linux/drivers/tty/serial/meson_uart.c
Jiri Slaby (SUSE) 35fad98ed2 serial: meson+qcom: don't advance the kfifo twice
Marek reports, that the -next commit 1788cf6a91 (tty: serial: switch
from circ_buf to kfifo) broke meson_uart and qcom_geni_serial. The
commit mistakenly advanced the kfifo twice: once by
uart_fifo_get()/kfifo_out() and second time by uart_xmit_advance().

To advance the fifo only once, drop the superfluous uart_xmit_advance()
from both.

To count the TX statistics properly, use uart_fifo_out() in
qcom_geni_serial (meson_uart_start_tx() already uses that).

I checked all other uses of uart_xmit_advance() and they appear correct:
either they are finishing DMA transfers or are after peek/linear_ptr
(i.e. they do not advance fifo).

Signed-off-by: Jiri Slaby (SUSE) <jirislaby@kernel.org>
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Fixes: 1788cf6a91 ("tty: serial: switch from circ_buf to kfifo")
Cc: Neil Armstrong <neil.armstrong@linaro.org>
Cc: Kevin Hilman <khilman@baylibre.com>
Cc: Jerome Brunet <jbrunet@baylibre.com>
Cc: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Link: https://lore.kernel.org/r/20240416054825.6211-1-jirislaby@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-16 09:05:43 +02:00

857 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Based on meson_uart.c, by AMLOGIC, INC.
*
* Copyright (C) 2014 Carlo Caione <carlo@caione.org>
*/
#include <linux/clk.h>
#include <linux/console.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
/* Register offsets */
#define AML_UART_WFIFO 0x00
#define AML_UART_RFIFO 0x04
#define AML_UART_CONTROL 0x08
#define AML_UART_STATUS 0x0c
#define AML_UART_MISC 0x10
#define AML_UART_REG5 0x14
/* AML_UART_CONTROL bits */
#define AML_UART_TX_EN BIT(12)
#define AML_UART_RX_EN BIT(13)
#define AML_UART_TWO_WIRE_EN BIT(15)
#define AML_UART_STOP_BIT_LEN_MASK (0x03 << 16)
#define AML_UART_STOP_BIT_1SB (0x00 << 16)
#define AML_UART_STOP_BIT_2SB (0x01 << 16)
#define AML_UART_PARITY_TYPE BIT(18)
#define AML_UART_PARITY_EN BIT(19)
#define AML_UART_TX_RST BIT(22)
#define AML_UART_RX_RST BIT(23)
#define AML_UART_CLEAR_ERR BIT(24)
#define AML_UART_RX_INT_EN BIT(27)
#define AML_UART_TX_INT_EN BIT(28)
#define AML_UART_DATA_LEN_MASK (0x03 << 20)
#define AML_UART_DATA_LEN_8BIT (0x00 << 20)
#define AML_UART_DATA_LEN_7BIT (0x01 << 20)
#define AML_UART_DATA_LEN_6BIT (0x02 << 20)
#define AML_UART_DATA_LEN_5BIT (0x03 << 20)
/* AML_UART_STATUS bits */
#define AML_UART_PARITY_ERR BIT(16)
#define AML_UART_FRAME_ERR BIT(17)
#define AML_UART_TX_FIFO_WERR BIT(18)
#define AML_UART_RX_EMPTY BIT(20)
#define AML_UART_TX_FULL BIT(21)
#define AML_UART_TX_EMPTY BIT(22)
#define AML_UART_XMIT_BUSY BIT(25)
#define AML_UART_ERR (AML_UART_PARITY_ERR | \
AML_UART_FRAME_ERR | \
AML_UART_TX_FIFO_WERR)
/* AML_UART_MISC bits */
#define AML_UART_XMIT_IRQ(c) (((c) & 0xff) << 8)
#define AML_UART_RECV_IRQ(c) ((c) & 0xff)
/* AML_UART_REG5 bits */
#define AML_UART_BAUD_MASK 0x7fffff
#define AML_UART_BAUD_USE BIT(23)
