linux/drivers/devfreq/exynos/exynos4_bus.c
Wei Yongjun 5751cdc0c9 PM / devfreq: fix missing unlock on error in exynos4_busfreq_pm_notifier_event()
Add the missing unlock before return from function
exynos4_busfreq_pm_notifier_event() in the error
handling case.

This issue introduced by commit 8fa938
(PM / devfreq: exynos4_bus: honor RCU lock usage)

Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
[Resolved path conflicts by MyungJoo Ham]
Signed-off-by: MyungJoo Ham <myungjoo.ham@samsung.com>
2013-06-03 20:20:29 +09:00

1155 lines
28 KiB
C

/* drivers/devfreq/exynos4210_memorybus.c
*
* Copyright (c) 2011 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
* MyungJoo Ham <myungjoo.ham@samsung.com>
*
* EXYNOS4 - Memory/Bus clock frequency scaling support in DEVFREQ framework
* This version supports EXYNOS4210 only. This changes bus frequencies
* and vddint voltages. Exynos4412/4212 should be able to be supported
* with minor modifications.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
#include <linux/opp.h>
#include <linux/devfreq.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/module.h>
/* Exynos4 ASV has been in the mailing list, but not upstreamed, yet. */
#ifdef CONFIG_EXYNOS_ASV
extern unsigned int exynos_result_of_asv;
#endif
#include <mach/regs-clock.h>
#include <plat/map-s5p.h>
#define MAX_SAFEVOLT 1200000 /* 1.2V */
enum exynos4_busf_type {
TYPE_BUSF_EXYNOS4210,
TYPE_BUSF_EXYNOS4x12,
};
/* Assume that the bus is saturated if the utilization is 40% */
#define BUS_SATURATION_RATIO 40
enum ppmu_counter {
PPMU_PMNCNT0 = 0,
PPMU_PMCCNT1,
PPMU_PMNCNT2,
PPMU_PMNCNT3,
PPMU_PMNCNT_MAX,
};
struct exynos4_ppmu {
void __iomem *hw_base;
unsigned int ccnt;
unsigned int event;
unsigned int count[PPMU_PMNCNT_MAX];
bool ccnt_overflow;
bool count_overflow[PPMU_PMNCNT_MAX];
};
enum busclk_level_idx {
LV_0 = 0,
LV_1,
LV_2,
LV_3,
LV_4,
_LV_END
};
#define EX4210_LV_MAX LV_2
#define EX4x12_LV_MAX LV_4
#define EX4210_LV_NUM (LV_2 + 1)
#define EX4x12_LV_NUM (LV_4 + 1)
/**
* struct busfreq_opp_info - opp information for bus
* @rate: Frequency in hertz
* @volt: Voltage in microvolts corresponding to this OPP
*/
struct busfreq_opp_info {
unsigned long rate;
unsigned long volt;
};
struct busfreq_data {
enum exynos4_busf_type type;
struct device *dev;
struct devfreq *devfreq;
bool disabled;
struct regulator *vdd_int;
struct regulator *vdd_mif; /* Exynos4412/4212 only */
struct busfreq_opp_info curr_oppinfo;
struct exynos4_ppmu dmc[2];
struct notifier_block pm_notifier;
struct mutex lock;
/* Dividers calculated at boot/probe-time */
unsigned int dmc_divtable[_LV_END]; /* DMC0 */
unsigned int top_divtable[_LV_END];
};
struct bus_opp_table {
unsigned int idx;
unsigned long clk;
unsigned long volt;
};
/* 4210 controls clock of mif and voltage of int */
static struct bus_opp_table exynos4210_busclk_table[] = {
{LV_0, 400000, 1150000},
{LV_1, 267000, 1050000},
{LV_2, 133000, 1025000},
{0, 0, 0},
};
/*
* MIF is the main control knob clock for exynox4x12 MIF/INT
* clock and voltage of both mif/int are controlled.
