mirror of
https://github.com/torvalds/linux.git
synced 2024-11-08 21:21:47 +00:00
ce00f7feb0
ARCH_KMALLOC_MINALIGN was renamed to ARCH_DMA_MINALIGN (the commit
a6eb9fe105
).
ARCH_DMA_MINALIGN must be defined instead of ARCH_KMALLOC_MINALIGN to
ensure that kmalloc'ed buffer is DMA-safe.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
782 lines
28 KiB
Plaintext
782 lines
28 KiB
Plaintext
Dynamic DMA mapping Guide
|
|
=========================
|
|
|
|
David S. Miller <davem@redhat.com>
|
|
Richard Henderson <rth@cygnus.com>
|
|
Jakub Jelinek <jakub@redhat.com>
|
|
|
|
This is a guide to device driver writers on how to use the DMA API
|
|
with example pseudo-code. For a concise description of the API, see
|
|
DMA-API.txt.
|
|
|
|
Most of the 64bit platforms have special hardware that translates bus
|
|
addresses (DMA addresses) into physical addresses. This is similar to
|
|
how page tables and/or a TLB translates virtual addresses to physical
|
|
addresses on a CPU. This is needed so that e.g. PCI devices can
|
|
access with a Single Address Cycle (32bit DMA address) any page in the
|
|
64bit physical address space. Previously in Linux those 64bit
|
|
platforms had to set artificial limits on the maximum RAM size in the
|
|
system, so that the virt_to_bus() static scheme works (the DMA address
|
|
translation tables were simply filled on bootup to map each bus
|
|
address to the physical page __pa(bus_to_virt())).
|
|
|
|
So that Linux can use the dynamic DMA mapping, it needs some help from the
|
|
drivers, namely it has to take into account that DMA addresses should be
|
|
mapped only for the time they are actually used and unmapped after the DMA
|
|
transfer.
|
|
|
|
The following API will work of course even on platforms where no such
|
|
hardware exists.
|
|
|
|
Note that the DMA API works with any bus independent of the underlying
|
|
microprocessor architecture. You should use the DMA API rather than
|
|
the bus specific DMA API (e.g. pci_dma_*).
|
|
|
|
First of all, you should make sure
|
|
|
|
#include <linux/dma-mapping.h>
|
|
|
|
is in your driver. This file will obtain for you the definition of the
|
|
dma_addr_t (which can hold any valid DMA address for the platform)
|
|
type which should be used everywhere you hold a DMA (bus) address
|
|
returned from the DMA mapping functions.
|
|
|
|
What memory is DMA'able?
|
|
|
|
The first piece of information you must know is what kernel memory can
|
|
be used with the DMA mapping facilities. There has been an unwritten
|
|
set of rules regarding this, and this text is an attempt to finally
|
|
write them down.
|
|
|
|
If you acquired your memory via the page allocator
|
|
(i.e. __get_free_page*()) or the generic memory allocators
|
|
(i.e. kmalloc() or kmem_cache_alloc()) then you may DMA to/from
|
|
that memory using the addresses returned from those routines.
|
|
|
|
This means specifically that you may _not_ use the memory/addresses
|
|
returned from vmalloc() for DMA. It is possible to DMA to the
|
|
_underlying_ memory mapped into a vmalloc() area, but this requires
|
|
walking page tables to get the physical addresses, and then
|
|
translating each of those pages back to a kernel address using
|
|
something like __va(). [ EDIT: Update this when we integrate
|
|
Gerd Knorr's generic code which does this. ]
|
|
|
|
This rule also means that you may use neither kernel image addresses
|
|
(items in data/text/bss segments), nor module image addresses, nor
|
|
stack addresses for DMA. These could all be mapped somewhere entirely
|
|
different than the rest of physical memory. Even if those classes of
|
|
memory could physically work with DMA, you'd need to ensure the I/O
|
|
buffers were cacheline-aligned. Without that, you'd see cacheline
|
|
sharing problems (data corruption) on CPUs with DMA-incoherent caches.
