10, -8),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 8,
},
{
"BPF_STX_MEM | BPF_B, MSB set",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL),
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_LD_IMM64(R3, 0x8090a0b0c0d0e088ULL),
BPF_STX_MEM(BPF_DW, R10, R1, -8),
#ifdef __BIG_ENDIAN
BPF_STX_MEM(BPF_B, R10, R2, -1),
#else
BPF_STX_MEM(BPF_B, R10, R2, -8),
#endif
BPF_LDX_MEM(BPF_DW, R0, R10, -8),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 8,
},
{
"BPF_STX_MEM | BPF_H",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL),
BPF_LD_IMM64(R2, 0x0102030405060708ULL),
BPF_LD_IMM64(R3, 0x8090a0b0c0d00708ULL),
BPF_STX_MEM(BPF_DW, R10, R1, -8),
#ifdef __BIG_ENDIAN
BPF_STX_MEM(BPF_H, R10, R2, -2),
#else
BPF_STX_MEM(BPF_H, R10, R2, -8),
#endif
BPF_LDX_MEM(BPF_DW, R0, R10, -8),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 8,
},
{
"BPF_STX_MEM | BPF_H, MSB set",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL),
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_LD_IMM64(R3, 0x8090a0b0c0d08788ULL),
BPF_STX_MEM(BPF_DW, R10, R1, -8),
#ifdef __BIG_ENDIAN
BPF_STX_MEM(BPF_H, R10, R2, -2),
#else
BPF_STX_MEM(BPF_H, R10, R2, -8),
#endif
BPF_LDX_MEM(BPF_DW, R0, R10, -8),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 8,
},
{
"BPF_STX_MEM | BPF_W",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL),
BPF_LD_IMM64(R2, 0x0102030405060708ULL),
BPF_LD_IMM64(R3, 0x8090a0b005060708ULL),
BPF_STX_MEM(BPF_DW, R10, R1, -8),
#ifdef __BIG_ENDIAN
BPF_STX_MEM(BPF_W, R10, R2, -4),
#else
BPF_STX_MEM(BPF_W, R10, R2, -8),
#endif
BPF_LDX_MEM(BPF_DW, R0, R10, -8),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 8,
},
{
"BPF_STX_MEM | BPF_W, MSB set",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL),
BPF_LD_IMM64(R2, 0x8182838485868788ULL),
BPF_LD_IMM64(R3, 0x8090a0b085868788ULL),
BPF_STX_MEM(BPF_DW, R10, R1, -8),
#ifdef __BIG_ENDIAN
BPF_STX_MEM(BPF_W, R10, R2, -4),
#else
BPF_STX_MEM(BPF_W, R10, R2, -8),
#endif
BPF_LDX_MEM(BPF_DW, R0, R10, -8),
BPF_JMP_REG(BPF_JNE, R0, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 8,
},
/* BPF_ST(X) | BPF_MEM | BPF_B/H/W/DW */
{
"ST_MEM_B: Store/Load byte: max negative",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_ST_MEM(BPF_B, R10, -40, 0xff),
BPF_LDX_MEM(BPF_B, R0, R10, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xff } },
.stack_depth = 40,
},
{
"ST_MEM_B: Store/Load byte: max positive",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_ST_MEM(BPF_H, R10, -40, 0x7f),
BPF_LDX_MEM(BPF_H, R0, R10, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x7f } },
.stack_depth = 40,
},
{
"STX_MEM_B: Store/Load byte: max negative",
.u.insns_int = {
BPF_LD_IMM64(R0, 0),
BPF_LD_IMM64(R1, 0xffLL),
BPF_STX_MEM(BPF_B, R10, R1, -40),
BPF_LDX_MEM(BPF_B, R0, R10, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xff } },
.stack_depth = 40,
},
{
"ST_MEM_H: Store/Load half word: max negative",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_ST_MEM(BPF_H, R10, -40, 0xffff),
BPF_LDX_MEM(BPF_H, R0, R10, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffff } },
.stack_depth = 40,
},
{
"ST_MEM_H: Store/Load half word: max positive",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_ST_MEM(BPF_H, R10, -40, 0x7fff),
BPF_LDX_MEM(BPF_H, R0, R10, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x7fff } },
.stack_depth = 40,
},
{
"STX_MEM_H: Store/Load half word: max negative",
.u.insns_int = {
BPF_LD_IMM64(R0, 0),
BPF_LD_IMM64(R1, 0xffffLL),
BPF_STX_MEM(BPF_H, R10, R1, -40),
BPF_LDX_MEM(BPF_H, R0, R10, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffff } },
.stack_depth = 40,
},
{
"ST_MEM_W: Store/Load word: max negative",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_ST_MEM(BPF_W, R10, -40, 0xffffffff),
BPF_LDX_MEM(BPF_W, R0, R10, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffffffff } },
.stack_depth = 40,
},
{
"ST_MEM_W: Store/Load word: max positive",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_ST_MEM(BPF_W, R10, -40, 0x7fffffff),
BPF_LDX_MEM(BPF_W, R0, R10, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x7fffffff } },
.stack_depth = 40,
},
{
"STX_MEM_W: Store/Load word: max negative",
.u.insns_int = {
BPF_LD_IMM64(R0, 0),
BPF_LD_IMM64(R1, 0xffffffffLL),
BPF_STX_MEM(BPF_W, R10, R1, -40),
BPF_LDX_MEM(BPF_W, R0, R10, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffffffff } },
.stack_depth = 40,
},
{
"ST_MEM_DW: Store/Load double word: max negative",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_ST_MEM(BPF_DW, R10, -40, 0xffffffff),
BPF_LDX_MEM(BPF_DW, R0, R10, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffffffff } },
.stack_depth = 40,
},
{
"ST_MEM_DW: Store/Load double word: max negative 2",
.u.insns_int = {
BPF_LD_IMM64(R2, 0xffff00000000ffffLL),
BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
BPF_ST_MEM(BPF_DW, R10, -40, 0xffffffff),
BPF_LDX_MEM(BPF_DW, R2, R10, -40),
BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
BPF_MOV32_IMM(R0, 2),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x1 } },
.stack_depth = 40,
},
{
"ST_MEM_DW: Store/Load double word: max positive",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_ST_MEM(BPF_DW, R10, -40, 0x7fffffff),
BPF_LDX_MEM(BPF_DW, R0, R10, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x7fffffff } },
.stack_depth = 40,
},
{
"STX_MEM_DW: Store/Load double word: max negative",
.u.insns_int = {
BPF_LD_IMM64(R0, 0),
BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
BPF_STX_MEM(BPF_DW, R10, R1, -40),
BPF_LDX_MEM(BPF_DW, R0, R10, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffffffff } },
.stack_depth = 40,
},
{
"STX_MEM_DW: Store double word: first word in memory",
.u.insns_int = {
BPF_LD_IMM64(R0, 0),
BPF_LD_IMM64(R1, 0x0123456789abcdefLL),
BPF_STX_MEM(BPF_DW, R10, R1, -40),
BPF_LDX_MEM(BPF_W, R0, R10, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
#ifdef __BIG_ENDIAN
{ { 0, 0x01234567 } },
#else
{ { 0, 0x89abcdef } },
#endif
.stack_depth = 40,
},
{
"STX_MEM_DW: Store double word: second word in memory",
.u.insns_int = {
BPF_LD_IMM64(R0, 0),
BPF_LD_IMM64(R1, 0x0123456789abcdefLL),
BPF_STX_MEM(BPF_DW, R10, R1, -40),
BPF_LDX_MEM(BPF_W, R0, R10, -36),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
#ifdef __BIG_ENDIAN
{ { 0, 0x89abcdef } },
#else
{ { 0, 0x01234567 } },
#endif
.stack_depth = 40,
},
/* BPF_STX | BPF_ATOMIC | BPF_W/DW */
{
"STX_XADD_W: X + 1 + 1 + 1 + ...",
{ },
INTERNAL,
{ },
{ { 0, 4134 } },
.fill_helper = bpf_fill_stxw,
},
{
"STX_XADD_DW: X + 1 + 1 + 1 + ...",
{ },
INTERNAL,
{ },
{ { 0, 4134 } },
.fill_helper = bpf_fill_stxdw,
},
/*
* Exhaustive tests of atomic operation variants.
* Individual tests are expanded from template macros for all
* combinations of ALU operation, word size and fetching.
*/
#define BPF_ATOMIC_POISON(width) ((width) == BPF_W ? (0xbaadf00dULL << 32) : 0)
#define BPF_ATOMIC_OP_TEST1(width, op, logic, old, update, result) \
{ \
"BPF_ATOMIC | " #width ", " #op ": Test: " \
#old " " #logic " " #update " = " #result, \
.u.insns_int = { \
BPF_LD_IMM64(R5, (update) | BPF_ATOMIC_POISON(width)), \
BPF_ST_MEM(width, R10, -40, old), \
BPF_ATOMIC_OP(width, op, R10, R5, -40), \
BPF_LDX_MEM(width, R0, R10, -40), \
BPF_ALU64_REG(BPF_MOV, R1, R0), \
BPF_ALU64_IMM(BPF_RSH, R1, 32), \
BPF_ALU64_REG(BPF_OR, R0, R1), \
BPF_EXIT_INSN(), \
}, \
INTERNAL, \
{ }, \
{ { 0, result } }, \
.stack_depth = 40, \
}
#define BPF_ATOMIC_OP_TEST2(width, op, logic, old, update, result) \
{ \
"BPF_ATOMIC | " #width ", " #op ": Test side effects, r10: " \
#old " " #logic " " #update " = " #result, \
.u.insns_int = { \
BPF_ALU64_REG(BPF_MOV, R1, R10), \
BPF_LD_IMM64(R0, (update) | BPF_ATOMIC_POISON(width)), \
BPF_ST_MEM(BPF_W, R10, -40, old), \
BPF_ATOMIC_OP(width, op, R10, R0, -40), \
BPF_ALU64_REG(BPF_MOV, R0, R10), \
BPF_ALU64_REG(BPF_SUB, R0, R1), \
BPF_ALU64_REG(BPF_MOV, R1, R0), \
BPF_ALU64_IMM(BPF_RSH, R1, 32), \
BPF_ALU64_REG(BPF_OR, R0, R1), \
BPF_EXIT_INSN(), \
}, \
INTERNAL, \
{ }, \
{ { 0, 0 } }, \
.stack_depth = 40, \
}
#define BPF_ATOMIC_OP_TEST3(width, op, logic, old, update, result) \
{ \
"BPF_ATOMIC | " #width ", " #op ": Test side effects, r0: " \
#old " " #logic " " #update " = " #result, \
.u.insns_int = { \
BPF_ALU64_REG(BPF_MOV, R0, R10), \
BPF_LD_IMM64(R1, (update) | BPF_ATOMIC_POISON(width)), \
BPF_ST_MEM(width, R10, -40, old), \
BPF_ATOMIC_OP(width, op, R10, R1, -40), \
BPF_ALU64_REG(BPF_SUB, R0, R10), \
BPF_ALU64_REG(BPF_MOV, R1, R0), \
BPF_ALU64_IMM(BPF_RSH, R1, 32), \
BPF_ALU64_REG(BPF_OR, R0, R1), \
BPF_EXIT_INSN(), \
}, \
INTERNAL, \
{ }, \
{ { 0, 0 } }, \
.stack_depth = 40, \
}
#define BPF_ATOMIC_OP_TEST4(width, op, logic, old, update, result) \
{ \
"BPF_ATOMIC | " #width ", " #op ": Test fetch: " \
#old " " #logic " " #update " = " #result, \
.u.insns_int = { \
BPF_LD_IMM64(R3, (update) | BPF_ATOMIC_POISON(width)), \
BPF_ST_MEM(width, R10, -40, old), \
BPF_ATOMIC_OP(width, op, R10, R3, -40), \
BPF_ALU32_REG(BPF_MOV, R0, R3), \
BPF_EXIT_INSN(), \
}, \
INTERNAL, \
{ }, \
{ { 0, (op) & BPF_FETCH ? old : update } }, \
.stack_depth = 40, \
}
/* BPF_ATOMIC | BPF_W: BPF_ADD */
BPF_ATOMIC_OP_TEST1(BPF_W, BPF_ADD, +, 0x12, 0xab, 0xbd),
BPF_ATOMIC_OP_TEST2(BPF_W, BPF_ADD, +, 0x12, 0xab, 0xbd),
BPF_ATOMIC_OP_TEST3(BPF_W, BPF_ADD, +, 0x12, 0xab, 0xbd),
BPF_ATOMIC_OP_TEST4(BPF_W, BPF_ADD, +, 0x12, 0xab, 0xbd),
/* BPF_ATOMIC | BPF_W: BPF_ADD | BPF_FETCH */
BPF_ATOMIC_OP_TEST1(BPF_W, BPF_ADD | BPF_FETCH, +, 0x12, 0xab, 0xbd),
BPF_ATOMIC_OP_TEST2(BPF_W, BPF_ADD | BPF_FETCH, +, 0x12, 0xab, 0xbd),
BPF_ATOMIC_OP_TEST3(BPF_W, BPF_ADD | BPF_FETCH, +, 0x12, 0xab, 0xbd),
BPF_ATOMIC_OP_TEST4(BPF_W, BPF_ADD | BPF_FETCH, +, 0x12, 0xab, 0xbd),
/* BPF_ATOMIC | BPF_DW: BPF_ADD */
BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_ADD, +, 0x12, 0xab, 0xbd),
BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_ADD, +, 0x12, 0xab, 0xbd),
BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_ADD, +, 0x12, 0xab, 0xbd),
BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_ADD, +, 0x12, 0xab, 0xbd),
/* BPF_ATOMIC | BPF_DW: BPF_ADD | BPF_FETCH */
BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_ADD | BPF_FETCH, +, 0x12, 0xab, 0xbd),
BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_ADD | BPF_FETCH, +, 0x12, 0xab, 0xbd),
BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_ADD | BPF_FETCH, +, 0x12, 0xab, 0xbd),
BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_ADD | BPF_FETCH, +, 0x12, 0xab, 0xbd),
/* BPF_ATOMIC | BPF_W: BPF_AND */
BPF_ATOMIC_OP_TEST1(BPF_W, BPF_AND, &, 0x12, 0xab, 0x02),
BPF_ATOMIC_OP_TEST2(BPF_W, BPF_AND, &, 0x12, 0xab, 0x02),
BPF_ATOMIC_OP_TEST3(BPF_W, BPF_AND, &, 0x12, 0xab, 0x02),
BPF_ATOMIC_OP_TEST4(BPF_W, BPF_AND, &, 0x12, 0xab, 0x02),
/* BPF_ATOMIC | BPF_W: BPF_AND | BPF_FETCH */
BPF_ATOMIC_OP_TEST1(BPF_W, BPF_AND | BPF_FETCH, &, 0x12, 0xab, 0x02),
BPF_ATOMIC_OP_TEST2(BPF_W, BPF_AND | BPF_FETCH, &, 0x12, 0xab, 0x02),
BPF_ATOMIC_OP_TEST3(BPF_W, BPF_AND | BPF_FETCH, &, 0x12, 0xab, 0x02),
BPF_ATOMIC_OP_TEST4(BPF_W, BPF_AND | BPF_FETCH, &, 0x12, 0xab, 0x02),
/* BPF_ATOMIC | BPF_DW: BPF_AND */
BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_AND, &, 0x12, 0xab, 0x02),
BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_AND, &, 0x12, 0xab, 0x02),
BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_AND, &, 0x12, 0xab, 0x02),
BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_AND, &, 0x12, 0xab, 0x02),
/* BPF_ATOMIC | BPF_DW: BPF_AND | BPF_FETCH */
BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_AND | BPF_FETCH, &, 0x12, 0xab, 0x02),
BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_AND | BPF_FETCH, &, 0x12, 0xab, 0x02),
BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_AND | BPF_FETCH, &, 0x12, 0xab, 0x02),
BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_AND | BPF_FETCH, &, 0x12, 0xab, 0x02),
/* BPF_ATOMIC | BPF_W: BPF_OR */
BPF_ATOMIC_OP_TEST1(BPF_W, BPF_OR, |, 0x12, 0xab, 0xbb),
BPF_ATOMIC_OP_TEST2(BPF_W, BPF_OR, |, 0x12, 0xab, 0xbb),
BPF_ATOMIC_OP_TEST3(BPF_W, BPF_OR, |, 0x12, 0xab, 0xbb),
BPF_ATOMIC_OP_TEST4(BPF_W, BPF_OR, |, 0x12, 0xab, 0xbb),
/* BPF_ATOMIC | BPF_W: BPF_OR | BPF_FETCH */
BPF_ATOMIC_OP_TEST1(BPF_W, BPF_OR | BPF_FETCH, |, 0x12, 0xab, 0xbb),
BPF_ATOMIC_OP_TEST2(BPF_W, BPF_OR | BPF_FETCH, |, 0x12, 0xab, 0xbb),
BPF_ATOMIC_OP_TEST3(BPF_W, BPF_OR | BPF_FETCH, |, 0x12, 0xab, 0xbb),
BPF_ATOMIC_OP_TEST4(BPF_W, BPF_OR | BPF_FETCH, |, 0x12, 0xab, 0xbb),
/* BPF_ATOMIC | BPF_DW: BPF_OR */
BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_OR, |, 0x12, 0xab, 0xbb),
BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_OR, |, 0x12, 0xab, 0xbb),
BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_OR, |, 0x12, 0xab, 0xbb),
BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_OR, |, 0x12, 0xab, 0xbb),
/* BPF_ATOMIC | BPF_DW: BPF_OR | BPF_FETCH */
BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_OR | BPF_FETCH, |, 0x12, 0xab, 0xbb),
BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_OR | BPF_FETCH, |, 0x12, 0xab, 0xbb),
BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_OR | BPF_FETCH, |, 0x12, 0xab, 0xbb),
BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_OR | BPF_FETCH, |, 0x12, 0xab, 0xbb),
/* BPF_ATOMIC | BPF_W: BPF_XOR */
BPF_ATOMIC_OP_TEST1(BPF_W, BPF_XOR, ^, 0x12, 0xab, 0xb9),
BPF_ATOMIC_OP_TEST2(BPF_W, BPF_XOR, ^, 0x12, 0xab, 0xb9),
BPF_ATOMIC_OP_TEST3(BPF_W, BPF_XOR, ^, 0x12, 0xab, 0xb9),
BPF_ATOMIC_OP_TEST4(BPF_W, BPF_XOR, ^, 0x12, 0xab, 0xb9),
/* BPF_ATOMIC | BPF_W: BPF_XOR | BPF_FETCH */
BPF_ATOMIC_OP_TEST1(BPF_W, BPF_XOR | BPF_FETCH, ^, 0x12, 0xab, 0xb9),
BPF_ATOMIC_OP_TEST2(BPF_W, BPF_XOR | BPF_FETCH, ^, 0x12, 0xab, 0xb9),
BPF_ATOMIC_OP_TEST3(BPF_W, BPF_XOR | BPF_FETCH, ^, 0x12, 0xab, 0xb9),
BPF_ATOMIC_OP_TEST4(BPF_W, BPF_XOR | BPF_FETCH, ^, 0x12, 0xab, 0xb9),
/* BPF_ATOMIC | BPF_DW: BPF_XOR */
BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_XOR, ^, 0x12, 0xab, 0xb9),
BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_XOR, ^, 0x12, 0xab, 0xb9),
BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_XOR, ^, 0x12, 0xab, 0xb9),
BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_XOR, ^, 0x12, 0xab, 0xb9),
/* BPF_ATOMIC | BPF_DW: BPF_XOR | BPF_FETCH */
BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_XOR | BPF_FETCH, ^, 0x12, 0xab, 0xb9),
BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_XOR | BPF_FETCH, ^, 0x12, 0xab, 0xb9),
BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_XOR | BPF_FETCH, ^, 0x12, 0xab, 0xb9),
BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_XOR | BPF_FETCH, ^, 0x12, 0xab, 0xb9),
/* BPF_ATOMIC | BPF_W: BPF_XCHG */
BPF_ATOMIC_OP_TEST1(BPF_W, BPF_XCHG, xchg, 0x12, 0xab, 0xab),
BPF_ATOMIC_OP_TEST2(BPF_W, BPF_XCHG, xchg, 0x12, 0xab, 0xab),
BPF_ATOMIC_OP_TEST3(BPF_W, BPF_XCHG, xchg, 0x12, 0xab, 0xab),
BPF_ATOMIC_OP_TEST4(BPF_W, BPF_XCHG, xchg, 0x12, 0xab, 0xab),
/* BPF_ATOMIC | BPF_DW: BPF_XCHG */
BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_XCHG, xchg, 0x12, 0xab, 0xab),
BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_XCHG, xchg, 0x12, 0xab, 0xab),
BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_XCHG, xchg, 0x12, 0xab, 0xab),
BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_XCHG, xchg, 0x12, 0xab, 0xab),
#undef BPF_ATOMIC_POISON
#undef BPF_ATOMIC_OP_TEST1
#undef BPF_ATOMIC_OP_TEST2
#undef BPF_ATOMIC_OP_TEST3
#undef BPF_ATOMIC_OP_TEST4
/* BPF_ATOMIC | BPF_W, BPF_CMPXCHG */
{
"BPF_ATOMIC | BPF_W, BPF_CMPXCHG: Test successful return",
.u.insns_int = {
BPF_ST_MEM(BPF_W, R10, -40, 0x01234567),
BPF_ALU32_IMM(BPF_MOV, R0, 0x01234567),
BPF_ALU32_IMM(BPF_MOV, R3, 0x89abcdef),
BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R3, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x01234567 } },
.stack_depth = 40,
},
{
"BPF_ATOMIC | BPF_W, BPF_CMPXCHG: Test successful store",
.u.insns_int = {
BPF_ST_MEM(BPF_W, R10, -40, 0x01234567),
BPF_ALU32_IMM(BPF_MOV, R0, 0x01234567),
BPF_ALU32_IMM(BPF_MOV, R3, 0x89abcdef),
BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R3, -40),
BPF_LDX_MEM(BPF_W, R0, R10, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x89abcdef } },
.stack_depth = 40,
},
{
"BPF_ATOMIC | BPF_W, BPF_CMPXCHG: Test failure return",
.u.insns_int = {
BPF_ST_MEM(BPF_W, R10, -40, 0x01234567),
BPF_ALU32_IMM(BPF_MOV, R0, 0x76543210),
BPF_ALU32_IMM(BPF_MOV, R3, 0x89abcdef),
BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R3, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x01234567 } },
.stack_depth = 40,
},
{
"BPF_ATOMIC | BPF_W, BPF_CMPXCHG: Test failure store",
.u.insns_int = {
BPF_ST_MEM(BPF_W, R10, -40, 0x01234567),
BPF_ALU32_IMM(BPF_MOV, R0, 0x76543210),
BPF_ALU32_IMM(BPF_MOV, R3, 0x89abcdef),
BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R3, -40),
BPF_LDX_MEM(BPF_W, R0, R10, -40),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x01234567 } },
.stack_depth = 40,
},
{
"BPF_ATOMIC | BPF_W, BPF_CMPXCHG: Test side effects",
.u.insns_int = {
BPF_ST_MEM(BPF_W, R10, -40, 0x01234567),
BPF_ALU32_IMM(BPF_MOV, R0, 0x01234567),
BPF_ALU32_IMM(BPF_MOV, R3, 0x89abcdef),
BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R3, -40),
BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R3, -40),
BPF_ALU32_REG(BPF_MOV, R0, R3),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x89abcdef } },
.stack_depth = 40,
},
/* BPF_ATOMIC | BPF_DW, BPF_CMPXCHG */
{
"BPF_ATOMIC | BPF_DW, BPF_CMPXCHG: Test successful return",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x0123456789abcdefULL),
BPF_LD_IMM64(R2, 0xfedcba9876543210ULL),
BPF_ALU64_REG(BPF_MOV, R0, R1),
BPF_STX_MEM(BPF_DW, R10, R1, -40),
BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -40),
BPF_JMP_REG(BPF_JNE, R0, R1, 1),
BPF_ALU64_REG(BPF_SUB, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 40,
},
{
"BPF_ATOMIC | BPF_DW, BPF_CMPXCHG: Test successful store",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x0123456789abcdefULL),
BPF_LD_IMM64(R2, 0xfedcba9876543210ULL),
BPF_ALU64_REG(BPF_MOV, R0, R1),
BPF_STX_MEM(BPF_DW, R10, R0, -40),
BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -40),
BPF_LDX_MEM(BPF_DW, R0, R10, -40),
BPF_JMP_REG(BPF_JNE, R0, R2, 1),
BPF_ALU64_REG(BPF_SUB, R0, R2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 40,
},
{
"BPF_ATOMIC | BPF_DW, BPF_CMPXCHG: Test failure return",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x0123456789abcdefULL),
BPF_LD_IMM64(R2, 0xfedcba9876543210ULL),
BPF_ALU64_REG(BPF_MOV, R0, R1),
BPF_ALU64_IMM(BPF_ADD, R0, 1),
BPF_STX_MEM(BPF_DW, R10, R1, -40),
BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -40),
BPF_JMP_REG(BPF_JNE, R0, R1, 1),
BPF_ALU64_REG(BPF_SUB, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 40,
},
{
"BPF_ATOMIC | BPF_DW, BPF_CMPXCHG: Test failure store",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x0123456789abcdefULL),
BPF_LD_IMM64(R2, 0xfedcba9876543210ULL),
BPF_ALU64_REG(BPF_MOV, R0, R1),
BPF_ALU64_IMM(BPF_ADD, R0, 1),
BPF_STX_MEM(BPF_DW, R10, R1, -40),
BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -40),
BPF_LDX_MEM(BPF_DW, R0, R10, -40),
BPF_JMP_REG(BPF_JNE, R0, R1, 1),
BPF_ALU64_REG(BPF_SUB, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 40,
},
{
"BPF_ATOMIC | BPF_DW, BPF_CMPXCHG: Test side effects",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x0123456789abcdefULL),
BPF_LD_IMM64(R2, 0xfedcba9876543210ULL),
BPF_ALU64_REG(BPF_MOV, R0, R1),
BPF_STX_MEM(BPF_DW, R10, R1, -40),
BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -40),
BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
BPF_JMP_REG(BPF_JNE, R0, R2, 1),
BPF_ALU64_REG(BPF_SUB, R0, R2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 40,
},
/* BPF_JMP32 | BPF_JEQ | BPF_K */
{
"JMP32_JEQ_K: Small immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 123),
BPF_JMP32_IMM(BPF_JEQ, R0, 321, 1),
BPF_JMP32_IMM(BPF_JEQ, R0, 123, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 123 } }
},
{
"JMP32_JEQ_K: Large immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 12345678),
BPF_JMP32_IMM(BPF_JEQ, R0, 12345678 & 0xffff, 1),
BPF_JMP32_IMM(BPF_JEQ, R0, 12345678, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 12345678 } }
},
{
"JMP32_JEQ_K: negative immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -123),
BPF_JMP32_IMM(BPF_JEQ, R0, 123, 1),
BPF_JMP32_IMM(BPF_JEQ, R0, -123, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -123 } }
},
/* BPF_JMP32 | BPF_JEQ | BPF_X */
{
"JMP32_JEQ_X",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1234),
BPF_ALU32_IMM(BPF_MOV, R1, 4321),
BPF_JMP32_REG(BPF_JEQ, R0, R1, 2),
BPF_ALU32_IMM(BPF_MOV, R1, 1234),
BPF_JMP32_REG(BPF_JEQ, R0, R1, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1234 } }
},
/* BPF_JMP32 | BPF_JNE | BPF_K */
{
"JMP32_JNE_K: Small immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 123),
BPF_JMP32_IMM(BPF_JNE, R0, 123, 1),
BPF_JMP32_IMM(BPF_JNE, R0, 321, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 123 } }
},
{
"JMP32_JNE_K: Large immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 12345678),
BPF_JMP32_IMM(BPF_JNE, R0, 12345678, 1),
BPF_JMP32_IMM(BPF_JNE, R0, 12345678 & 0xffff, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 12345678 } }
},
{
"JMP32_JNE_K: negative immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -123),
BPF_JMP32_IMM(BPF_JNE, R0, -123, 1),
BPF_JMP32_IMM(BPF_JNE, R0, 123, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -123 } }
},
/* BPF_JMP32 | BPF_JNE | BPF_X */
{
"JMP32_JNE_X",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1234),
BPF_ALU32_IMM(BPF_MOV, R1, 1234),
BPF_JMP32_REG(BPF_JNE, R0, R1, 2),
BPF_ALU32_IMM(BPF_MOV, R1, 4321),
BPF_JMP32_REG(BPF_JNE, R0, R1, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1234 } }
},
/* BPF_JMP32 | BPF_JSET | BPF_K */
{
"JMP32_JSET_K: Small immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_JMP32_IMM(BPF_JSET, R0, 2, 1),
BPF_JMP32_IMM(BPF_JSET, R0, 3, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
{
"JMP32_JSET_K: Large immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0x40000000),
BPF_JMP32_IMM(BPF_JSET, R0, 0x3fffffff, 1),
BPF_JMP32_IMM(BPF_JSET, R0, 0x60000000, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x40000000 } }
},
{
"JMP32_JSET_K: negative immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -123),
BPF_JMP32_IMM(BPF_JSET, R0, -1, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -123 } }
},
/* BPF_JMP32 | BPF_JSET | BPF_X */
{
"JMP32_JSET_X",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 8),
BPF_ALU32_IMM(BPF_MOV, R1, 7),
BPF_JMP32_REG(BPF_JSET, R0, R1, 2),
BPF_ALU32_IMM(BPF_MOV, R1, 8 | 2),
BPF_JMP32_REG(BPF_JNE, R0, R1, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 8 } }
},
/* BPF_JMP32 | BPF_JGT | BPF_K */
{
"JMP32_JGT_K: Small immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 123),
BPF_JMP32_IMM(BPF_JGT, R0, 123, 1),
BPF_JMP32_IMM(BPF_JGT, R0, 122, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 123 } }
},
{
"JMP32_JGT_K: Large immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0xfffffffe),
BPF_JMP32_IMM(BPF_JGT, R0, 0xffffffff, 1),
BPF_JMP32_IMM(BPF_JGT, R0, 0xfffffffd, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfffffffe } }
},
/* BPF_JMP32 | BPF_JGT | BPF_X */
{
"JMP32_JGT_X",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0xfffffffe),
BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
BPF_JMP32_REG(BPF_JGT, R0, R1, 2),
BPF_ALU32_IMM(BPF_MOV, R1, 0xfffffffd),
BPF_JMP32_REG(BPF_JGT, R0, R1, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfffffffe } }
},
/* BPF_JMP32 | BPF_JGE | BPF_K */
{
"JMP32_JGE_K: Small immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 123),
BPF_JMP32_IMM(BPF_JGE, R0, 124, 1),
BPF_JMP32_IMM(BPF_JGE, R0, 123, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 123 } }
},
{
"JMP32_JGE_K: Large immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0xfffffffe),
BPF_JMP32_IMM(BPF_JGE, R0, 0xffffffff, 1),
BPF_JMP32_IMM(BPF_JGE, R0, 0xfffffffe, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfffffffe } }
},
/* BPF_JMP32 | BPF_JGE | BPF_X */
{
"JMP32_JGE_X",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0xfffffffe),
BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
BPF_JMP32_REG(BPF_JGE, R0, R1, 2),
BPF_ALU32_IMM(BPF_MOV, R1, 0xfffffffe),
BPF_JMP32_REG(BPF_JGE, R0, R1, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfffffffe } }
},
/* BPF_JMP32 | BPF_JLT | BPF_K */
{
"JMP32_JLT_K: Small immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 123),
BPF_JMP32_IMM(BPF_JLT, R0, 123, 1),
BPF_JMP32_IMM(BPF_JLT, R0, 124, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 123 } }
},
{
"JMP32_JLT_K: Large immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0xfffffffe),
BPF_JMP32_IMM(BPF_JLT, R0, 0xfffffffd, 1),
BPF_JMP32_IMM(BPF_JLT, R0, 0xffffffff, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfffffffe } }
},
/* BPF_JMP32 | BPF_JLT | BPF_X */
{
"JMP32_JLT_X",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0xfffffffe),
BPF_ALU32_IMM(BPF_MOV, R1, 0xfffffffd),
BPF_JMP32_REG(BPF_JLT, R0, R1, 2),
BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
BPF_JMP32_REG(BPF_JLT, R0, R1, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfffffffe } }
},
/* BPF_JMP32 | BPF_JLE | BPF_K */
{
"JMP32_JLE_K: Small immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 123),
BPF_JMP32_IMM(BPF_JLE, R0, 122, 1),
BPF_JMP32_IMM(BPF_JLE, R0, 123, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 123 } }
},
{
"JMP32_JLE_K: Large immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0xfffffffe),
BPF_JMP32_IMM(BPF_JLE, R0, 0xfffffffd, 1),
BPF_JMP32_IMM(BPF_JLE, R0, 0xfffffffe, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfffffffe } }
},
/* BPF_JMP32 | BPF_JLE | BPF_X */
{
"JMP32_JLE_X",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0xfffffffe),
BPF_ALU32_IMM(BPF_MOV, R1, 0xfffffffd),
BPF_JMP32_REG(BPF_JLE, R0, R1, 2),
BPF_ALU32_IMM(BPF_MOV, R1, 0xfffffffe),
BPF_JMP32_REG(BPF_JLE, R0, R1, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfffffffe } }
},
/* BPF_JMP32 | BPF_JSGT | BPF_K */
{
"JMP32_JSGT_K: Small immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -123),
BPF_JMP32_IMM(BPF_JSGT, R0, -123, 1),
BPF_JMP32_IMM(BPF_JSGT, R0, -124, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -123 } }
},
{
"JMP32_JSGT_K: Large immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -12345678),
BPF_JMP32_IMM(BPF_JSGT, R0, -12345678, 1),
BPF_JMP32_IMM(BPF_JSGT, R0, -12345679, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -12345678 } }
},
/* BPF_JMP32 | BPF_JSGT | BPF_X */
{
"JMP32_JSGT_X",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -12345678),
BPF_ALU32_IMM(BPF_MOV, R1, -12345678),
BPF_JMP32_REG(BPF_JSGT, R0, R1, 2),
BPF_ALU32_IMM(BPF_MOV, R1, -12345679),
BPF_JMP32_REG(BPF_JSGT, R0, R1, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -12345678 } }
},
/* BPF_JMP32 | BPF_JSGE | BPF_K */
{
"JMP32_JSGE_K: Small immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -123),
BPF_JMP32_IMM(BPF_JSGE, R0, -122, 1),
BPF_JMP32_IMM(BPF_JSGE, R0, -123, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -123 } }
},
{
"JMP32_JSGE_K: Large immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -12345678),
BPF_JMP32_IMM(BPF_JSGE, R0, -12345677, 1),
BPF_JMP32_IMM(BPF_JSGE, R0, -12345678, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -12345678 } }
},
/* BPF_JMP32 | BPF_JSGE | BPF_X */
{
"JMP32_JSGE_X",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -12345678),
BPF_ALU32_IMM(BPF_MOV, R1, -12345677),
BPF_JMP32_REG(BPF_JSGE, R0, R1, 2),
BPF_ALU32_IMM(BPF_MOV, R1, -12345678),
BPF_JMP32_REG(BPF_JSGE, R0, R1, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -12345678 } }
},
/* BPF_JMP32 | BPF_JSLT | BPF_K */
{
"JMP32_JSLT_K: Small immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -123),
BPF_JMP32_IMM(BPF_JSLT, R0, -123, 1),
BPF_JMP32_IMM(BPF_JSLT, R0, -122, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -123 } }
},
{
"JMP32_JSLT_K: Large immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -12345678),
BPF_JMP32_IMM(BPF_JSLT, R0, -12345678, 1),
BPF_JMP32_IMM(BPF_JSLT, R0, -12345677, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -12345678 } }
},
/* BPF_JMP32 | BPF_JSLT | BPF_X */
{
"JMP32_JSLT_X",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -12345678),
BPF_ALU32_IMM(BPF_MOV, R1, -12345678),
BPF_JMP32_REG(BPF_JSLT, R0, R1, 2),
BPF_ALU32_IMM(BPF_MOV, R1, -12345677),
BPF_JMP32_REG(BPF_JSLT, R0, R1, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -12345678 } }
},
/* BPF_JMP32 | BPF_JSLE | BPF_K */
{
"JMP32_JSLE_K: Small immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -123),
BPF_JMP32_IMM(BPF_JSLE, R0, -124, 1),
BPF_JMP32_IMM(BPF_JSLE, R0, -123, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -123 } }
},
{
"JMP32_JSLE_K: Large immediate",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -12345678),
BPF_JMP32_IMM(BPF_JSLE, R0, -12345679, 1),
BPF_JMP32_IMM(BPF_JSLE, R0, -12345678, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -12345678 } }
},
/* BPF_JMP32 | BPF_JSLE | BPF_K */
{
"JMP32_JSLE_X",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -12345678),
BPF_ALU32_IMM(BPF_MOV, R1, -12345679),
BPF_JMP32_REG(BPF_JSLE, R0, R1, 2),
BPF_ALU32_IMM(BPF_MOV, R1, -12345678),
BPF_JMP32_REG(BPF_JSLE, R0, R1, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -12345678 } }
},
/* BPF_JMP | BPF_EXIT */
{
"JMP_EXIT",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0x4711),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 0x4712),
},
INTERNAL,
{ },
{ { 0, 0x4711 } },
},
/* BPF_JMP | BPF_JA */
{
"JMP_JA: Unconditional jump: if (true) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_JMP_IMM(BPF_JA, 0, 0, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JSLT | BPF_K */
{
"JMP_JSLT_K: Signed jump: if (-2 < -1) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 0xfffffffffffffffeLL),
BPF_JMP_IMM(BPF_JSLT, R1, -1, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JSLT_K: Signed jump: if (-1 < -1) return 0",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
BPF_JMP_IMM(BPF_JSLT, R1, -1, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JSGT | BPF_K */
{
"JMP_JSGT_K: Signed jump: if (-1 > -2) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
BPF_JMP_IMM(BPF_JSGT, R1, -2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JSGT_K: Signed jump: if (-1 > -1) return 0",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
BPF_JMP_IMM(BPF_JSGT, R1, -1, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JSLE | BPF_K */
{
"JMP_JSLE_K: Signed jump: if (-2 <= -1) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 0xfffffffffffffffeLL),
BPF_JMP_IMM(BPF_JSLE, R1, -1, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JSLE_K: Signed jump: if (-1 <= -1) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
BPF_JMP_IMM(BPF_JSLE, R1, -1, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JSLE_K: Signed jump: value walk 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_JMP_IMM(BPF_JSLE, R1, 0, 6),
BPF_ALU64_IMM(BPF_SUB, R1, 1),
BPF_JMP_IMM(BPF_JSLE, R1, 0, 4),
BPF_ALU64_IMM(BPF_SUB, R1, 1),
BPF_JMP_IMM(BPF_JSLE, R1, 0, 2),
BPF_ALU64_IMM(BPF_SUB, R1, 1),
BPF_JMP_IMM(BPF_JSLE, R1, 0, 1),
BPF_EXIT_INSN(), /* bad exit */
BPF_ALU32_IMM(BPF_MOV, R0, 1), /* good exit */
