mirror of
https://github.com/torvalds/linux.git
synced 2024-12-24 20:01:55 +00:00
13996378e6
This patch adds a new field to xfrm states called inner_mode. The existing mode object is renamed to outer_mode. This is the first part of an attempt to fix inter-family transforms. As it is we always use the outer family when determining which mode to use. As a result we may end up shoving IPv4 packets into netfilter6 and vice versa. What we really want is to use the inner family for the first part of outbound processing and the outer family for the second part. For inbound processing we'd use the opposite pairing. I've also added a check to prevent silly combinations such as transport mode with inter-family transforms. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
259 lines
5.8 KiB
C
259 lines
5.8 KiB
C
/*
|
|
* xfrm4_input.c
|
|
*
|
|
* Changes:
|
|
* YOSHIFUJI Hideaki @USAGI
|
|
* Split up af-specific portion
|
|
* Derek Atkins <derek@ihtfp.com>
|
|
* Add Encapsulation support
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/string.h>
|
|
#include <linux/netfilter.h>
|
|
#include <linux/netfilter_ipv4.h>
|
|
#include <net/ip.h>
|
|
#include <net/xfrm.h>
|
|
|
|
#ifdef CONFIG_NETFILTER
|
|
static inline int xfrm4_rcv_encap_finish(struct sk_buff *skb)
|
|
{
|
|
if (skb->dst == NULL) {
|
|
const struct iphdr *iph = ip_hdr(skb);
|
|
|
|
if (ip_route_input(skb, iph->daddr, iph->saddr, iph->tos,
|
|
skb->dev))
|
|
goto drop;
|
|
}
|
|
return dst_input(skb);
|
|
drop:
|
|
kfree_skb(skb);
|
|
return NET_RX_DROP;
|
|
}
|
|
#endif
|
|
|
|
int xfrm4_rcv_encap(struct sk_buff *skb, int nexthdr, __be32 spi,
|
|
int encap_type)
|
|
{
|
|
int err;
|
|
__be32 seq;
|
|
struct xfrm_state *xfrm_vec[XFRM_MAX_DEPTH];
|
|
struct xfrm_state *x;
|
|
int xfrm_nr = 0;
|
|
int decaps = 0;
|
|
unsigned int nhoff = offsetof(struct iphdr, protocol);
|
|
|
|
seq = 0;
|
|
if (!spi && (err = xfrm_parse_spi(skb, nexthdr, &spi, &seq)) != 0)
|
|
goto drop;
|
|
|
|
do {
|
|
const struct iphdr *iph = ip_hdr(skb);
|
|
|
|
if (xfrm_nr == XFRM_MAX_DEPTH)
|
|
goto drop;
|
|
|
|
x = xfrm_state_lookup((xfrm_address_t *)&iph->daddr, spi,
|
|
nexthdr, AF_INET);
|
|
if (x == NULL)
|
|
goto drop;
|
|
|
|
spin_lock(&x->lock);
|
|
if (unlikely(x->km.state != XFRM_STATE_VALID))
|
|
goto drop_unlock;
|
|
|
|
if ((x->encap ? x->encap->encap_type : 0) != encap_type)
|
|
goto drop_unlock;
|
|
|
|
if (x->props.replay_window && xfrm_replay_check(x, seq))
|
|
goto drop_unlock;
|
|
|
|
if (xfrm_state_check_expire(x))
|
|
goto drop_unlock;
|
|
|
|
nexthdr = x->type->input(x, skb);
|
|
if (nexthdr <= 0)
|
|
goto drop_unlock;
|
|
|
|
skb_network_header(skb)[nhoff] = nexthdr;
|
|
|
|
/* only the first xfrm gets the encap type */
|
|
encap_type = 0;
|
|
|
|
if (x->props.replay_window)
|
|
xfrm_replay_advance(x, seq);
|
|
|
|
x->curlft.bytes += skb->len;
|
|
x->curlft.packets++;
|
|
|
|
spin_unlock(&x->lock);
|
|
|
|
xfrm_vec[xfrm_nr++] = x;
|
|
|
|
if (x->outer_mode->input(x, skb))
|
|
goto drop;
|
|
|
|
if (x->outer_mode->flags & XFRM_MODE_FLAG_TUNNEL) {
|
|
decaps = 1;
|
|
break;
|
|
}
|
|
|
|
err = xfrm_parse_spi(skb, nexthdr, &spi, &seq);
|
|
if (err < 0)
|
|
goto drop;
|
|
} while (!err);
|
|
|
|
/* Allocate new secpath or COW existing one. */
|
|
|
|
if (!skb->sp || atomic_read(&skb->sp->refcnt) != 1) {
|
|
struct sec_path *sp;
|
|
sp = secpath_dup(skb->sp);
|
|
if (!sp)
|
|
goto drop;
|
|
if (skb->sp)
|
|
secpath_put(skb->sp);
|
|
skb->sp = sp;
|
|
}
|
|
if (xfrm_nr + skb->sp->len > XFRM_MAX_DEPTH)
|
|
goto drop;
|
|
|
|
memcpy(skb->sp->xvec + skb->sp->len, xfrm_vec,
|
|
xfrm_nr * sizeof(xfrm_vec[0]));
|
|
skb->sp->len += xfrm_nr;
|
|
|
|
nf_reset(skb);
|
|
|
|
if (decaps) {
|
|
dst_release(skb->dst);
|
|
skb->dst = NULL;
|
|
netif_rx(skb);
|
|
return 0;
|
|
} else {
|
|
#ifdef CONFIG_NETFILTER
|
|
__skb_push(skb, skb->data - skb_network_header(skb));
|
|
ip_hdr(skb)->tot_len = htons(skb->len);
|
|
ip_send_check(ip_hdr(skb));
|
|
|
|
NF_HOOK(PF_INET, NF_IP_PRE_ROUTING, skb, skb->dev, NULL,
|
|
xfrm4_rcv_encap_finish);
|
|
return 0;
|
|
#else
|
|
return -ip_hdr(skb)->protocol;
|
|
#endif
|
|
}
|
|
|
|
drop_unlock:
|
|
spin_unlock(&x->lock);
|
|
xfrm_state_put(x);
|
|
drop:
|
|
while (--xfrm_nr >= 0)
|
|
xfrm_state_put(xfrm_vec[xfrm_nr]);
|
|
|
|
kfree_skb(skb);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(xfrm4_rcv_encap);
|
|
|
|
/* If it's a keepalive packet, then just eat it.