|
|
(The CPU could write to one word, DMA would write to a different one
|
|
in the same cache line, and one of them could be overwritten.)
|
|
|
|
Also, this means that you cannot take the return of a kmap()
|
|
call and DMA to/from that. This is similar to vmalloc().
|
|
|
|
What about block I/O and networking buffers? The block I/O and
|
|
networking subsystems make sure that the buffers they use are valid
|
|
for you to DMA from/to.
|
|
|
|
DMA addressing limitations
|
|
|
|
Does your device have any DMA addressing limitations? For example, is
|
|
your device only capable of driving the low order 24-bits of address?
|
|
If so, you need to inform the kernel of this fact.
|
|
|
|
By default, the kernel assumes that your device can address the full
|
|
32-bits. For a 64-bit capable device, this needs to be increased.
|
|
And for a device with limitations, as discussed in the previous
|
|
paragraph, it needs to be decreased.
|
|
|
|
Special note about PCI: PCI-X specification requires PCI-X devices to
|
|
support 64-bit addressing (DAC) for all transactions. And at least
|
|
one platform (SGI SN2) requires 64-bit consistent allocations to
|
|
operate correctly when the IO bus is in PCI-X mode.
|
|
|
|
For correct operation, you must interrogate the kernel in your device
|
|
probe routine to see if the DMA controller on the machine can properly
|
|
support the DMA addressing limitation your device has. It is good
|
|
style to do this even if your device holds the default setting,
|
|
because this shows that you did think about these issues wrt. your
|
|
device.
|
|
|
|
The query is performed via a call to dma_set_mask():
|
|
|
|
int dma_set_mask(struct device *dev, u64 mask);
|
|
|
|
The query for consistent allocations is performed via a call to
|
|
dma_set_coherent_mask():
|
|
|
|
int dma_set_coherent_mask(struct device *dev, u64 mask);
|
|
|
|
Here, dev is a pointer to the device struct of your device, and mask
|
|
is a bit mask describing which bits of an address your device
|
|
supports. It returns zero if your card can perform DMA properly on
|
|
the machine given the address mask you provided. In general, the
|
|
device struct of your device is embedded in the bus specific device
|
|
struct of your device. For example, a pointer to the device struct of
|
|
your PCI device is pdev->dev (pdev is a pointer to the PCI device
|
|
struct of your device).
|
|
|
|
If it returns non-zero, your device cannot perform DMA properly on
|
|
this platform, and attempting to do so will result in undefined
|
|
behavior. You must either use a different mask, or not use DMA.
|
|
|
|
This means that in the failure case, you have three options:
|
|
|
|
1) Use another DMA mask, if possible (see below).
|
|
2) Use some non-DMA mode for data transfer, if possible.
|
|
3) Ignore this device and do not initialize it.
|
|
|
|
It is recommended that your driver print a kernel KERN_WARNING message
|
|
when you end up performing either #2 or #3. In this manner, if a user
|
|
of your driver reports that performance is bad or that the device is not
|
|
even detected, you can ask them for the kernel messages to find out
|
|
exactly why.
|
|
|
|
The standard 32-bit addressing device would do something like this:
|
|
|
|
if (dma_set_mask(dev, DMA_BIT_MASK(32))) {
|
|
printk(KERN_WARNING
|
|
"mydev: No suitable DMA available.\n");
|
|
goto ignore_this_device;
|
|
}
|
|
|
|
Another common scenario is a 64-bit capable device. The approach here
|
|
is to try for 64-bit addressing, but back down to a 32-bit mask that
|
|
should not fail. The kernel may fail the 64-bit mask not because the
|
|
platform is not capable of 64-bit addressing. Rather, it may fail in
|
|
this case simply because 32-bit addressing is done more efficiently
|
|
than 64-bit addressing. For example, Sparc64 PCI SAC addressing is
|
|
more efficient than DAC addressing.