#define AML_UART_BAUD_XTAL BIT(24)
#define AML_UART_BAUD_XTAL_DIV2 BIT(27)
#define AML_UART_PORT_NUM 12
#define AML_UART_PORT_OFFSET 6
#define AML_UART_POLL_USEC 5
#define AML_UART_TIMEOUT_USEC 10000
static struct uart_driver meson_uart_driver_ttyAML;
static struct uart_driver meson_uart_driver_ttyS;
static struct uart_port *meson_ports[AML_UART_PORT_NUM];
struct meson_uart_data {
struct uart_driver *uart_driver;
bool has_xtal_div2;
};
static void meson_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
}
static unsigned int meson_uart_get_mctrl(struct uart_port *port)
{
return TIOCM_CTS;
}
static unsigned int meson_uart_tx_empty(struct uart_port *port)
{
u32 val;
val = readl(port->membase + AML_UART_STATUS);
val &= (AML_UART_TX_EMPTY | AML_UART_XMIT_BUSY);
return (val == AML_UART_TX_EMPTY) ? TIOCSER_TEMT : 0;
}
static void meson_uart_stop_tx(struct uart_port *port)
{
u32 val;
val = readl(port->membase + AML_UART_CONTROL);
val &= ~AML_UART_TX_INT_EN;
writel(val, port->membase + AML_UART_CONTROL);
}
static void meson_uart_stop_rx(struct uart_port *port)
{
u32 val;
val = readl(port->membase + AML_UART_CONTROL);
val &= ~AML_UART_RX_EN;
writel(val, port->membase + AML_UART_CONTROL);
}
static void meson_uart_shutdown(struct uart_port *port)
{
unsigned long flags;
u32 val;
free_irq(port->irq, port);
uart_port_lock_irqsave(port, &flags);
val = readl(port->membase + AML_UART_CONTROL);
val &= ~AML_UART_RX_EN;
val &= ~(AML_UART_RX_INT_EN | AML_UART_TX_INT_EN);
writel(val, port->membase + AML_UART_CONTROL);
uart_port_unlock_irqrestore(port, flags);
}
static void meson_uart_start_tx(struct uart_port *port)
{
struct tty_port *tport = &port->state->port;
unsigned char ch;
u32 val;
if (uart_tx_stopped(port)) {
meson_uart_stop_tx(port);
return;
}
while (!(readl(port->membase + AML_UART_STATUS) & AML_UART_TX_FULL)) {
if (port->x_char) {
writel(port->x_char, port->membase + AML_UART_WFIFO);
port->icount.tx++;
port->x_char = 0;
continue;
}
if (!uart_fifo_get(port, &ch))
break;
writel(ch, port->membase + AML_UART_WFIFO);
}
if (!kfifo_is_empty(&tport->xmit_fifo)) {
val = readl(port->membase + AML_UART_CONTROL);
val |= AML_UART_TX_INT_EN;
writel(val, port->membase + AML_UART_CONTROL);
}
if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
uart_write_wakeup(port);
}
static void meson_receive_chars(struct uart_port *port)
{
struct tty_port *tport = &port->state->port;
char flag;
u32 ostatus, status, ch, mode;
do {
flag = TTY_NORMAL;
port->icount.rx++;
ostatus = status = readl(port->membase + AML_UART_STATUS);
if (status & AML_UART_ERR) {
if (status & AML_UART_TX_FIFO_WERR)
port->icount.overrun++;
else if (status & AML_UART_FRAME_ERR)
port->icount.frame++;
else if (status & AML_UART_PARITY_ERR)
port->icount.frame++;
mode = readl(port->membase + AML_UART_CONTROL);
mode |= AML_UART_CLEAR_ERR;
writel(mode, port->membase + AML_UART_CONTROL);
/* It doesn't clear to 0 automatically */
mode &= ~AML_UART_CLEAR_ERR;
writel(mode, port->membase + AML_UART_CONTROL);