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JSLE_K: Signed jump: value walk 2",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_JMP_IMM(BPF_JSLE, R1, 0, 4),
BPF_ALU64_IMM(BPF_SUB, R1, 2),
BPF_JMP_IMM(BPF_JSLE, R1, 0, 2),
BPF_ALU64_IMM(BPF_SUB, R1, 2),
BPF_JMP_IMM(BPF_JSLE, R1, 0, 1),
BPF_EXIT_INSN(), /* bad exit */
BPF_ALU32_IMM(BPF_MOV, R0, 1), /* good exit */
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JSGE | BPF_K */
{
"JMP_JSGE_K: Signed jump: if (-1 >= -2) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
BPF_JMP_IMM(BPF_JSGE, R1, -2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JSGE_K: Signed jump: if (-1 >= -1) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
BPF_JMP_IMM(BPF_JSGE, R1, -1, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JSGE_K: Signed jump: value walk 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, -3),
BPF_JMP_IMM(BPF_JSGE, R1, 0, 6),
BPF_ALU64_IMM(BPF_ADD, R1, 1),
BPF_JMP_IMM(BPF_JSGE, R1, 0, 4),
BPF_ALU64_IMM(BPF_ADD, R1, 1),
BPF_JMP_IMM(BPF_JSGE, R1, 0, 2),
BPF_ALU64_IMM(BPF_ADD, R1, 1),
BPF_JMP_IMM(BPF_JSGE, R1, 0, 1),
BPF_EXIT_INSN(), /* bad exit */
BPF_ALU32_IMM(BPF_MOV, R0, 1), /* good exit */
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JSGE_K: Signed jump: value walk 2",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, -3),
BPF_JMP_IMM(BPF_JSGE, R1, 0, 4),
BPF_ALU64_IMM(BPF_ADD, R1, 2),
BPF_JMP_IMM(BPF_JSGE, R1, 0, 2),
BPF_ALU64_IMM(BPF_ADD, R1, 2),
BPF_JMP_IMM(BPF_JSGE, R1, 0, 1),
BPF_EXIT_INSN(), /* bad exit */
BPF_ALU32_IMM(BPF_MOV, R0, 1), /* good exit */
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JGT | BPF_K */
{
"JMP_JGT_K: if (3 > 2) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_JMP_IMM(BPF_JGT, R1, 2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JGT_K: Unsigned jump: if (-1 > 1) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, -1),
BPF_JMP_IMM(BPF_JGT, R1, 1, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JLT | BPF_K */
{
"JMP_JLT_K: if (2 < 3) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 2),
BPF_JMP_IMM(BPF_JLT, R1, 3, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JGT_K: Unsigned jump: if (1 < -1) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 1),
BPF_JMP_IMM(BPF_JLT, R1, -1, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JGE | BPF_K */
{
"JMP_JGE_K: if (3 >= 2) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_JMP_IMM(BPF_JGE, R1, 2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JLE | BPF_K */
{
"JMP_JLE_K: if (2 <= 3) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 2),
BPF_JMP_IMM(BPF_JLE, R1, 3, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JGT | BPF_K jump backwards */
{
"JMP_JGT_K: if (3 > 2) return 1 (jump backwards)",
.u.insns_int = {
BPF_JMP_IMM(BPF_JA, 0, 0, 2), /* goto start */
BPF_ALU32_IMM(BPF_MOV, R0, 1), /* out: */
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 0), /* start: */
BPF_LD_IMM64(R1, 3), /* note: this takes 2 insns */
BPF_JMP_IMM(BPF_JGT, R1, 2, -6), /* goto out */
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JGE_K: if (3 >= 3) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_JMP_IMM(BPF_JGE, R1, 3, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JLT | BPF_K jump backwards */
{
"JMP_JGT_K: if (2 < 3) return 1 (jump backwards)",
.u.insns_int = {
BPF_JMP_IMM(BPF_JA, 0, 0, 2), /* goto start */
BPF_ALU32_IMM(BPF_MOV, R0, 1), /* out: */
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 0), /* start: */
BPF_LD_IMM64(R1, 2), /* note: this takes 2 insns */
BPF_JMP_IMM(BPF_JLT, R1, 3, -6), /* goto out */
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JLE_K: if (3 <= 3) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_JMP_IMM(BPF_JLE, R1, 3, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JNE | BPF_K */
{
"JMP_JNE_K: if (3 != 2) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_JMP_IMM(BPF_JNE, R1, 2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JEQ | BPF_K */
{
"JMP_JEQ_K: if (3 == 3) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_JMP_IMM(BPF_JEQ, R1, 3, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JSET | BPF_K */
{
"JMP_JSET_K: if (0x3 & 0x2) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_JMP_IMM(BPF_JSET, R1, 2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JSET_K: if (0x3 & 0xffffffff) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_JMP_IMM(BPF_JSET, R1, 0xffffffff, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JSGT | BPF_X */
{
"JMP_JSGT_X: Signed jump: if (-1 > -2) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, -1),
BPF_LD_IMM64(R2, -2),
BPF_JMP_REG(BPF_JSGT, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JSGT_X: Signed jump: if (-1 > -1) return 0",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_LD_IMM64(R1, -1),
BPF_LD_IMM64(R2, -1),
BPF_JMP_REG(BPF_JSGT, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JSLT | BPF_X */
{
"JMP_JSLT_X: Signed jump: if (-2 < -1) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, -1),
BPF_LD_IMM64(R2, -2),
BPF_JMP_REG(BPF_JSLT, R2, R1, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JSLT_X: Signed jump: if (-1 < -1) return 0",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_LD_IMM64(R1, -1),
BPF_LD_IMM64(R2, -1),
BPF_JMP_REG(BPF_JSLT, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JSGE | BPF_X */
{
"JMP_JSGE_X: Signed jump: if (-1 >= -2) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, -1),
BPF_LD_IMM64(R2, -2),
BPF_JMP_REG(BPF_JSGE, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JSGE_X: Signed jump: if (-1 >= -1) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, -1),
BPF_LD_IMM64(R2, -1),
BPF_JMP_REG(BPF_JSGE, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JSLE | BPF_X */
{
"JMP_JSLE_X: Signed jump: if (-2 <= -1) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, -1),
BPF_LD_IMM64(R2, -2),
BPF_JMP_REG(BPF_JSLE, R2, R1, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JSLE_X: Signed jump: if (-1 <= -1) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, -1),
BPF_LD_IMM64(R2, -1),
BPF_JMP_REG(BPF_JSLE, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JGT | BPF_X */
{
"JMP_JGT_X: if (3 > 2) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_LD_IMM64(R2, 2),
BPF_JMP_REG(BPF_JGT, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JGT_X: Unsigned jump: if (-1 > 1) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, -1),
BPF_LD_IMM64(R2, 1),
BPF_JMP_REG(BPF_JGT, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JLT | BPF_X */
{
"JMP_JLT_X: if (2 < 3) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_LD_IMM64(R2, 2),
BPF_JMP_REG(BPF_JLT, R2, R1, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JLT_X: Unsigned jump: if (1 < -1) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, -1),
BPF_LD_IMM64(R2, 1),
BPF_JMP_REG(BPF_JLT, R2, R1, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JGE | BPF_X */
{
"JMP_JGE_X: if (3 >= 2) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_LD_IMM64(R2, 2),
BPF_JMP_REG(BPF_JGE, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JGE_X: if (3 >= 3) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_LD_IMM64(R2, 3),
BPF_JMP_REG(BPF_JGE, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JLE | BPF_X */
{
"JMP_JLE_X: if (2 <= 3) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_LD_IMM64(R2, 2),
BPF_JMP_REG(BPF_JLE, R2, R1, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JLE_X: if (3 <= 3) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_LD_IMM64(R2, 3),
BPF_JMP_REG(BPF_JLE, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
/* Mainly testing JIT + imm64 here. */
"JMP_JGE_X: ldimm64 test 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_LD_IMM64(R2, 2),
BPF_JMP_REG(BPF_JGE, R1, R2, 2),
BPF_LD_IMM64(R0, 0xffffffffffffffffULL),
BPF_LD_IMM64(R0, 0xeeeeeeeeeeeeeeeeULL),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xeeeeeeeeU } },
},
{
"JMP_JGE_X: ldimm64 test 2",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_LD_IMM64(R2, 2),
BPF_JMP_REG(BPF_JGE, R1, R2, 0),
BPF_LD_IMM64(R0, 0xffffffffffffffffULL),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffffffffU } },
},
{
"JMP_JGE_X: ldimm64 test 3",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_LD_IMM64(R1, 3),
BPF_LD_IMM64(R2, 2),
BPF_JMP_REG(BPF_JGE, R1, R2, 4),
BPF_LD_IMM64(R0, 0xffffffffffffffffULL),
BPF_LD_IMM64(R0, 0xeeeeeeeeeeeeeeeeULL),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JLE_X: ldimm64 test 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_LD_IMM64(R2, 2),
BPF_JMP_REG(BPF_JLE, R2, R1, 2),
BPF_LD_IMM64(R0, 0xffffffffffffffffULL),
BPF_LD_IMM64(R0, 0xeeeeeeeeeeeeeeeeULL),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xeeeeeeeeU } },
},
{
"JMP_JLE_X: ldimm64 test 2",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_LD_IMM64(R2, 2),
BPF_JMP_REG(BPF_JLE, R2, R1, 0),
BPF_LD_IMM64(R0, 0xffffffffffffffffULL),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xffffffffU } },
},
{
"JMP_JLE_X: ldimm64 test 3",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_LD_IMM64(R1, 3),
BPF_LD_IMM64(R2, 2),
BPF_JMP_REG(BPF_JLE, R2, R1, 4),
BPF_LD_IMM64(R0, 0xffffffffffffffffULL),
BPF_LD_IMM64(R0, 0xeeeeeeeeeeeeeeeeULL),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JNE | BPF_X */
{
"JMP_JNE_X: if (3 != 2) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_LD_IMM64(R2, 2),
BPF_JMP_REG(BPF_JNE, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JEQ | BPF_X */
{
"JMP_JEQ_X: if (3 == 3) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_LD_IMM64(R2, 3),
BPF_JMP_REG(BPF_JEQ, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
/* BPF_JMP | BPF_JSET | BPF_X */
{
"JMP_JSET_X: if (0x3 & 0x2) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_LD_IMM64(R2, 2),
BPF_JMP_REG(BPF_JSET, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JSET_X: if (0x3 & 0xffffffff) return 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 0),
BPF_LD_IMM64(R1, 3),
BPF_LD_IMM64(R2, 0xffffffff),
BPF_JMP_REG(BPF_JSET, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JMP_JA: Jump, gap, jump, ...",
{ },
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 0xababcbac } },
.fill_helper = bpf_fill_ja,
},
{ /* Mainly checking JIT here. */
"BPF_MAXINSNS: Maximum possible literals",
{ },
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 0xffffffff } },
.fill_helper = bpf_fill_maxinsns1,
},
{ /* Mainly checking JIT here. */
"BPF_MAXINSNS: Single literal",
{ },
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 0xfefefefe } },
.fill_helper = bpf_fill_maxinsns2,
},
{ /* Mainly checking JIT here. */
"BPF_MAXINSNS: Run/add until end",
{ },
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 0x947bf368 } },
.fill_helper = bpf_fill_maxinsns3,
},
{
"BPF_MAXINSNS: Too many instructions",
{ },
CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
{ },
{ },
.fill_helper = bpf_fill_maxinsns4,
.expected_errcode = -EINVAL,
},
{ /* Mainly checking JIT here. */
"BPF_MAXINSNS: Very long jump",
{ },
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 0xabababab } },
.fill_helper = bpf_fill_maxinsns5,
},
{ /* Mainly checking JIT here. */
"BPF_MAXINSNS: Ctx heavy transformations",
{ },
CLASSIC,
{ },
{
{ 1, SKB_VLAN_PRESENT },
{ 10, SKB_VLAN_PRESENT }
},
.fill_helper = bpf_fill_maxinsns6,
},
{ /* Mainly checking JIT here. */
"BPF_MAXINSNS: Call heavy transformations",
{ },
CLASSIC | FLAG_NO_DATA,
{ },
{ { 1, 0 }, { 10, 0 } },
.fill_helper = bpf_fill_maxinsns7,
},
{ /* Mainly checking JIT here. */
"BPF_MAXINSNS: Jump heavy test",
{ },
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 0xffffffff } },
.fill_helper = bpf_fill_maxinsns8,
},
{ /* Mainly checking JIT here. */
"BPF_MAXINSNS: Very long jump backwards",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 0xcbababab } },
.fill_helper = bpf_fill_maxinsns9,
},
{ /* Mainly checking JIT here. */
"BPF_MAXINSNS: Edge hopping nuthouse",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 0xabababac } },
.fill_helper = bpf_fill_maxinsns10,
},
{
"BPF_MAXINSNS: Jump, gap, jump, ...",
{ },
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 0xababcbac } },
.fill_helper = bpf_fill_maxinsns11,
},
{
"BPF_MAXINSNS: jump over MSH",
{ },
CLASSIC | FLAG_EXPECTED_FAIL,
{ 0xfa, 0xfb, 0xfc, 0xfd, },
{ { 4, 0xabababab } },
.fill_helper = bpf_fill_maxinsns12,
.expected_errcode = -EINVAL,
},
{
"BPF_MAXINSNS: exec all MSH",
{ },
CLASSIC,
{ 0xfa, 0xfb, 0xfc, 0xfd, },
{ { 4, 0xababab83 } },
.fill_helper = bpf_fill_maxinsns13,
},
{
"BPF_MAXINSNS: ld_abs+get_processor_id",
{ },
CLASSIC,
{ },
{ { 1, 0xbee } },
.fill_helper = bpf_fill_ld_abs_get_processor_id,
},
/*
* LD_IND / LD_ABS on fragmented SKBs
*/
{
"LD_IND byte frag",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x40),
BPF_STMT(BPF_LD | BPF_IND | BPF_B, 0x0),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_SKB_FRAG,
{ },
{ {0x40, 0x42} },
.frag_data = {
0x42, 0x00, 0x00, 0x00,
0x43, 0x44, 0x00, 0x00,
0x21, 0x07, 0x19, 0x83,
},
},
{
"LD_IND halfword frag",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x40),
BPF_STMT(BPF_LD | BPF_IND | BPF_H, 0x4),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_SKB_FRAG,
{ },
{ {0x40, 0x4344} },
.frag_data = {
0x42, 0x00, 0x00, 0x00,
0x43, 0x44, 0x00, 0x00,
0x21, 0x07, 0x19, 0x83,
},
},
{
"LD_IND word frag",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x40),
BPF_STMT(BPF_LD | BPF_IND | BPF_W, 0x8),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_SKB_FRAG,
{ },
{ {0x40, 0x21071983} },
.frag_data = {
0x42, 0x00, 0x00, 0x00,
0x43, 0x44, 0x00, 0x00,
0x21, 0x07, 0x19, 0x83,
},
},
{
"LD_IND halfword mixed head/frag",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x40),
BPF_STMT(BPF_LD | BPF_IND | BPF_H, -0x1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_SKB_FRAG,
{ [0x3e] = 0x25, [0x3f] = 0x05, },
{ {0x40, 0x0519} },
.frag_data = { 0x19, 0x82 },
},
{
"LD_IND word mixed head/frag",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x40),
BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x2),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_SKB_FRAG,
{ [0x3e] = 0x25, [0x3f] = 0x05, },
{ {0x40, 0x25051982} },
.frag_data = { 0x19, 0x82 },
},
{
"LD_ABS byte frag",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_B, 0x40),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_SKB_FRAG,
{ },
{ {0x40, 0x42} },
.frag_data = {
0x42, 0x00, 0x00, 0x00,
0x43, 0x44, 0x00, 0x00,
0x21, 0x07, 0x19, 0x83,
},
},
{
"LD_ABS halfword frag",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x44),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_SKB_FRAG,
{ },
{ {0x40, 0x4344} },
.frag_data = {
0x42, 0x00, 0x00, 0x00,
0x43, 0x44, 0x00, 0x00,
0x21, 0x07, 0x19, 0x83,
},
},
{
"LD_ABS word frag",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x48),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_SKB_FRAG,
{ },
{ {0x40, 0x21071983} },
.frag_data = {
0x42, 0x00, 0x00, 0x00,
0x43, 0x44, 0x00, 0x00,
0x21, 0x07, 0x19, 0x83,
},
},
{
"LD_ABS halfword mixed head/frag",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x3f),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_SKB_FRAG,
{ [0x3e] = 0x25, [0x3f] = 0x05, },
{ {0x40, 0x0519} },
.frag_data = { 0x19, 0x82 },
},
{
"LD_ABS word mixed head/frag",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x3e),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_SKB_FRAG,
{ [0x3e] = 0x25, [0x3f] = 0x05, },
{ {0x40, 0x25051982} },
.frag_data = { 0x19, 0x82 },
},
/*
* LD_IND / LD_ABS on non fragmented SKBs
*/
{
/*
* this tests that the JIT/interpreter correctly resets X
* before using it in an LD_IND instruction.