|
|
|
|
Here is how you would handle a 64-bit capable device which can drive
|
|
all 64-bits when accessing streaming DMA:
|
|
|
|
int using_dac;
|
|
|
|
if (!dma_set_mask(dev, DMA_BIT_MASK(64))) {
|
|
using_dac = 1;
|
|
} else if (!dma_set_mask(dev, DMA_BIT_MASK(32))) {
|
|
using_dac = 0;
|
|
} else {
|
|
printk(KERN_WARNING
|
|
"mydev: No suitable DMA available.\n");
|
|
goto ignore_this_device;
|
|
}
|
|
|
|
If a card is capable of using 64-bit consistent allocations as well,
|
|
the case would look like this:
|
|
|
|
int using_dac, consistent_using_dac;
|
|
|
|
if (!dma_set_mask(dev, DMA_BIT_MASK(64))) {
|
|
using_dac = 1;
|
|
consistent_using_dac = 1;
|
|
dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
|
|
} else if (!dma_set_mask(dev, DMA_BIT_MASK(32))) {
|
|
using_dac = 0;
|
|
consistent_using_dac = 0;
|
|
dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
|
|
} else {
|
|
printk(KERN_WARNING
|
|
"mydev: No suitable DMA available.\n");
|
|
goto ignore_this_device;
|
|
}
|
|
|
|
dma_set_coherent_mask() will always be able to set the same or a
|
|
smaller mask as dma_set_mask(). However for the rare case that a
|
|
device driver only uses consistent allocations, one would have to
|
|
check the return value from dma_set_coherent_mask().
|
|
|
|
Finally, if your device can only drive the low 24-bits of
|
|
address you might do something like:
|
|
|
|
if (dma_set_mask(dev, DMA_BIT_MASK(24))) {
|
|
printk(KERN_WARNING
|
|
"mydev: 24-bit DMA addressing not available.\n");
|
|
goto ignore_this_device;
|
|
}
|
|
|
|
When dma_set_mask() is successful, and returns zero, the kernel saves
|
|
away this mask you have provided. The kernel will use this
|
|
information later when you make DMA mappings.
|
|
|
|
There is a case which we are aware of at this time, which is worth
|
|
mentioning in this documentation. If your device supports multiple
|
|
functions (for example a sound card provides playback and record
|
|
functions) and the various different functions have _different_
|
|
DMA addressing limitations, you may wish to probe each mask and
|
|
only provide the functionality which the machine can handle. It
|
|
is important that the last call to dma_set_mask() be for the
|
|
most specific mask.
|
|
|
|
Here is pseudo-code showing how this might be done:
|
|
|
|
#define PLAYBACK_ADDRESS_BITS DMA_BIT_MASK(32)
|
|
#define RECORD_ADDRESS_BITS DMA_BIT_MASK(24)
|
|
|
|
struct my_sound_card *card;
|
|
struct device *dev;
|
|
|
|
...
|
|
if (!dma_set_mask(dev, PLAYBACK_ADDRESS_BITS)) {
|
|
card->playback_enabled = 1;
|
|
} else {
|
|
card->playback_enabled = 0;
|
|
printk(KERN_WARNING "%s: Playback disabled due to DMA limitations.\n",
|
|
card->name);
|
|
}
|
|
if (!dma_set_mask(dev, RECORD_ADDRESS_BITS)) {
|
|
card->record_enabled = 1;
|
|
} else {
|
|
card->record_enabled = 0;
|
|
printk(KERN_WARNING "%s: Record disabled due to DMA limitations.\n",
|
|
card->name);
|
|
}
|
|
|
|
A sound card was used as an example here because this genre of PCI
|
|
devices seems to be littered with ISA chips given a PCI front end,
|
|
and thus retaining the 16MB DMA addressing limitations of ISA.