status &= port->read_status_mask;
if (status & AML_UART_FRAME_ERR)
flag = TTY_FRAME;
else if (status & AML_UART_PARITY_ERR)
flag = TTY_PARITY;
}
ch = readl(port->membase + AML_UART_RFIFO);
ch &= 0xff;
if ((ostatus & AML_UART_FRAME_ERR) && (ch == 0)) {
port->icount.brk++;
flag = TTY_BREAK;
if (uart_handle_break(port))
continue;
}
if (uart_prepare_sysrq_char(port, ch))
continue;
if ((status & port->ignore_status_mask) == 0)
tty_insert_flip_char(tport, ch, flag);
if (status & AML_UART_TX_FIFO_WERR)
tty_insert_flip_char(tport, 0, TTY_OVERRUN);
} while (!(readl(port->membase + AML_UART_STATUS) & AML_UART_RX_EMPTY));
tty_flip_buffer_push(tport);
}
static irqreturn_t meson_uart_interrupt(int irq, void *dev_id)
{
struct uart_port *port = (struct uart_port *)dev_id;
uart_port_lock(port);
if (!(readl(port->membase + AML_UART_STATUS) & AML_UART_RX_EMPTY))
meson_receive_chars(port);
if (!(readl(port->membase + AML_UART_STATUS) & AML_UART_TX_FULL)) {
if (readl(port->membase + AML_UART_CONTROL) & AML_UART_TX_INT_EN)
meson_uart_start_tx(port);
}
uart_unlock_and_check_sysrq(port);
return IRQ_HANDLED;
}
static const char *meson_uart_type(struct uart_port *port)
{
return (port->type == PORT_MESON) ? "meson_uart" : NULL;
}
/*
* This function is called only from probe() using a temporary io mapping
* in order to perform a reset before setting up the device. Since the
* temporarily mapped region was successfully requested, there can be no
* console on this port at this time. Hence it is not necessary for this
* function to acquire the port->lock. (Since there is no console on this
* port at this time, the port->lock is not initialized yet.)
*/
static void meson_uart_reset(struct uart_port *port)
{
u32 val;
val = readl(port->membase + AML_UART_CONTROL);
val |= (AML_UART_RX_RST | AML_UART_TX_RST | AML_UART_CLEAR_ERR);
writel(val, port->membase + AML_UART_CONTROL);
val &= ~(AML_UART_RX_RST | AML_UART_TX_RST | AML_UART_CLEAR_ERR);
writel(val, port->membase + AML_UART_CONTROL);
}
static int meson_uart_startup(struct uart_port *port)
{
unsigned long flags;
u32 val;
int ret = 0;
uart_port_lock_irqsave(port, &flags);
val = readl(port->membase + AML_UART_CONTROL);
val |= AML_UART_CLEAR_ERR;
writel(val, port->membase + AML_UART_CONTROL);
val &= ~AML_UART_CLEAR_ERR;
writel(val, port->membase + AML_UART_CONTROL);
val |= (AML_UART_RX_EN | AML_UART_TX_EN);
writel(val, port->membase + AML_UART_CONTROL);
val |= (AML_UART_RX_INT_EN | AML_UART_TX_INT_EN);
writel(val, port->membase + AML_UART_CONTROL);
val = (AML_UART_RECV_IRQ(1) | AML_UART_XMIT_IRQ(port->fifosize / 2));
writel(val, port->membase + AML_UART_MISC);
uart_port_unlock_irqrestore(port, flags);
ret = request_irq(port->irq, meson_uart_interrupt, 0,
port->name, port);
return ret;
}
static void meson_uart_change_speed(struct uart_port *port, unsigned long baud)
{
const struct meson_uart_data *private_data = port->private_data;
u32 val = 0;
while (!meson_uart_tx_empty(port))
cpu_relax();
