mirror of
https://github.com/torvalds/linux.git
synced 2024-11-30 16:11:38 +00:00
99be1a66e1
The existing helper test_range_bit works in two ways, checks if the whole range contains all the bits, or stop on the first occurrence. By adding a specific helper for the latter case, the inner loop can be simplified and contains fewer conditionals, making it a bit faster. There's no caller that uses the cached state pointer so this reduces the argument count further. Signed-off-by: David Sterba <dsterba@suse.com>
1524 lines
40 KiB
C
1524 lines
40 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "print-tree.h"
|
|
#include "transaction.h"
|
|
#include "locking.h"
|
|
#include "accessors.h"
|
|
#include "messages.h"
|
|
#include "delalloc-space.h"
|
|
#include "subpage.h"
|
|
#include "defrag.h"
|
|
#include "file-item.h"
|
|
#include "super.h"
|
|
|
|
static struct kmem_cache *btrfs_inode_defrag_cachep;
|
|
|
|
/*
|
|
* When auto defrag is enabled we queue up these defrag structs to remember
|
|
* which inodes need defragging passes.
|
|
*/
|
|
struct inode_defrag {
|
|
struct rb_node rb_node;
|
|
/* Inode number */
|
|
u64 ino;
|
|
/*
|
|
* Transid where the defrag was added, we search for extents newer than
|
|
* this.
|
|
*/
|
|
u64 transid;
|
|
|
|
/* Root objectid */
|
|
u64 root;
|
|
|
|
/*
|
|
* The extent size threshold for autodefrag.
|
|
*
|
|
* This value is different for compressed/non-compressed extents, thus
|
|
* needs to be passed from higher layer.
|
|
* (aka, inode_should_defrag())
|
|
*/
|
|
u32 extent_thresh;
|
|
};
|
|
|
|
static int __compare_inode_defrag(struct inode_defrag *defrag1,
|
|
struct inode_defrag *defrag2)
|
|
{
|
|
if (defrag1->root > defrag2->root)
|
|
return 1;
|
|
else if (defrag1->root < defrag2->root)
|
|
return -1;
|
|
else if (defrag1->ino > defrag2->ino)
|
|
return 1;
|
|
else if (defrag1->ino < defrag2->ino)
|
|
return -1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Pop a record for an inode into the defrag tree. The lock must be held
|
|
* already.
|
|
*
|
|
* If you're inserting a record for an older transid than an existing record,
|
|
* the transid already in the tree is lowered.
|
|
*
|
|
* If an existing record is found the defrag item you pass in is freed.
|
|
*/
|
|
static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
|
|
struct inode_defrag *defrag)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct inode_defrag *entry;
|
|
struct rb_node **p;
|
|
struct rb_node *parent = NULL;
|
|
int ret;
|
|
|
|
p = &fs_info->defrag_inodes.rb_node;
|
|
while (*p) {
|
|
parent = *p;
|
|
entry = rb_entry(parent, struct inode_defrag, rb_node);
|
|
|
|
ret = __compare_inode_defrag(defrag, entry);
|
|
if (ret < 0)
|
|
p = &parent->rb_left;
|
|
else if (ret > 0)
|
|
p = &parent->rb_right;
|
|
else {
|
|
/*
|
|
* If we're reinserting an entry for an old defrag run,
|
|
* make sure to lower the transid of our existing
|
|
* record.
|
|
*/
|
|
if (defrag->transid < entry->transid)
|
|
entry->transid = defrag->transid;
|
|
entry->extent_thresh = min(defrag->extent_thresh,
|
|
entry->extent_thresh);
|
|
return -EEXIST;
|
|
}
|
|
}
|
|
set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
|
|
rb_link_node(&defrag->rb_node, parent, p);
|
|
rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
|
|
return 0;
|
|
}
|
|
|
|
static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
|
|
{
|
|
if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
|
|
return 0;
|
|
|
|
if (btrfs_fs_closing(fs_info))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Insert a defrag record for this inode if auto defrag is enabled.
|
|
*/
|
|
int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
|
|
struct btrfs_inode *inode, u32 extent_thresh)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct inode_defrag *defrag;
|
|
u64 transid;
|
|
int ret;
|
|
|
|
if (!__need_auto_defrag(fs_info))
|
|
return 0;
|
|
|
|
if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
|
|
return 0;
|
|
|
|
if (trans)
|
|
transid = trans->transid;
|
|
else
|
|
transid = inode->root->last_trans;
|
|
|
|
defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
|
|
if (!defrag)
|
|
return -ENOMEM;
|
|
|
|
defrag->ino = btrfs_ino(inode);
|
|
defrag->transid = transid;
|
|
defrag->root = root->root_key.objectid;
|
|
defrag->extent_thresh = extent_thresh;
|
|
|
|
spin_lock(&fs_info->defrag_inodes_lock);
|
|
if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
|
|
/*
|
|
* If we set IN_DEFRAG flag and evict the inode from memory,
|
|
* and then re-read this inode, this new inode doesn't have
|
|
* IN_DEFRAG flag. At the case, we may find the existed defrag.
|
|
*/
|
|
ret = __btrfs_add_inode_defrag(inode, defrag);
|
|
if (ret)
|
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
|
} else {
|
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
|
}
|
|
spin_unlock(&fs_info->defrag_inodes_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Pick the defragable inode that we want, if it doesn't exist, we will get the
|
|
* next one.
