mirror of
https://github.com/torvalds/linux.git
synced 2024-12-03 01:21:28 +00:00
d5c88131db
When a writer thread executes a chain of log intent items, the AG header buffer locks will cycle during a transaction roll to get from one intent item to the next in a chain. Although scrub takes all AG header buffer locks, this isn't sufficient to guard against scrub checking an AG while that writer thread is in the middle of finishing a chain because there's no higher level locking primitive guarding allocation groups. When there's a collision, cross-referencing between data structures (e.g. rmapbt and refcountbt) yields false corruption events; if repair is running, this results in incorrect repairs, which is catastrophic. Fix this by adding to the perag structure the count of active intents and make scrub wait until it has both AG header buffer locks and the intent counter reaches zero. One quirk of the drain code is that deferred bmap updates also bump and drop the intent counter. A fundamental decision made during the design phase of the reverse mapping feature is that updates to the rmapbt records are always made by the same code that updates the primary metadata. In other words, callers of bmapi functions expect that the bmapi functions will queue deferred rmap updates. Some parts of the reflink code queue deferred refcount (CUI) and bmap (BUI) updates in the same head transaction, but the deferred work manager completely finishes the CUI before the BUI work is started. As a result, the CUI drops the intent count long before the deferred rmap (RUI) update even has a chance to bump the intent count. The only way to keep the intent count elevated between the CUI and RUI is for the BUI to bump the counter until the RUI has been created. A second quirk of the intent drain code is that deferred work items must increment the intent counter as soon as the work item is added to the transaction. When a BUI completes and queues an RUI, the RUI must increment the counter before the BUI decrements it. The only way to accomplish this is to require that the counter be bumped as soon as the deferred work item is created in memory. In the next patches we'll improve on this facility, but this patch provides the basic functionality. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
727 lines
19 KiB
C
727 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2016 Oracle. All Rights Reserved.
|
|
* Author: Darrick J. Wong <darrick.wong@oracle.com>
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_bmap_item.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_icache.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_trans_space.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_log_priv.h"
|
|
#include "xfs_log_recover.h"
|
|
#include "xfs_ag.h"
|
|
|
|
struct kmem_cache *xfs_bui_cache;
|
|
struct kmem_cache *xfs_bud_cache;
|
|
|
|
static const struct xfs_item_ops xfs_bui_item_ops;
|
|
|
|
static inline struct xfs_bui_log_item *BUI_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_bui_log_item, bui_item);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_bui_item_free(
|
|
struct xfs_bui_log_item *buip)
|
|
{
|
|
kmem_free(buip->bui_item.li_lv_shadow);
|
|
kmem_cache_free(xfs_bui_cache, buip);
|
|
}
|
|
|
|
/*
|
|
* Freeing the BUI requires that we remove it from the AIL if it has already
|
|
* been placed there. However, the BUI may not yet have been placed in the AIL
|
|
* when called by xfs_bui_release() from BUD processing due to the ordering of
|
|
* committed vs unpin operations in bulk insert operations. Hence the reference
|
|
* count to ensure only the last caller frees the BUI.
|
|
*/
|
|
STATIC void
|
|
xfs_bui_release(
|
|
struct xfs_bui_log_item *buip)
|
|
{
|
|
ASSERT(atomic_read(&buip->bui_refcount) > 0);
|
|
if (!atomic_dec_and_test(&buip->bui_refcount))
|
|
return;
|
|
|
|
xfs_trans_ail_delete(&buip->bui_item, 0);
|
|
xfs_bui_item_free(buip);
|
|
}
|
|
|
|
|
|
STATIC void
|
|
xfs_bui_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_bui_log_item *buip = BUI_ITEM(lip);
|
|
|
|
*nvecs += 1;
|
|
*nbytes += xfs_bui_log_format_sizeof(buip->bui_format.bui_nextents);
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given bui log item. We use only 1 iovec, and we point that
|
|
* at the bui_log_format structure embedded in the bui item.
|
|
* It is at this point that we assert that all of the extent
|
|
* slots in the bui item have been filled.