|
|
|
|
Types of DMA mappings
|
|
|
|
There are two types of DMA mappings:
|
|
|
|
- Consistent DMA mappings which are usually mapped at driver
|
|
initialization, unmapped at the end and for which the hardware should
|
|
guarantee that the device and the CPU can access the data
|
|
in parallel and will see updates made by each other without any
|
|
explicit software flushing.
|
|
|
|
Think of "consistent" as "synchronous" or "coherent".
|
|
|
|
The current default is to return consistent memory in the low 32
|
|
bits of the bus space. However, for future compatibility you should
|
|
set the consistent mask even if this default is fine for your
|
|
driver.
|
|
|
|
Good examples of what to use consistent mappings for are:
|
|
|
|
- Network card DMA ring descriptors.
|
|
- SCSI adapter mailbox command data structures.
|
|
- Device firmware microcode executed out of
|
|
main memory.
|
|
|
|
The invariant these examples all require is that any CPU store
|
|
to memory is immediately visible to the device, and vice
|
|
versa. Consistent mappings guarantee this.
|
|
|
|
IMPORTANT: Consistent DMA memory does not preclude the usage of
|
|
proper memory barriers. The CPU may reorder stores to
|
|
consistent memory just as it may normal memory. Example:
|
|
if it is important for the device to see the first word
|
|
of a descriptor updated before the second, you must do
|
|
something like:
|
|
|
|
desc->word0 = address;
|
|
wmb();
|
|
desc->word1 = DESC_VALID;
|
|
|
|
in order to get correct behavior on all platforms.
|
|
|
|
Also, on some platforms your driver may need to flush CPU write
|
|
buffers in much the same way as it needs to flush write buffers
|
|
found in PCI bridges (such as by reading a register's value
|
|
after writing it).
|
|
|
|
- Streaming DMA mappings which are usually mapped for one DMA
|
|
transfer, unmapped right after it (unless you use dma_sync_* below)
|
|
and for which hardware can optimize for sequential accesses.
|
|
|
|
This of "streaming" as "asynchronous" or "outside the coherency
|
|
domain".
|
|
|
|
Good examples of what to use streaming mappings for are:
|
|
|
|
- Networking buffers transmitted/received by a device.
|
|
- Filesystem buffers written/read by a SCSI device.
|
|
|
|
The interfaces for using this type of mapping were designed in
|
|
such a way that an implementation can make whatever performance
|
|
optimizations the hardware allows. To this end, when using
|
|
such mappings you must be explicit about what you want to happen.
|
|
|
|
Neither type of DMA mapping has alignment restrictions that come from
|
|
the underlying bus, although some devices may have such restrictions.
|
|
Also, systems with caches that aren't DMA-coherent will work better
|
|
when the underlying buffers don't share cache lines with other data.
|
|
|
|
|
|
Using Consistent DMA mappings.
|
|
|
|
To allocate and map large (PAGE_SIZE or so) consistent DMA regions,
|
|
you should do:
|
|
|
|
dma_addr_t dma_handle;
|
|
|
|
cpu_addr = dma_alloc_coherent(dev, size, &dma_handle, gfp);
|
|
|
|
where device is a struct device *. This may be called in interrupt
|
|
context with the GFP_ATOMIC flag.
|
|
|
|
Size is the length of the region you want to allocate, in bytes.
|
|
|
|
This routine will allocate RAM for that region, so it acts similarly to
|
|
__get_free_pages (but takes size instead of a page order). If your
|
|
driver needs regions sized smaller than a page, you may prefer using
|
|
the dma_pool interface, described below.
|
|
|
|
The consistent DMA mapping interfaces, for non-NULL dev, will by
|
|
default return a DMA address which is 32-bit addressable. Even if the
|
|
device indicates (via DMA mask) that it may address the upper 32-bits,
|
|
consistent allocation will only return > 32-bit addresses for DMA if
|
|
the consistent DMA mask has been explicitly changed via
|
|
dma_set_coherent_mask(). This is true of the dma_pool interface as
|
|
well.
