linux/Documentation/devicetree/bindings/pci/nvidia,tegra194-pcie.txt
Vidya Sagar 7ed106d8fd dt-bindings: PCI: tegra: Add PCIe slot supplies regulator entries
Add optional bindings "vpcie3v3-supply" and "vpcie12v-supply" to describe
regulators of a PCIe slot's supplies 3.3V and 12V provided the platform
is designed to have regulator controlled slot supplies.

Signed-off-by: Vidya Sagar <vidyas@nvidia.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Andrew Murray <andrew.murray@arm.com>
Reviewed-by: Rob Herring <robh@kernel.org>
Acked-by: Thierry Reding <treding@nvidia.com>
2019-09-08 13:00:59 +01:00

172 lines
7.4 KiB
Plaintext

NVIDIA Tegra PCIe controller (Synopsys DesignWare Core based)
This PCIe host controller is based on the Synopsis Designware PCIe IP
and thus inherits all the common properties defined in designware-pcie.txt.
Required properties:
- compatible: For Tegra19x, must contain "nvidia,tegra194-pcie".
- device_type: Must be "pci"
- power-domains: A phandle to the node that controls power to the respective
PCIe controller and a specifier name for the PCIe controller. Following are
the specifiers for the different PCIe controllers
TEGRA194_POWER_DOMAIN_PCIEX8B: C0
TEGRA194_POWER_DOMAIN_PCIEX1A: C1
TEGRA194_POWER_DOMAIN_PCIEX1A: C2
TEGRA194_POWER_DOMAIN_PCIEX1A: C3
TEGRA194_POWER_DOMAIN_PCIEX4A: C4
TEGRA194_POWER_DOMAIN_PCIEX8A: C5
these specifiers are defined in
"include/dt-bindings/power/tegra194-powergate.h" file.
- reg: A list of physical base address and length pairs for each set of
controller registers. Must contain an entry for each entry in the reg-names
property.
- reg-names: Must include the following entries:
"appl": Controller's application logic registers
"config": As per the definition in designware-pcie.txt
"atu_dma": iATU and DMA registers. This is where the iATU (internal Address
Translation Unit) registers of the PCIe core are made available
for SW access.
"dbi": The aperture where root port's own configuration registers are
available
- interrupts: A list of interrupt outputs of the controller. Must contain an
entry for each entry in the interrupt-names property.
- interrupt-names: Must include the following entries:
"intr": The Tegra interrupt that is asserted for controller interrupts
"msi": The Tegra interrupt that is asserted when an MSI is received
- bus-range: Range of bus numbers associated with this controller
- #address-cells: Address representation for root ports (must be 3)
- cell 0 specifies the bus and device numbers of the root port:
[23:16]: bus number
[15:11]: device number
- cell 1 denotes the upper 32 address bits and should be 0
- cell 2 contains the lower 32 address bits and is used to translate to the
CPU address space
- #size-cells: Size representation for root ports (must be 2)
- ranges: Describes the translation of addresses for root ports and standard
PCI regions. The entries must be 7 cells each, where the first three cells
correspond to the address as described for the #address-cells property
above, the fourth and fifth cells are for the physical CPU address to
translate to and the sixth and seventh cells are as described for the
#size-cells property above.
- Entries setup the mapping for the standard I/O, memory and
prefetchable PCI regions. The first cell determines the type of region
that is setup:
- 0x81000000: I/O memory region
- 0x82000000: non-prefetchable memory region
- 0xc2000000: prefetchable memory region
Please refer to the standard PCI bus binding document for a more detailed
explanation.
- #interrupt-cells: Size representation for interrupts (must be 1)
- interrupt-map-mask and interrupt-map: Standard PCI IRQ mapping properties
Please refer to the standard PCI bus binding document for a more detailed
explanation.
- clocks: Must contain an entry for each entry in clock-names.
See ../clocks/clock-bindings.txt for details.
- clock-names: Must include the following entries:
- core