if (port->uartclk == 24000000) {
unsigned int xtal_div = 3;
if (private_data && private_data->has_xtal_div2) {
xtal_div = 2;
val |= AML_UART_BAUD_XTAL_DIV2;
}
val |= DIV_ROUND_CLOSEST(port->uartclk / xtal_div, baud) - 1;
val |= AML_UART_BAUD_XTAL;
} else {
val = DIV_ROUND_CLOSEST(port->uartclk / 4, baud) - 1;
}
val |= AML_UART_BAUD_USE;
writel(val, port->membase + AML_UART_REG5);
}
static void meson_uart_set_termios(struct uart_port *port,
struct ktermios *termios,
const struct ktermios *old)
{
unsigned int cflags, iflags, baud;
unsigned long flags;
u32 val;
uart_port_lock_irqsave(port, &flags);
cflags = termios->c_cflag;
iflags = termios->c_iflag;
val = readl(port->membase + AML_UART_CONTROL);
val &= ~AML_UART_DATA_LEN_MASK;
switch (cflags & CSIZE) {
case CS8:
val |= AML_UART_DATA_LEN_8BIT;
break;
case CS7:
val |= AML_UART_DATA_LEN_7BIT;
break;
case CS6:
val |= AML_UART_DATA_LEN_6BIT;
break;
case CS5:
val |= AML_UART_DATA_LEN_5BIT;
break;
}
if (cflags & PARENB)
val |= AML_UART_PARITY_EN;
else
val &= ~AML_UART_PARITY_EN;
if (cflags & PARODD)
val |= AML_UART_PARITY_TYPE;
else
val &= ~AML_UART_PARITY_TYPE;
val &= ~AML_UART_STOP_BIT_LEN_MASK;
if (cflags & CSTOPB)
val |= AML_UART_STOP_BIT_2SB;
else
val |= AML_UART_STOP_BIT_1SB;
if (cflags & CRTSCTS) {
if (port->flags & UPF_HARD_FLOW)
val &= ~AML_UART_TWO_WIRE_EN;
else
termios->c_cflag &= ~CRTSCTS;
} else {
val |= AML_UART_TWO_WIRE_EN;
}
writel(val, port->membase + AML_UART_CONTROL);
baud = uart_get_baud_rate(port, termios, old, 50, 4000000);
meson_uart_change_speed(port, baud);
port->read_status_mask = AML_UART_TX_FIFO_WERR;
if (iflags & INPCK)
port->read_status_mask |= AML_UART_PARITY_ERR |
AML_UART_FRAME_ERR;
port->ignore_status_mask = 0;
if (iflags & IGNPAR)
port->ignore_status_mask |= AML_UART_PARITY_ERR |
AML_UART_FRAME_ERR;
uart_update_timeout(port, termios->c_cflag, baud);
uart_port_unlock_irqrestore(port, flags);
}
static int meson_uart_verify_port(struct uart_port *port,
struct serial_struct *ser)
{
int ret = 0;
if (port->type != PORT_MESON)
ret = -EINVAL;
if (port->irq != ser->irq)
ret = -EINVAL;
if (ser->baud_base < 9600)
ret = -EINVAL;
return ret;
}
static void meson_uart_release_port(struct uart_port *port)
{
devm_iounmap(port->dev, port->membase);
port->membase = NULL;
devm_release_mem_region(port->dev, port->mapbase, port->mapsize);
}
static int meson_uart_request_port(struct uart_port *port)
{
if (!devm_request_mem_region(port->dev, port->mapbase, port->mapsize,
dev_name(port->dev))) {
dev_err(port->dev, "Memory region busy\n");
return -EBUSY;
}
port->membase = devm_ioremap(port->dev, port->mapbase,
port->mapsize);
if (!port->membase)
return -ENOMEM;
return 0;
}
static void meson_uart_config_port(struct uart_port *port, int flags)
{
if (flags & UART_CONFIG_TYPE) {
port->type = PORT_MESON;
meson_uart_request_port(port);
}
}
#ifdef CONFIG_CONSOLE_POLL
/*
* Console polling routines for writing and reading from the uart while
* in an interrupt or debug context (i.e. kgdb).