|
|
*/
|
|
STATIC void
|
|
xfs_bui_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_bui_log_item *buip = BUI_ITEM(lip);
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
|
|
ASSERT(atomic_read(&buip->bui_next_extent) ==
|
|
buip->bui_format.bui_nextents);
|
|
|
|
buip->bui_format.bui_type = XFS_LI_BUI;
|
|
buip->bui_format.bui_size = 1;
|
|
|
|
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_BUI_FORMAT, &buip->bui_format,
|
|
xfs_bui_log_format_sizeof(buip->bui_format.bui_nextents));
|
|
}
|
|
|
|
/*
|
|
* The unpin operation is the last place an BUI is manipulated in the log. It is
|
|
* either inserted in the AIL or aborted in the event of a log I/O error. In
|
|
* either case, the BUI transaction has been successfully committed to make it
|
|
* this far. Therefore, we expect whoever committed the BUI to either construct
|
|
* and commit the BUD or drop the BUD's reference in the event of error. Simply
|
|
* drop the log's BUI reference now that the log is done with it.
|
|
*/
|
|
STATIC void
|
|
xfs_bui_item_unpin(
|
|
struct xfs_log_item *lip,
|
|
int remove)
|
|
{
|
|
struct xfs_bui_log_item *buip = BUI_ITEM(lip);
|
|
|
|
xfs_bui_release(buip);
|
|
}
|
|
|
|
/*
|
|
* The BUI has been either committed or aborted if the transaction has been
|
|
* cancelled. If the transaction was cancelled, an BUD isn't going to be
|
|
* constructed and thus we free the BUI here directly.
|
|
*/
|
|
STATIC void
|
|
xfs_bui_item_release(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
xfs_bui_release(BUI_ITEM(lip));
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialize an bui item with the given number of extents.
|
|
*/
|
|
STATIC struct xfs_bui_log_item *
|
|
xfs_bui_init(
|
|
struct xfs_mount *mp)
|
|
|
|
{
|
|
struct xfs_bui_log_item *buip;
|
|
|
|
buip = kmem_cache_zalloc(xfs_bui_cache, GFP_KERNEL | __GFP_NOFAIL);
|
|
|
|
xfs_log_item_init(mp, &buip->bui_item, XFS_LI_BUI, &xfs_bui_item_ops);
|
|
buip->bui_format.bui_nextents = XFS_BUI_MAX_FAST_EXTENTS;
|
|
buip->bui_format.bui_id = (uintptr_t)(void *)buip;
|
|
atomic_set(&buip->bui_next_extent, 0);
|
|
atomic_set(&buip->bui_refcount, 2);
|
|
|
|
return buip;
|
|
}
|
|
|
|
static inline struct xfs_bud_log_item *BUD_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_bud_log_item, bud_item);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_bud_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
*nvecs += 1;
|
|
*nbytes += sizeof(struct xfs_bud_log_format);
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given bud log item. We use only 1 iovec, and we point that
|
|
* at the bud_log_format structure embedded in the bud item.
|
|
* It is at this point that we assert that all of the extent
|
|
* slots in the bud item have been filled.
|
|
*/
|
|
STATIC void
|
|
xfs_bud_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_bud_log_item *budp = BUD_ITEM(lip);
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
|
|
budp->bud_format.bud_type = XFS_LI_BUD;
|
|
budp->bud_format.bud_size = 1;
|
|
|
|
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_BUD_FORMAT, &budp->bud_format,
|
|
sizeof(struct xfs_bud_log_format));
|
|
}
|
|
|
|
/*
|
|
* The BUD is either committed or aborted if the transaction is cancelled. If
|
|
* the transaction is cancelled, drop our reference to the BUI and free the
|
|
* BUD.