|
|
*/
|
|
static struct inode_defrag *btrfs_pick_defrag_inode(
|
|
struct btrfs_fs_info *fs_info, u64 root, u64 ino)
|
|
{
|
|
struct inode_defrag *entry = NULL;
|
|
struct inode_defrag tmp;
|
|
struct rb_node *p;
|
|
struct rb_node *parent = NULL;
|
|
int ret;
|
|
|
|
tmp.ino = ino;
|
|
tmp.root = root;
|
|
|
|
spin_lock(&fs_info->defrag_inodes_lock);
|
|
p = fs_info->defrag_inodes.rb_node;
|
|
while (p) {
|
|
parent = p;
|
|
entry = rb_entry(parent, struct inode_defrag, rb_node);
|
|
|
|
ret = __compare_inode_defrag(&tmp, entry);
|
|
if (ret < 0)
|
|
p = parent->rb_left;
|
|
else if (ret > 0)
|
|
p = parent->rb_right;
|
|
else
|
|
goto out;
|
|
}
|
|
|
|
if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
|
|
parent = rb_next(parent);
|
|
if (parent)
|
|
entry = rb_entry(parent, struct inode_defrag, rb_node);
|
|
else
|
|
entry = NULL;
|
|
}
|
|
out:
|
|
if (entry)
|
|
rb_erase(parent, &fs_info->defrag_inodes);
|
|
spin_unlock(&fs_info->defrag_inodes_lock);
|
|
return entry;
|
|
}
|
|
|
|
void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct inode_defrag *defrag;
|
|
struct rb_node *node;
|
|
|
|
spin_lock(&fs_info->defrag_inodes_lock);
|
|
node = rb_first(&fs_info->defrag_inodes);
|
|
while (node) {
|
|
rb_erase(node, &fs_info->defrag_inodes);
|
|
defrag = rb_entry(node, struct inode_defrag, rb_node);
|
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
|
|
|
cond_resched_lock(&fs_info->defrag_inodes_lock);
|
|
|
|
node = rb_first(&fs_info->defrag_inodes);
|
|
}
|
|
spin_unlock(&fs_info->defrag_inodes_lock);
|
|
}
|
|
|
|
#define BTRFS_DEFRAG_BATCH 1024
|
|
|
|
static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
|
|
struct inode_defrag *defrag)
|
|
{
|
|
struct btrfs_root *inode_root;
|
|
struct inode *inode;
|
|
struct btrfs_ioctl_defrag_range_args range;
|
|
int ret = 0;
|
|
u64 cur = 0;
|
|
|
|
again:
|
|
if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
|
|
goto cleanup;
|
|
if (!__need_auto_defrag(fs_info))
|
|
goto cleanup;
|
|
|
|
/* Get the inode */
|
|
inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
|
|
if (IS_ERR(inode_root)) {
|
|
ret = PTR_ERR(inode_root);
|
|
goto cleanup;
|
|
}
|
|
|
|
inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
|
|
btrfs_put_root(inode_root);
|
|
if (IS_ERR(inode)) {
|
|
ret = PTR_ERR(inode);
|
|
goto cleanup;
|
|
}
|
|
|
|
if (cur >= i_size_read(inode)) {
|
|
iput(inode);
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Do a chunk of defrag */
|
|
clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
|
|
memset(&range, 0, sizeof(range));
|
|
range.len = (u64)-1;
|
|
range.start = cur;
|
|
range.extent_thresh = defrag->extent_thresh;
|
|
|
|
sb_start_write(fs_info->sb);
|
|
ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
|
|
BTRFS_DEFRAG_BATCH);
|
|
sb_end_write(fs_info->sb);
|
|
iput(inode);
|
|
|
|
if (ret < 0)
|
|
goto cleanup;
|
|
|
|
cur = max(cur + fs_info->sectorsize, range.start);
|
|
goto again;
|
|
|
|
cleanup:
|
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Run through the list of inodes in the FS that need defragging.
|
|
*/
|
|
int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct inode_defrag *defrag;
|
|
u64 first_ino = 0;
|
|
u64 root_objectid = 0;
|
|
|
|
atomic_inc(&fs_info->defrag_running);
|
|
while (1) {
|
|
/* Pause the auto defragger. */
|
|
if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
|
|
break;
|
|
|
|
if (!__need_auto_defrag(fs_info))
|
|
break;
|
|
|
|
/* find an inode to defrag */
|
|
defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
|
|
if (!defrag) {
|
|
if (root_objectid || first_ino) {
|
|
root_objectid = 0;
|
|
first_ino = 0;
|
|
continue;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
first_ino = defrag->ino + 1;
|
|
root_objectid = defrag->root;
|
|
|
|
__btrfs_run_defrag_inode(fs_info, defrag);
|
|
}
|
|
atomic_dec(&fs_info->defrag_running);
|
|
|
|
/*
|
|
* During unmount, we use the transaction_wait queue to wait for the
|
|
* defragger to stop.
|
|
*/
|
|
wake_up(&fs_info->transaction_wait);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if two blocks addresses are close, used by defrag.
|
|
*/
|
|
static bool close_blocks(u64 blocknr, u64 other, u32 blocksize)
|
|
{
|
|
if (blocknr < other && other - (blocknr + blocksize) < SZ_32K)
|
|
return true;
|
|
if (blocknr > other && blocknr - (other + blocksize) < SZ_32K)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Go through all the leaves pointed to by a node and reallocate them so that
|
|
* disk order is close to key order.
|
|
*/
|
|
static int btrfs_realloc_node(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *parent,
|
|
int start_slot, u64 *last_ret,
|
|
struct btrfs_key *progress)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
const u32 blocksize = fs_info->nodesize;
|
|
const int end_slot = btrfs_header_nritems(parent) - 1;
|
|
u64 search_start = *last_ret;
|
|
u64 last_block = 0;
|
|
int ret = 0;
|
|
bool progress_passed = false;
|
|
|
|
/*
|
|
* COWing must happen through a running transaction, which always
|
|
* matches the current fs generation (it's a transaction with a state
|
|
* less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
|
|
* into error state to prevent the commit of any transaction.