*/
"LD_IND byte default X",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IND | BPF_B, 0x1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x1] = 0x42 },
{ {0x40, 0x42 } },
},
{
"LD_IND byte positive offset",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
BPF_STMT(BPF_LD | BPF_IND | BPF_B, 0x1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x40, 0x82 } },
},
{
"LD_IND byte negative offset",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
BPF_STMT(BPF_LD | BPF_IND | BPF_B, -0x1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x40, 0x05 } },
},
{
"LD_IND byte positive offset, all ff",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
BPF_STMT(BPF_LD | BPF_IND | BPF_B, 0x1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff },
{ {0x40, 0xff } },
},
{
"LD_IND byte positive offset, out of bounds",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
BPF_STMT(BPF_LD | BPF_IND | BPF_B, 0x1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x3f, 0 }, },
},
{
"LD_IND byte negative offset, out of bounds",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
BPF_STMT(BPF_LD | BPF_IND | BPF_B, -0x3f),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x3f, 0 } },
},
{
"LD_IND byte negative offset, multiple calls",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x3b),
BPF_STMT(BPF_LD | BPF_IND | BPF_B, SKF_LL_OFF + 1),
BPF_STMT(BPF_LD | BPF_IND | BPF_B, SKF_LL_OFF + 2),
BPF_STMT(BPF_LD | BPF_IND | BPF_B, SKF_LL_OFF + 3),
BPF_STMT(BPF_LD | BPF_IND | BPF_B, SKF_LL_OFF + 4),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x40, 0x82 }, },
},
{
"LD_IND halfword positive offset",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x20),
BPF_STMT(BPF_LD | BPF_IND | BPF_H, 0x2),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{
[0x1c] = 0xaa, [0x1d] = 0x55,
[0x1e] = 0xbb, [0x1f] = 0x66,
[0x20] = 0xcc, [0x21] = 0x77,
[0x22] = 0xdd, [0x23] = 0x88,
},
{ {0x40, 0xdd88 } },
},
{
"LD_IND halfword negative offset",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x20),
BPF_STMT(BPF_LD | BPF_IND | BPF_H, -0x2),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{
[0x1c] = 0xaa, [0x1d] = 0x55,
[0x1e] = 0xbb, [0x1f] = 0x66,
[0x20] = 0xcc, [0x21] = 0x77,
[0x22] = 0xdd, [0x23] = 0x88,
},
{ {0x40, 0xbb66 } },
},
{
"LD_IND halfword unaligned",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x20),
BPF_STMT(BPF_LD | BPF_IND | BPF_H, -0x1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{
[0x1c] = 0xaa, [0x1d] = 0x55,
[0x1e] = 0xbb, [0x1f] = 0x66,
[0x20] = 0xcc, [0x21] = 0x77,
[0x22] = 0xdd, [0x23] = 0x88,
},
{ {0x40, 0x66cc } },
},
{
"LD_IND halfword positive offset, all ff",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x3d),
BPF_STMT(BPF_LD | BPF_IND | BPF_H, 0x1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff },
{ {0x40, 0xffff } },
},
{
"LD_IND halfword positive offset, out of bounds",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
BPF_STMT(BPF_LD | BPF_IND | BPF_H, 0x1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x3f, 0 }, },
},
{
"LD_IND halfword negative offset, out of bounds",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
BPF_STMT(BPF_LD | BPF_IND | BPF_H, -0x3f),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x3f, 0 } },
},
{
"LD_IND word positive offset",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x20),
BPF_STMT(BPF_LD | BPF_IND | BPF_W, 0x4),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{
[0x1c] = 0xaa, [0x1d] = 0x55,
[0x1e] = 0xbb, [0x1f] = 0x66,
[0x20] = 0xcc, [0x21] = 0x77,
[0x22] = 0xdd, [0x23] = 0x88,
[0x24] = 0xee, [0x25] = 0x99,
[0x26] = 0xff, [0x27] = 0xaa,
},
{ {0x40, 0xee99ffaa } },
},
{
"LD_IND word negative offset",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x20),
BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x4),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{
[0x1c] = 0xaa, [0x1d] = 0x55,
[0x1e] = 0xbb, [0x1f] = 0x66,
[0x20] = 0xcc, [0x21] = 0x77,
[0x22] = 0xdd, [0x23] = 0x88,
[0x24] = 0xee, [0x25] = 0x99,
[0x26] = 0xff, [0x27] = 0xaa,
},
{ {0x40, 0xaa55bb66 } },
},
{
"LD_IND word unaligned (addr & 3 == 2)",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x20),
BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x2),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{
[0x1c] = 0xaa, [0x1d] = 0x55,
[0x1e] = 0xbb, [0x1f] = 0x66,
[0x20] = 0xcc, [0x21] = 0x77,
[0x22] = 0xdd, [0x23] = 0x88,
[0x24] = 0xee, [0x25] = 0x99,
[0x26] = 0xff, [0x27] = 0xaa,
},
{ {0x40, 0xbb66cc77 } },
},
{
"LD_IND word unaligned (addr & 3 == 1)",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x20),
BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x3),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{
[0x1c] = 0xaa, [0x1d] = 0x55,
[0x1e] = 0xbb, [0x1f] = 0x66,
[0x20] = 0xcc, [0x21] = 0x77,
[0x22] = 0xdd, [0x23] = 0x88,
[0x24] = 0xee, [0x25] = 0x99,
[0x26] = 0xff, [0x27] = 0xaa,
},
{ {0x40, 0x55bb66cc } },
},
{
"LD_IND word unaligned (addr & 3 == 3)",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x20),
BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{
[0x1c] = 0xaa, [0x1d] = 0x55,
[0x1e] = 0xbb, [0x1f] = 0x66,
[0x20] = 0xcc, [0x21] = 0x77,
[0x22] = 0xdd, [0x23] = 0x88,
[0x24] = 0xee, [0x25] = 0x99,
[0x26] = 0xff, [0x27] = 0xaa,
},
{ {0x40, 0x66cc77dd } },
},
{
"LD_IND word positive offset, all ff",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x3b),
BPF_STMT(BPF_LD | BPF_IND | BPF_W, 0x1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff },
{ {0x40, 0xffffffff } },
},
{
"LD_IND word positive offset, out of bounds",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
BPF_STMT(BPF_LD | BPF_IND | BPF_W, 0x1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x3f, 0 }, },
},
{
"LD_IND word negative offset, out of bounds",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x3f),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x3f, 0 } },
},
{
"LD_ABS byte",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_B, 0x20),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{
[0x1c] = 0xaa, [0x1d] = 0x55,
[0x1e] = 0xbb, [0x1f] = 0x66,
[0x20] = 0xcc, [0x21] = 0x77,
[0x22] = 0xdd, [0x23] = 0x88,
[0x24] = 0xee, [0x25] = 0x99,
[0x26] = 0xff, [0x27] = 0xaa,
},
{ {0x40, 0xcc } },
},
{
"LD_ABS byte positive offset, all ff",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_B, 0x3f),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff },
{ {0x40, 0xff } },
},
{
"LD_ABS byte positive offset, out of bounds",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_B, 0x3f),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x3f, 0 }, },
},
{
"LD_ABS byte negative offset, out of bounds load",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_B, -1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_EXPECTED_FAIL,
.expected_errcode = -EINVAL,
},
{
"LD_ABS byte negative offset, in bounds",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3f),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x40, 0x82 }, },
},
{
"LD_ABS byte negative offset, out of bounds",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3f),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x3f, 0 }, },
},
{
"LD_ABS byte negative offset, multiple calls",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3c),
BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3d),
BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3e),
BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3f),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x40, 0x82 }, },
},
{
"LD_ABS halfword",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x22),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{
[0x1c] = 0xaa, [0x1d] = 0x55,
[0x1e] = 0xbb, [0x1f] = 0x66,
[0x20] = 0xcc, [0x21] = 0x77,
[0x22] = 0xdd, [0x23] = 0x88,
[0x24] = 0xee, [0x25] = 0x99,
[0x26] = 0xff, [0x27] = 0xaa,
},
{ {0x40, 0xdd88 } },
},
{
"LD_ABS halfword unaligned",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x25),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{
[0x1c] = 0xaa, [0x1d] = 0x55,
[0x1e] = 0xbb, [0x1f] = 0x66,
[0x20] = 0xcc, [0x21] = 0x77,
[0x22] = 0xdd, [0x23] = 0x88,
[0x24] = 0xee, [0x25] = 0x99,
[0x26] = 0xff, [0x27] = 0xaa,
},
{ {0x40, 0x99ff } },
},
{
"LD_ABS halfword positive offset, all ff",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x3e),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff },
{ {0x40, 0xffff } },
},
{
"LD_ABS halfword positive offset, out of bounds",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x3f),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x3f, 0 }, },
},
{
"LD_ABS halfword negative offset, out of bounds load",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_H, -1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_EXPECTED_FAIL,
.expected_errcode = -EINVAL,
},
{
"LD_ABS halfword negative offset, in bounds",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_H, SKF_LL_OFF + 0x3e),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x40, 0x1982 }, },
},
{
"LD_ABS halfword negative offset, out of bounds",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_H, SKF_LL_OFF + 0x3e),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x3f, 0 }, },
},
{
"LD_ABS word",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x1c),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{
[0x1c] = 0xaa, [0x1d] = 0x55,
[0x1e] = 0xbb, [0x1f] = 0x66,
[0x20] = 0xcc, [0x21] = 0x77,
[0x22] = 0xdd, [0x23] = 0x88,
[0x24] = 0xee, [0x25] = 0x99,
[0x26] = 0xff, [0x27] = 0xaa,
},
{ {0x40, 0xaa55bb66 } },
},
{
"LD_ABS word unaligned (addr & 3 == 2)",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x22),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{
[0x1c] = 0xaa, [0x1d] = 0x55,
[0x1e] = 0xbb, [0x1f] = 0x66,
[0x20] = 0xcc, [0x21] = 0x77,
[0x22] = 0xdd, [0x23] = 0x88,
[0x24] = 0xee, [0x25] = 0x99,
[0x26] = 0xff, [0x27] = 0xaa,
},
{ {0x40, 0xdd88ee99 } },
},
{
"LD_ABS word unaligned (addr & 3 == 1)",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x21),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{
[0x1c] = 0xaa, [0x1d] = 0x55,
[0x1e] = 0xbb, [0x1f] = 0x66,
[0x20] = 0xcc, [0x21] = 0x77,
[0x22] = 0xdd, [0x23] = 0x88,
[0x24] = 0xee, [0x25] = 0x99,
[0x26] = 0xff, [0x27] = 0xaa,
},
{ {0x40, 0x77dd88ee } },
},
{
"LD_ABS word unaligned (addr & 3 == 3)",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x23),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{
[0x1c] = 0xaa, [0x1d] = 0x55,
[0x1e] = 0xbb, [0x1f] = 0x66,
[0x20] = 0xcc, [0x21] = 0x77,
[0x22] = 0xdd, [0x23] = 0x88,
[0x24] = 0xee, [0x25] = 0x99,
[0x26] = 0xff, [0x27] = 0xaa,
},
{ {0x40, 0x88ee99ff } },
},
{
"LD_ABS word positive offset, all ff",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x3c),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff },
{ {0x40, 0xffffffff } },
},
{
"LD_ABS word positive offset, out of bounds",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x3f),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x3f, 0 }, },
},
{
"LD_ABS word negative offset, out of bounds load",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_W, -1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_EXPECTED_FAIL,
.expected_errcode = -EINVAL,
},
{
"LD_ABS word negative offset, in bounds",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_W, SKF_LL_OFF + 0x3c),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x40, 0x25051982 }, },
},
{
"LD_ABS word negative offset, out of bounds",
.u.insns = {
BPF_STMT(BPF_LD | BPF_ABS | BPF_W, SKF_LL_OFF + 0x3c),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x3f, 0 }, },
},
{
"LDX_MSH standalone, preserved A",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa),
BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3c),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x40, 0xffeebbaa }, },
},
{
"LDX_MSH standalone, preserved A 2",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 0x175e9d63),
BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3c),
BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3d),
BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3e),
BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3f),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x40, 0x175e9d63 }, },
},
{
"LDX_MSH standalone, test result 1",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa),
BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3c),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x40, 0x14 }, },
},
{
"LDX_MSH standalone, test result 2",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa),
BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3e),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x40, 0x24 }, },
},
{
"LDX_MSH standalone, negative offset",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa),
BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, -1),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x40, 0 }, },
},
{
"LDX_MSH standalone, negative offset 2",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa),
BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, SKF_LL_OFF + 0x3e),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x40, 0x24 }, },
},
{
"LDX_MSH standalone, out of bounds",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa),
BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x40),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC,
{ [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
{ {0x40, 0 }, },
},
/*
* verify that the interpreter or JIT correctly sets A and X
* to 0.