*/
static struct bus_opp_table exynos4x12_mifclk_table[] = {
{LV_0, 400000, 1100000},
{LV_1, 267000, 1000000},
{LV_2, 160000, 950000},
{LV_3, 133000, 950000},
{LV_4, 100000, 950000},
{0, 0, 0},
};
/*
* INT is not the control knob of 4x12. LV_x is not meant to represent
* the current performance. (MIF does)
*/
static struct bus_opp_table exynos4x12_intclk_table[] = {
{LV_0, 200000, 1000000},
{LV_1, 160000, 950000},
{LV_2, 133000, 925000},
{LV_3, 100000, 900000},
{0, 0, 0},
};
/* TODO: asv volt definitions are "__initdata"? */
/* Some chips have different operating voltages */
static unsigned int exynos4210_asv_volt[][EX4210_LV_NUM] = {
{1150000, 1050000, 1050000},
{1125000, 1025000, 1025000},
{1100000, 1000000, 1000000},
{1075000, 975000, 975000},
{1050000, 950000, 950000},
};
static unsigned int exynos4x12_mif_step_50[][EX4x12_LV_NUM] = {
/* 400 267 160 133 100 */
{1050000, 950000, 900000, 900000, 900000}, /* ASV0 */
{1050000, 950000, 900000, 900000, 900000}, /* ASV1 */
{1050000, 950000, 900000, 900000, 900000}, /* ASV2 */
{1050000, 900000, 900000, 900000, 900000}, /* ASV3 */
{1050000, 900000, 900000, 900000, 850000}, /* ASV4 */
{1050000, 900000, 900000, 850000, 850000}, /* ASV5 */
{1050000, 900000, 850000, 850000, 850000}, /* ASV6 */
{1050000, 900000, 850000, 850000, 850000}, /* ASV7 */
{1050000, 900000, 850000, 850000, 850000}, /* ASV8 */
};
static unsigned int exynos4x12_int_volt[][EX4x12_LV_NUM] = {
/* 200 160 133 100 */
{1000000, 950000, 925000, 900000}, /* ASV0 */
{975000, 925000, 925000, 900000}, /* ASV1 */
{950000, 925000, 900000, 875000}, /* ASV2 */
{950000, 900000, 900000, 875000}, /* ASV3 */
{925000, 875000, 875000, 875000}, /* ASV4 */
{900000, 850000, 850000, 850000}, /* ASV5 */
{900000, 850000, 850000, 850000}, /* ASV6 */
{900000, 850000, 850000, 850000}, /* ASV7 */
{900000, 850000, 850000, 850000}, /* ASV8 */
};
/*** Clock Divider Data for Exynos4210 ***/
static unsigned int exynos4210_clkdiv_dmc0[][8] = {
/*
* Clock divider value for following
* { DIVACP, DIVACP_PCLK, DIVDPHY, DIVDMC, DIVDMCD
* DIVDMCP, DIVCOPY2, DIVCORE_TIMERS }
*/
/* DMC L0: 400MHz */
{ 3, 1, 1, 1, 1, 1, 3, 1 },
/* DMC L1: 266.7MHz */
{ 4, 1, 1, 2, 1, 1, 3, 1 },
/* DMC L2: 133MHz */
{ 5, 1, 1, 5, 1, 1, 3, 1 },
};
static unsigned int exynos4210_clkdiv_top[][5] = {
/*
* Clock divider value for following
* { DIVACLK200, DIVACLK100, DIVACLK160, DIVACLK133, DIVONENAND }
*/
/* ACLK200 L0: 200MHz */
{ 3, 7, 4, 5, 1 },
/* ACLK200 L1: 160MHz */
{ 4, 7, 5, 6, 1 },
/* ACLK200 L2: 133MHz */
{ 5, 7, 7, 7, 1 },
};
static unsigned int exynos4210_clkdiv_lr_bus[][2] = {
/*
* Clock divider value for following
* { DIVGDL/R, DIVGPL/R }
*/
/* ACLK_GDL/R L1: 200MHz */
{ 3, 1 },
/* ACLK_GDL/R L2: 160MHz */
{ 4, 1 },
/* ACLK_GDL/R L3: 133MHz */
{ 5, 1 },
};
/*** Clock Divider Data for Exynos4212/4412 ***/
static unsigned int exynos4x12_clkdiv_dmc0[][6] = {
/*
* Clock divider value for following
* { DIVACP, DIVACP_PCLK, DIVDPHY, DIVDMC, DIVDMCD
* DIVDMCP}
*/
/* DMC L0: 400MHz */
{3, 1, 1, 1, 1, 1},
/* DMC L1: 266.7MHz */
{4, 1, 1, 2, 1, 1},
/* DMC L2: 160MHz */
{5, 1, 1, 4, 1, 1},
/* DMC L3: 133MHz */
{5, 1, 1, 5, 1, 1},
/* DMC L4: 100MHz */
{7, 1, 1, 7, 1, 1},
};
static unsigned int exynos4x12_clkdiv_dmc1[][6] = {
/*
* Clock divider value for following
* { G2DACP, DIVC2C, DIVC2C_ACLK }
*/
/* DMC L0: 400MHz */
{3, 1, 1},
/* DMC L1: 266.7MHz */
{4, 2, 1},
/* DMC L2: 160MHz */
{5, 4, 1},
/* DMC L3: 133MHz */
