mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 12:11:40 +00:00
c2744ed223
Nullify the async #PF worker's local "apf" pointer immediately after the point where the structure can be freed by the vCPU. The existing comment is helpful, but easy to overlook as there is no associated code. Update the comment to clarify that it can be freed by as soon as the lock is dropped, as "after this point" isn't strictly accurate, nor does it help understand what prevents the structure from being freed earlier. Reviewed-by: Xu Yilun <yilun.xu@intel.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/20240110011533.503302-5-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
253 lines
6.4 KiB
C
253 lines
6.4 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* kvm asynchronous fault support
|
|
*
|
|
* Copyright 2010 Red Hat, Inc.
|
|
*
|
|
* Author:
|
|
* Gleb Natapov <gleb@redhat.com>
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mmu_context.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
#include "async_pf.h"
|
|
#include <trace/events/kvm.h>
|
|
|
|
static struct kmem_cache *async_pf_cache;
|
|
|
|
int kvm_async_pf_init(void)
|
|
{
|
|
async_pf_cache = KMEM_CACHE(kvm_async_pf, 0);
|
|
|
|
if (!async_pf_cache)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_async_pf_deinit(void)
|
|
{
|
|
kmem_cache_destroy(async_pf_cache);
|
|
async_pf_cache = NULL;
|
|
}
|
|
|
|
void kvm_async_pf_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
INIT_LIST_HEAD(&vcpu->async_pf.done);
|
|
INIT_LIST_HEAD(&vcpu->async_pf.queue);
|
|
spin_lock_init(&vcpu->async_pf.lock);
|
|
}
|
|
|
|
static void async_pf_execute(struct work_struct *work)
|
|
{
|
|
struct kvm_async_pf *apf =
|
|
container_of(work, struct kvm_async_pf, work);
|
|
struct kvm_vcpu *vcpu = apf->vcpu;
|
|
struct mm_struct *mm = vcpu->kvm->mm;
|
|
unsigned long addr = apf->addr;
|
|
gpa_t cr2_or_gpa = apf->cr2_or_gpa;
|
|
int locked = 1;
|
|
bool first;
|
|
|
|
might_sleep();
|
|
|
|
/*
|
|
* Attempt to pin the VM's host address space, and simply skip gup() if
|
|
* acquiring a pin fail, i.e. if the process is exiting. Note, KVM
|
|
* holds a reference to its associated mm_struct until the very end of
|
|
* kvm_destroy_vm(), i.e. the struct itself won't be freed before this
|
|
* work item is fully processed.
|
|
*/
|
|
if (mmget_not_zero(mm)) {
|
|
mmap_read_lock(mm);
|
|
get_user_pages_remote(mm, addr, 1, FOLL_WRITE, NULL, &locked);
|
|
if (locked)
|
|
mmap_read_unlock(mm);
|
|
mmput(mm);
|
|
}
|
|
|
|
/*
|
|
* Notify and kick the vCPU even if faulting in the page failed, e.g.
|
|
* so that the vCPU can retry the fault synchronously.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KVM_ASYNC_PF_SYNC))
|
|
kvm_arch_async_page_present(vcpu, apf);
|
|
|
|
spin_lock(&vcpu->async_pf.lock);
|
|
first = list_empty(&vcpu->async_pf.done);
|
|
list_add_tail(&apf->link, &vcpu->async_pf.done);
|
|
apf->vcpu = NULL;
|
|
spin_unlock(&vcpu->async_pf.lock);
|
|
|
|
/*
|
|
* The apf struct may be freed by kvm_check_async_pf_completion() as
|
|
* soon as the lock is dropped. Nullify it to prevent improper usage.
|
|
*/
|
|
apf = NULL;
|
|
|
|
if (!IS_ENABLED(CONFIG_KVM_ASYNC_PF_SYNC) && first)
|
|
kvm_arch_async_page_present_queued(vcpu);
|
|
|
|
trace_kvm_async_pf_completed(addr, cr2_or_gpa);
|
|
|
|
__kvm_vcpu_wake_up(vcpu);
|
|
}
|
|
|
|
static void kvm_flush_and_free_async_pf_work(struct kvm_async_pf *work)
|
|
{
|
|
/*
|
|
* The async #PF is "done", but KVM must wait for the work item itself,
|
|
* i.e. async_pf_execute(), to run to completion. If KVM is a module,
|
|
* KVM must ensure *no* code owned by the KVM (the module) can be run
|
|
* after the last call to module_put(). Note, flushing the work item
|
|
* is always required when the item is taken off the completion queue.
|
|
* E.g. even if the vCPU handles the item in the "normal" path, the VM
|
|
* could be terminated before async_pf_execute() completes.
|
|
*
|
|
* Wake all events skip the queue and go straight done, i.e. don't
|
|
* need to be flushed (but sanity check that the work wasn't queued).