*/
{
"ADD default X",
.u.insns = {
/*
* A = 0x42
* A = A + X
* ret A
*/
BPF_STMT(BPF_LD | BPF_IMM, 0x42),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_NO_DATA,
{},
{ {0x1, 0x42 } },
},
{
"ADD default A",
.u.insns = {
/*
* A = A + 0x42
* ret A
*/
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 0x42),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_NO_DATA,
{},
{ {0x1, 0x42 } },
},
{
"SUB default X",
.u.insns = {
/*
* A = 0x66
* A = A - X
* ret A
*/
BPF_STMT(BPF_LD | BPF_IMM, 0x66),
BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_NO_DATA,
{},
{ {0x1, 0x66 } },
},
{
"SUB default A",
.u.insns = {
/*
* A = A - -0x66
* ret A
*/
BPF_STMT(BPF_ALU | BPF_SUB | BPF_K, -0x66),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_NO_DATA,
{},
{ {0x1, 0x66 } },
},
{
"MUL default X",
.u.insns = {
/*
* A = 0x42
* A = A * X
* ret A
*/
BPF_STMT(BPF_LD | BPF_IMM, 0x42),
BPF_STMT(BPF_ALU | BPF_MUL | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_NO_DATA,
{},
{ {0x1, 0x0 } },
},
{
"MUL default A",
.u.insns = {
/*
* A = A * 0x66
* ret A
*/
BPF_STMT(BPF_ALU | BPF_MUL | BPF_K, 0x66),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_NO_DATA,
{},
{ {0x1, 0x0 } },
},
{
"DIV default X",
.u.insns = {
/*
* A = 0x42
* A = A / X ; this halt the filter execution if X is 0
* ret 0x42
*/
BPF_STMT(BPF_LD | BPF_IMM, 0x42),
BPF_STMT(BPF_ALU | BPF_DIV | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_K, 0x42),
},
CLASSIC | FLAG_NO_DATA,
{},
{ {0x1, 0x0 } },
},
{
"DIV default A",
.u.insns = {
/*
* A = A / 1
* ret A
*/
BPF_STMT(BPF_ALU | BPF_DIV | BPF_K, 0x1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_NO_DATA,
{},
{ {0x1, 0x0 } },
},
{
"MOD default X",
.u.insns = {
/*
* A = 0x42
* A = A mod X ; this halt the filter execution if X is 0
* ret 0x42
*/
BPF_STMT(BPF_LD | BPF_IMM, 0x42),
BPF_STMT(BPF_ALU | BPF_MOD | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_K, 0x42),
},
CLASSIC | FLAG_NO_DATA,
{},
{ {0x1, 0x0 } },
},
{
"MOD default A",
.u.insns = {
/*
* A = A mod 1
* ret A
*/
BPF_STMT(BPF_ALU | BPF_MOD | BPF_K, 0x1),
BPF_STMT(BPF_RET | BPF_A, 0x0),
},
CLASSIC | FLAG_NO_DATA,
{},
{ {0x1, 0x0 } },
},
{
"JMP EQ default A",
.u.insns = {
/*
* cmp A, 0x0, 0, 1
* ret 0x42
* ret 0x66
*/
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x0, 0, 1),
BPF_STMT(BPF_RET | BPF_K, 0x42),
BPF_STMT(BPF_RET | BPF_K, 0x66),
},
CLASSIC | FLAG_NO_DATA,
{},
{ {0x1, 0x42 } },
},
{
"JMP EQ default X",
.u.insns = {
/*
* A = 0x0
* cmp A, X, 0, 1
* ret 0x42
* ret 0x66
*/
BPF_STMT(BPF_LD | BPF_IMM, 0x0),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_X, 0x0, 0, 1),
BPF_STMT(BPF_RET | BPF_K, 0x42),
BPF_STMT(BPF_RET | BPF_K, 0x66),
},
CLASSIC | FLAG_NO_DATA,
{},
{ {0x1, 0x42 } },
},
/* Checking interpreter vs JIT wrt signed extended imms. */
{
"JNE signed compare, test 1",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R1, 0xfefbbc12),
BPF_ALU32_IMM(BPF_MOV, R3, 0xffff0000),
BPF_MOV64_REG(R2, R1),
BPF_ALU64_REG(BPF_AND, R2, R3),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_JMP_IMM(BPF_JNE, R2, -17104896, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JNE signed compare, test 2",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R1, 0xfefbbc12),
BPF_ALU32_IMM(BPF_MOV, R3, 0xffff0000),
BPF_MOV64_REG(R2, R1),
BPF_ALU64_REG(BPF_AND, R2, R3),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_JMP_IMM(BPF_JNE, R2, 0xfefb0000, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JNE signed compare, test 3",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R1, 0xfefbbc12),
BPF_ALU32_IMM(BPF_MOV, R3, 0xffff0000),
BPF_ALU32_IMM(BPF_MOV, R4, 0xfefb0000),
BPF_MOV64_REG(R2, R1),
BPF_ALU64_REG(BPF_AND, R2, R3),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_JMP_REG(BPF_JNE, R2, R4, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"JNE signed compare, test 4",
.u.insns_int = {
BPF_LD_IMM64(R1, -17104896),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_JMP_IMM(BPF_JNE, R1, -17104896, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"JNE signed compare, test 5",
.u.insns_int = {
BPF_LD_IMM64(R1, 0xfefb0000),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_JMP_IMM(BPF_JNE, R1, 0xfefb0000, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } },
},
{
"JNE signed compare, test 6",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x7efb0000),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_JMP_IMM(BPF_JNE, R1, 0x7efb0000, 1),
BPF_ALU32_IMM(BPF_MOV, R0, 2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2 } },
},
{
"JNE signed compare, test 7",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 0xffff0000),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_IMM, 0xfefbbc12),
BPF_STMT(BPF_ALU | BPF_AND | BPF_X, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0xfefb0000, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 1),
BPF_STMT(BPF_RET | BPF_K, 2),
},
CLASSIC | FLAG_NO_DATA,
{},
{ { 0, 2 } },
},
/* BPF_LDX_MEM with operand aliasing */
{
"LDX_MEM_B: operand register aliasing",
.u.insns_int = {
BPF_ST_MEM(BPF_B, R10, -8, 123),
BPF_MOV64_REG(R0, R10),
BPF_LDX_MEM(BPF_B, R0, R0, -8),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 123 } },
.stack_depth = 8,
},
{
"LDX_MEM_H: operand register aliasing",
.u.insns_int = {
BPF_ST_MEM(BPF_H, R10, -8, 12345),
BPF_MOV64_REG(R0, R10),
BPF_LDX_MEM(BPF_H, R0, R0, -8),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 12345 } },
.stack_depth = 8,
},
{
"LDX_MEM_W: operand register aliasing",
.u.insns_int = {
BPF_ST_MEM(BPF_W, R10, -8, 123456789),
BPF_MOV64_REG(R0, R10),
BPF_LDX_MEM(BPF_W, R0, R0, -8),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 123456789 } },
.stack_depth = 8,
},
{
"LDX_MEM_DW: operand register aliasing",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x123456789abcdefULL),
BPF_STX_MEM(BPF_DW, R10, R1, -8),
BPF_MOV64_REG(R0, R10),
BPF_LDX_MEM(BPF_DW, R0, R0, -8),
BPF_ALU64_REG(BPF_SUB, R0, R1),
BPF_MOV64_REG(R1, R0),
BPF_ALU64_IMM(BPF_RSH, R1, 32),
BPF_ALU64_REG(BPF_OR, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 8,
},
/*
* Register (non-)clobbering tests for the case where a JIT implements
* complex ALU or ATOMIC operations via function calls. If so, the
* function call must be transparent to the eBPF registers. The JIT
* must therefore save and restore relevant registers across the call.
* The following tests check that the eBPF registers retain their
* values after such an operation. Mainly intended for complex ALU
* and atomic operation, but we run it for all. You never know...
*
* Note that each operations should be tested twice with different
* destinations, to check preservation for all registers.
*/
#define BPF_TEST_CLOBBER_ALU(alu, op, dst, src) \
{ \
#alu "_" #op " to " #dst ": no clobbering", \
.u.insns_int = { \
BPF_ALU64_IMM(BPF_MOV, R0, R0), \
BPF_ALU64_IMM(BPF_MOV, R1, R1), \
BPF_ALU64_IMM(BPF_MOV, R2, R2), \
BPF_ALU64_IMM(BPF_MOV, R3, R3), \
BPF_ALU64_IMM(BPF_MOV, R4, R4), \
BPF_ALU64_IMM(BPF_MOV, R5, R5), \
BPF_ALU64_IMM(BPF_MOV, R6, R6), \
BPF_ALU64_IMM(BPF_MOV, R7, R7), \
BPF_ALU64_IMM(BPF_MOV, R8, R8), \
BPF_ALU64_IMM(BPF_MOV, R9, R9), \
BPF_##alu(BPF_ ##op, dst, src), \
BPF_ALU32_IMM(BPF_MOV, dst, dst), \
BPF_JMP_IMM(BPF_JNE, R0, R0, 10), \
BPF_JMP_IMM(BPF_JNE, R1, R1, 9), \
BPF_JMP_IMM(BPF_JNE, R2, R2, 8), \
BPF_JMP_IMM(BPF_JNE, R3, R3, 7), \
BPF_JMP_IMM(BPF_JNE, R4, R4, 6), \
BPF_JMP_IMM(BPF_JNE, R5, R5, 5), \
BPF_JMP_IMM(BPF_JNE, R6, R6, 4), \
BPF_JMP_IMM(BPF_JNE, R7, R7, 3), \
BPF_JMP_IMM(BPF_JNE, R8, R8, 2), \
BPF_JMP_IMM(BPF_JNE, R9, R9, 1), \
BPF_ALU64_IMM(BPF_MOV, R0, 1), \
BPF_EXIT_INSN(), \
}, \
INTERNAL, \
{ }, \
{ { 0, 1 } } \
}
/* ALU64 operations, register clobbering */
BPF_TEST_CLOBBER_ALU(ALU64_IMM, AND, R8, 123456789),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, AND, R9, 123456789),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, OR, R8, 123456789),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, OR, R9, 123456789),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, XOR, R8, 123456789),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, XOR, R9, 123456789),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, LSH, R8, 12),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, LSH, R9, 12),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, RSH, R8, 12),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, RSH, R9, 12),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, ARSH, R8, 12),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, ARSH, R9, 12),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, ADD, R8, 123456789),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, ADD, R9, 123456789),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, SUB, R8, 123456789),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, SUB, R9, 123456789),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, MUL, R8, 123456789),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, MUL, R9, 123456789),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, DIV, R8, 123456789),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, DIV, R9, 123456789),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, MOD, R8, 123456789),
BPF_TEST_CLOBBER_ALU(ALU64_IMM, MOD, R9, 123456789),
/* ALU32 immediate operations, register clobbering */
BPF_TEST_CLOBBER_ALU(ALU32_IMM, AND, R8, 123456789),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, AND, R9, 123456789),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, OR, R8, 123456789),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, OR, R9, 123456789),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, XOR, R8, 123456789),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, XOR, R9, 123456789),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, LSH, R8, 12),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, LSH, R9, 12),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, RSH, R8, 12),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, RSH, R9, 12),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, ARSH, R8, 12),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, ARSH, R9, 12),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, ADD, R8, 123456789),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, ADD, R9, 123456789),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, SUB, R8, 123456789),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, SUB, R9, 123456789),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, MUL, R8, 123456789),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, MUL, R9, 123456789),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, DIV, R8, 123456789),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, DIV, R9, 123456789),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, MOD, R8, 123456789),
BPF_TEST_CLOBBER_ALU(ALU32_IMM, MOD, R9, 123456789),
/* ALU64 register operations, register clobbering */
BPF_TEST_CLOBBER_ALU(ALU64_REG, AND, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, AND, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, OR, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, OR, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, XOR, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, XOR, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, LSH, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, LSH, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, RSH, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, RSH, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, ARSH, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, ARSH, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, ADD, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, ADD, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, SUB, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, SUB, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, MUL, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, MUL, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, DIV, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, DIV, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, MOD, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU64_REG, MOD, R9, R1),
/* ALU32 register operations, register clobbering */
BPF_TEST_CLOBBER_ALU(ALU32_REG, AND, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, AND, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, OR, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, OR, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, XOR, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, XOR, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, LSH, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, LSH, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, RSH, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, RSH, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, ARSH, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, ARSH, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, ADD, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, ADD, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, SUB, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, SUB, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, MUL, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, MUL, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, DIV, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, DIV, R9, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, MOD, R8, R1),
BPF_TEST_CLOBBER_ALU(ALU32_REG, MOD, R9, R1),
#undef BPF_TEST_CLOBBER_ALU
#define BPF_TEST_CLOBBER_ATOMIC(width, op) \
{ \
"Atomic_" #width " " #op ": no clobbering", \
.u.insns_int = { \
BPF_ALU64_IMM(BPF_MOV, R0, 0), \
BPF_ALU64_IMM(BPF_MOV, R1, 1), \
BPF_ALU64_IMM(BPF_MOV, R2, 2), \
BPF_ALU64_IMM(BPF_MOV, R3, 3), \
BPF_ALU64_IMM(BPF_MOV, R4, 4), \
BPF_ALU64_IMM(BPF_MOV, R5, 5), \
BPF_ALU64_IMM(BPF_MOV, R6, 6), \
BPF_ALU64_IMM(BPF_MOV, R7, 7), \
BPF_ALU64_IMM(BPF_MOV, R8, 8), \
BPF_ALU64_IMM(BPF_MOV, R9, 9), \
BPF_ST_MEM(width, R10, -8, \
(op) == BPF_CMPXCHG ? 0 : \
(op) & BPF_FETCH ? 1 : 0), \
BPF_ATOMIC_OP(width, op, R10, R1, -8), \
BPF_JMP_IMM(BPF_JNE, R0, 0, 10), \
BPF_JMP_IMM(BPF_JNE, R1, 1, 9), \
BPF_JMP_IMM(BPF_JNE, R2, 2, 8), \
BPF_JMP_IMM(BPF_JNE, R3, 3, 7), \
BPF_JMP_IMM(BPF_JNE, R4, 4, 6), \
BPF_JMP_IMM(BPF_JNE, R5, 5, 5), \
BPF_JMP_IMM(BPF_JNE, R6, 6, 4), \
BPF_JMP_IMM(BPF_JNE, R7, 7, 3), \
BPF_JMP_IMM(BPF_JNE, R8, 8, 2), \
BPF_JMP_IMM(BPF_JNE, R9, 9, 1), \
BPF_ALU64_IMM(BPF_MOV, R0, 1), \
BPF_EXIT_INSN(), \
}, \
INTERNAL, \
{ }, \
{ { 0, 1 } }, \
.stack_depth = 8, \
}
/* 64-bit atomic operations, register clobbering */
BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_ADD),
BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_AND),
BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_OR),
BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_XOR),
BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_ADD | BPF_FETCH),
BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_AND | BPF_FETCH),
BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_OR | BPF_FETCH),
BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_XOR | BPF_FETCH),
BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_XCHG),
BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_CMPXCHG),
/* 32-bit atomic operations, register clobbering */
BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_ADD),
BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_AND),
BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_OR),
BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_XOR),
BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_ADD | BPF_FETCH),
BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_AND | BPF_FETCH),
BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_OR | BPF_FETCH),
BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_XOR | BPF_FETCH),
BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_XCHG),
BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_CMPXCHG),
#undef BPF_TEST_CLOBBER_ATOMIC
/* Checking that ALU32 src is not zero extended in place */
#define BPF_ALU32_SRC_ZEXT(op) \
{ \
"ALU32_" #op "_X: src preserved in zext", \
.u.insns_int = { \
BPF_LD_IMM64(R1, 0x0123456789acbdefULL),\
BPF_LD_IMM64(R2, 0xfedcba9876543210ULL),\
BPF_ALU64_REG(BPF_MOV, R0, R1), \
BPF_ALU32_REG(BPF_##op, R2, R1), \
BPF_ALU64_REG(BPF_SUB, R0, R1), \
BPF_ALU64_REG(BPF_MOV, R1, R0), \
BPF_ALU64_IMM(BPF_RSH, R1, 32), \
BPF_ALU64_REG(BPF_OR, R0, R1), \
BPF_EXIT_INSN(), \
}, \
INTERNAL, \
{ }, \
{ { 0, 0 } }, \
}
BPF_ALU32_SRC_ZEXT(MOV),
BPF_ALU32_SRC_ZEXT(AND),
BPF_ALU32_SRC_ZEXT(OR),
BPF_ALU32_SRC_ZEXT(XOR),
BPF_ALU32_SRC_ZEXT(ADD),
BPF_ALU32_SRC_ZEXT(SUB),
BPF_ALU32_SRC_ZEXT(MUL),
BPF_ALU32_SRC_ZEXT(DIV),
BPF_ALU32_SRC_ZEXT(MOD),
#undef BPF_ALU32_SRC_ZEXT
/* Checking that ATOMIC32 src is not zero extended in place */
#define BPF_ATOMIC32_SRC_ZEXT(op) \
{ \
"ATOMIC_W_" #op ": src preserved in zext", \
.u.insns_int = { \
BPF_LD_IMM64(R0, 0x0123456789acbdefULL), \
BPF_ALU64_REG(BPF_MOV, R1, R0), \
BPF_ST_MEM(BPF_W, R10, -4, 0), \
BPF_ATOMIC_OP(BPF_W, BPF_##op, R10, R1, -4), \
BPF_ALU64_REG(BPF_SUB, R0, R1), \
BPF_ALU64_REG(BPF_MOV, R1, R0), \
BPF_ALU64_IMM(BPF_RSH, R1, 32), \
BPF_ALU64_REG(BPF_OR, R0, R1), \
BPF_EXIT_INSN(), \
}, \
INTERNAL, \
{ }, \
{ { 0, 0 } }, \
.stack_depth = 8, \
}
BPF_ATOMIC32_SRC_ZEXT(ADD),
BPF_ATOMIC32_SRC_ZEXT(AND),
BPF_ATOMIC32_SRC_ZEXT(OR),
BPF_ATOMIC32_SRC_ZEXT(XOR),
#undef BPF_ATOMIC32_SRC_ZEXT
/* Checking that CMPXCHG32 src is not zero extended in place */
{
"ATOMIC_W_CMPXCHG: src preserved in zext",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x0123456789acbdefULL),
BPF_ALU64_REG(BPF_MOV, R2, R1),
BPF_ALU64_REG(BPF_MOV, R0, 0),
BPF_ST_MEM(BPF_W, R10, -4, 0),
BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R1, -4),
BPF_ALU64_REG(BPF_SUB, R1, R2),
BPF_ALU64_REG(BPF_MOV, R2, R1),
BPF_ALU64_IMM(BPF_RSH, R2, 32),
BPF_ALU64_REG(BPF_OR, R1, R2),
BPF_ALU64_REG(BPF_MOV, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0 } },
.stack_depth = 8,
},
/* Checking that JMP32 immediate src is not zero extended in place */
#define BPF_JMP32_IMM_ZEXT(op) \
{ \
"JMP32_" #op "_K: operand preserved in zext", \
.u.insns_int = { \
BPF_LD_IMM64(R0, 0x0123456789acbdefULL),\
BPF_ALU64_REG(BPF_MOV, R1, R0), \
BPF_JMP32_IMM(BPF_##op, R0, 1234, 1), \
BPF_JMP_A(0), /* Nop */ \
BPF_ALU64_REG(BPF_SUB, R0, R1), \
BPF_ALU64_REG(BPF_MOV, R1, R0), \
BPF_ALU64_IMM(BPF_RSH, R1, 32), \
BPF_ALU64_REG(BPF_OR, R0, R1), \
BPF_EXIT_INSN(), \
}, \
INTERNAL, \
{ }, \
{ { 0, 0 } }, \
}
BPF_JMP32_IMM_ZEXT(JEQ),
BPF_JMP32_IMM_ZEXT(JNE),
BPF_JMP32_IMM_ZEXT(JSET),
BPF_JMP32_IMM_ZEXT(JGT),
BPF_JMP32_IMM_ZEXT(JGE),
BPF_JMP32_IMM_ZEXT(JLT),
BPF_JMP32_IMM_ZEXT(JLE),
BPF_JMP32_IMM_ZEXT(JSGT),
BPF_JMP32_IMM_ZEXT(JSGE),
BPF_JMP32_IMM_ZEXT(JSGT),
BPF_JMP32_IMM_ZEXT(JSLT),
BPF_JMP32_IMM_ZEXT(JSLE),
#undef BPF_JMP2_IMM_ZEXT
/* Checking that JMP32 dst & src are not zero extended in place */
#define BPF_JMP32_REG_ZEXT(op) \
{ \
"JMP32_" #op "_X: operands preserved in zext", \
.u.insns_int = { \
BPF_LD_IMM64(R0, 0x0123456789acbdefULL),\
BPF_LD_IMM64(R1, 0xfedcba9876543210ULL),\
BPF_ALU64_REG(BPF_MOV, R2, R0), \
BPF_ALU64_REG(BPF_MOV, R3, R1), \
BPF_JMP32_IMM(BPF_##op, R0, R1, 1), \
BPF_JMP_A(0), /* Nop */ \
BPF_ALU64_REG(BPF_SUB, R0, R2), \
BPF_ALU64_REG(BPF_SUB, R1, R3), \
BPF_ALU64_REG(BPF_OR, R0, R1), \
BPF_ALU64_REG(BPF_MOV, R1, R0), \
BPF_ALU64_IMM(BPF_RSH, R1, 32), \
BPF_ALU64_REG(BPF_OR, R0, R1), \
BPF_EXIT_INSN(), \
}, \
INTERNAL, \
{ }, \
{ { 0, 0 } }, \
}
BPF_JMP32_REG_ZEXT(JEQ),
BPF_JMP32_REG_ZEXT(JNE),
BPF_JMP32_REG_ZEXT(JSET),
BPF_JMP32_REG_ZEXT(JGT),
BPF_JMP32_REG_ZEXT(JGE),
BPF_JMP32_REG_ZEXT(JLT),
BPF_JMP32_REG_ZEXT(JLE),
BPF_JMP32_REG_ZEXT(JSGT),
BPF_JMP32_REG_ZEXT(JSGE),
BPF_JMP32_REG_ZEXT(JSGT),
BPF_JMP32_REG_ZEXT(JSLT),
BPF_JMP32_REG_ZEXT(JSLE),
#undef BPF_JMP2_REG_ZEXT
/* ALU64 K register combinations */
{
"ALU64_MOV_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_mov_imm_regs,
},
{
"ALU64_AND_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_and_imm_regs,
},
{
"ALU64_OR_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_or_imm_regs,
},
{
"ALU64_XOR_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_xor_imm_regs,
},
{
"ALU64_LSH_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_lsh_imm_regs,
},
{
"ALU64_RSH_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_rsh_imm_regs,
},
{
"ALU64_ARSH_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_arsh_imm_regs,
},
{
"ALU64_ADD_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_add_imm_regs,
},
{
"ALU64_SUB_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_sub_imm_regs,
},
{
"ALU64_MUL_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_mul_imm_regs,
},
{
"ALU64_DIV_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_div_imm_regs,
},
{
"ALU64_MOD_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_mod_imm_regs,
},
/* ALU32 K registers */
{
"ALU32_MOV_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_mov_imm_regs,
},
{
"ALU32_AND_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_and_imm_regs,
},
{
"ALU32_OR_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_or_imm_regs,
},
{
"ALU32_XOR_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_xor_imm_regs,