{5, 5, 1},
/* DMC L4: 100MHz */
{7, 7, 1},
};
static unsigned int exynos4x12_clkdiv_top[][5] = {
/*
* Clock divider value for following
* { DIVACLK266_GPS, DIVACLK100, DIVACLK160,
DIVACLK133, DIVONENAND }
*/
/* ACLK_GDL/R L0: 200MHz */
{2, 7, 4, 5, 1},
/* ACLK_GDL/R L1: 200MHz */
{2, 7, 4, 5, 1},
/* ACLK_GDL/R L2: 160MHz */
{4, 7, 5, 7, 1},
/* ACLK_GDL/R L3: 133MHz */
{4, 7, 5, 7, 1},
/* ACLK_GDL/R L4: 100MHz */
{7, 7, 7, 7, 1},
};
static unsigned int exynos4x12_clkdiv_lr_bus[][2] = {
/*
* Clock divider value for following
* { DIVGDL/R, DIVGPL/R }
*/
/* ACLK_GDL/R L0: 200MHz */
{3, 1},
/* ACLK_GDL/R L1: 200MHz */
{3, 1},
/* ACLK_GDL/R L2: 160MHz */
{4, 1},
/* ACLK_GDL/R L3: 133MHz */
{5, 1},
/* ACLK_GDL/R L4: 100MHz */
{7, 1},
};
static unsigned int exynos4x12_clkdiv_sclkip[][3] = {
/*
* Clock divider value for following
* { DIVMFC, DIVJPEG, DIVFIMC0~3}
*/
/* SCLK_MFC: 200MHz */
{3, 3, 4},
/* SCLK_MFC: 200MHz */
{3, 3, 4},
/* SCLK_MFC: 160MHz */
{4, 4, 5},
/* SCLK_MFC: 133MHz */
{5, 5, 5},
/* SCLK_MFC: 100MHz */
{7, 7, 7},
};
static int exynos4210_set_busclk(struct busfreq_data *data,
struct busfreq_opp_info *oppi)
{
unsigned int index;
unsigned int tmp;
for (index = LV_0; index < EX4210_LV_NUM; index++)
if (oppi->rate == exynos4210_busclk_table[index].clk)
break;
if (index == EX4210_LV_NUM)
return -EINVAL;
/* Change Divider - DMC0 */
tmp = data->dmc_divtable[index];
__raw_writel(tmp, EXYNOS4_CLKDIV_DMC0);
do {
tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_DMC0);
} while (tmp & 0x11111111);
/* Change Divider - TOP */
tmp = data->top_divtable[index];
__raw_writel(tmp, EXYNOS4_CLKDIV_TOP);
do {
tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_TOP);
} while (tmp & 0x11111);
/* Change Divider - LEFTBUS */
tmp = __raw_readl(EXYNOS4_CLKDIV_LEFTBUS);
tmp &= ~(EXYNOS4_CLKDIV_BUS_GDLR_MASK | EXYNOS4_CLKDIV_BUS_GPLR_MASK);
tmp |= ((exynos4210_clkdiv_lr_bus[index][0] <<
EXYNOS4_CLKDIV_BUS_GDLR_SHIFT) |
(exynos4210_clkdiv_lr_bus[index][1] <<
EXYNOS4_CLKDIV_BUS_GPLR_SHIFT));
__raw_writel(tmp, EXYNOS4_CLKDIV_LEFTBUS);
do {
tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_LEFTBUS);
} while (tmp & 0x11);
/* Change Divider - RIGHTBUS */
tmp = __raw_readl(EXYNOS4_CLKDIV_RIGHTBUS);
tmp &= ~(EXYNOS4_CLKDIV_BUS_GDLR_MASK | EXYNOS4_CLKDIV_BUS_GPLR_MASK);
tmp |= ((exynos4210_clkdiv_lr_bus[index][0] <<
EXYNOS4_CLKDIV_BUS_GDLR_SHIFT) |
(exynos4210_clkdiv_lr_bus[index][1] <<
EXYNOS4_CLKDIV_BUS_GPLR_SHIFT));
__raw_writel(tmp, EXYNOS4_CLKDIV_RIGHTBUS);
do {
tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_RIGHTBUS);
} while (tmp & 0x11);
return 0;
}
static int exynos4x12_set_busclk(struct busfreq_data *data,
struct busfreq_opp_info *oppi)
{
unsigned int index;
unsigned int tmp;
for (index = LV_0; index < EX4x12_LV_NUM; index++)
if (oppi->rate == exynos4x12_mifclk_table[index].clk)
break;
if (index == EX4x12_LV_NUM)
return -EINVAL;
/* Change Divider - DMC0 */
tmp = data->dmc_divtable[index];
__raw_writel(tmp, EXYNOS4_CLKDIV_DMC0);
do {
tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_DMC0);
} while (tmp & 0x11111111);
/* Change Divider - DMC1 */
tmp = __raw_readl(EXYNOS4_CLKDIV_DMC1);
tmp &= ~(EXYNOS4_CLKDIV_DMC1_G2D_ACP_MASK |
EXYNOS4_CLKDIV_DMC1_C2C_MASK |
EXYNOS4_CLKDIV_DMC1_C2CACLK_MASK);
tmp |= ((exynos4x12_clkdiv_dmc1[index][0] <<
EXYNOS4_CLKDIV_DMC1_G2D_ACP_SHIFT) |
(exynos4x12_clkdiv_dmc1[index][1] <<
EXYNOS4_CLKDIV_DMC1_C2C_SHIFT) |