|
|
*/
|
|
if (unlikely(trans->transaction != fs_info->running_transaction ||
|
|
trans->transid != fs_info->generation)) {
|
|
btrfs_abort_transaction(trans, -EUCLEAN);
|
|
btrfs_crit(fs_info,
|
|
"unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
|
|
parent->start, btrfs_root_id(root), trans->transid,
|
|
fs_info->running_transaction->transid,
|
|
fs_info->generation);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
if (btrfs_header_nritems(parent) <= 1)
|
|
return 0;
|
|
|
|
for (int i = start_slot; i <= end_slot; i++) {
|
|
struct extent_buffer *cur;
|
|
struct btrfs_disk_key disk_key;
|
|
u64 blocknr;
|
|
u64 other;
|
|
bool close = true;
|
|
|
|
btrfs_node_key(parent, &disk_key, i);
|
|
if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0)
|
|
continue;
|
|
|
|
progress_passed = true;
|
|
blocknr = btrfs_node_blockptr(parent, i);
|
|
if (last_block == 0)
|
|
last_block = blocknr;
|
|
|
|
if (i > 0) {
|
|
other = btrfs_node_blockptr(parent, i - 1);
|
|
close = close_blocks(blocknr, other, blocksize);
|
|
}
|
|
if (!close && i < end_slot) {
|
|
other = btrfs_node_blockptr(parent, i + 1);
|
|
close = close_blocks(blocknr, other, blocksize);
|
|
}
|
|
if (close) {
|
|
last_block = blocknr;
|
|
continue;
|
|
}
|
|
|
|
cur = btrfs_read_node_slot(parent, i);
|
|
if (IS_ERR(cur))
|
|
return PTR_ERR(cur);
|
|
if (search_start == 0)
|
|
search_start = last_block;
|
|
|
|
btrfs_tree_lock(cur);
|
|
ret = btrfs_force_cow_block(trans, root, cur, parent, i,
|
|
&cur, search_start,
|
|
min(16 * blocksize,
|
|
(end_slot - i) * blocksize),
|
|
BTRFS_NESTING_COW);
|
|
if (ret) {
|
|
btrfs_tree_unlock(cur);
|
|
free_extent_buffer(cur);
|
|
break;
|
|
}
|
|
search_start = cur->start;
|
|
last_block = cur->start;
|
|
*last_ret = search_start;
|
|
btrfs_tree_unlock(cur);
|
|
free_extent_buffer(cur);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Defrag all the leaves in a given btree.
|
|
* Read all the leaves and try to get key order to
|
|
* better reflect disk order
|
|
*/
|
|
|
|
static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_path *path = NULL;
|
|
struct btrfs_key key;
|
|
int ret = 0;
|
|
int wret;
|
|
int level;
|
|
int next_key_ret = 0;
|
|
u64 last_ret = 0;
|
|
|
|
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
|
|
goto out;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
level = btrfs_header_level(root->node);
|
|
|
|
if (level == 0)
|
|
goto out;
|
|
|
|
if (root->defrag_progress.objectid == 0) {
|
|
struct extent_buffer *root_node;
|
|
u32 nritems;
|
|
|
|
root_node = btrfs_lock_root_node(root);
|
|
nritems = btrfs_header_nritems(root_node);
|
|
root->defrag_max.objectid = 0;
|
|
/* from above we know this is not a leaf */
|
|
btrfs_node_key_to_cpu(root_node, &root->defrag_max,
|
|
nritems - 1);
|
|
btrfs_tree_unlock(root_node);
|
|
free_extent_buffer(root_node);
|
|
memset(&key, 0, sizeof(key));
|
|
} else {
|
|
memcpy(&key, &root->defrag_progress, sizeof(key));
|
|
}
|
|
|
|
path->keep_locks = 1;
|
|
|
|
ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
btrfs_release_path(path);
|
|
/*
|
|
* We don't need a lock on a leaf. btrfs_realloc_node() will lock all
|
|
* leafs from path->nodes[1], so set lowest_level to 1 to avoid later
|
|
* a deadlock (attempting to write lock an already write locked leaf).
|
|
*/
|
|
path->lowest_level = 1;
|
|
wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
|
|
|
|
if (wret < 0) {
|
|
ret = wret;
|
|
goto out;
|
|
}
|
|
if (!path->nodes[1]) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
/*
|
|
* The node at level 1 must always be locked when our path has
|
|
* keep_locks set and lowest_level is 1, regardless of the value of
|
|
* path->slots[1].
|
|
*/
|
|
BUG_ON(path->locks[1] == 0);
|
|
ret = btrfs_realloc_node(trans, root,
|
|
path->nodes[1], 0,
|
|
&last_ret,
|
|
&root->defrag_progress);
|
|
if (ret) {
|
|
WARN_ON(ret == -EAGAIN);
|
|
goto out;
|
|
}
|
|
/*
|
|
* Now that we reallocated the node we can find the next key. Note that
|
|
* btrfs_find_next_key() can release our path and do another search
|
|
* without COWing, this is because even with path->keep_locks = 1,
|
|
* btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
|
|
* node when path->slots[node_level - 1] does not point to the last
|
|
* item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
|
|
* we search for the next key after reallocating our node.
|
|
*/
|
|
path->slots[1] = btrfs_header_nritems(path->nodes[1]);
|
|
next_key_ret = btrfs_find_next_key(root, path, &key, 1,
|
|
BTRFS_OLDEST_GENERATION);
|
|
if (next_key_ret == 0) {
|
|
memcpy(&root->defrag_progress, &key, sizeof(key));
|
|
ret = -EAGAIN;
|
|
}
|
|
out:
|
|
btrfs_free_path(path);
|
|
if (ret == -EAGAIN) {
|
|
if (root->defrag_max.objectid > root->defrag_progress.objectid)
|
|
goto done;
|
|
if (root->defrag_max.type > root->defrag_progress.type)
|
|
goto done;
|
|
if (root->defrag_max.offset > root->defrag_progress.offset)
|
|
goto done;
|
|
ret = 0;
|
|
}
|
|
done:
|
|
if (ret != -EAGAIN)
|
|
memset(&root->defrag_progress, 0,
|
|
sizeof(root->defrag_progress));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Defrag a given btree. Every leaf in the btree is read and defragmented.