|
|
*/
|
|
STATIC void
|
|
xfs_bud_item_release(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_bud_log_item *budp = BUD_ITEM(lip);
|
|
|
|
xfs_bui_release(budp->bud_buip);
|
|
kmem_free(budp->bud_item.li_lv_shadow);
|
|
kmem_cache_free(xfs_bud_cache, budp);
|
|
}
|
|
|
|
static struct xfs_log_item *
|
|
xfs_bud_item_intent(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
return &BUD_ITEM(lip)->bud_buip->bui_item;
|
|
}
|
|
|
|
static const struct xfs_item_ops xfs_bud_item_ops = {
|
|
.flags = XFS_ITEM_RELEASE_WHEN_COMMITTED |
|
|
XFS_ITEM_INTENT_DONE,
|
|
.iop_size = xfs_bud_item_size,
|
|
.iop_format = xfs_bud_item_format,
|
|
.iop_release = xfs_bud_item_release,
|
|
.iop_intent = xfs_bud_item_intent,
|
|
};
|
|
|
|
static struct xfs_bud_log_item *
|
|
xfs_trans_get_bud(
|
|
struct xfs_trans *tp,
|
|
struct xfs_bui_log_item *buip)
|
|
{
|
|
struct xfs_bud_log_item *budp;
|
|
|
|
budp = kmem_cache_zalloc(xfs_bud_cache, GFP_KERNEL | __GFP_NOFAIL);
|
|
xfs_log_item_init(tp->t_mountp, &budp->bud_item, XFS_LI_BUD,
|
|
&xfs_bud_item_ops);
|
|
budp->bud_buip = buip;
|
|
budp->bud_format.bud_bui_id = buip->bui_format.bui_id;
|
|
|
|
xfs_trans_add_item(tp, &budp->bud_item);
|
|
return budp;
|
|
}
|
|
|
|
/*
|
|
* Finish an bmap update and log it to the BUD. Note that the
|
|
* transaction is marked dirty regardless of whether the bmap update
|
|
* succeeds or fails to support the BUI/BUD lifecycle rules.
|
|
*/
|
|
static int
|
|
xfs_trans_log_finish_bmap_update(
|
|
struct xfs_trans *tp,
|
|
struct xfs_bud_log_item *budp,
|
|
struct xfs_bmap_intent *bi)
|
|
{
|
|
int error;
|
|
|
|
error = xfs_bmap_finish_one(tp, bi);
|
|
|
|
/*
|
|
* Mark the transaction dirty, even on error. This ensures the
|
|
* transaction is aborted, which:
|
|
*
|
|
* 1.) releases the BUI and frees the BUD
|
|
* 2.) shuts down the filesystem
|
|
*/
|
|
tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE;
|
|
set_bit(XFS_LI_DIRTY, &budp->bud_item.li_flags);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Sort bmap intents by inode. */
|
|
static int
|
|
xfs_bmap_update_diff_items(
|
|
void *priv,
|
|
const struct list_head *a,
|
|
const struct list_head *b)
|
|
{
|
|
struct xfs_bmap_intent *ba;
|
|
struct xfs_bmap_intent *bb;
|
|
|
|
ba = container_of(a, struct xfs_bmap_intent, bi_list);
|
|
bb = container_of(b, struct xfs_bmap_intent, bi_list);
|
|
return ba->bi_owner->i_ino - bb->bi_owner->i_ino;
|
|
}
|
|
|
|
/* Set the map extent flags for this mapping. */
|
|
static void
|
|
xfs_trans_set_bmap_flags(
|
|
struct xfs_map_extent *map,
|
|
enum xfs_bmap_intent_type type,
|
|
int whichfork,
|
|
xfs_exntst_t state)
|
|
{
|
|
map->me_flags = 0;
|
|
switch (type) {
|
|
case XFS_BMAP_MAP:
|
|
case XFS_BMAP_UNMAP:
|
|
map->me_flags = type;
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
}
|
|
if (state == XFS_EXT_UNWRITTEN)
|
|
map->me_flags |= XFS_BMAP_EXTENT_UNWRITTEN;
|
|
if (whichfork == XFS_ATTR_FORK)
|
|
map->me_flags |= XFS_BMAP_EXTENT_ATTR_FORK;
|
|
}
|
|
|
|
/* Log bmap updates in the intent item. */
|
|
STATIC void
|
|
xfs_bmap_update_log_item(
|
|
struct xfs_trans *tp,
|
|
struct xfs_bui_log_item *buip,
|
|
struct xfs_bmap_intent *bi)
|
|
{
|
|
uint next_extent;
|
|
struct xfs_map_extent *map;
|
|
|
|
tp->t_flags |= XFS_TRANS_DIRTY;
|
|
set_bit(XFS_LI_DIRTY, &buip->bui_item.li_flags);
|
|
|
|
/*
|
|
* atomic_inc_return gives us the value after the increment;
|
|
* we want to use it as an array index so we need to subtract 1 from
|
|
* it.