(exynos4x12_clkdiv_dmc1[index][2] <<
EXYNOS4_CLKDIV_DMC1_C2CACLK_SHIFT));
__raw_writel(tmp, EXYNOS4_CLKDIV_DMC1);
do {
tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_DMC1);
} while (tmp & 0x111111);
/* Change Divider - TOP */
tmp = __raw_readl(EXYNOS4_CLKDIV_TOP);
tmp &= ~(EXYNOS4_CLKDIV_TOP_ACLK266_GPS_MASK |
EXYNOS4_CLKDIV_TOP_ACLK100_MASK |
EXYNOS4_CLKDIV_TOP_ACLK160_MASK |
EXYNOS4_CLKDIV_TOP_ACLK133_MASK |
EXYNOS4_CLKDIV_TOP_ONENAND_MASK);
tmp |= ((exynos4x12_clkdiv_top[index][0] <<
EXYNOS4_CLKDIV_TOP_ACLK266_GPS_SHIFT) |
(exynos4x12_clkdiv_top[index][1] <<
EXYNOS4_CLKDIV_TOP_ACLK100_SHIFT) |
(exynos4x12_clkdiv_top[index][2] <<
EXYNOS4_CLKDIV_TOP_ACLK160_SHIFT) |
(exynos4x12_clkdiv_top[index][3] <<
EXYNOS4_CLKDIV_TOP_ACLK133_SHIFT) |
(exynos4x12_clkdiv_top[index][4] <<
EXYNOS4_CLKDIV_TOP_ONENAND_SHIFT));
__raw_writel(tmp, EXYNOS4_CLKDIV_TOP);
do {
tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_TOP);
} while (tmp & 0x11111);
/* Change Divider - LEFTBUS */
tmp = __raw_readl(EXYNOS4_CLKDIV_LEFTBUS);
tmp &= ~(EXYNOS4_CLKDIV_BUS_GDLR_MASK | EXYNOS4_CLKDIV_BUS_GPLR_MASK);
tmp |= ((exynos4x12_clkdiv_lr_bus[index][0] <<
EXYNOS4_CLKDIV_BUS_GDLR_SHIFT) |
(exynos4x12_clkdiv_lr_bus[index][1] <<
EXYNOS4_CLKDIV_BUS_GPLR_SHIFT));
__raw_writel(tmp, EXYNOS4_CLKDIV_LEFTBUS);
do {
tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_LEFTBUS);
} while (tmp & 0x11);
/* Change Divider - RIGHTBUS */
tmp = __raw_readl(EXYNOS4_CLKDIV_RIGHTBUS);
tmp &= ~(EXYNOS4_CLKDIV_BUS_GDLR_MASK | EXYNOS4_CLKDIV_BUS_GPLR_MASK);
tmp |= ((exynos4x12_clkdiv_lr_bus[index][0] <<
EXYNOS4_CLKDIV_BUS_GDLR_SHIFT) |
(exynos4x12_clkdiv_lr_bus[index][1] <<
EXYNOS4_CLKDIV_BUS_GPLR_SHIFT));
__raw_writel(tmp, EXYNOS4_CLKDIV_RIGHTBUS);
do {
tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_RIGHTBUS);
} while (tmp & 0x11);
/* Change Divider - MFC */
tmp = __raw_readl(EXYNOS4_CLKDIV_MFC);
tmp &= ~(EXYNOS4_CLKDIV_MFC_MASK);
tmp |= ((exynos4x12_clkdiv_sclkip[index][0] <<
EXYNOS4_CLKDIV_MFC_SHIFT));
__raw_writel(tmp, EXYNOS4_CLKDIV_MFC);
do {
tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_MFC);
} while (tmp & 0x1);
/* Change Divider - JPEG */
tmp = __raw_readl(EXYNOS4_CLKDIV_CAM1);
tmp &= ~(EXYNOS4_CLKDIV_CAM1_JPEG_MASK);
tmp |= ((exynos4x12_clkdiv_sclkip[index][1] <<
EXYNOS4_CLKDIV_CAM1_JPEG_SHIFT));
__raw_writel(tmp, EXYNOS4_CLKDIV_CAM1);
do {
tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_CAM1);
} while (tmp & 0x1);
/* Change Divider - FIMC0~3 */
tmp = __raw_readl(EXYNOS4_CLKDIV_CAM);
tmp &= ~(EXYNOS4_CLKDIV_CAM_FIMC0_MASK | EXYNOS4_CLKDIV_CAM_FIMC1_MASK |
EXYNOS4_CLKDIV_CAM_FIMC2_MASK | EXYNOS4_CLKDIV_CAM_FIMC3_MASK);
tmp |= ((exynos4x12_clkdiv_sclkip[index][2] <<
EXYNOS4_CLKDIV_CAM_FIMC0_SHIFT) |
(exynos4x12_clkdiv_sclkip[index][2] <<
EXYNOS4_CLKDIV_CAM_FIMC1_SHIFT) |
(exynos4x12_clkdiv_sclkip[index][2] <<
EXYNOS4_CLKDIV_CAM_FIMC2_SHIFT) |
(exynos4x12_clkdiv_sclkip[index][2] <<
EXYNOS4_CLKDIV_CAM_FIMC3_SHIFT));
__raw_writel(tmp, EXYNOS4_CLKDIV_CAM);
do {
tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_CAM1);
} while (tmp & 0x1111);
return 0;
}
static void busfreq_mon_reset(struct busfreq_data *data)
{
unsigned int i;
for (i = 0; i < 2; i++) {
void __iomem *ppmu_base = data->dmc[i].hw_base;
/* Reset PPMU */
__raw_writel(0x8000000f, ppmu_base + 0xf010);
__raw_writel(0x8000000f, ppmu_base + 0xf050);
__raw_writel(0x6, ppmu_base + 0xf000);
__raw_writel(0x0, ppmu_base + 0xf100);
/* Set PPMU Event */