*/
static int meson_uart_poll_get_char(struct uart_port *port)
{
u32 c;
unsigned long flags;
uart_port_lock_irqsave(port, &flags);
if (readl(port->membase + AML_UART_STATUS) & AML_UART_RX_EMPTY)
c = NO_POLL_CHAR;
else
c = readl(port->membase + AML_UART_RFIFO);
uart_port_unlock_irqrestore(port, flags);
return c;
}
static void meson_uart_poll_put_char(struct uart_port *port, unsigned char c)
{
unsigned long flags;
u32 reg;
int ret;
uart_port_lock_irqsave(port, &flags);
/* Wait until FIFO is empty or timeout */
ret = readl_poll_timeout_atomic(port->membase + AML_UART_STATUS, reg,
reg & AML_UART_TX_EMPTY,
AML_UART_POLL_USEC,
AML_UART_TIMEOUT_USEC);
if (ret == -ETIMEDOUT) {
dev_err(port->dev, "Timeout waiting for UART TX EMPTY\n");
goto out;
}
/* Write the character */
writel(c, port->membase + AML_UART_WFIFO);
/* Wait until FIFO is empty or timeout */
ret = readl_poll_timeout_atomic(port->membase + AML_UART_STATUS, reg,
reg & AML_UART_TX_EMPTY,
AML_UART_POLL_USEC,
AML_UART_TIMEOUT_USEC);
if (ret == -ETIMEDOUT)
dev_err(port->dev, "Timeout waiting for UART TX EMPTY\n");
out:
uart_port_unlock_irqrestore(port, flags);
}
#endif /* CONFIG_CONSOLE_POLL */
static const struct uart_ops meson_uart_ops = {
.set_mctrl = meson_uart_set_mctrl,
.get_mctrl = meson_uart_get_mctrl,
.tx_empty = meson_uart_tx_empty,
.start_tx = meson_uart_start_tx,
.stop_tx = meson_uart_stop_tx,
.stop_rx = meson_uart_stop_rx,
.startup = meson_uart_startup,
.shutdown = meson_uart_shutdown,
.set_termios = meson_uart_set_termios,
.type = meson_uart_type,
.config_port = meson_uart_config_port,
.request_port = meson_uart_request_port,
.release_port = meson_uart_release_port,
.verify_port = meson_uart_verify_port,
#ifdef CONFIG_CONSOLE_POLL
.poll_get_char = meson_uart_poll_get_char,
.poll_put_char = meson_uart_poll_put_char,
#endif
};
#ifdef CONFIG_SERIAL_MESON_CONSOLE
static void meson_uart_enable_tx_engine(struct uart_port *port)
{
u32 val;
val = readl(port->membase + AML_UART_CONTROL);
val |= AML_UART_TX_EN;
writel(val, port->membase + AML_UART_CONTROL);
}
static void meson_console_putchar(struct uart_port *port, unsigned char ch)
{
if (!port->membase)
return;
while (readl(port->membase + AML_UART_STATUS) & AML_UART_TX_FULL)
cpu_relax();
writel(ch, port->membase + AML_UART_WFIFO);
}
static void meson_serial_port_write(struct uart_port *port, const char *s,
u_int count)
{
unsigned long flags;
int locked = 1;
u32 val, tmp;
if (oops_in_progress)
locked = uart_port_trylock_irqsave(port, &flags);
else
uart_port_lock_irqsave(port, &flags);
val = readl(port->membase + AML_UART_CONTROL);
tmp = val & ~(AML_UART_TX_INT_EN | AML_UART_RX_INT_EN);
writel(tmp, port->membase + AML_UART_CONTROL);
uart_console_write(port, s, count, meson_console_putchar);
writel(val, port->membase + AML_UART_CONTROL);
if (locked)