},
{
"ALU32_LSH_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_lsh_imm_regs,
},
{
"ALU32_RSH_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_rsh_imm_regs,
},
{
"ALU32_ARSH_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_arsh_imm_regs,
},
{
"ALU32_ADD_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_add_imm_regs,
},
{
"ALU32_SUB_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_sub_imm_regs,
},
{
"ALU32_MUL_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_mul_imm_regs,
},
{
"ALU32_DIV_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_div_imm_regs,
},
{
"ALU32_MOD_K: registers",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_mod_imm_regs,
},
/* ALU64 X register combinations */
{
"ALU64_MOV_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_mov_reg_pairs,
},
{
"ALU64_AND_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_and_reg_pairs,
},
{
"ALU64_OR_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_or_reg_pairs,
},
{
"ALU64_XOR_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_xor_reg_pairs,
},
{
"ALU64_LSH_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_lsh_reg_pairs,
},
{
"ALU64_RSH_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_rsh_reg_pairs,
},
{
"ALU64_ARSH_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_arsh_reg_pairs,
},
{
"ALU64_ADD_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_add_reg_pairs,
},
{
"ALU64_SUB_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_sub_reg_pairs,
},
{
"ALU64_MUL_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_mul_reg_pairs,
},
{
"ALU64_DIV_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_div_reg_pairs,
},
{
"ALU64_MOD_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_mod_reg_pairs,
},
/* ALU32 X register combinations */
{
"ALU32_MOV_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_mov_reg_pairs,
},
{
"ALU32_AND_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_and_reg_pairs,
},
{
"ALU32_OR_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_or_reg_pairs,
},
{
"ALU32_XOR_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_xor_reg_pairs,
},
{
"ALU32_LSH_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_lsh_reg_pairs,
},
{
"ALU32_RSH_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_rsh_reg_pairs,
},
{
"ALU32_ARSH_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_arsh_reg_pairs,
},
{
"ALU32_ADD_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_add_reg_pairs,
},
{
"ALU32_SUB_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_sub_reg_pairs,
},
{
"ALU32_MUL_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_mul_reg_pairs,
},
{
"ALU32_DIV_X: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_div_reg_pairs,
},
{
"ALU32_MOD_X register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_mod_reg_pairs,
},
/* Exhaustive test of ALU64 shift operations */
{
"ALU64_LSH_K: all shift values",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_lsh_imm,
},
{
"ALU64_RSH_K: all shift values",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_rsh_imm,
},
{
"ALU64_ARSH_K: all shift values",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_arsh_imm,
},
{
"ALU64_LSH_X: all shift values",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_lsh_reg,
},
{
"ALU64_RSH_X: all shift values",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_rsh_reg,
},
{
"ALU64_ARSH_X: all shift values",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_arsh_reg,
},
/* Exhaustive test of ALU32 shift operations */
{
"ALU32_LSH_K: all shift values",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_lsh_imm,
},
{
"ALU32_RSH_K: all shift values",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_rsh_imm,
},
{
"ALU32_ARSH_K: all shift values",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_arsh_imm,
},
{
"ALU32_LSH_X: all shift values",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_lsh_reg,
},
{
"ALU32_RSH_X: all shift values",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_rsh_reg,
},
{
"ALU32_ARSH_X: all shift values",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_arsh_reg,
},
/*
* Exhaustive test of ALU64 shift operations when
* source and destination register are the same.
*/
{
"ALU64_LSH_X: all shift values with the same register",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_lsh_same_reg,
},
{
"ALU64_RSH_X: all shift values with the same register",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_rsh_same_reg,
},
{
"ALU64_ARSH_X: all shift values with the same register",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_arsh_same_reg,
},
/*
* Exhaustive test of ALU32 shift operations when
* source and destination register are the same.
*/
{
"ALU32_LSH_X: all shift values with the same register",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_lsh_same_reg,
},
{
"ALU32_RSH_X: all shift values with the same register",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_rsh_same_reg,
},
{
"ALU32_ARSH_X: all shift values with the same register",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_arsh_same_reg,
},
/* ALU64 immediate magnitudes */
{
"ALU64_MOV_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_mov_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU64_AND_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_and_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU64_OR_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_or_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU64_XOR_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_xor_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU64_ADD_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_add_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU64_SUB_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_sub_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU64_MUL_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_mul_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU64_DIV_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_div_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU64_MOD_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_mod_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
/* ALU32 immediate magnitudes */
{
"ALU32_MOV_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_mov_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU32_AND_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_and_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU32_OR_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_or_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU32_XOR_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_xor_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU32_ADD_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_add_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU32_SUB_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_sub_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU32_MUL_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_mul_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU32_DIV_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_div_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU32_MOD_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_mod_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
/* ALU64 register magnitudes */
{
"ALU64_MOV_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_mov_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU64_AND_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_and_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU64_OR_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_or_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU64_XOR_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_xor_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU64_ADD_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_add_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU64_SUB_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_sub_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU64_MUL_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_mul_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU64_DIV_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_div_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU64_MOD_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu64_mod_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
/* ALU32 register magnitudes */
{
"ALU32_MOV_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_mov_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU32_AND_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_and_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU32_OR_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_or_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU32_XOR_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_xor_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU32_ADD_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_add_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU32_SUB_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_sub_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU32_MUL_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_mul_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU32_DIV_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_div_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ALU32_MOD_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_alu32_mod_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
/* LD_IMM64 immediate magnitudes and byte patterns */
{
"LD_IMM64: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_ld_imm64_magn,
},
{
"LD_IMM64: checker byte patterns",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_ld_imm64_checker,
},
{
"LD_IMM64: random positive and zero byte patterns",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_ld_imm64_pos_zero,
},
{
"LD_IMM64: random negative and zero byte patterns",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_ld_imm64_neg_zero,
},
{
"LD_IMM64: random positive and negative byte patterns",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_ld_imm64_pos_neg,
},
/* 64-bit ATOMIC register combinations */
{
"ATOMIC_DW_ADD: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_add_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_DW_AND: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_and_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_DW_OR: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_or_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_DW_XOR: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_xor_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_DW_ADD_FETCH: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_add_fetch_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_DW_AND_FETCH: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_and_fetch_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_DW_OR_FETCH: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_or_fetch_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_DW_XOR_FETCH: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_xor_fetch_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_DW_XCHG: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_xchg_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_DW_CMPXCHG: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_cmpxchg_reg_pairs,
.stack_depth = 8,
},
/* 32-bit ATOMIC register combinations */
{
"ATOMIC_W_ADD: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_add_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_W_AND: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_and_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_W_OR: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_or_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_W_XOR: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_xor_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_W_ADD_FETCH: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_add_fetch_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_W_AND_FETCH: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_and_fetch_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_W_OR_FETCH: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_or_fetch_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_W_XOR_FETCH: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_xor_fetch_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_W_XCHG: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_xchg_reg_pairs,
.stack_depth = 8,
},
{
"ATOMIC_W_CMPXCHG: register combinations",
{ },
INTERNAL,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_cmpxchg_reg_pairs,
.stack_depth = 8,
},
/* 64-bit ATOMIC magnitudes */
{
"ATOMIC_DW_ADD: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_add,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_DW_AND: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_and,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_DW_OR: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_or,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_DW_XOR: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_xor,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_DW_ADD_FETCH: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_add_fetch,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_DW_AND_FETCH: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_and_fetch,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_DW_OR_FETCH: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_or_fetch,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_DW_XOR_FETCH: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_xor_fetch,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_DW_XCHG: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic64_xchg,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_DW_CMPXCHG: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_cmpxchg64,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
/* 64-bit atomic magnitudes */
{
"ATOMIC_W_ADD: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_add,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_W_AND: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_and,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_W_OR: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_or,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_W_XOR: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_xor,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_W_ADD_FETCH: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_add_fetch,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_W_AND_FETCH: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_and_fetch,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_W_OR_FETCH: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_or_fetch,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_W_XOR_FETCH: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_xor_fetch,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_W_XCHG: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_atomic32_xchg,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"ATOMIC_W_CMPXCHG: all operand magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_cmpxchg32,
.stack_depth = 8,
.nr_testruns = NR_PATTERN_RUNS,
},
/* JMP immediate magnitudes */
{
"JMP_JSET_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jset_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JEQ_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jeq_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JNE_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jne_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JGT_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jgt_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JGE_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jge_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JLT_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jlt_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JLE_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jle_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JSGT_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jsgt_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JSGE_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jsge_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JSLT_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jslt_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JSLE_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jsle_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
/* JMP register magnitudes */
{
"JMP_JSET_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jset_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JEQ_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jeq_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JNE_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jne_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JGT_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jgt_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JGE_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jge_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JLT_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jlt_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JLE_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jle_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JSGT_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jsgt_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JSGE_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jsge_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JSLT_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jslt_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP_JSLE_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp_jsle_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
/* JMP32 immediate magnitudes */
{
"JMP32_JSET_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jset_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JEQ_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jeq_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JNE_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jne_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JGT_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jgt_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JGE_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jge_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JLT_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jlt_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JLE_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jle_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JSGT_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jsgt_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JSGE_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jsge_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JSLT_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jslt_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JSLE_K: all immediate value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jsle_imm,
.nr_testruns = NR_PATTERN_RUNS,
},
/* JMP32 register magnitudes */
{
"JMP32_JSET_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jset_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JEQ_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jeq_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JNE_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jne_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JGT_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jgt_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JGE_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jge_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JLT_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jlt_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JLE_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jle_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JSGT_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jsgt_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JSGE_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jsge_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JSLT_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jslt_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
{
"JMP32_JSLE_X: all register value magnitudes",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_jmp32_jsle_reg,
.nr_testruns = NR_PATTERN_RUNS,
},
/* Conditional jumps with constant decision */
{
"JMP_JSET_K: imm = 0 -> never taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP_IMM(BPF_JSET, R1, 0, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 0 } },
},
{
"JMP_JLT_K: imm = 0 -> never taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP_IMM(BPF_JLT, R1, 0, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 0 } },
},
{
"JMP_JGE_K: imm = 0 -> always taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP_IMM(BPF_JGE, R1, 0, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
},
{