|
|
*/
|
|
next_extent = atomic_inc_return(&buip->bui_next_extent) - 1;
|
|
ASSERT(next_extent < buip->bui_format.bui_nextents);
|
|
map = &buip->bui_format.bui_extents[next_extent];
|
|
map->me_owner = bi->bi_owner->i_ino;
|
|
map->me_startblock = bi->bi_bmap.br_startblock;
|
|
map->me_startoff = bi->bi_bmap.br_startoff;
|
|
map->me_len = bi->bi_bmap.br_blockcount;
|
|
xfs_trans_set_bmap_flags(map, bi->bi_type, bi->bi_whichfork,
|
|
bi->bi_bmap.br_state);
|
|
}
|
|
|
|
static struct xfs_log_item *
|
|
xfs_bmap_update_create_intent(
|
|
struct xfs_trans *tp,
|
|
struct list_head *items,
|
|
unsigned int count,
|
|
bool sort)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_bui_log_item *buip = xfs_bui_init(mp);
|
|
struct xfs_bmap_intent *bi;
|
|
|
|
ASSERT(count == XFS_BUI_MAX_FAST_EXTENTS);
|
|
|
|
xfs_trans_add_item(tp, &buip->bui_item);
|
|
if (sort)
|
|
list_sort(mp, items, xfs_bmap_update_diff_items);
|
|
list_for_each_entry(bi, items, bi_list)
|
|
xfs_bmap_update_log_item(tp, buip, bi);
|
|
return &buip->bui_item;
|
|
}
|
|
|
|
/* Get an BUD so we can process all the deferred rmap updates. */
|
|
static struct xfs_log_item *
|
|
xfs_bmap_update_create_done(
|
|
struct xfs_trans *tp,
|
|
struct xfs_log_item *intent,
|
|
unsigned int count)
|
|
{
|
|
return &xfs_trans_get_bud(tp, BUI_ITEM(intent))->bud_item;
|
|
}
|
|
|
|
/* Take a passive ref to the AG containing the space we're mapping. */
|
|
void
|
|
xfs_bmap_update_get_group(
|
|
struct xfs_mount *mp,
|
|
struct xfs_bmap_intent *bi)
|
|
{
|
|
xfs_agnumber_t agno;
|
|
|
|
agno = XFS_FSB_TO_AGNO(mp, bi->bi_bmap.br_startblock);
|
|
|
|
/*
|
|
* Bump the intent count on behalf of the deferred rmap and refcount
|
|
* intent items that that we can queue when we finish this bmap work.
|
|
* This new intent item will bump the intent count before the bmap
|
|
* intent drops the intent count, ensuring that the intent count
|
|
* remains nonzero across the transaction roll.