|
|
*/
|
|
int btrfs_defrag_root(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret;
|
|
|
|
if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
|
|
return 0;
|
|
|
|
while (1) {
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
break;
|
|
}
|
|
|
|
ret = btrfs_defrag_leaves(trans, root);
|
|
|
|
btrfs_end_transaction(trans);
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
cond_resched();
|
|
|
|
if (btrfs_fs_closing(fs_info) || ret != -EAGAIN)
|
|
break;
|
|
|
|
if (btrfs_defrag_cancelled(fs_info)) {
|
|
btrfs_debug(fs_info, "defrag_root cancelled");
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
}
|
|
clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Defrag specific helper to get an extent map.
|
|
*
|
|
* Differences between this and btrfs_get_extent() are:
|
|
*
|
|
* - No extent_map will be added to inode->extent_tree
|
|
* To reduce memory usage in the long run.
|
|
*
|
|
* - Extra optimization to skip file extents older than @newer_than
|
|
* By using btrfs_search_forward() we can skip entire file ranges that
|
|
* have extents created in past transactions, because btrfs_search_forward()
|
|
* will not visit leaves and nodes with a generation smaller than given
|
|
* minimal generation threshold (@newer_than).
|
|
*
|
|
* Return valid em if we find a file extent matching the requirement.
|
|
* Return NULL if we can not find a file extent matching the requirement.
|
|
*
|
|
* Return ERR_PTR() for error.
|
|
*/
|
|
static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
|
|
u64 start, u64 newer_than)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_path path = { 0 };
|
|
struct extent_map *em;
|
|
struct btrfs_key key;
|
|
u64 ino = btrfs_ino(inode);
|
|
int ret;
|
|
|
|
em = alloc_extent_map();
|
|
if (!em) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
key.objectid = ino;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = start;
|
|
|
|
if (newer_than) {
|
|
ret = btrfs_search_forward(root, &key, &path, newer_than);
|
|
if (ret < 0)
|
|
goto err;
|
|
/* Can't find anything newer */
|
|
if (ret > 0)
|
|
goto not_found;
|
|
} else {
|
|
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
|
|
if (ret < 0)
|
|
goto err;
|
|
}
|
|
if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
|
|
/*
|
|
* If btrfs_search_slot() makes path to point beyond nritems,
|
|
* we should not have an empty leaf, as this inode must at
|
|
* least have its INODE_ITEM.
|
|
*/
|
|
ASSERT(btrfs_header_nritems(path.nodes[0]));
|
|
path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
|
|
}
|
|
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
|
|
/* Perfect match, no need to go one slot back */
|
|
if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
|
|
key.offset == start)
|
|
goto iterate;
|
|
|
|
/* We didn't find a perfect match, needs to go one slot back */
|
|
if (path.slots[0] > 0) {
|
|
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
|
|
if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
|
|
path.slots[0]--;
|
|
}
|
|
|
|
iterate:
|
|
/* Iterate through the path to find a file extent covering @start */
|
|
while (true) {
|
|
u64 extent_end;
|
|
|
|
if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
|
|
goto next;
|
|
|
|
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
|
|
|
|
/*
|
|
* We may go one slot back to INODE_REF/XATTR item, then
|
|
* need to go forward until we reach an EXTENT_DATA.
|
|
* But we should still has the correct ino as key.objectid.
|
|
*/
|
|
if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
|
|
goto next;
|
|
|
|
/* It's beyond our target range, definitely not extent found */
|
|
if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
|
|
goto not_found;
|
|
|
|
/*
|
|
* | |<- File extent ->|
|
|
* \- start
|
|
*
|
|
* This means there is a hole between start and key.offset.
|
|
*/
|
|
if (key.offset > start) {
|
|
em->start = start;
|
|
em->orig_start = start;
|
|
em->block_start = EXTENT_MAP_HOLE;
|
|
em->len = key.offset - start;
|
|
break;
|
|
}
|
|
|
|
fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
|
|
struct btrfs_file_extent_item);
|
|
extent_end = btrfs_file_extent_end(&path);
|
|
|
|
/*
|
|
* |<- file extent ->| |
|
|
* \- start
|
|
*
|
|
* We haven't reached start, search next slot.
|
|
*/
|
|
if (extent_end <= start)
|
|
goto next;
|
|
|
|
/* Now this extent covers @start, convert it to em */
|
|
btrfs_extent_item_to_extent_map(inode, &path, fi, em);
|
|
break;
|
|
next:
|
|
ret = btrfs_next_item(root, &path);
|
|
if (ret < 0)
|
|
goto err;
|
|
if (ret > 0)
|
|
goto not_found;
|
|
}
|
|
btrfs_release_path(&path);
|
|
return em;
|
|
|
|
not_found:
|
|
btrfs_release_path(&path);
|
|
free_extent_map(em);
|
|
return NULL;
|
|
|
|
err:
|
|
btrfs_release_path(&path);
|
|
free_extent_map(em);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
|
|
u64 newer_than, bool locked)
|
|
{
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct extent_map *em;
|
|
const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
|
|
|
|
/*
|
|
* Hopefully we have this extent in the tree already, try without the
|
|
* full extent lock.
|
|
*/
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, sectorsize);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
/*
|
|
* We can get a merged extent, in that case, we need to re-search
|
|
* tree to get the original em for defrag.
|
|
*
|
|
* If @newer_than is 0 or em::generation < newer_than, we can trust
|
|
* this em, as either we don't care about the generation, or the
|
|
* merged extent map will be rejected anyway.