|
|
* If it's an encapsulated packet, then pass it to the
|
|
* IPsec xfrm input.
|
|
* Returns 0 if skb passed to xfrm or was dropped.
|
|
* Returns >0 if skb should be passed to UDP.
|
|
* Returns <0 if skb should be resubmitted (-ret is protocol)
|
|
*/
|
|
int xfrm4_udp_encap_rcv(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
struct udp_sock *up = udp_sk(sk);
|
|
struct udphdr *uh;
|
|
struct iphdr *iph;
|
|
int iphlen, len;
|
|
int ret;
|
|
|
|
__u8 *udpdata;
|
|
__be32 *udpdata32;
|
|
__u16 encap_type = up->encap_type;
|
|
|
|
/* if this is not encapsulated socket, then just return now */
|
|
if (!encap_type)
|
|
return 1;
|
|
|
|
/* If this is a paged skb, make sure we pull up
|
|
* whatever data we need to look at. */
|
|
len = skb->len - sizeof(struct udphdr);
|
|
if (!pskb_may_pull(skb, sizeof(struct udphdr) + min(len, 8)))
|
|
return 1;
|
|
|
|
/* Now we can get the pointers */
|
|
uh = udp_hdr(skb);
|
|
udpdata = (__u8 *)uh + sizeof(struct udphdr);
|
|
udpdata32 = (__be32 *)udpdata;
|
|
|
|
switch (encap_type) {
|
|
default:
|
|
case UDP_ENCAP_ESPINUDP:
|
|
/* Check if this is a keepalive packet. If so, eat it. */
|
|
if (len == 1 && udpdata[0] == 0xff) {
|
|
goto drop;
|
|
} else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0) {
|
|
/* ESP Packet without Non-ESP header */
|
|
len = sizeof(struct udphdr);
|
|
} else
|
|
/* Must be an IKE packet.. pass it through */
|
|
return 1;
|
|
break;
|
|
case UDP_ENCAP_ESPINUDP_NON_IKE:
|
|
/* Check if this is a keepalive packet. If so, eat it. */
|
|
if (len == 1 && udpdata[0] == 0xff) {
|
|
goto drop;
|
|
} else if (len > 2 * sizeof(u32) + sizeof(struct ip_esp_hdr) &&
|
|
udpdata32[0] == 0 && udpdata32[1] == 0) {
|
|
|
|
/* ESP Packet with Non-IKE marker */
|
|
len = sizeof(struct udphdr) + 2 * sizeof(u32);
|
|
} else
|
|
/* Must be an IKE packet.. pass it through */
|
|
return 1;
|
|
break;
|
|
}
|
|
|
|
/* At this point we are sure that this is an ESPinUDP packet,
|
|
* so we need to remove 'len' bytes from the packet (the UDP
|
|
* header and optional ESP marker bytes) and then modify the
|
|
* protocol to ESP, and then call into the transform receiver.
|
|
*/
|
|
if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
|
|
goto drop;
|
|
|
|
/* Now we can update and verify the packet length... */
|
|
iph = ip_hdr(skb);
|
|
iphlen = iph->ihl << 2;
|
|
iph->tot_len = htons(ntohs(iph->tot_len) - len);
|
|
if (skb->len < iphlen + len) {
|
|
/* packet is too small!?! */
|
|
goto drop;
|
|
}
|
|
|
|
/* pull the data buffer up to the ESP header and set the
|
|
* transport header to point to ESP. Keep UDP on the stack
|
|
* for later.
|
|
*/
|
|
__skb_pull(skb, len);
|
|
skb_reset_transport_header(skb);
|
|
|
|
/* process ESP */
|
|
ret = xfrm4_rcv_encap(skb, IPPROTO_ESP, 0, encap_type);
|
|
return ret;
|
|
|
|
drop:
|
|
kfree_skb(skb);
|
|
return 0;
|
|
}
|
|
|
|
int xfrm4_rcv(struct sk_buff *skb)
|
|
{
|
|
return xfrm4_rcv_spi(skb, ip_hdr(skb)->protocol, 0);
|
|
}
|
|
|
|
EXPORT_SYMBOL(xfrm4_rcv);
|