|
|
*/
|
|
bi->bi_pag = xfs_perag_intent_get(mp, agno);
|
|
}
|
|
|
|
/* Release a passive AG ref after finishing mapping work. */
|
|
static inline void
|
|
xfs_bmap_update_put_group(
|
|
struct xfs_bmap_intent *bi)
|
|
{
|
|
xfs_perag_intent_put(bi->bi_pag);
|
|
}
|
|
|
|
/* Process a deferred rmap update. */
|
|
STATIC int
|
|
xfs_bmap_update_finish_item(
|
|
struct xfs_trans *tp,
|
|
struct xfs_log_item *done,
|
|
struct list_head *item,
|
|
struct xfs_btree_cur **state)
|
|
{
|
|
struct xfs_bmap_intent *bi;
|
|
int error;
|
|
|
|
bi = container_of(item, struct xfs_bmap_intent, bi_list);
|
|
|
|
error = xfs_trans_log_finish_bmap_update(tp, BUD_ITEM(done), bi);
|
|
if (!error && bi->bi_bmap.br_blockcount > 0) {
|
|
ASSERT(bi->bi_type == XFS_BMAP_UNMAP);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
xfs_bmap_update_put_group(bi);
|
|
kmem_cache_free(xfs_bmap_intent_cache, bi);
|
|
return error;
|
|
}
|
|
|
|
/* Abort all pending BUIs. */
|
|
STATIC void
|
|
xfs_bmap_update_abort_intent(
|
|
struct xfs_log_item *intent)
|
|
{
|
|
xfs_bui_release(BUI_ITEM(intent));
|
|
}
|
|
|
|
/* Cancel a deferred bmap update. */
|
|
STATIC void
|
|
xfs_bmap_update_cancel_item(
|
|
struct list_head *item)
|
|
{
|
|
struct xfs_bmap_intent *bi;
|
|
|
|
bi = container_of(item, struct xfs_bmap_intent, bi_list);
|
|
|
|
xfs_bmap_update_put_group(bi);
|
|
kmem_cache_free(xfs_bmap_intent_cache, bi);
|
|
}
|
|
|
|
const struct xfs_defer_op_type xfs_bmap_update_defer_type = {
|
|
.max_items = XFS_BUI_MAX_FAST_EXTENTS,
|
|
.create_intent = xfs_bmap_update_create_intent,
|
|
.abort_intent = xfs_bmap_update_abort_intent,
|
|
.create_done = xfs_bmap_update_create_done,
|
|
.finish_item = xfs_bmap_update_finish_item,
|
|
.cancel_item = xfs_bmap_update_cancel_item,
|
|
};
|
|
|
|
/* Is this recovered BUI ok? */
|
|
static inline bool
|
|
xfs_bui_validate(
|
|
struct xfs_mount *mp,
|
|
struct xfs_bui_log_item *buip)
|
|
{
|
|
struct xfs_map_extent *map;
|
|
|
|
/* Only one mapping operation per BUI... */
|
|
if (buip->bui_format.bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
|
|
return false;
|
|
|
|
map = &buip->bui_format.bui_extents[0];
|
|
|
|
if (map->me_flags & ~XFS_BMAP_EXTENT_FLAGS)
|
|
return false;
|
|
|
|
switch (map->me_flags & XFS_BMAP_EXTENT_TYPE_MASK) {
|
|
case XFS_BMAP_MAP:
|
|
case XFS_BMAP_UNMAP:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (!xfs_verify_ino(mp, map->me_owner))
|
|
return false;
|
|
|
|
if (!xfs_verify_fileext(mp, map->me_startoff, map->me_len))
|
|
return false;
|
|
|
|
return xfs_verify_fsbext(mp, map->me_startblock, map->me_len);
|
|
}
|
|
|
|
/*
|
|
* Process a bmap update intent item that was recovered from the log.
|
|
* We need to update some inode's bmbt.
|
|
*/
|
|
STATIC int
|
|
xfs_bui_item_recover(
|
|
struct xfs_log_item *lip,
|
|
struct list_head *capture_list)
|
|
{
|
|
struct xfs_bmap_intent fake = { };
|
|
struct xfs_bui_log_item *buip = BUI_ITEM(lip);
|
|
struct xfs_trans *tp;
|
|
struct xfs_inode *ip = NULL;
|
|
struct xfs_mount *mp = lip->li_log->l_mp;
|
|
struct xfs_map_extent *map;
|
|
struct xfs_bud_log_item *budp;
|
|
int iext_delta;
|
|
int error = 0;
|
|
|
|
if (!xfs_bui_validate(mp, buip)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
&buip->bui_format, sizeof(buip->bui_format));
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
map = &buip->bui_format.bui_extents[0];
|
|
fake.bi_whichfork = (map->me_flags & XFS_BMAP_EXTENT_ATTR_FORK) ?