|
|
*/
|
|
if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
|
|
newer_than && em->generation >= newer_than) {
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
}
|
|
|
|
if (!em) {
|
|
struct extent_state *cached = NULL;
|
|
u64 end = start + sectorsize - 1;
|
|
|
|
/* Get the big lock and read metadata off disk. */
|
|
if (!locked)
|
|
lock_extent(io_tree, start, end, &cached);
|
|
em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
|
|
if (!locked)
|
|
unlock_extent(io_tree, start, end, &cached);
|
|
|
|
if (IS_ERR(em))
|
|
return NULL;
|
|
}
|
|
|
|
return em;
|
|
}
|
|
|
|
static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
|
|
const struct extent_map *em)
|
|
{
|
|
if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
|
|
return BTRFS_MAX_COMPRESSED;
|
|
return fs_info->max_extent_size;
|
|
}
|
|
|
|
static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
|
|
u32 extent_thresh, u64 newer_than, bool locked)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct extent_map *next;
|
|
bool ret = false;
|
|
|
|
/* This is the last extent */
|
|
if (em->start + em->len >= i_size_read(inode))
|
|
return false;
|
|
|
|
/*
|
|
* Here we need to pass @newer_then when checking the next extent, or
|
|
* we will hit a case we mark current extent for defrag, but the next
|
|
* one will not be a target.
|
|
* This will just cause extra IO without really reducing the fragments.
|
|
*/
|
|
next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
|
|
/* No more em or hole */
|
|
if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
|
|
goto out;
|
|
if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
|
|
goto out;
|
|
/*
|
|
* If the next extent is at its max capacity, defragging current extent
|
|
* makes no sense, as the total number of extents won't change.
|
|
*/
|
|
if (next->len >= get_extent_max_capacity(fs_info, em))
|
|
goto out;
|
|
/* Skip older extent */
|
|
if (next->generation < newer_than)
|
|
goto out;
|
|
/* Also check extent size */
|
|
if (next->len >= extent_thresh)
|
|
goto out;
|
|
|
|
ret = true;
|
|
out:
|
|
free_extent_map(next);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Prepare one page to be defragged.
|
|
*
|
|
* This will ensure:
|
|
*
|
|
* - Returned page is locked and has been set up properly.
|
|
* - No ordered extent exists in the page.
|
|
* - The page is uptodate.
|
|
*
|
|
* NOTE: Caller should also wait for page writeback after the cluster is
|
|
* prepared, here we don't do writeback wait for each page.
|
|
*/
|
|
static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, pgoff_t index)
|
|
{
|
|
struct address_space *mapping = inode->vfs_inode.i_mapping;
|
|
gfp_t mask = btrfs_alloc_write_mask(mapping);
|
|
u64 page_start = (u64)index << PAGE_SHIFT;
|
|
u64 page_end = page_start + PAGE_SIZE - 1;
|
|
struct extent_state *cached_state = NULL;
|
|
struct page *page;
|
|
int ret;
|
|
|
|
again:
|
|
page = find_or_create_page(mapping, index, mask);
|
|
if (!page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* Since we can defragment files opened read-only, we can encounter
|
|
* transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
|
|
* can't do I/O using huge pages yet, so return an error for now.
|
|
* Filesystem transparent huge pages are typically only used for
|
|
* executables that explicitly enable them, so this isn't very
|
|
* restrictive.
|
|
*/
|
|
if (PageCompound(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return ERR_PTR(-ETXTBSY);
|
|
}
|
|
|
|
ret = set_page_extent_mapped(page);
|
|
if (ret < 0) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/* Wait for any existing ordered extent in the range */
|
|
while (1) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
|
|
ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
|
|
unlock_extent(&inode->io_tree, page_start, page_end,
|
|
&cached_state);
|
|
if (!ordered)
|
|
break;
|
|
|
|
unlock_page(page);
|
|
btrfs_start_ordered_extent(ordered);
|
|
btrfs_put_ordered_extent(ordered);
|
|
lock_page(page);
|
|
/*
|
|
* We unlocked the page above, so we need check if it was
|
|
* released or not.
|
|
*/
|
|
if (page->mapping != mapping || !PagePrivate(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now the page range has no ordered extent any more. Read the page to
|
|
* make it uptodate.
|
|
*/
|
|
if (!PageUptodate(page)) {
|
|
btrfs_read_folio(NULL, page_folio(page));
|
|
lock_page(page);
|
|
if (page->mapping != mapping || !PagePrivate(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto again;
|
|
}
|
|
if (!PageUptodate(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
}
|
|
return page;
|
|
}
|
|
|
|
struct defrag_target_range {
|
|
struct list_head list;
|
|
u64 start;
|
|
u64 len;
|
|
};
|
|
|
|
/*
|
|
* Collect all valid target extents.
|
|
*
|
|
* @start: file offset to lookup
|
|
* @len: length to lookup
|
|
* @extent_thresh: file extent size threshold, any extent size >= this value
|
|
* will be ignored
|
|
* @newer_than: only defrag extents newer than this value
|
|
* @do_compress: whether the defrag is doing compression
|
|
* if true, @extent_thresh will be ignored and all regular
|
|
* file extents meeting @newer_than will be targets.
|
|
* @locked: if the range has already held extent lock
|
|
* @target_list: list of targets file extents
|
|
*/
|
|
static int defrag_collect_targets(struct btrfs_inode *inode,
|
|
u64 start, u64 len, u32 extent_thresh,
|
|
u64 newer_than, bool do_compress,
|
|
bool locked, struct list_head *target_list,
|
|
u64 *last_scanned_ret)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
bool last_is_target = false;
|
|
u64 cur = start;
|
|
int ret = 0;
|
|
|
|
while (cur < start + len) {
|
|
struct extent_map *em;
|
|
struct defrag_target_range *new;
|
|
bool next_mergeable = true;
|
|
u64 range_len;
|
|
|
|
last_is_target = false;
|
|
em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
|
|
if (!em)
|
|
break;
|
|
|
|
/*
|
|
* If the file extent is an inlined one, we may still want to
|
|
* defrag it (fallthrough) if it will cause a regular extent.
|
|
* This is for users who want to convert inline extents to
|
|
* regular ones through max_inline= mount option.