|
|
*/
|
|
if (work->wakeup_all)
|
|
WARN_ON_ONCE(work->work.func);
|
|
else
|
|
flush_work(&work->work);
|
|
kmem_cache_free(async_pf_cache, work);
|
|
}
|
|
|
|
void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu)
|
|
{
|
|
spin_lock(&vcpu->async_pf.lock);
|
|
|
|
/* cancel outstanding work queue item */
|
|
while (!list_empty(&vcpu->async_pf.queue)) {
|
|
struct kvm_async_pf *work =
|
|
list_first_entry(&vcpu->async_pf.queue,
|
|
typeof(*work), queue);
|
|
list_del(&work->queue);
|
|
|
|
/*
|
|
* We know it's present in vcpu->async_pf.done, do
|
|
* nothing here.
|
|
*/
|
|
if (!work->vcpu)
|
|
continue;
|
|
|
|
spin_unlock(&vcpu->async_pf.lock);
|
|
#ifdef CONFIG_KVM_ASYNC_PF_SYNC
|
|
flush_work(&work->work);
|
|
#else
|
|
if (cancel_work_sync(&work->work))
|
|
kmem_cache_free(async_pf_cache, work);
|
|
#endif
|
|
spin_lock(&vcpu->async_pf.lock);
|
|
}
|
|
|
|
while (!list_empty(&vcpu->async_pf.done)) {
|
|
struct kvm_async_pf *work =
|
|
list_first_entry(&vcpu->async_pf.done,
|
|
typeof(*work), link);
|
|
list_del(&work->link);
|
|
|
|
spin_unlock(&vcpu->async_pf.lock);
|
|
kvm_flush_and_free_async_pf_work(work);
|
|
spin_lock(&vcpu->async_pf.lock);
|
|
}
|
|
spin_unlock(&vcpu->async_pf.lock);
|
|
|
|
vcpu->async_pf.queued = 0;
|
|
}
|
|
|
|
void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_async_pf *work;
|
|
|
|
while (!list_empty_careful(&vcpu->async_pf.done) &&
|
|
kvm_arch_can_dequeue_async_page_present(vcpu)) {
|
|
spin_lock(&vcpu->async_pf.lock);
|
|
work = list_first_entry(&vcpu->async_pf.done, typeof(*work),
|
|
link);
|
|
list_del(&work->link);
|
|
spin_unlock(&vcpu->async_pf.lock);
|
|
|
|
kvm_arch_async_page_ready(vcpu, work);
|
|
if (!IS_ENABLED(CONFIG_KVM_ASYNC_PF_SYNC))
|
|
kvm_arch_async_page_present(vcpu, work);
|
|
|
|
list_del(&work->queue);
|
|
vcpu->async_pf.queued--;
|
|
kvm_flush_and_free_async_pf_work(work);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try to schedule a job to handle page fault asynchronously. Returns 'true' on
|
|
* success, 'false' on failure (page fault has to be handled synchronously).
|
|
*/
|
|
bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
|
|
unsigned long hva, struct kvm_arch_async_pf *arch)
|
|
{
|
|
struct kvm_async_pf *work;
|
|
|
|
if (vcpu->async_pf.queued >= ASYNC_PF_PER_VCPU)
|
|
return false;
|
|
|
|
/* Arch specific code should not do async PF in this case */
|
|
if (unlikely(kvm_is_error_hva(hva)))
|
|
return false;
|
|
|
|
/*
|
|
* do alloc nowait since if we are going to sleep anyway we
|
|
* may as well sleep faulting in page
|
|
*/
|
|
work = kmem_cache_zalloc(async_pf_cache, GFP_NOWAIT | __GFP_NOWARN);
|
|
if (!work)
|
|
return false;
|
|
|
|
work->wakeup_all = false;
|
|
work->vcpu = vcpu;
|
|
work->cr2_or_gpa = cr2_or_gpa;
|
|
work->addr = hva;
|
|
work->arch = *arch;
|
|
|
|
INIT_WORK(&work->work, async_pf_execute);
|
|
|
|
list_add_tail(&work->queue, &vcpu->async_pf.queue);
|
|
vcpu->async_pf.queued++;
|
|
work->notpresent_injected = kvm_arch_async_page_not_present(vcpu, work);
|
|
|
|
schedule_work(&work->work);
|
|
|
|
return true;
|
|
}
|
|
|
|
int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_async_pf *work;
|
|
bool first;
|
|
|
|
if (!list_empty_careful(&vcpu->async_pf.done))
|
|
return 0;
|
|
|
|
work = kmem_cache_zalloc(async_pf_cache, GFP_ATOMIC);
|
|
if (!work)
|
|
return -ENOMEM;
|
|
|
|
work->wakeup_all = true;
|
|
INIT_LIST_HEAD(&work->queue); /* for list_del to work */
|
|
|
|
spin_lock(&vcpu->async_pf.lock);
|
|
first = list_empty(&vcpu->async_pf.done);
|
|
list_add_tail(&work->link, &vcpu->async_pf.done);
|
|
spin_unlock(&vcpu->async_pf.lock);
|
|
|
|
if (!IS_ENABLED(CONFIG_KVM_ASYNC_PF_SYNC) && first)
|
|
kvm_arch_async_page_present_queued(vcpu);
|
|
|
|
vcpu->async_pf.queued++;
|
|
return 0;
|
|
}
|