"JMP_JGT_K: imm = 0xffffffff -> never taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP_IMM(BPF_JGT, R1, U32_MAX, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 0 } },
},
{
"JMP_JLE_K: imm = 0xffffffff -> always taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP_IMM(BPF_JLE, R1, U32_MAX, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
},
{
"JMP32_JSGT_K: imm = 0x7fffffff -> never taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP32_IMM(BPF_JSGT, R1, S32_MAX, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 0 } },
},
{
"JMP32_JSGE_K: imm = -0x80000000 -> always taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP32_IMM(BPF_JSGE, R1, S32_MIN, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
},
{
"JMP32_JSLT_K: imm = -0x80000000 -> never taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP32_IMM(BPF_JSLT, R1, S32_MIN, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 0 } },
},
{
"JMP32_JSLE_K: imm = 0x7fffffff -> always taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP32_IMM(BPF_JSLE, R1, S32_MAX, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
},
{
"JMP_JEQ_X: dst = src -> always taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP_REG(BPF_JEQ, R1, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
},
{
"JMP_JGE_X: dst = src -> always taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP_REG(BPF_JGE, R1, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
},
{
"JMP_JLE_X: dst = src -> always taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP_REG(BPF_JLE, R1, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
},
{
"JMP_JSGE_X: dst = src -> always taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP_REG(BPF_JSGE, R1, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
},
{
"JMP_JSLE_X: dst = src -> always taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP_REG(BPF_JSLE, R1, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
},
{
"JMP_JNE_X: dst = src -> never taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP_REG(BPF_JNE, R1, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 0 } },
},
{
"JMP_JGT_X: dst = src -> never taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP_REG(BPF_JGT, R1, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 0 } },
},
{
"JMP_JLT_X: dst = src -> never taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP_REG(BPF_JLT, R1, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 0 } },
},
{
"JMP_JSGT_X: dst = src -> never taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP_REG(BPF_JSGT, R1, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 0 } },
},
{
"JMP_JSLT_X: dst = src -> never taken",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_JMP_REG(BPF_JSLT, R1, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 0 } },
},
/* Short relative jumps */
{
"Short relative jump: offset=0",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_JMP_IMM(BPF_JEQ, R0, 0, 0),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, -1),
},
INTERNAL | FLAG_NO_DATA | FLAG_VERIFIER_ZEXT,
{ },
{ { 0, 0 } },
},
{
"Short relative jump: offset=1",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_JMP_IMM(BPF_JEQ, R0, 0, 1),
BPF_ALU32_IMM(BPF_ADD, R0, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, -1),
},
INTERNAL | FLAG_NO_DATA | FLAG_VERIFIER_ZEXT,
{ },
{ { 0, 0 } },
},
{
"Short relative jump: offset=2",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_JMP_IMM(BPF_JEQ, R0, 0, 2),
BPF_ALU32_IMM(BPF_ADD, R0, 1),
BPF_ALU32_IMM(BPF_ADD, R0, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, -1),
},
INTERNAL | FLAG_NO_DATA | FLAG_VERIFIER_ZEXT,
{ },
{ { 0, 0 } },
},
{
"Short relative jump: offset=3",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_JMP_IMM(BPF_JEQ, R0, 0, 3),
BPF_ALU32_IMM(BPF_ADD, R0, 1),
BPF_ALU32_IMM(BPF_ADD, R0, 1),
BPF_ALU32_IMM(BPF_ADD, R0, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, -1),
},
INTERNAL | FLAG_NO_DATA | FLAG_VERIFIER_ZEXT,
{ },
{ { 0, 0 } },
},
{
"Short relative jump: offset=4",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_JMP_IMM(BPF_JEQ, R0, 0, 4),
BPF_ALU32_IMM(BPF_ADD, R0, 1),
BPF_ALU32_IMM(BPF_ADD, R0, 1),
BPF_ALU32_IMM(BPF_ADD, R0, 1),
BPF_ALU32_IMM(BPF_ADD, R0, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, -1),
},
INTERNAL | FLAG_NO_DATA | FLAG_VERIFIER_ZEXT,
{ },
{ { 0, 0 } },
},
/* Conditional branch conversions */
{
"Long conditional jump: taken at runtime",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_max_jmp_taken,
},
{
"Long conditional jump: not taken at runtime",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 2 } },
.fill_helper = bpf_fill_max_jmp_not_taken,
},
{
"Long conditional jump: always taken, known at JIT time",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 1 } },
.fill_helper = bpf_fill_max_jmp_always_taken,
},
{
"Long conditional jump: never taken, known at JIT time",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, 2 } },
.fill_helper = bpf_fill_max_jmp_never_taken,
},
/* Staggered jump sequences, immediate */
{
"Staggered jumps: JMP_JA",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_ja,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JEQ_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jeq_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JNE_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jne_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JSET_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jset_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JGT_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jgt_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JGE_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jge_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JLT_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jlt_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JLE_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jle_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JSGT_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jsgt_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JSGE_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jsge_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JSLT_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jslt_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JSLE_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jsle_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
/* Staggered jump sequences, register */
{
"Staggered jumps: JMP_JEQ_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jeq_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JNE_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jne_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JSET_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jset_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JGT_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jgt_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JGE_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jge_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JLT_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jlt_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JLE_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jle_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JSGT_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jsgt_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JSGE_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jsge_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JSLT_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jslt_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP_JSLE_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jsle_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
/* Staggered jump sequences, JMP32 immediate */
{
"Staggered jumps: JMP32_JEQ_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jeq32_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JNE_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jne32_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JSET_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jset32_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JGT_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jgt32_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JGE_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jge32_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JLT_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jlt32_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JLE_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jle32_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JSGT_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jsgt32_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JSGE_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jsge32_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JSLT_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jslt32_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JSLE_K",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jsle32_imm,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
/* Staggered jump sequences, JMP32 register */
{
"Staggered jumps: JMP32_JEQ_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jeq32_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JNE_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jne32_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JSET_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jset32_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JGT_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jgt32_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JGE_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jge32_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JLT_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jlt32_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JLE_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jle32_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JSGT_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jsgt32_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JSGE_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jsge32_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JSLT_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jslt32_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
{
"Staggered jumps: JMP32_JSLE_X",
{ },
INTERNAL | FLAG_NO_DATA,
{ },
{ { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
.fill_helper = bpf_fill_staggered_jsle32_reg,
.nr_testruns = NR_STAGGERED_JMP_RUNS,
},
};
static struct net_device dev;
static struct sk_buff *populate_skb(char *buf, int size)
{
struct sk_buff *skb;
if (size >= MAX_DATA)
return NULL;
skb = alloc_skb(MAX_DATA, GFP_KERNEL);
if (!skb)
return NULL;
__skb_put_data(skb, buf, size);
/* Initialize a fake skb with test pattern. */
skb_reset_mac_header(skb);
skb->protocol = htons(ETH_P_IP);
skb->pkt_type = SKB_TYPE;
skb->mark = SKB_MARK;
skb->hash = SKB_HASH;
skb->queue_mapping = SKB_QUEUE_MAP;
skb->vlan_tci = SKB_VLAN_TCI;
skb->vlan_proto = htons(ETH_P_IP);
dev_net_set(&dev, &init_net);
skb->dev = &dev;
skb->dev->ifindex = SKB_DEV_IFINDEX;
skb->dev->type = SKB_DEV_TYPE;
skb_set_network_header(skb, min(size, ETH_HLEN));
return skb;
}
static void *generate_test_data(struct bpf_test *test, int sub)
{
struct sk_buff *skb;
struct page *page;
if (test->aux & FLAG_NO_DATA)
return NULL;
if (test->aux & FLAG_LARGE_MEM)
return kmalloc(test->test[sub].data_size, GFP_KERNEL);
/* Test case expects an skb, so populate one. Various
* subtests generate skbs of different sizes based on
* the same data.
*/
skb = populate_skb(test->data, test->test[sub].data_size);
if (!skb)
return NULL;
if (test->aux & FLAG_SKB_FRAG) {
/*
* when the test requires a fragmented skb, add a
* single fragment to the skb, filled with
* test->frag_data.
*/
page = alloc_page(GFP_KERNEL);
if (!page)
goto err_kfree_skb;
memcpy(page_address(page), test->frag_data, MAX_DATA);
skb_add_rx_frag(skb, 0, page, 0, MAX_DATA, MAX_DATA);
}
return skb;
err_kfree_skb:
kfree_skb(skb);
return NULL;
}
static void release_test_data(const struct bpf_test *test, void *data)
{
if (test->aux & FLAG_NO_DATA)
return;
if (test->aux & FLAG_LARGE_MEM)
kfree(data);
else
kfree_skb(data);
}
static int filter_length(int which)
{
struct sock_filter *fp;
int len;
if (tests[which].fill_helper)
return tests[which].u.ptr.len;
fp = tests[which].u.insns;
for (len = MAX_INSNS - 1; len > 0; --len)
if (fp[len].code != 0 || fp[len].k != 0)
break;
return len + 1;
}
static void *filter_pointer(int which)
{
if (tests[which].fill_helper)
return tests[which].u.ptr.insns;
else
return tests[which].u.insns;
}
static struct bpf_prog *generate_filter(int which, int *err)
{
__u8 test_type = tests[which].aux & TEST_TYPE_MASK;
unsigned int flen = filter_length(which);
void *fptr = filter_pointer(which);
struct sock_fprog_kern fprog;
struct bpf_prog *fp;
switch (test_type) {
case CLASSIC:
fprog.filter = fptr;
fprog.len = flen;
*err = bpf_prog_create(&fp, &fprog);
if (tests[which].aux & FLAG_EXPECTED_FAIL) {
if (*err == tests[which].expected_errcode) {
pr_cont("PASS\n");
/* Verifier rejected filter as expected. */
*err = 0;
return NULL;
} else {
pr_cont("UNEXPECTED_PASS\n");
/* Verifier didn't reject the test that's
* bad enough, just return!
*/
*err = -EINVAL;
return NULL;
}
}
if (*err) {
pr_cont("FAIL to prog_create err=%d len=%d\n",
*err, fprog.len);
return NULL;
}
break;
case INTERNAL:
fp = bpf_prog_alloc(bpf_prog_size(flen), 0);
if (fp == NULL) {
pr_cont("UNEXPECTED_FAIL no memory left\n");
*err = -ENOMEM;
return NULL;
}
fp->len = flen;
/* Type doesn't really matter here as long as it's not unspec. */
fp->type = BPF_PROG_TYPE_SOCKET_FILTER;
memcpy(fp->insnsi, fptr, fp->len * sizeof(struct bpf_insn));
fp->aux->stack_depth = tests[which].stack_depth;
fp->aux->verifier_zext = !!(tests[which].aux &
FLAG_VERIFIER_ZEXT);
/* We cannot error here as we don't need type compatibility
* checks.
*/
fp = bpf_prog_select_runtime(fp, err);
if (*err) {
pr_cont("FAIL to select_runtime err=%d\n", *err);
return NULL;
}
break;
}
*err = 0;
return fp;
}
static void release_filter(struct bpf_prog *fp, int which)
{
__u8 test_type = tests[which].aux & TEST_TYPE_MASK;
switch (test_type) {
case CLASSIC:
bpf_prog_destroy(fp);
break;
case INTERNAL:
bpf_prog_free(fp);
break;
}
}
static int __run_one(const struct bpf_prog *fp, const void *data,
int runs, u64 *duration)
{
u64 start, finish;
int ret = 0, i;
migrate_disable();
start = ktime_get_ns();
for (i = 0; i < runs; i++)
ret = bpf_prog_run(fp, data);
finish = ktime_get_ns();
migrate_enable();
*duration = finish - start;
do_div(*duration, runs);
return ret;
}
static int run_one(const struct bpf_prog *fp, struct bpf_test *test)
{
int err_cnt = 0, i, runs = MAX_TESTRUNS;
if (test->nr_testruns)
runs = min(test->nr_testruns, MAX_TESTRUNS);
for (i = 0; i < MAX_SUBTESTS; i++) {
void *data;
u64 duration;
u32 ret;
/*
* NOTE: Several sub-tests may be present, in which case
* a zero {data_size, result} tuple indicates the end of
* the sub-test array. The first test is always run,
* even if both data_size and result happen to be zero.
*/
if (i > 0 &&
test->test[i].data_size == 0 &&
test->test[i].result == 0)
break;
data = generate_test_data(test, i);
if (!data && !(test->aux & FLAG_NO_DATA)) {
pr_cont("data generation failed ");
err_cnt++;
break;
}
ret = __run_one(fp, data, runs, &duration);
release_test_data(test, data);
if (ret == test->test[i].result) {
pr_cont("%lld ", duration);
} else {
pr_cont("ret %d != %d ", ret,
test->test[i].result);
err_cnt++;
}
}
return err_cnt;
}
static char test_name[64];
module_param_string(test_name, test_name, sizeof(test_name), 0);
static int test_id = -1;
module_param(test_id, int, 0);
static int test_range[2] = { 0, INT_MAX };
module_param_array(test_range, int, NULL, 0);
static bool exclude_test(int test_id)
{
return test_id < test_range[0] || test_id > test_range[1];
}
static __init struct sk_buff *build_test_skb(void)
{
u32 headroom = NET_SKB_PAD + NET_IP_ALIGN + ETH_HLEN;
struct sk_buff *skb[2];
struct page *page[2];
int i, data_size = 8;
for (i = 0; i < 2; i++) {
page[i] = alloc_page(GFP_KERNEL);
if (!page[i]) {
if (i == 0)
goto err_page0;
else
goto err_page1;
}
/* this will set skb[i]->head_frag */
skb[i] = dev_alloc_skb(headroom + data_size);
if (!skb[i]) {
if (i == 0)
goto err_skb0;
else
goto err_skb1;
}
skb_reserve(skb[i], headroom);
skb_put(skb[i], data_size);
skb[i]->protocol = htons(ETH_P_IP);
skb_reset_network_header(skb[i]);
skb_set_mac_header(skb[i], -ETH_HLEN);
skb_add_rx_frag(skb[i], 0, page[i], 0, 64, 64);
// skb_headlen(skb[i]): 8, skb[i]->head_frag = 1
}
/* setup shinfo */
skb_shinfo(skb[0])->gso_size = 1448;
skb_shinfo(skb[0])->gso_type = SKB_GSO_TCPV4;
skb_shinfo(skb[0])->gso_type |= SKB_GSO_DODGY;
skb_shinfo(skb[0])->gso_segs = 0;
skb_shinfo(skb[0])->frag_list = skb[1];
skb_shinfo(skb[0])->hwtstamps.hwtstamp = 1000;
/* adjust skb[0]'s len */
skb[0]->len += skb[1]->len;
skb[0]->data_len += skb[1]->data_len;
skb[0]->truesize += skb[1]->truesize;
return skb[0];
err_skb1:
__free_page(page[1]);
err_page1:
kfree_skb(skb[0]);
err_skb0:
__free_page(page[0]);
err_page0:
return NULL;
}
static __init struct sk_buff *build_test_skb_linear_no_head_frag(void)
{
unsigned int alloc_size = 2000;
unsigned int headroom = 102, doffset = 72, data_size = 1308;
struct sk_buff *skb[2];
int i;
/* skbs linked in a frag_list, both with linear data, with head_frag=0
* (data allocated by kmalloc), both have tcp data of 1308 bytes
* (total payload is 2616 bytes).
* Data offset is 72 bytes (40 ipv6 hdr, 32 tcp hdr). Some headroom.
*/
for (i = 0; i < 2; i++) {
skb[i] = alloc_skb(alloc_size, GFP_KERNEL);
if (!skb[i]) {
if (i == 0)
goto err_skb0;
else
goto err_skb1;
}
skb[i]->protocol = htons(ETH_P_IPV6);
skb_reserve(skb[i], headroom);
skb_put(skb[i], doffset + data_size);
skb_reset_network_header(skb[i]);
if (i == 0)
skb_reset_mac_header(skb[i]);
else
skb_set_mac_header(skb[i], -ETH_HLEN);
__skb_pull(skb[i], doffset);
}
/* setup shinfo.
* mimic bpf_skb_proto_4_to_6, which resets gso_segs and assigns a
* reduced gso_size.
*/
skb_shinfo(skb[0])->gso_size = 1288;
skb_shinfo(skb[0])->gso_type = SKB_GSO_TCPV6 | SKB_GSO_DODGY;
skb_shinfo(skb[0])->gso_segs = 0;
skb_shinfo(skb[0])->frag_list = skb[1];
/* adjust skb[0]'s len */
skb[0]->len += skb[1]->len;
skb[0]->data_len += skb[1]->len;
skb[0]->truesize += skb[1]->truesize;
return skb[0];
err_skb1:
kfree_skb(skb[0]);
err_skb0:
return NULL;
}
struct skb_segment_test {
const char *descr;
struct sk_buff *(*build_skb)(void);
netdev_features_t features;
};
static struct skb_segment_test skb_segment_tests[] __initconst = {
{
.descr = "gso_with_rx_frags",
.build_skb = build_test_skb,
.features = NETIF_F_SG | NETIF_F_GSO_PARTIAL | NETIF_F_IP_CSUM |
NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM
},
{
.descr = "gso_linear_no_head_frag",
.build_skb = build_test_skb_linear_no_head_frag,
.features = NETIF_F_SG | NETIF_F_FRAGLIST |
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_GSO |
NETIF_F_LLTX | NETIF_F_GRO |
NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
NETIF_F_HW_VLAN_STAG_TX
}
};
static __init int test_skb_segment_single(const struct skb_segment_test *test)
{
struct sk_buff *skb, *segs;
int ret = -1;
skb = test->build_skb();
if (!skb) {
pr_info("%s: failed to build_test_skb", __func__);
goto done;
}
segs = skb_segment(skb, test->features);
if (!IS_ERR(segs)) {
kfree_skb_list(segs);
ret = 0;
}
kfree_skb(skb);
done:
return ret;
}
static __init int test_skb_segment(void)
{
int i, err_cnt = 0, pass_cnt = 0;
for (i = 0; i < ARRAY_SIZE(skb_segment_tests); i++) {
const struct skb_segment_test *test = &skb_segment_tests[i];
cond_resched();
if (exclude_test(i))
continue;
pr_info("#%d %s ", i, test->descr);
if (test_skb_segment_single(test)) {
pr_cont("FAIL\n");
err_cnt++;
} else {
pr_cont("PASS\n");
pass_cnt++;
}
}
pr_info("%s: Summary: %d PASSED, %d FAILED\n", __func__,
pass_cnt, err_cnt);
return err_cnt ? -EINVAL : 0;
}
static __init int test_bpf(void)
{
int i, err_cnt = 0, pass_cnt = 0;
int jit_cnt = 0, run_cnt = 0;
for (i = 0; i < ARRAY_SIZE(tests); i++) {
struct bpf_prog *fp;
int err;
cond_resched();
if (exclude_test(i))
continue;
pr_info("#%d %s ", i, tests[i].descr);
if (tests[i].fill_helper &&
tests[i].fill_helper(&tests[i]) < 0) {
pr_cont("FAIL to prog_fill\n");
continue;
}
fp = generate_filter(i, &err);
if (tests[i].fill_helper) {
kfree(tests[i].u.ptr.insns);
tests[i].u.ptr.insns = NULL;
}
if (fp == NULL) {
if (err == 0) {
pass_cnt++;
continue;
}
err_cnt++;
continue;
}
pr_cont("jited:%u ", fp->jited);
run_cnt++;
if (fp->jited)
jit_cnt++;
err = run_one(fp, &tests[i]);
release_filter(fp, i);
if (err) {
pr_cont("FAIL (%d times)\n", err);
err_cnt++;
} else {
pr_cont("PASS\n");
pass_cnt++;
}
}
pr_info("Summary: %d PASSED, %d FAILED, [%d/%d JIT'ed]\n",
pass_cnt, err_cnt, jit_cnt, run_cnt);
return err_cnt ? -EINVAL : 0;
}
struct tail_call_test {
const char *descr;
struct bpf_insn insns[MAX_INSNS];
int flags;
int result;
int stack_depth;
};
/* Flags that can be passed to tail call test cases */
#define FLAG_NEED_STATE BIT(0)
#define FLAG_RESULT_IN_STATE BIT(1)
/*
* Magic marker used in test snippets for tail calls below.