|
|
|
|
dma_alloc_coherent returns two values: the virtual address which you
|
|
can use to access it from the CPU and dma_handle which you pass to the
|
|
card.
|
|
|
|
The cpu return address and the DMA bus master address are both
|
|
guaranteed to be aligned to the smallest PAGE_SIZE order which
|
|
is greater than or equal to the requested size. This invariant
|
|
exists (for example) to guarantee that if you allocate a chunk
|
|
which is smaller than or equal to 64 kilobytes, the extent of the
|
|
buffer you receive will not cross a 64K boundary.
|
|
|
|
To unmap and free such a DMA region, you call:
|
|
|
|
dma_free_coherent(dev, size, cpu_addr, dma_handle);
|
|
|
|
where dev, size are the same as in the above call and cpu_addr and
|
|
dma_handle are the values dma_alloc_coherent returned to you.
|
|
This function may not be called in interrupt context.
|
|
|
|
If your driver needs lots of smaller memory regions, you can write
|
|
custom code to subdivide pages returned by dma_alloc_coherent,
|
|
or you can use the dma_pool API to do that. A dma_pool is like
|
|
a kmem_cache, but it uses dma_alloc_coherent not __get_free_pages.
|
|
Also, it understands common hardware constraints for alignment,
|
|
like queue heads needing to be aligned on N byte boundaries.
|
|
|
|
Create a dma_pool like this:
|
|
|
|
struct dma_pool *pool;
|
|
|
|
pool = dma_pool_create(name, dev, size, align, alloc);
|
|
|
|
The "name" is for diagnostics (like a kmem_cache name); dev and size
|
|
are as above. The device's hardware alignment requirement for this
|
|
type of data is "align" (which is expressed in bytes, and must be a
|
|
power of two). If your device has no boundary crossing restrictions,
|
|
pass 0 for alloc; passing 4096 says memory allocated from this pool
|
|
must not cross 4KByte boundaries (but at that time it may be better to
|
|
go for dma_alloc_coherent directly instead).
|
|
|
|
Allocate memory from a dma pool like this:
|
|
|
|
cpu_addr = dma_pool_alloc(pool, flags, &dma_handle);
|
|
|
|
flags are SLAB_KERNEL if blocking is permitted (not in_interrupt nor
|
|
holding SMP locks), SLAB_ATOMIC otherwise. Like dma_alloc_coherent,
|
|
this returns two values, cpu_addr and dma_handle.
|
|
|
|
Free memory that was allocated from a dma_pool like this:
|
|
|
|
dma_pool_free(pool, cpu_addr, dma_handle);
|
|
|
|
where pool is what you passed to dma_pool_alloc, and cpu_addr and
|
|
dma_handle are the values dma_pool_alloc returned. This function
|
|
may be called in interrupt context.
|
|
|
|
Destroy a dma_pool by calling:
|
|
|
|
dma_pool_destroy(pool);
|
|
|
|
Make sure you've called dma_pool_free for all memory allocated
|
|
from a pool before you destroy the pool. This function may not
|
|
be called in interrupt context.
|
|
|
|
DMA Direction
|
|
|
|
The interfaces described in subsequent portions of this document
|
|
take a DMA direction argument, which is an integer and takes on
|
|
one of the following values:
|
|
|
|
DMA_BIDIRECTIONAL
|
|
DMA_TO_DEVICE
|
|
DMA_FROM_DEVICE
|
|
DMA_NONE
|
|
|
|
One should provide the exact DMA direction if you know it.
|
|
|
|
DMA_TO_DEVICE means "from main memory to the device"
|
|
DMA_FROM_DEVICE means "from the device to main memory"
|
|
It is the direction in which the data moves during the DMA
|
|
transfer.
|
|
|
|
You are _strongly_ encouraged to specify this as precisely
|
|
as you possibly can.