|
|
*/
|
|
if (em->block_start == EXTENT_MAP_INLINE &&
|
|
em->len <= inode->root->fs_info->max_inline)
|
|
goto next;
|
|
|
|
/* Skip hole/delalloc/preallocated extents */
|
|
if (em->block_start == EXTENT_MAP_HOLE ||
|
|
em->block_start == EXTENT_MAP_DELALLOC ||
|
|
test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
|
|
goto next;
|
|
|
|
/* Skip older extent */
|
|
if (em->generation < newer_than)
|
|
goto next;
|
|
|
|
/* This em is under writeback, no need to defrag */
|
|
if (em->generation == (u64)-1)
|
|
goto next;
|
|
|
|
/*
|
|
* Our start offset might be in the middle of an existing extent
|
|
* map, so take that into account.
|
|
*/
|
|
range_len = em->len - (cur - em->start);
|
|
/*
|
|
* If this range of the extent map is already flagged for delalloc,
|
|
* skip it, because:
|
|
*
|
|
* 1) We could deadlock later, when trying to reserve space for
|
|
* delalloc, because in case we can't immediately reserve space
|
|
* the flusher can start delalloc and wait for the respective
|
|
* ordered extents to complete. The deadlock would happen
|
|
* because we do the space reservation while holding the range
|
|
* locked, and starting writeback, or finishing an ordered
|
|
* extent, requires locking the range;
|
|
*
|
|
* 2) If there's delalloc there, it means there's dirty pages for
|
|
* which writeback has not started yet (we clean the delalloc
|
|
* flag when starting writeback and after creating an ordered
|
|
* extent). If we mark pages in an adjacent range for defrag,
|
|
* then we will have a larger contiguous range for delalloc,
|
|
* very likely resulting in a larger extent after writeback is
|
|
* triggered (except in a case of free space fragmentation).
|
|
*/
|
|
if (test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1,
|
|
EXTENT_DELALLOC))
|
|
goto next;
|
|
|
|
/*
|
|
* For do_compress case, we want to compress all valid file
|
|
* extents, thus no @extent_thresh or mergeable check.
|
|
*/
|
|
if (do_compress)
|
|
goto add;
|
|
|
|
/* Skip too large extent */
|
|
if (range_len >= extent_thresh)
|
|
goto next;
|
|
|
|
/*
|
|
* Skip extents already at its max capacity, this is mostly for
|
|
* compressed extents, which max cap is only 128K.
|
|
*/
|
|
if (em->len >= get_extent_max_capacity(fs_info, em))
|
|
goto next;
|
|
|
|
/*
|
|
* Normally there are no more extents after an inline one, thus
|
|
* @next_mergeable will normally be false and not defragged.
|
|
* So if an inline extent passed all above checks, just add it
|
|
* for defrag, and be converted to regular extents.
|
|
*/
|
|
if (em->block_start == EXTENT_MAP_INLINE)
|
|
goto add;
|
|
|
|
next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
|
|
extent_thresh, newer_than, locked);
|
|
if (!next_mergeable) {
|
|
struct defrag_target_range *last;
|
|
|
|
/* Empty target list, no way to merge with last entry */
|
|
if (list_empty(target_list))
|
|
goto next;
|
|
last = list_entry(target_list->prev,
|
|
struct defrag_target_range, list);
|
|
/* Not mergeable with last entry */
|
|
if (last->start + last->len != cur)
|
|
goto next;
|
|
|
|
/* Mergeable, fall through to add it to @target_list. */
|
|
}
|
|
|
|
add:
|
|
last_is_target = true;
|
|
range_len = min(extent_map_end(em), start + len) - cur;
|
|
/*
|
|
* This one is a good target, check if it can be merged into
|
|
* last range of the target list.
|
|
*/
|
|
if (!list_empty(target_list)) {
|
|
struct defrag_target_range *last;
|
|
|
|
last = list_entry(target_list->prev,
|
|
struct defrag_target_range, list);
|
|
ASSERT(last->start + last->len <= cur);
|
|
if (last->start + last->len == cur) {
|
|
/* Mergeable, enlarge the last entry */
|
|
last->len += range_len;
|
|
goto next;
|
|
}
|
|
/* Fall through to allocate a new entry */
|
|
}
|
|
|
|
/* Allocate new defrag_target_range */
|
|
new = kmalloc(sizeof(*new), GFP_NOFS);
|
|
if (!new) {
|
|
free_extent_map(em);
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
new->start = cur;
|
|
new->len = range_len;
|
|
list_add_tail(&new->list, target_list);
|
|
|
|
next:
|
|
cur = extent_map_end(em);
|
|
free_extent_map(em);
|
|
}
|
|
if (ret < 0) {
|
|
struct defrag_target_range *entry;
|
|
struct defrag_target_range *tmp;
|
|
|
|
list_for_each_entry_safe(entry, tmp, target_list, list) {
|
|
list_del_init(&entry->list);
|
|
kfree(entry);
|
|
}
|
|
}
|
|
if (!ret && last_scanned_ret) {
|
|
/*
|
|
* If the last extent is not a target, the caller can skip to
|
|
* the end of that extent.
|
|
* Otherwise, we can only go the end of the specified range.
|
|
*/
|
|
if (!last_is_target)
|
|
*last_scanned_ret = max(cur, *last_scanned_ret);
|
|
else
|
|
*last_scanned_ret = max(start + len, *last_scanned_ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define CLUSTER_SIZE (SZ_256K)
|
|
static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
|
|
|
|
/*
|
|
* Defrag one contiguous target range.
|
|
*
|
|
* @inode: target inode
|
|
* @target: target range to defrag
|
|
* @pages: locked pages covering the defrag range
|
|
* @nr_pages: number of locked pages
|
|
*
|
|
* Caller should ensure:
|
|
*
|
|
* - Pages are prepared
|
|
* Pages should be locked, no ordered extent in the pages range,
|
|
* no writeback.