uart_port_unlock_irqrestore(port, flags);
}
static void meson_serial_console_write(struct console *co, const char *s,
u_int count)
{
struct uart_port *port;
port = meson_ports[co->index];
if (!port)
return;
meson_serial_port_write(port, s, count);
}
static int meson_serial_console_setup(struct console *co, char *options)
{
struct uart_port *port;
int baud = 115200;
int bits = 8;
int parity = 'n';
int flow = 'n';
if (co->index < 0 || co->index >= AML_UART_PORT_NUM)
return -EINVAL;
port = meson_ports[co->index];
if (!port || !port->membase)
return -ENODEV;
meson_uart_enable_tx_engine(port);
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
return uart_set_options(port, co, baud, parity, bits, flow);
}
#define MESON_SERIAL_CONSOLE(_devname) \
static struct console meson_serial_console_##_devname = { \
.name = __stringify(_devname), \
.write = meson_serial_console_write, \
.device = uart_console_device, \
.setup = meson_serial_console_setup, \
.flags = CON_PRINTBUFFER, \
.index = -1, \
.data = &meson_uart_driver_##_devname, \
}
MESON_SERIAL_CONSOLE(ttyAML);
MESON_SERIAL_CONSOLE(ttyS);
static void meson_serial_early_console_write(struct console *co,
const char *s,
u_int count)
{
struct earlycon_device *dev = co->data;
meson_serial_port_write(&dev->port, s, count);
}
static int __init
meson_serial_early_console_setup(struct earlycon_device *device, const char *opt)
{
if (!device->port.membase)
return -ENODEV;
meson_uart_enable_tx_engine(&device->port);
device->con->write = meson_serial_early_console_write;
return 0;
}
OF_EARLYCON_DECLARE(meson, "amlogic,meson-ao-uart", meson_serial_early_console_setup);
OF_EARLYCON_DECLARE(meson, "amlogic,meson-s4-uart", meson_serial_early_console_setup);
#define MESON_SERIAL_CONSOLE_PTR(_devname) (&meson_serial_console_##_devname)
#else
#define MESON_SERIAL_CONSOLE_PTR(_devname) (NULL)
#endif
#define MESON_UART_DRIVER(_devname) \
static struct uart_driver meson_uart_driver_##_devname = { \
.owner = THIS_MODULE, \
.driver_name = "meson_uart", \
.dev_name = __stringify(_devname), \
.nr = AML_UART_PORT_NUM, \
.cons = MESON_SERIAL_CONSOLE_PTR(_devname), \
}
MESON_UART_DRIVER(ttyAML);
MESON_UART_DRIVER(ttyS);
static int meson_uart_probe_clocks(struct platform_device *pdev,
struct uart_port *port)
{
struct clk *clk_xtal = NULL;
struct clk *clk_pclk = NULL;
struct clk *clk_baud = NULL;
clk_pclk = devm_clk_get_enabled(&pdev->dev, "pclk");
if (IS_ERR(clk_pclk))
return PTR_ERR(clk_pclk);
clk_xtal = devm_clk_get_enabled(&pdev->dev, "xtal");
if (IS_ERR(clk_xtal))
return PTR_ERR(clk_xtal);
clk_baud = devm_clk_get_enabled(&pdev->dev, "baud");
if (IS_ERR(clk_baud))
return PTR_ERR(clk_baud);
port->uartclk = clk_get_rate(clk_baud);
return 0;
}
static struct uart_driver *meson_uart_current(const struct meson_uart_data *pd)
{
return (pd && pd->uart_driver) ?