data->dmc[i].event = 0x6;
__raw_writel(((data->dmc[i].event << 12) | 0x1),
ppmu_base + 0xfc);
/* Start PPMU */
__raw_writel(0x1, ppmu_base + 0xf000);
}
}
static void exynos4_read_ppmu(struct busfreq_data *data)
{
int i, j;
for (i = 0; i < 2; i++) {
void __iomem *ppmu_base = data->dmc[i].hw_base;
u32 overflow;
/* Stop PPMU */
__raw_writel(0x0, ppmu_base + 0xf000);
/* Update local data from PPMU */
overflow = __raw_readl(ppmu_base + 0xf050);
data->dmc[i].ccnt = __raw_readl(ppmu_base + 0xf100);
data->dmc[i].ccnt_overflow = overflow & (1 << 31);
for (j = 0; j < PPMU_PMNCNT_MAX; j++) {
data->dmc[i].count[j] = __raw_readl(
ppmu_base + (0xf110 + (0x10 * j)));
data->dmc[i].count_overflow[j] = overflow & (1 << j);
}
}
busfreq_mon_reset(data);
}
static int exynos4x12_get_intspec(unsigned long mifclk)
{
int i = 0;
while (exynos4x12_intclk_table[i].clk) {
if (exynos4x12_intclk_table[i].clk <= mifclk)
return i;
i++;
}
return -EINVAL;
}
static int exynos4_bus_setvolt(struct busfreq_data *data,
struct busfreq_opp_info *oppi,
struct busfreq_opp_info *oldoppi)
{
int err = 0, tmp;
unsigned long volt = oppi->volt;
switch (data->type) {
case TYPE_BUSF_EXYNOS4210:
/* OPP represents DMC clock + INT voltage */
err = regulator_set_voltage(data->vdd_int, volt,
MAX_SAFEVOLT);
break;
case TYPE_BUSF_EXYNOS4x12:
/* OPP represents MIF clock + MIF voltage */
err = regulator_set_voltage(data->vdd_mif, volt,
MAX_SAFEVOLT);
if (err)
break;
tmp = exynos4x12_get_intspec(oppi->rate);
if (tmp < 0) {
err = tmp;
regulator_set_voltage(data->vdd_mif,
oldoppi->volt,
MAX_SAFEVOLT);
break;
}
err = regulator_set_voltage(data->vdd_int,
exynos4x12_intclk_table[tmp].volt,
MAX_SAFEVOLT);
/* Try to recover */
if (err)
regulator_set_voltage(data->vdd_mif,
oldoppi->volt,
MAX_SAFEVOLT);
break;
default:
err = -EINVAL;
}
return err;
}
static int exynos4_bus_target(struct device *dev, unsigned long *_freq,
u32 flags)
{
int err = 0;
struct platform_device *pdev = container_of(dev, struct platform_device,
dev);
struct busfreq_data *data = platform_get_drvdata(pdev);
struct opp *opp;
unsigned long freq;
unsigned long old_freq = data->curr_oppinfo.rate;
struct busfreq_opp_info new_oppinfo;
rcu_read_lock();
opp = devfreq_recommended_opp(dev, _freq, flags);
if (IS_ERR(opp)) {
rcu_read_unlock();
return PTR_ERR(opp);
}
new_oppinfo.rate = opp_get_freq(opp);
new_oppinfo.volt = opp_get_voltage(opp);
rcu_read_unlock();
freq = new_oppinfo.rate;
if (old_freq == freq)
return 0;
dev_dbg(dev, "targeting %lukHz %luuV\n", freq, new_oppinfo.volt);
mutex_lock(&data->lock);
if (data->disabled)
goto out;
if (old_freq < freq)
err = exynos4_bus_setvolt(data, &new_oppinfo,
&data->curr_oppinfo);
if (err)
goto out;
if (old_freq != freq) {
switch (data->type) {
case TYPE_BUSF_EXYNOS4210:
err = exynos4210_set_busclk(data, &new_oppinfo);
break;
case TYPE_BUSF_EXYNOS4x12:
err = exynos4x12_set_busclk(data, &new_oppinfo);
break;
default:
err = -EINVAL;
}
}
if (err)
goto out;
if (old_freq > freq)
err = exynos4_bus_setvolt(data, &new_oppinfo,
&data->curr_oppinfo);
if (err)
goto out;
data->curr_oppinfo = new_oppinfo;
out:
mutex_unlock(&data->lock);
return err;
}
static int exynos4_get_busier_dmc(struct busfreq_data *data)
{
u64 p0 = data->dmc[0].count[0];
u64 p1 = data->dmc[1].count[0];
p0 *= data->dmc[1].ccnt;
p1 *= data->dmc[0].ccnt;
if (data->dmc[1].ccnt == 0)
return 0;
if (p0 > p1)
return 0;
return 1;
}