|
|
XFS_ATTR_FORK : XFS_DATA_FORK;
|
|
fake.bi_type = map->me_flags & XFS_BMAP_EXTENT_TYPE_MASK;
|
|
|
|
error = xlog_recover_iget(mp, map->me_owner, &ip);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Allocate transaction and do the work. */
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
|
|
XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK), 0, 0, &tp);
|
|
if (error)
|
|
goto err_rele;
|
|
|
|
budp = xfs_trans_get_bud(tp, buip);
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_ijoin(tp, ip, 0);
|
|
|
|
if (fake.bi_type == XFS_BMAP_MAP)
|
|
iext_delta = XFS_IEXT_ADD_NOSPLIT_CNT;
|
|
else
|
|
iext_delta = XFS_IEXT_PUNCH_HOLE_CNT;
|
|
|
|
error = xfs_iext_count_may_overflow(ip, fake.bi_whichfork, iext_delta);
|
|
if (error == -EFBIG)
|
|
error = xfs_iext_count_upgrade(tp, ip, iext_delta);
|
|
if (error)
|
|
goto err_cancel;
|
|
|
|
fake.bi_owner = ip;
|
|
fake.bi_bmap.br_startblock = map->me_startblock;
|
|
fake.bi_bmap.br_startoff = map->me_startoff;
|
|
fake.bi_bmap.br_blockcount = map->me_len;
|
|
fake.bi_bmap.br_state = (map->me_flags & XFS_BMAP_EXTENT_UNWRITTEN) ?
|
|
XFS_EXT_UNWRITTEN : XFS_EXT_NORM;
|
|
|
|
xfs_bmap_update_get_group(mp, &fake);
|
|
error = xfs_trans_log_finish_bmap_update(tp, budp, &fake);
|
|
if (error == -EFSCORRUPTED)
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, map,
|
|
sizeof(*map));
|
|
xfs_bmap_update_put_group(&fake);
|
|
if (error)
|
|
goto err_cancel;
|
|
|
|
if (fake.bi_bmap.br_blockcount > 0) {
|
|
ASSERT(fake.bi_type == XFS_BMAP_UNMAP);
|
|
xfs_bmap_unmap_extent(tp, ip, &fake.bi_bmap);
|
|
}
|
|
|
|
/*
|
|
* Commit transaction, which frees the transaction and saves the inode
|
|
* for later replay activities.
|
|
*/
|
|
error = xfs_defer_ops_capture_and_commit(tp, capture_list);
|
|
if (error)
|
|
goto err_unlock;
|
|
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
xfs_irele(ip);
|
|
return 0;
|
|
|
|
err_cancel:
|
|
xfs_trans_cancel(tp);
|
|
err_unlock:
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
err_rele:
|
|
xfs_irele(ip);
|
|
return error;
|
|
}
|
|
|
|
STATIC bool
|
|
xfs_bui_item_match(
|
|
struct xfs_log_item *lip,
|
|
uint64_t intent_id)
|
|
{
|
|
return BUI_ITEM(lip)->bui_format.bui_id == intent_id;
|
|
}
|
|
|
|
/* Relog an intent item to push the log tail forward. */
|
|
static struct xfs_log_item *
|
|
xfs_bui_item_relog(
|
|
struct xfs_log_item *intent,
|
|
struct xfs_trans *tp)
|
|
{
|
|
struct xfs_bud_log_item *budp;
|
|
struct xfs_bui_log_item *buip;
|
|
struct xfs_map_extent *map;
|
|
unsigned int count;
|
|
|
|
count = BUI_ITEM(intent)->bui_format.bui_nextents;
|
|
map = BUI_ITEM(intent)->bui_format.bui_extents;
|
|
|
|
tp->t_flags |= XFS_TRANS_DIRTY;
|
|
budp = xfs_trans_get_bud(tp, BUI_ITEM(intent));
|
|
set_bit(XFS_LI_DIRTY, &budp->bud_item.li_flags);
|
|
|
|
buip = xfs_bui_init(tp->t_mountp);
|
|
memcpy(buip->bui_format.bui_extents, map, count * sizeof(*map));
|
|
atomic_set(&buip->bui_next_extent, count);
|
|
xfs_trans_add_item(tp, &buip->bui_item);
|
|
set_bit(XFS_LI_DIRTY, &buip->bui_item.li_flags);
|
|
return &buip->bui_item;
|
|
}
|
|
|
|
static const struct xfs_item_ops xfs_bui_item_ops = {
|
|
.flags = XFS_ITEM_INTENT,
|
|