|
|
*
|
|
* - Extent bits are locked
|
|
*/
|
|
static int defrag_one_locked_target(struct btrfs_inode *inode,
|
|
struct defrag_target_range *target,
|
|
struct page **pages, int nr_pages,
|
|
struct extent_state **cached_state)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct extent_changeset *data_reserved = NULL;
|
|
const u64 start = target->start;
|
|
const u64 len = target->len;
|
|
unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
|
|
unsigned long start_index = start >> PAGE_SHIFT;
|
|
unsigned long first_index = page_index(pages[0]);
|
|
int ret = 0;
|
|
int i;
|
|
|
|
ASSERT(last_index - first_index + 1 <= nr_pages);
|
|
|
|
ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
|
|
if (ret < 0)
|
|
return ret;
|
|
clear_extent_bit(&inode->io_tree, start, start + len - 1,
|
|
EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
|
|
EXTENT_DEFRAG, cached_state);
|
|
set_extent_bit(&inode->io_tree, start, start + len - 1,
|
|
EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
|
|
|
|
/* Update the page status */
|
|
for (i = start_index - first_index; i <= last_index - first_index; i++) {
|
|
ClearPageChecked(pages[i]);
|
|
btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
|
|
}
|
|
btrfs_delalloc_release_extents(inode, len);
|
|
extent_changeset_free(data_reserved);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
|
|
u32 extent_thresh, u64 newer_than, bool do_compress,
|
|
u64 *last_scanned_ret)
|
|
{
|
|
struct extent_state *cached_state = NULL;
|
|
struct defrag_target_range *entry;
|
|
struct defrag_target_range *tmp;
|
|
LIST_HEAD(target_list);
|
|
struct page **pages;
|
|
const u32 sectorsize = inode->root->fs_info->sectorsize;
|
|
u64 last_index = (start + len - 1) >> PAGE_SHIFT;
|
|
u64 start_index = start >> PAGE_SHIFT;
|
|
unsigned int nr_pages = last_index - start_index + 1;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
|
|
ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
|
|
|
|
pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
|
|
if (!pages)
|
|
return -ENOMEM;
|
|
|
|
/* Prepare all pages */
|
|
for (i = 0; i < nr_pages; i++) {
|
|
pages[i] = defrag_prepare_one_page(inode, start_index + i);
|
|
if (IS_ERR(pages[i])) {
|
|
ret = PTR_ERR(pages[i]);
|
|
pages[i] = NULL;
|
|
goto free_pages;
|
|
}
|
|
}
|
|
for (i = 0; i < nr_pages; i++)
|
|
wait_on_page_writeback(pages[i]);
|
|
|
|
/* Lock the pages range */
|
|
lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
|
|
(last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
|
|
&cached_state);
|
|
/*
|
|
* Now we have a consistent view about the extent map, re-check
|
|
* which range really needs to be defragged.
|
|
*
|
|
* And this time we have extent locked already, pass @locked = true
|
|
* so that we won't relock the extent range and cause deadlock.
|
|
*/
|
|
ret = defrag_collect_targets(inode, start, len, extent_thresh,
|
|
newer_than, do_compress, true,
|
|
&target_list, last_scanned_ret);
|
|
if (ret < 0)
|
|
goto unlock_extent;
|
|
|
|
list_for_each_entry(entry, &target_list, list) {
|
|
ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
|
|
&cached_state);
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
|
|
list_for_each_entry_safe(entry, tmp, &target_list, list) {
|
|
list_del_init(&entry->list);
|
|
kfree(entry);
|
|
}
|
|
unlock_extent:
|
|
unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
|
|
(last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
|
|
&cached_state);
|
|
free_pages:
|
|
for (i = 0; i < nr_pages; i++) {
|
|
if (pages[i]) {
|
|
unlock_page(pages[i]);
|
|
put_page(pages[i]);
|
|
}
|
|
}
|
|
kfree(pages);
|
|
return ret;
|
|
}
|
|
|
|
static int defrag_one_cluster(struct btrfs_inode *inode,
|
|
struct file_ra_state *ra,
|
|
u64 start, u32 len, u32 extent_thresh,
|
|
u64 newer_than, bool do_compress,
|
|
unsigned long *sectors_defragged,
|
|
unsigned long max_sectors,
|
|
u64 *last_scanned_ret)
|
|
{
|
|
const u32 sectorsize = inode->root->fs_info->sectorsize;
|
|
struct defrag_target_range *entry;
|
|
struct defrag_target_range *tmp;
|
|
LIST_HEAD(target_list);
|
|
int ret;
|
|
|
|
ret = defrag_collect_targets(inode, start, len, extent_thresh,
|
|
newer_than, do_compress, false,
|
|
&target_list, NULL);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
list_for_each_entry(entry, &target_list, list) {
|
|
u32 range_len = entry->len;
|
|
|
|
/* Reached or beyond the limit */
|
|
if (max_sectors && *sectors_defragged >= max_sectors) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
|
|
if (max_sectors)
|
|
range_len = min_t(u32, range_len,
|
|
(max_sectors - *sectors_defragged) * sectorsize);
|
|
|
|
/*
|
|
* If defrag_one_range() has updated last_scanned_ret,
|
|
* our range may already be invalid (e.g. hole punched).
|
|
* Skip if our range is before last_scanned_ret, as there is
|
|
* no need to defrag the range anymore.
|
|
*/
|
|
if (entry->start + range_len <= *last_scanned_ret)
|
|
continue;
|
|
|
|
if (ra)
|
|
page_cache_sync_readahead(inode->vfs_inode.i_mapping,
|
|
ra, NULL, entry->start >> PAGE_SHIFT,
|
|
((entry->start + range_len - 1) >> PAGE_SHIFT) -
|
|
(entry->start >> PAGE_SHIFT) + 1);
|
|
/*
|
|
* Here we may not defrag any range if holes are punched before
|
|
* we locked the pages.
|
|
* But that's fine, it only affects the @sectors_defragged
|
|
* accounting.
|
|
*/
|
|
ret = defrag_one_range(inode, entry->start, range_len,
|
|
extent_thresh, newer_than, do_compress,
|
|
last_scanned_ret);
|
|
if (ret < 0)
|
|
break;
|
|
*sectors_defragged += range_len >>
|
|
inode->root->fs_info->sectorsize_bits;
|
|
}
|
|
out:
|
|
list_for_each_entry_safe(entry, tmp, &target_list, list) {
|
|
list_del_init(&entry->list);
|
|
kfree(entry);
|
|
}
|
|
if (ret >= 0)
|
|
*last_scanned_ret = max(*last_scanned_ret, start + len);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Entry point to file defragmentation.