static int exynos4_bus_get_dev_status(struct device *dev,
struct devfreq_dev_status *stat)
{
struct busfreq_data *data = dev_get_drvdata(dev);
int busier_dmc;
int cycles_x2 = 2; /* 2 x cycles */
void __iomem *addr;
u32 timing;
u32 memctrl;
exynos4_read_ppmu(data);
busier_dmc = exynos4_get_busier_dmc(data);
stat->current_frequency = data->curr_oppinfo.rate;
if (busier_dmc)
addr = S5P_VA_DMC1;
else
addr = S5P_VA_DMC0;
memctrl = __raw_readl(addr + 0x04); /* one of DDR2/3/LPDDR2 */
timing = __raw_readl(addr + 0x38); /* CL or WL/RL values */
switch ((memctrl >> 8) & 0xf) {
case 0x4: /* DDR2 */
cycles_x2 = ((timing >> 16) & 0xf) * 2;
break;
case 0x5: /* LPDDR2 */
case 0x6: /* DDR3 */
cycles_x2 = ((timing >> 8) & 0xf) + ((timing >> 0) & 0xf);
break;
default:
pr_err("%s: Unknown Memory Type(%d).\n", __func__,
(memctrl >> 8) & 0xf);
return -EINVAL;
}
/* Number of cycles spent on memory access */
stat->busy_time = data->dmc[busier_dmc].count[0] / 2 * (cycles_x2 + 2);
stat->busy_time *= 100 / BUS_SATURATION_RATIO;
stat->total_time = data->dmc[busier_dmc].ccnt;
/* If the counters have overflown, retry */
if (data->dmc[busier_dmc].ccnt_overflow ||
data->dmc[busier_dmc].count_overflow[0])
return -EAGAIN;
return 0;
}
static void exynos4_bus_exit(struct device *dev)
{
struct busfreq_data *data = dev_get_drvdata(dev);
devfreq_unregister_opp_notifier(dev, data->devfreq);
}
static struct devfreq_dev_profile exynos4_devfreq_profile = {
.initial_freq = 400000,
.polling_ms = 50,
.target = exynos4_bus_target,
.get_dev_status = exynos4_bus_get_dev_status,
.exit = exynos4_bus_exit,
};
static int exynos4210_init_tables(struct busfreq_data *data)
{
u32 tmp;
int mgrp;
int i, err = 0;
tmp = __raw_readl(EXYNOS4_CLKDIV_DMC0);
for (i = LV_0; i < EX4210_LV_NUM; i++) {
tmp &= ~(EXYNOS4_CLKDIV_DMC0_ACP_MASK |
EXYNOS4_CLKDIV_DMC0_ACPPCLK_MASK |
EXYNOS4_CLKDIV_DMC0_DPHY_MASK |
EXYNOS4_CLKDIV_DMC0_DMC_MASK |
EXYNOS4_CLKDIV_DMC0_DMCD_MASK |
EXYNOS4_CLKDIV_DMC0_DMCP_MASK |
EXYNOS4_CLKDIV_DMC0_COPY2_MASK |
EXYNOS4_CLKDIV_DMC0_CORETI_MASK);
tmp |= ((exynos4210_clkdiv_dmc0[i][0] <<
EXYNOS4_CLKDIV_DMC0_ACP_SHIFT) |
(exynos4210_clkdiv_dmc0[i][1] <<
EXYNOS4_CLKDIV_DMC0_ACPPCLK_SHIFT) |
(exynos4210_clkdiv_dmc0[i][2] <<
EXYNOS4_CLKDIV_DMC0_DPHY_SHIFT) |
(exynos4210_clkdiv_dmc0[i][3] <<
EXYNOS4_CLKDIV_DMC0_DMC_SHIFT) |
(exynos4210_clkdiv_dmc0[i][4] <<
EXYNOS4_CLKDIV_DMC0_DMCD_SHIFT) |
(exynos4210_clkdiv_dmc0[i][5] <<
EXYNOS4_CLKDIV_DMC0_DMCP_SHIFT) |
(exynos4210_clkdiv_dmc0[i][6] <<
EXYNOS4_CLKDIV_DMC0_COPY2_SHIFT) |
(exynos4210_clkdiv_dmc0[i][7] <<
EXYNOS4_CLKDIV_DMC0_CORETI_SHIFT));
data->dmc_divtable[i] = tmp;
}
tmp = __raw_readl(EXYNOS4_CLKDIV_TOP);
for (i = LV_0; i < EX4210_LV_NUM; i++) {
tmp &= ~(EXYNOS4_CLKDIV_TOP_ACLK200_MASK |
EXYNOS4_CLKDIV_TOP_ACLK100_MASK |
EXYNOS4_CLKDIV_TOP_ACLK160_MASK |
EXYNOS4_CLKDIV_TOP_ACLK133_MASK |
EXYNOS4_CLKDIV_TOP_ONENAND_MASK);
tmp |= ((exynos4210_clkdiv_top[i][0] <<
EXYNOS4_CLKDIV_TOP_ACLK200_SHIFT) |
(exynos4210_clkdiv_top[i][1] <<
EXYNOS4_CLKDIV_TOP_ACLK100_SHIFT) |
(exynos4210_clkdiv_top[i][2] <<
EXYNOS4_CLKDIV_TOP_ACLK160_SHIFT) |
(exynos4210_clkdiv_top[i][3] <<
EXYNOS4_CLKDIV_TOP_ACLK133_SHIFT) |
(exynos4210_clkdiv_top[i][4] <<
EXYNOS4_CLKDIV_TOP_ONENAND_SHIFT));
data->top_divtable[i] = tmp;
}
#ifdef CONFIG_EXYNOS_ASV
tmp = exynos4_result_of_asv;
#else
tmp = 0; /* Max voltages for the reliability of the unknown */
#endif
pr_debug("ASV Group of Exynos4 is %d\n", tmp);