- resets: Must contain an entry for each entry in reset-names.
See ../reset/reset.txt for details.
- reset-names: Must include the following entries:
- apb
- core
- phys: Must contain a phandle to P2U PHY for each entry in phy-names.
- phy-names: Must include an entry for each active lane.
"p2u-N": where N ranges from 0 to one less than the total number of lanes
- nvidia,bpmp: Must contain a pair of phandle to BPMP controller node followed
by controller-id. Following are the controller ids for each controller.
0: C0
1: C1
2: C2
3: C3
4: C4
5: C5
- vddio-pex-ctl-supply: Regulator supply for PCIe side band signals
Optional properties:
- pinctrl-names: A list of pinctrl state names.
It is mandatory for C5 controller and optional for other controllers.
- "default": Configures PCIe I/O for proper operation.
- pinctrl-0: phandle for the 'default' state of pin configuration.
It is mandatory for C5 controller and optional for other controllers.
- supports-clkreq: Refer to Documentation/devicetree/bindings/pci/pci.txt
- nvidia,update-fc-fixup: This is a boolean property and needs to be present to
improve performance when a platform is designed in such a way that it
satisfies at least one of the following conditions thereby enabling root
port to exchange optimum number of FC (Flow Control) credits with
downstream devices
1. If C0/C4/C5 run at x1/x2 link widths (irrespective of speed and MPS)
2. If C0/C1/C2/C3/C4/C5 operate at their respective max link widths and
a) speed is Gen-2 and MPS is 256B
b) speed is >= Gen-3 with any MPS
- nvidia,aspm-cmrt-us: Common Mode Restore Time for proper operation of ASPM
to be specified in microseconds
- nvidia,aspm-pwr-on-t-us: Power On time for proper operation of ASPM to be
specified in microseconds
- nvidia,aspm-l0s-entrance-latency-us: ASPM L0s entrance latency to be
specified in microseconds
- vpcie3v3-supply: A phandle to the regulator node that supplies 3.3V to the slot
if the platform has one such slot. (Ex:- x16 slot owned by C5 controller
in p2972-0000 platform).
- vpcie12v-supply: A phandle to the regulator node that supplies 12V to the slot
if the platform has one such slot. (Ex:- x16 slot owned by C5 controller
in p2972-0000 platform).
Examples:
=========
Tegra194:
--------
pcie@14180000 {
compatible = "nvidia,tegra194-pcie", "snps,dw-pcie";
power-domains = <&bpmp TEGRA194_POWER_DOMAIN_PCIEX8B>;
reg = <0x00 0x14180000 0x0 0x00020000 /* appl registers (128K) */
0x00 0x38000000 0x0 0x00040000 /* configuration space (256K) */
0x00 0x38040000 0x0 0x00040000>; /* iATU_DMA reg space (256K) */
reg-names = "appl", "config", "atu_dma";
#address-cells = <3>;
#size-cells = <2>;
device_type = "pci";
num-lanes = <8>;
linux,pci-domain = <0>;
pinctrl-names = "default";
pinctrl-0 = <&pex_rst_c5_out_state>, <&clkreq_c5_bi_dir_state>;
clocks = <&bpmp TEGRA194_CLK_PEX0_CORE_0>;
clock-names = "core";
resets = <&bpmp TEGRA194_RESET_PEX0_CORE_0_APB>,
<&bpmp TEGRA194_RESET_PEX0_CORE_0>;
reset-names = "apb", "core";
interrupts = <GIC_SPI 72 IRQ_TYPE_LEVEL_HIGH>, /* controller interrupt */
<GIC_SPI 73 IRQ_TYPE_LEVEL_HIGH>; /* MSI interrupt */
interrupt-names = "intr", "msi";
#interrupt-cells = <1>;
interrupt-map-mask = <0 0 0 0>;
interrupt-map = <0 0 0 0 &gic GIC_SPI 72 IRQ_TYPE_LEVEL_HIGH>;
nvidia,bpmp = <&bpmp 0>;
supports-clkreq;
nvidia,aspm-cmrt-us = <60>;
nvidia,aspm-pwr-on-t-us = <20>;
nvidia,aspm-l0s-entrance-latency-us = <3>;
bus-range = <0x0 0xff>;
ranges = <0x81000000 0x0 0x38100000 0x0 0x38100000 0x0 0x00100000 /* downstream I/O (1MB) */
0x82000000 0x0 0x38200000 0x0 0x38200000 0x0 0x01E00000 /* non-prefetchable memory (30MB) */
0xc2000000 0x18 0x00000000 0x18 0x00000000 0x4 0x00000000>; /* prefetchable memory (16GB) */
vddio-pex-ctl-supply = <&vdd_1v8ao>;
vpcie3v3-supply = <&vdd_3v3_pcie>;
vpcie12v-supply = <&vdd_12v_pcie>;
phys = <&p2u_hsio_2>, <&p2u_hsio_3>, <&p2u_hsio_4>,
<&p2u_hsio_5>;
phy-names = "p2u-0", "p2u-1", "p2u-2", "p2u-3";
};