pd->uart_driver : &meson_uart_driver_ttyAML;
}
static int meson_uart_probe(struct platform_device *pdev)
{
const struct meson_uart_data *priv_data;
struct uart_driver *uart_driver;
struct resource *res_mem;
struct uart_port *port;
u32 fifosize = 64; /* Default is 64, 128 for EE UART_0 */
int ret = 0;
int irq;
bool has_rtscts;
if (pdev->dev.of_node)
pdev->id = of_alias_get_id(pdev->dev.of_node, "serial");
if (pdev->id < 0) {
int id;
for (id = AML_UART_PORT_OFFSET; id < AML_UART_PORT_NUM; id++) {
if (!meson_ports[id]) {
pdev->id = id;
break;
}
}
}
if (pdev->id < 0 || pdev->id >= AML_UART_PORT_NUM)
return -EINVAL;
res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res_mem)
return -ENODEV;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
of_property_read_u32(pdev->dev.of_node, "fifo-size", &fifosize);
has_rtscts = of_property_read_bool(pdev->dev.of_node, "uart-has-rtscts");
if (meson_ports[pdev->id]) {
return dev_err_probe(&pdev->dev, -EBUSY,
"port %d already allocated\n", pdev->id);
}
port = devm_kzalloc(&pdev->dev, sizeof(struct uart_port), GFP_KERNEL);
if (!port)
return -ENOMEM;
ret = meson_uart_probe_clocks(pdev, port);
if (ret)
return ret;
priv_data = device_get_match_data(&pdev->dev);
uart_driver = meson_uart_current(priv_data);
if (!uart_driver->state) {
ret = uart_register_driver(uart_driver);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"can't register uart driver\n");
}
port->iotype = UPIO_MEM;
port->mapbase = res_mem->start;
port->mapsize = resource_size(res_mem);
port->irq = irq;
port->flags = UPF_BOOT_AUTOCONF | UPF_LOW_LATENCY;
if (has_rtscts)
port->flags |= UPF_HARD_FLOW;
port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_MESON_CONSOLE);
port->dev = &pdev->dev;
port->line = pdev->id;
port->type = PORT_MESON;
port->x_char = 0;
port->ops = &meson_uart_ops;
port->fifosize = fifosize;
port->private_data = (void *)priv_data;
meson_ports[pdev->id] = port;
platform_set_drvdata(pdev, port);
/* reset port before registering (and possibly registering console) */
if (meson_uart_request_port(port) >= 0) {
meson_uart_reset(port);
meson_uart_release_port(port);
}
ret = uart_add_one_port(uart_driver, port);
if (ret)
meson_ports[pdev->id] = NULL;
return ret;
}
static void meson_uart_remove(struct platform_device *pdev)
{
struct uart_driver *uart_driver;
struct uart_port *port;
port = platform_get_drvdata(pdev);
uart_driver = meson_uart_current(port->private_data);
uart_remove_one_port(uart_driver, port);
meson_ports[pdev->id] = NULL;
for (int id = 0; id < AML_UART_PORT_NUM; id++)
if (meson_ports[id])
return;
/* No more available uart ports, unregister uart driver */
uart_unregister_driver(uart_driver);
}
static struct meson_uart_data meson_g12a_uart_data = {
.has_xtal_div2 = true,
};
static struct meson_uart_data meson_a1_uart_data = {
.uart_driver = &meson_uart_driver_ttyS,
.has_xtal_div2 = false,
};
static struct meson_uart_data meson_s4_uart_data = {
.uart_driver = &meson_uart_driver_ttyS,
.has_xtal_div2 = true,
};
static const struct of_device_id meson_uart_dt_match[] = {
{ .compatible = "amlogic,meson6-uart" },
{ .compatible = "amlogic,meson8-uart" },
{ .compatible = "amlogic,meson8b-uart" },
{ .compatible = "amlogic,meson-gx-uart" },
{
.compatible = "amlogic,meson-g12a-uart",
.data = (void *)&meson_g12a_uart_data,
},
{
.compatible = "amlogic,meson-s4-uart",
.data = (void *)&meson_s4_uart_data,
},
{
.compatible = "amlogic,meson-a1-uart",
.data = (void *)&meson_a1_uart_data,
},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, meson_uart_dt_match);
static struct platform_driver meson_uart_platform_driver = {
.probe = meson_uart_probe,
.remove_new = meson_uart_remove,
.driver = {
.name = "meson_uart",
.of_match_table = meson_uart_dt_match,
},
};
module_platform_driver(meson_uart_platform_driver);
MODULE_AUTHOR("Carlo Caione <carlo@caione.org>");
MODULE_DESCRIPTION("Amlogic Meson serial port driver");
MODULE_LICENSE("GPL v2");