/* Use merged grouping for voltage */
switch (tmp) {
case 0:
mgrp = 0;
break;
case 1:
case 2:
mgrp = 1;
break;
case 3:
case 4:
mgrp = 2;
break;
case 5:
case 6:
mgrp = 3;
break;
case 7:
mgrp = 4;
break;
default:
pr_warn("Unknown ASV Group. Use max voltage.\n");
mgrp = 0;
}
for (i = LV_0; i < EX4210_LV_NUM; i++)
exynos4210_busclk_table[i].volt = exynos4210_asv_volt[mgrp][i];
for (i = LV_0; i < EX4210_LV_NUM; i++) {
err = opp_add(data->dev, exynos4210_busclk_table[i].clk,
exynos4210_busclk_table[i].volt);
if (err) {
dev_err(data->dev, "Cannot add opp entries.\n");
return err;
}
}
return 0;
}
static int exynos4x12_init_tables(struct busfreq_data *data)
{
unsigned int i;
unsigned int tmp;
int ret;
/* Enable pause function for DREX2 DVFS */
tmp = __raw_readl(EXYNOS4_DMC_PAUSE_CTRL);
tmp |= EXYNOS4_DMC_PAUSE_ENABLE;
__raw_writel(tmp, EXYNOS4_DMC_PAUSE_CTRL);
tmp = __raw_readl(EXYNOS4_CLKDIV_DMC0);
for (i = 0; i < EX4x12_LV_NUM; i++) {
tmp &= ~(EXYNOS4_CLKDIV_DMC0_ACP_MASK |
EXYNOS4_CLKDIV_DMC0_ACPPCLK_MASK |
EXYNOS4_CLKDIV_DMC0_DPHY_MASK |
EXYNOS4_CLKDIV_DMC0_DMC_MASK |
EXYNOS4_CLKDIV_DMC0_DMCD_MASK |
EXYNOS4_CLKDIV_DMC0_DMCP_MASK);
tmp |= ((exynos4x12_clkdiv_dmc0[i][0] <<
EXYNOS4_CLKDIV_DMC0_ACP_SHIFT) |
(exynos4x12_clkdiv_dmc0[i][1] <<
EXYNOS4_CLKDIV_DMC0_ACPPCLK_SHIFT) |
(exynos4x12_clkdiv_dmc0[i][2] <<
EXYNOS4_CLKDIV_DMC0_DPHY_SHIFT) |
(exynos4x12_clkdiv_dmc0[i][3] <<
EXYNOS4_CLKDIV_DMC0_DMC_SHIFT) |
(exynos4x12_clkdiv_dmc0[i][4] <<
EXYNOS4_CLKDIV_DMC0_DMCD_SHIFT) |
(exynos4x12_clkdiv_dmc0[i][5] <<
EXYNOS4_CLKDIV_DMC0_DMCP_SHIFT));
data->dmc_divtable[i] = tmp;
}
#ifdef CONFIG_EXYNOS_ASV
tmp = exynos4_result_of_asv;
#else
tmp = 0; /* Max voltages for the reliability of the unknown */
#endif
if (tmp > 8)
tmp = 0;
pr_debug("ASV Group of Exynos4x12 is %d\n", tmp);
for (i = 0; i < EX4x12_LV_NUM; i++) {
exynos4x12_mifclk_table[i].volt =
exynos4x12_mif_step_50[tmp][i];
exynos4x12_intclk_table[i].volt =
exynos4x12_int_volt[tmp][i];
}
for (i = 0; i < EX4x12_LV_NUM; i++) {
ret = opp_add(data->dev, exynos4x12_mifclk_table[i].clk,
exynos4x12_mifclk_table[i].volt);
if (ret) {
dev_err(data->dev, "Fail to add opp entries.\n");
return ret;
}
}
return 0;
}
static int exynos4_busfreq_pm_notifier_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct busfreq_data *data = container_of(this, struct busfreq_data,
pm_notifier);
struct opp *opp;
struct busfreq_opp_info new_oppinfo;
unsigned long maxfreq = ULONG_MAX;
int err = 0;
switch (event) {
case PM_SUSPEND_PREPARE:
/* Set Fastest and Deactivate DVFS */
mutex_lock(&data->lock);
data->disabled = true;
rcu_read_lock();
opp = opp_find_freq_floor(data->dev, &maxfreq);
if (IS_ERR(opp)) {
rcu_read_unlock();
dev_err(data->dev, "%s: unable to find a min freq\n",
__func__);
mutex_unlock(&data->lock);
return PTR_ERR(opp);
}
new_oppinfo.rate = opp_get_freq(opp);
new_oppinfo.volt = opp_get_voltage(opp);
rcu_read_unlock();
err = exynos4_bus_setvolt(data, &new_oppinfo,
&data->curr_oppinfo);
if (err)
goto unlock;
switch (data->type) {
case TYPE_BUSF_EXYNOS4210:
err = exynos4210_set_busclk(data, &new_oppinfo);
break;
case TYPE_BUSF_EXYNOS4x12:
err = exynos4x12_set_busclk(data, &new_oppinfo);
break;
default:
err = -EINVAL;
}
if (err)
goto unlock;
data->curr_oppinfo = new_oppinfo;
unlock:
mutex_unlock(&data->lock);
if (err)
return err;
return NOTIFY_OK;
case PM_POST_RESTORE:
case PM_POST_SUSPEND:
/* Reactivate */
mutex_lock(&data->lock);