|
|
|
|
If you absolutely cannot know the direction of the DMA transfer,
|
|
specify DMA_BIDIRECTIONAL. It means that the DMA can go in
|
|
either direction. The platform guarantees that you may legally
|
|
specify this, and that it will work, but this may be at the
|
|
cost of performance for example.
|
|
|
|
The value DMA_NONE is to be used for debugging. One can
|
|
hold this in a data structure before you come to know the
|
|
precise direction, and this will help catch cases where your
|
|
direction tracking logic has failed to set things up properly.
|
|
|
|
Another advantage of specifying this value precisely (outside of
|
|
potential platform-specific optimizations of such) is for debugging.
|
|
Some platforms actually have a write permission boolean which DMA
|
|
mappings can be marked with, much like page protections in the user
|
|
program address space. Such platforms can and do report errors in the
|
|
kernel logs when the DMA controller hardware detects violation of the
|
|
permission setting.
|
|
|
|
Only streaming mappings specify a direction, consistent mappings
|
|
implicitly have a direction attribute setting of
|
|
DMA_BIDIRECTIONAL.
|
|
|
|
The SCSI subsystem tells you the direction to use in the
|
|
'sc_data_direction' member of the SCSI command your driver is
|
|
working on.
|
|
|
|
For Networking drivers, it's a rather simple affair. For transmit
|
|
packets, map/unmap them with the DMA_TO_DEVICE direction
|
|
specifier. For receive packets, just the opposite, map/unmap them
|
|
with the DMA_FROM_DEVICE direction specifier.
|
|
|
|
Using Streaming DMA mappings
|
|
|
|
The streaming DMA mapping routines can be called from interrupt
|
|
context. There are two versions of each map/unmap, one which will
|
|
map/unmap a single memory region, and one which will map/unmap a
|
|
scatterlist.
|
|
|
|
To map a single region, you do:
|
|
|
|
struct device *dev = &my_dev->dev;
|
|
dma_addr_t dma_handle;
|
|
void *addr = buffer->ptr;
|
|
size_t size = buffer->len;
|
|
|
|
dma_handle = dma_map_single(dev, addr, size, direction);
|
|
|
|
and to unmap it:
|
|
|
|
dma_unmap_single(dev, dma_handle, size, direction);
|
|
|
|
You should call dma_unmap_single when the DMA activity is finished, e.g.
|
|
from the interrupt which told you that the DMA transfer is done.
|
|
|
|
Using cpu pointers like this for single mappings has a disadvantage,
|
|
you cannot reference HIGHMEM memory in this way. Thus, there is a
|
|
map/unmap interface pair akin to dma_{map,unmap}_single. These
|
|
interfaces deal with page/offset pairs instead of cpu pointers.
|
|
Specifically:
|
|
|
|
struct device *dev = &my_dev->dev;
|
|
dma_addr_t dma_handle;
|
|
struct page *page = buffer->page;
|
|
unsigned long offset = buffer->offset;
|
|
size_t size = buffer->len;
|
|
|
|
dma_handle = dma_map_page(dev, page, offset, size, direction);
|
|
|
|
...
|
|
|
|
dma_unmap_page(dev, dma_handle, size, direction);
|
|
|
|
Here, "offset" means byte offset within the given page.
|
|
|
|
With scatterlists, you map a region gathered from several regions by:
|
|
|
|
int i, count = dma_map_sg(dev, sglist, nents, direction);
|
|
struct scatterlist *sg;
|
|
|
|
for_each_sg(sglist, sg, count, i) {
|
|
hw_address[i] = sg_dma_address(sg);
|
|
hw_len[i] = sg_dma_len(sg);
|
|
}
|
|
|
|
where nents is the number of entries in the sglist.
|
|
|
|
The implementation is free to merge several consecutive sglist entries
|
|
into one (e.g. if DMA mapping is done with PAGE_SIZE granularity, any
|
|
consecutive sglist entries can be merged into one provided the first one
|
|
ends and the second one starts on a page boundary - in fact this is a huge
|
|
advantage for cards which either cannot do scatter-gather or have very
|
|
limited number of scatter-gather entries) and returns the actual number
|
|
of sg entries it mapped them to. On failure 0 is returned.