.iop_size = xfs_bui_item_size,
|
|
.iop_format = xfs_bui_item_format,
|
|
.iop_unpin = xfs_bui_item_unpin,
|
|
.iop_release = xfs_bui_item_release,
|
|
.iop_recover = xfs_bui_item_recover,
|
|
.iop_match = xfs_bui_item_match,
|
|
.iop_relog = xfs_bui_item_relog,
|
|
};
|
|
|
|
static inline void
|
|
xfs_bui_copy_format(
|
|
struct xfs_bui_log_format *dst,
|
|
const struct xfs_bui_log_format *src)
|
|
{
|
|
unsigned int i;
|
|
|
|
memcpy(dst, src, offsetof(struct xfs_bui_log_format, bui_extents));
|
|
|
|
for (i = 0; i < src->bui_nextents; i++)
|
|
memcpy(&dst->bui_extents[i], &src->bui_extents[i],
|
|
sizeof(struct xfs_map_extent));
|
|
}
|
|
|
|
/*
|
|
* This routine is called to create an in-core extent bmap update
|
|
* item from the bui format structure which was logged on disk.
|
|
* It allocates an in-core bui, copies the extents from the format
|
|
* structure into it, and adds the bui to the AIL with the given
|
|
* LSN.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_bui_commit_pass2(
|
|
struct xlog *log,
|
|
struct list_head *buffer_list,
|
|
struct xlog_recover_item *item,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_mount *mp = log->l_mp;
|
|
struct xfs_bui_log_item *buip;
|
|
struct xfs_bui_log_format *bui_formatp;
|
|
size_t len;
|
|
|
|
bui_formatp = item->ri_buf[0].i_addr;
|
|
|
|
if (item->ri_buf[0].i_len < xfs_bui_log_format_sizeof(0)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
len = xfs_bui_log_format_sizeof(bui_formatp->bui_nextents);
|
|
if (item->ri_buf[0].i_len != len) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
buip = xfs_bui_init(mp);
|
|
xfs_bui_copy_format(&buip->bui_format, bui_formatp);
|
|
atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
|
|
/*
|
|
* Insert the intent into the AIL directly and drop one reference so
|
|
* that finishing or canceling the work will drop the other.
|
|
*/
|
|
xfs_trans_ail_insert(log->l_ailp, &buip->bui_item, lsn);
|
|
xfs_bui_release(buip);
|
|
return 0;
|
|
}
|
|
|
|
const struct xlog_recover_item_ops xlog_bui_item_ops = {
|
|
.item_type = XFS_LI_BUI,
|
|
.commit_pass2 = xlog_recover_bui_commit_pass2,
|
|
};
|
|
|
|
/*
|
|
* This routine is called when an BUD format structure is found in a committed
|
|
* transaction in the log. Its purpose is to cancel the corresponding BUI if it
|
|
* was still in the log. To do this it searches the AIL for the BUI with an id
|
|
* equal to that in the BUD format structure. If we find it we drop the BUD
|
|
* reference, which removes the BUI from the AIL and frees it.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_bud_commit_pass2(
|
|
struct xlog *log,
|
|
struct list_head *buffer_list,
|
|
struct xlog_recover_item *item,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_bud_log_format *bud_formatp;
|
|
|
|
bud_formatp = item->ri_buf[0].i_addr;
|
|
if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
|
|
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
xlog_recover_release_intent(log, XFS_LI_BUI, bud_formatp->bud_bui_id);
|
|
return 0;
|
|
}
|
|
|
|
const struct xlog_recover_item_ops xlog_bud_item_ops = {
|
|
.item_type = XFS_LI_BUD,
|
|
.commit_pass2 = xlog_recover_bud_commit_pass2,
|
|
};
|