data->disabled = false;
mutex_unlock(&data->lock);
return NOTIFY_OK;
}
return NOTIFY_DONE;
}
static int exynos4_busfreq_probe(struct platform_device *pdev)
{
struct busfreq_data *data;
struct opp *opp;
struct device *dev = &pdev->dev;
int err = 0;
data = devm_kzalloc(&pdev->dev, sizeof(struct busfreq_data), GFP_KERNEL);
if (data == NULL) {
dev_err(dev, "Cannot allocate memory.\n");
return -ENOMEM;
}
data->type = pdev->id_entry->driver_data;
data->dmc[0].hw_base = S5P_VA_DMC0;
data->dmc[1].hw_base = S5P_VA_DMC1;
data->pm_notifier.notifier_call = exynos4_busfreq_pm_notifier_event;
data->dev = dev;
mutex_init(&data->lock);
switch (data->type) {
case TYPE_BUSF_EXYNOS4210:
err = exynos4210_init_tables(data);
break;
case TYPE_BUSF_EXYNOS4x12:
err = exynos4x12_init_tables(data);
break;
default:
dev_err(dev, "Cannot determine the device id %d\n", data->type);
err = -EINVAL;
}
if (err)
return err;
data->vdd_int = devm_regulator_get(dev, "vdd_int");
if (IS_ERR(data->vdd_int)) {
dev_err(dev, "Cannot get the regulator \"vdd_int\"\n");
return PTR_ERR(data->vdd_int);
}
if (data->type == TYPE_BUSF_EXYNOS4x12) {
data->vdd_mif = devm_regulator_get(dev, "vdd_mif");
if (IS_ERR(data->vdd_mif)) {
dev_err(dev, "Cannot get the regulator \"vdd_mif\"\n");
return PTR_ERR(data->vdd_mif);
}
}
rcu_read_lock();
opp = opp_find_freq_floor(dev, &exynos4_devfreq_profile.initial_freq);
if (IS_ERR(opp)) {
rcu_read_unlock();
dev_err(dev, "Invalid initial frequency %lu kHz.\n",
exynos4_devfreq_profile.initial_freq);
return PTR_ERR(opp);
}
data->curr_oppinfo.rate = opp_get_freq(opp);
data->curr_oppinfo.volt = opp_get_voltage(opp);
rcu_read_unlock();
platform_set_drvdata(pdev, data);
busfreq_mon_reset(data);
data->devfreq = devfreq_add_device(dev, &exynos4_devfreq_profile,
"simple_ondemand", NULL);
if (IS_ERR(data->devfreq))
return PTR_ERR(data->devfreq);
devfreq_register_opp_notifier(dev, data->devfreq);
err = register_pm_notifier(&data->pm_notifier);
if (err) {
dev_err(dev, "Failed to setup pm notifier\n");
devfreq_remove_device(data->devfreq);
return err;
}
return 0;
}
static int exynos4_busfreq_remove(struct platform_device *pdev)
{
struct busfreq_data *data = platform_get_drvdata(pdev);
unregister_pm_notifier(&data->pm_notifier);
devfreq_remove_device(data->devfreq);
return 0;
}
static int exynos4_busfreq_resume(struct device *dev)
{
struct busfreq_data *data = dev_get_drvdata(dev);
busfreq_mon_reset(data);
return 0;
}
static const struct dev_pm_ops exynos4_busfreq_pm = {
.resume = exynos4_busfreq_resume,
};
static const struct platform_device_id exynos4_busfreq_id[] = {
{ "exynos4210-busfreq", TYPE_BUSF_EXYNOS4210 },
{ "exynos4412-busfreq", TYPE_BUSF_EXYNOS4x12 },
{ "exynos4212-busfreq", TYPE_BUSF_EXYNOS4x12 },
{ },
};
static struct platform_driver exynos4_busfreq_driver = {
.probe = exynos4_busfreq_probe,
.remove = exynos4_busfreq_remove,
.id_table = exynos4_busfreq_id,
.driver = {
.name = "exynos4-busfreq",
.owner = THIS_MODULE,
.pm = &exynos4_busfreq_pm,
},
};
static int __init exynos4_busfreq_init(void)
{
return platform_driver_register(&exynos4_busfreq_driver);
}
late_initcall(exynos4_busfreq_init);
static void __exit exynos4_busfreq_exit(void)
{
platform_driver_unregister(&exynos4_busfreq_driver);
}
module_exit(exynos4_busfreq_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("EXYNOS4 busfreq driver with devfreq framework");
MODULE_AUTHOR("MyungJoo Ham <myungjoo.ham@samsung.com>");