* BPF_LD/MOV to R2 and R2 with this immediate value is replaced
* with the proper values by the test runner.
*/
#define TAIL_CALL_MARKER 0x7a11ca11
/* Special offset to indicate a NULL call target */
#define TAIL_CALL_NULL 0x7fff
/* Special offset to indicate an out-of-range index */
#define TAIL_CALL_INVALID 0x7ffe
#define TAIL_CALL(offset) \
BPF_LD_IMM64(R2, TAIL_CALL_MARKER), \
BPF_RAW_INSN(BPF_ALU | BPF_MOV | BPF_K, R3, 0, \
offset, TAIL_CALL_MARKER), \
BPF_JMP_IMM(BPF_TAIL_CALL, 0, 0, 0)
/*
* A test function to be called from a BPF program, clobbering a lot of
* CPU registers in the process. A JITed BPF program calling this function
* must save and restore any caller-saved registers it uses for internal
* state, for example the current tail call count.
*/
BPF_CALL_1(bpf_test_func, u64, arg)
{
char buf[64];
long a = 0;
long b = 1;
long c = 2;
long d = 3;
long e = 4;
long f = 5;
long g = 6;
long h = 7;
return snprintf(buf, sizeof(buf),
"%ld %lu %lx %ld %lu %lx %ld %lu %x",
a, b, c, d, e, f, g, h, (int)arg);
}
#define BPF_FUNC_test_func __BPF_FUNC_MAX_ID
/*
* Tail call tests. Each test case may call any other test in the table,
* including itself, specified as a relative index offset from the calling
* test. The index TAIL_CALL_NULL can be used to specify a NULL target
* function to test the JIT error path. Similarly, the index TAIL_CALL_INVALID
* results in a target index that is out of range.
*/
static struct tail_call_test tail_call_tests[] = {
{
"Tail call leaf",
.insns = {
BPF_ALU64_REG(BPF_MOV, R0, R1),
BPF_ALU64_IMM(BPF_ADD, R0, 1),
BPF_EXIT_INSN(),
},
.result = 1,
},
{
"Tail call 2",
.insns = {
BPF_ALU64_IMM(BPF_ADD, R1, 2),
TAIL_CALL(-1),
BPF_ALU64_IMM(BPF_MOV, R0, -1),
BPF_EXIT_INSN(),
},
.result = 3,
},
{
"Tail call 3",
.insns = {
BPF_ALU64_IMM(BPF_ADD, R1, 3),
TAIL_CALL(-1),
BPF_ALU64_IMM(BPF_MOV, R0, -1),
BPF_EXIT_INSN(),
},
.result = 6,
},
{
"Tail call 4",
.insns = {
BPF_ALU64_IMM(BPF_ADD, R1, 4),
TAIL_CALL(-1),
BPF_ALU64_IMM(BPF_MOV, R0, -1),
BPF_EXIT_INSN(),
},
.result = 10,
},
{
"Tail call load/store leaf",
.insns = {
BPF_ALU64_IMM(BPF_MOV, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R2, 2),
BPF_ALU64_REG(BPF_MOV, R3, BPF_REG_FP),
BPF_STX_MEM(BPF_DW, R3, R1, -8),
BPF_STX_MEM(BPF_DW, R3, R2, -16),
BPF_LDX_MEM(BPF_DW, R0, BPF_REG_FP, -8),
BPF_JMP_REG(BPF_JNE, R0, R1, 3),
BPF_LDX_MEM(BPF_DW, R0, BPF_REG_FP, -16),
BPF_JMP_REG(BPF_JNE, R0, R2, 1),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
},
.result = 0,
.stack_depth = 32,
},
{
"Tail call load/store",
.insns = {
BPF_ALU64_IMM(BPF_MOV, R0, 3),
BPF_STX_MEM(BPF_DW, BPF_REG_FP, R0, -8),
TAIL_CALL(-1),
BPF_ALU64_IMM(BPF_MOV, R0, -1),
BPF_EXIT_INSN(),
},
.result = 0,
.stack_depth = 16,
},
{
"Tail call error path, max count reached",
.insns = {
BPF_LDX_MEM(BPF_W, R2, R1, 0),
BPF_ALU64_IMM(BPF_ADD, R2, 1),
BPF_STX_MEM(BPF_W, R1, R2, 0),
TAIL_CALL(0),
BPF_EXIT_INSN(),
},
.flags = FLAG_NEED_STATE | FLAG_RESULT_IN_STATE,
.result = (MAX_TAIL_CALL_CNT + 1) * MAX_TESTRUNS,
},
{
"Tail call count preserved across function calls",
.insns = {
BPF_LDX_MEM(BPF_W, R2, R1, 0),
BPF_ALU64_IMM(BPF_ADD, R2, 1),
BPF_STX_MEM(BPF_W, R1, R2, 0),
BPF_STX_MEM(BPF_DW, R10, R1, -8),
BPF_CALL_REL(BPF_FUNC_get_numa_node_id),
BPF_CALL_REL(BPF_FUNC_ktime_get_ns),
BPF_CALL_REL(BPF_FUNC_ktime_get_boot_ns),
BPF_CALL_REL(BPF_FUNC_ktime_get_coarse_ns),
BPF_CALL_REL(BPF_FUNC_jiffies64),
BPF_CALL_REL(BPF_FUNC_test_func),
BPF_LDX_MEM(BPF_DW, R1, R10, -8),
BPF_ALU32_REG(BPF_MOV, R0, R1),
TAIL_CALL(0),
BPF_EXIT_INSN(),
},
.stack_depth = 8,
.flags = FLAG_NEED_STATE | FLAG_RESULT_IN_STATE,
.result = (MAX_TAIL_CALL_CNT + 1) * MAX_TESTRUNS,
},
{
"Tail call error path, NULL target",
.insns = {
BPF_LDX_MEM(BPF_W, R2, R1, 0),
BPF_ALU64_IMM(BPF_ADD, R2, 1),
BPF_STX_MEM(BPF_W, R1, R2, 0),
TAIL_CALL(TAIL_CALL_NULL),
BPF_EXIT_INSN(),
},
.flags = FLAG_NEED_STATE | FLAG_RESULT_IN_STATE,
.result = MAX_TESTRUNS,
},
{
"Tail call error path, index out of range",
.insns = {
BPF_LDX_MEM(BPF_W, R2, R1, 0),
BPF_ALU64_IMM(BPF_ADD, R2, 1),
BPF_STX_MEM(BPF_W, R1, R2, 0),
TAIL_CALL(TAIL_CALL_INVALID),
BPF_EXIT_INSN(),
},
.flags = FLAG_NEED_STATE | FLAG_RESULT_IN_STATE,
.result = MAX_TESTRUNS,
},
};
static void __init destroy_tail_call_tests(struct bpf_array *progs)
{
int i;
for (i = 0; i < ARRAY_SIZE(tail_call_tests); i++)
if (progs->ptrs[i])
bpf_prog_free(progs->ptrs[i]);
kfree(progs);
}
static __init int prepare_tail_call_tests(struct bpf_array **pprogs)
{
int ntests = ARRAY_SIZE(tail_call_tests);
struct bpf_array *progs;
int which, err;
/* Allocate the table of programs to be used for tall calls */
progs = kzalloc(struct_size(progs, ptrs, ntests + 1), GFP_KERNEL);
if (!progs)
goto out_nomem;
/* Create all eBPF programs and populate the table */
for (which = 0; which < ntests; which++) {
struct tail_call_test *test = &tail_call_tests[which];
struct bpf_prog *fp;
int len, i;
/* Compute the number of program instructions */
for (len = 0; len < MAX_INSNS; len++) {
struct bpf_insn *insn = &test->insns[len];
if (len < MAX_INSNS - 1 &&
insn->code == (BPF_LD | BPF_DW | BPF_IMM))
len++;
if (insn->code == 0)
break;
}
/* Allocate and initialize the program */
fp = bpf_prog_alloc(bpf_prog_size(len), 0);
if (!fp)
goto out_nomem;
fp->len = len;
fp->type = BPF_PROG_TYPE_SOCKET_FILTER;
fp->aux->stack_depth = test->stack_depth;
memcpy(fp->insnsi, test->insns, len * sizeof(struct bpf_insn));
/* Relocate runtime tail call offsets and addresses */
for (i = 0; i < len; i++) {
struct bpf_insn *insn = &fp->insnsi[i];
long addr = 0;
switch (insn->code) {
case BPF_LD | BPF_DW | BPF_IMM:
if (insn->imm != TAIL_CALL_MARKER)
break;
insn[0].imm = (u32)(long)progs;
insn[1].imm = ((u64)(long)progs) >> 32;
break;
case BPF_ALU | BPF_MOV | BPF_K:
if (insn->imm != TAIL_CALL_MARKER)
break;
if (insn->off == TAIL_CALL_NULL)
insn->imm = ntests;
else if (insn->off == TAIL_CALL_INVALID)
insn->imm = ntests + 1;
else
insn->imm = which + insn->off;
insn->off = 0;
break;
case BPF_JMP | BPF_CALL:
if (insn->src_reg != BPF_PSEUDO_CALL)
break;
switch (insn->imm) {
case BPF_FUNC_get_numa_node_id:
addr = (long)&numa_node_id;
break;
case BPF_FUNC_ktime_get_ns:
addr = (long)&ktime_get_ns;
break;
case BPF_FUNC_ktime_get_boot_ns:
addr = (long)&ktime_get_boot_fast_ns;
break;
case BPF_FUNC_ktime_get_coarse_ns:
addr = (long)&ktime_get_coarse_ns;
break;
case BPF_FUNC_jiffies64:
addr = (long)&get_jiffies_64;
break;
case BPF_FUNC_test_func:
addr = (long)&bpf_test_func;
break;
default:
err = -EFAULT;
goto out_err;
}
*insn = BPF_EMIT_CALL(addr);
if ((long)__bpf_call_base + insn->imm != addr)
*insn = BPF_JMP_A(0); /* Skip: NOP */
break;
}
}
fp = bpf_prog_select_runtime(fp, &err);
if (err)
goto out_err;
progs->ptrs[which] = fp;
}
/* The last entry contains a NULL program pointer */
progs->map.max_entries = ntests + 1;
*pprogs = progs;
return 0;
out_nomem:
err = -ENOMEM;
out_err:
if (progs)
destroy_tail_call_tests(progs);
return err;
}
static __init int test_tail_calls(struct bpf_array *progs)
{
int i, err_cnt = 0, pass_cnt = 0;
int jit_cnt = 0, run_cnt = 0;
for (i = 0; i < ARRAY_SIZE(tail_call_tests); i++) {
struct tail_call_test *test = &tail_call_tests[i];
struct bpf_prog *fp = progs->ptrs[i];
int *data = NULL;
int state = 0;
u64 duration;
int ret;
cond_resched();
if (exclude_test(i))
continue;
pr_info("#%d %s ", i, test->descr);
if (!fp) {
err_cnt++;
continue;
}
pr_cont("jited:%u ", fp->jited);
run_cnt++;
if (fp->jited)
jit_cnt++;
if (test->flags & FLAG_NEED_STATE)
data = &state;
ret = __run_one(fp, data, MAX_TESTRUNS, &duration);
if (test->flags & FLAG_RESULT_IN_STATE)
ret = state;
if (ret == test->result) {
pr_cont("%lld PASS", duration);
pass_cnt++;
} else {
pr_cont("ret %d != %d FAIL", ret, test->result);
err_cnt++;
}
}
pr_info("%s: Summary: %d PASSED, %d FAILED, [%d/%d JIT'ed]\n",
__func__, pass_cnt, err_cnt, jit_cnt, run_cnt);
return err_cnt ? -EINVAL : 0;
}
static char test_suite[32];
module_param_string(test_suite, test_suite, sizeof(test_suite), 0);
static __init int find_test_index(const char *test_name)
{
int i;
if (!strcmp(test_suite, "test_bpf")) {
for (i = 0; i < ARRAY_SIZE(tests); i++) {
if (!strcmp(tests[i].descr, test_name))
return i;
}
}
if (!strcmp(test_suite, "test_tail_calls")) {
for (i = 0; i < ARRAY_SIZE(tail_call_tests); i++) {
if (!strcmp(tail_call_tests[i].descr, test_name))
return i;
}
}
if (!strcmp(test_suite, "test_skb_segment")) {
for (i = 0; i < ARRAY_SIZE(skb_segment_tests); i++) {
if (!strcmp(skb_segment_tests[i].descr, test_name))
return i;
}
}
return -1;
}
static __init int prepare_test_range(void)
{
int valid_range;
if (!strcmp(test_suite, "test_bpf"))
valid_range = ARRAY_SIZE(tests);
else if (!strcmp(test_suite, "test_tail_calls"))
valid_range = ARRAY_SIZE(tail_call_tests);
else if (!strcmp(test_suite, "test_skb_segment"))
valid_range = ARRAY_SIZE(skb_segment_tests);
else
return 0;
if (test_id >= 0) {
/*
* if a test_id was specified, use test_range to
* cover only that test.
*/
if (test_id >= valid_range) {
pr_err("test_bpf: invalid test_id specified for '%s' suite.\n",
test_suite);
return -EINVAL;
}
test_range[0] = test_id;
test_range[1] = test_id;
} else if (*test_name) {
/*
* if a test_name was specified, find it and setup
* test_range to cover only that test.
*/
int idx = find_test_index(test_name);
if (idx < 0) {
pr_err("test_bpf: no test named '%s' found for '%s' suite.\n",
test_name, test_suite);
return -EINVAL;
}
test_range[0] = idx;
test_range[1] = idx;
} else if (test_range[0] != 0 || test_range[1] != INT_MAX) {
/*
* check that the supplied test_range is valid.
*/
if (test_range[0] < 0 || test_range[1] >= valid_range) {
pr_err("test_bpf: test_range is out of bound for '%s' suite.\n",
test_suite);
return -EINVAL;
}
if (test_range[1] < test_range[0]) {
pr_err("test_bpf: test_range is ending before it starts.\n");
return -EINVAL;
}
}
return 0;
}
static int __init test_bpf_init(void)
{
struct bpf_array *progs = NULL;
int ret;
if (strlen(test_suite) &&
strcmp(test_suite, "test_bpf") &&
strcmp(test_suite, "test_tail_calls") &&
strcmp(test_suite, "test_skb_segment")) {
pr_err("test_bpf: invalid test_suite '%s' specified.\n", test_suite);
return -EINVAL;
}
/*
* if test_suite is not specified, but test_id, test_name or test_range
* is specified, set 'test_bpf' as the default test suite.
*/
if (!strlen(test_suite) &&
(test_id != -1 || strlen(test_name) ||
(test_range[0] != 0 || test_range[1] != INT_MAX))) {
pr_info("test_bpf: set 'test_bpf' as the default test_suite.\n");
strscpy(test_suite, "test_bpf", sizeof(test_suite));
}
ret = prepare_test_range();
if (ret < 0)
return ret;
if (!strlen(test_suite) || !strcmp(test_suite, "test_bpf")) {
ret = test_bpf();
if (ret)
return ret;
}
if (!strlen(test_suite) || !strcmp(test_suite, "test_tail_calls")) {
ret = prepare_tail_call_tests(&progs);
if (ret)
return ret;
ret = test_tail_calls(progs);
destroy_tail_call_tests(progs);
if (ret)
return ret;
}
if (!strlen(test_suite) || !strcmp(test_suite, "test_skb_segment"))
return test_skb_segment();
return 0;
}
static void __exit test_bpf_exit(void)
{
}
module_init(test_bpf_init);
module_exit(test_bpf_exit);
MODULE_LICENSE("GPL");