|
|
*
|
|
* @inode: inode to be defragged
|
|
* @ra: readahead state (can be NUL)
|
|
* @range: defrag options including range and flags
|
|
* @newer_than: minimum transid to defrag
|
|
* @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
|
|
* will be defragged.
|
|
*
|
|
* Return <0 for error.
|
|
* Return >=0 for the number of sectors defragged, and range->start will be updated
|
|
* to indicate the file offset where next defrag should be started at.
|
|
* (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
|
|
* defragging all the range).
|
|
*/
|
|
int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
|
|
struct btrfs_ioctl_defrag_range_args *range,
|
|
u64 newer_than, unsigned long max_to_defrag)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
unsigned long sectors_defragged = 0;
|
|
u64 isize = i_size_read(inode);
|
|
u64 cur;
|
|
u64 last_byte;
|
|
bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
|
|
bool ra_allocated = false;
|
|
int compress_type = BTRFS_COMPRESS_ZLIB;
|
|
int ret = 0;
|
|
u32 extent_thresh = range->extent_thresh;
|
|
pgoff_t start_index;
|
|
|
|
if (isize == 0)
|
|
return 0;
|
|
|
|
if (range->start >= isize)
|
|
return -EINVAL;
|
|
|
|
if (do_compress) {
|
|
if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
|
|
return -EINVAL;
|
|
if (range->compress_type)
|
|
compress_type = range->compress_type;
|
|
}
|
|
|
|
if (extent_thresh == 0)
|
|
extent_thresh = SZ_256K;
|
|
|
|
if (range->start + range->len > range->start) {
|
|
/* Got a specific range */
|
|
last_byte = min(isize, range->start + range->len);
|
|
} else {
|
|
/* Defrag until file end */
|
|
last_byte = isize;
|
|
}
|
|
|
|
/* Align the range */
|
|
cur = round_down(range->start, fs_info->sectorsize);
|
|
last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
|
|
|
|
/*
|
|
* If we were not given a ra, allocate a readahead context. As
|
|
* readahead is just an optimization, defrag will work without it so
|
|
* we don't error out.
|
|
*/
|
|
if (!ra) {
|
|
ra_allocated = true;
|
|
ra = kzalloc(sizeof(*ra), GFP_KERNEL);
|
|
if (ra)
|
|
file_ra_state_init(ra, inode->i_mapping);
|
|
}
|
|
|
|
/*
|
|
* Make writeback start from the beginning of the range, so that the
|
|
* defrag range can be written sequentially.
|
|
*/
|
|
start_index = cur >> PAGE_SHIFT;
|
|
if (start_index < inode->i_mapping->writeback_index)
|
|
inode->i_mapping->writeback_index = start_index;
|
|
|
|
while (cur < last_byte) {
|
|
const unsigned long prev_sectors_defragged = sectors_defragged;
|
|
u64 last_scanned = cur;
|
|
u64 cluster_end;
|
|
|
|
if (btrfs_defrag_cancelled(fs_info)) {
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
/* We want the cluster end at page boundary when possible */
|
|
cluster_end = (((cur >> PAGE_SHIFT) +
|
|
(SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
|
|
cluster_end = min(cluster_end, last_byte);
|
|
|
|
btrfs_inode_lock(BTRFS_I(inode), 0);
|
|
if (IS_SWAPFILE(inode)) {
|
|
ret = -ETXTBSY;
|
|
btrfs_inode_unlock(BTRFS_I(inode), 0);
|
|
break;
|
|
}
|
|
if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
|
|
btrfs_inode_unlock(BTRFS_I(inode), 0);
|
|
break;
|
|
}
|
|
if (do_compress)
|
|
BTRFS_I(inode)->defrag_compress = compress_type;
|
|
ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
|
|
cluster_end + 1 - cur, extent_thresh,
|
|
newer_than, do_compress, §ors_defragged,
|
|
max_to_defrag, &last_scanned);
|
|
|
|
if (sectors_defragged > prev_sectors_defragged)
|
|
balance_dirty_pages_ratelimited(inode->i_mapping);
|
|
|
|
btrfs_inode_unlock(BTRFS_I(inode), 0);
|
|
if (ret < 0)
|
|
break;
|
|
cur = max(cluster_end + 1, last_scanned);
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
if (ra_allocated)
|
|
kfree(ra);
|
|
/*
|
|
* Update range.start for autodefrag, this will indicate where to start
|
|
* in next run.
|
|
*/
|
|
range->start = cur;
|
|
if (sectors_defragged) {
|
|
/*
|
|
* We have defragged some sectors, for compression case they
|
|
* need to be written back immediately.
|
|
*/
|
|
if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
|
|
filemap_flush(inode->i_mapping);
|
|
if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
|
|
&BTRFS_I(inode)->runtime_flags))
|
|
filemap_flush(inode->i_mapping);
|
|
}
|
|
if (range->compress_type == BTRFS_COMPRESS_LZO)
|
|
btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
|
|
else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
|
|
btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
|
|
ret = sectors_defragged;
|
|
}
|
|
if (do_compress) {
|
|
btrfs_inode_lock(BTRFS_I(inode), 0);
|
|
BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
|
|
btrfs_inode_unlock(BTRFS_I(inode), 0);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void __cold btrfs_auto_defrag_exit(void)
|
|
{
|
|
kmem_cache_destroy(btrfs_inode_defrag_cachep);
|
|
}
|
|
|
|
int __init btrfs_auto_defrag_init(void)
|
|
{
|
|
btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
|
|
sizeof(struct inode_defrag), 0,
|
|
SLAB_MEM_SPREAD,
|
|
NULL);
|
|
if (!btrfs_inode_defrag_cachep)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|