|
|
|
|
Then you should loop count times (note: this can be less than nents times)
|
|
and use sg_dma_address() and sg_dma_len() macros where you previously
|
|
accessed sg->address and sg->length as shown above.
|
|
|
|
To unmap a scatterlist, just call:
|
|
|
|
dma_unmap_sg(dev, sglist, nents, direction);
|
|
|
|
Again, make sure DMA activity has already finished.
|
|
|
|
PLEASE NOTE: The 'nents' argument to the dma_unmap_sg call must be
|
|
the _same_ one you passed into the dma_map_sg call,
|
|
it should _NOT_ be the 'count' value _returned_ from the
|
|
dma_map_sg call.
|
|
|
|
Every dma_map_{single,sg} call should have its dma_unmap_{single,sg}
|
|
counterpart, because the bus address space is a shared resource (although
|
|
in some ports the mapping is per each BUS so less devices contend for the
|
|
same bus address space) and you could render the machine unusable by eating
|
|
all bus addresses.
|
|
|
|
If you need to use the same streaming DMA region multiple times and touch
|
|
the data in between the DMA transfers, the buffer needs to be synced
|
|
properly in order for the cpu and device to see the most uptodate and
|
|
correct copy of the DMA buffer.
|
|
|
|
So, firstly, just map it with dma_map_{single,sg}, and after each DMA
|
|
transfer call either:
|
|
|
|
dma_sync_single_for_cpu(dev, dma_handle, size, direction);
|
|
|
|
or:
|
|
|
|
dma_sync_sg_for_cpu(dev, sglist, nents, direction);
|
|
|
|
as appropriate.
|
|
|
|
Then, if you wish to let the device get at the DMA area again,
|
|
finish accessing the data with the cpu, and then before actually
|
|
giving the buffer to the hardware call either:
|
|
|
|
dma_sync_single_for_device(dev, dma_handle, size, direction);
|
|
|
|
or:
|
|
|
|
dma_sync_sg_for_device(dev, sglist, nents, direction);
|
|
|
|
as appropriate.
|
|
|
|
After the last DMA transfer call one of the DMA unmap routines
|
|
dma_unmap_{single,sg}. If you don't touch the data from the first dma_map_*
|
|
call till dma_unmap_*, then you don't have to call the dma_sync_*
|
|
routines at all.
|
|
|
|
Here is pseudo code which shows a situation in which you would need
|
|
to use the dma_sync_*() interfaces.
|
|
|
|
my_card_setup_receive_buffer(struct my_card *cp, char *buffer, int len)
|
|
{
|
|
dma_addr_t mapping;
|
|
|
|
mapping = dma_map_single(cp->dev, buffer, len, DMA_FROM_DEVICE);
|
|
|
|
cp->rx_buf = buffer;
|
|
cp->rx_len = len;
|
|
cp->rx_dma = mapping;
|
|
|
|
give_rx_buf_to_card(cp);
|
|
}
|
|
|
|
...
|
|
|
|
my_card_interrupt_handler(int irq, void *devid, struct pt_regs *regs)
|
|
{
|
|
struct my_card *cp = devid;
|
|
|
|
...
|
|
if (read_card_status(cp) == RX_BUF_TRANSFERRED) {
|
|
struct my_card_header *hp;
|
|
|
|
/* Examine the header to see if we wish
|
|
* to accept the data. But synchronize
|
|
* the DMA transfer with the CPU first
|
|
* so that we see updated contents.
|
|
*/
|
|
dma_sync_single_for_cpu(&cp->dev, cp->rx_dma,
|
|
cp->rx_len,
|
|
DMA_FROM_DEVICE);
|
|
|
|
/* Now it is safe to examine the buffer. */
|
|
hp = (struct my_card_header *) cp->rx_buf;
|
|
if (header_is_ok(hp)) {
|
|
dma_unmap_single(&cp->dev, cp->rx_dma, cp->rx_len,
|
|
DMA_FROM_DEVICE);
|
|
pass_to_upper_layers(cp->rx_buf);
|
|
make_and_setup_new_rx_buf(cp);
|
|
} else {
|
|
/* Just sync the buffer and give it back
|
|
* to the card.
|
|
*/
|
|
dma_sync_single_for_device(&cp->dev,
|
|
cp->rx_dma,
|
|
cp->rx_len,
|
|
DMA_FROM_DEVICE);
|
|
give_rx_buf_to_card(cp);
|
|
}
|
|
}
|
|
}
|
|
|
|
Drivers converted fully to this interface should not use virt_to_bus any
|
|
longer, nor should they use bus_to_virt. Some drivers have to be changed a
|
|
little bit, because there is no longer an equivalent to bus_to_virt in the
|
|
dynamic DMA mapping scheme - you have to always store the DMA addresses
|
|
returned by the dma_alloc_coherent, dma_pool_alloc, and dma_map_single
|
|
calls (dma_map_sg stores them in the scatterlist itself if the platform
|
|
supports dynamic DMA mapping in hardware) in your driver structures and/or
|
|
in the card registers.
|
|
|
|
All drivers should be using these interfaces with no exceptions. It
|
|
is planned to completely remove virt_to_bus() and bus_to_virt() as
|
|
they are entirely deprecated. Some ports already do not provide these
|
|
as it is impossible to correctly support them.
|
|
|
|
Handling Errors
|
|
|
|
DMA address space is limited on some architectures and an allocation
|
|
failure can be determined by:
|
|
|
|
- checking if dma_alloc_coherent returns NULL or dma_map_sg returns 0
|
|
|
|
- checking the returned dma_addr_t of dma_map_single and dma_map_page
|
|
by using dma_mapping_error():
|
|
|
|
dma_addr_t dma_handle;
|
|
|
|
dma_handle = dma_map_single(dev, addr, size, direction);
|
|
if (dma_mapping_error(dev, dma_handle)) {
|
|
/*
|
|
* reduce current DMA mapping usage,
|
|
* delay and try again later or
|
|
* reset driver.
|
|
*/
|
|
}
|
|
|
|
Networking drivers must call dev_kfree_skb to free the socket buffer
|
|
and return NETDEV_TX_OK if the DMA mapping fails on the transmit hook
|
|
(ndo_start_xmit). This means that the socket buffer is just dropped in
|
|
the failure case.
|
|
|
|
SCSI drivers must return SCSI_MLQUEUE_HOST_BUSY if the DMA mapping
|
|
fails in the queuecommand hook. This means that the SCSI subsystem
|
|
passes the command to the driver again later.
|
|
|
|
Optimizing Unmap State Space Consumption
|
|
|
|
On many platforms, dma_unmap_{single,page}() is simply a nop.
|
|
Therefore, keeping track of the mapping address and length is a waste
|
|
of space. Instead of filling your drivers up with ifdefs and the like
|
|
to "work around" this (which would defeat the whole purpose of a
|
|
portable API) the following facilities are provided.
|
|
|
|
Actually, instead of describing the macros one by one, we'll
|
|
transform some example code.
|
|
|
|
1) Use DEFINE_DMA_UNMAP_{ADDR,LEN} in state saving structures.
|
|
Example, before:
|
|
|
|
struct ring_state {
|
|
struct sk_buff *skb;
|
|
dma_addr_t mapping;
|
|
__u32 len;
|
|
};
|
|
|
|
after:
|
|
|
|
struct ring_state {
|
|
struct sk_buff *skb;
|
|
DEFINE_DMA_UNMAP_ADDR(mapping);
|
|
DEFINE_DMA_UNMAP_LEN(len);
|
|
};
|
|
|
|
2) Use dma_unmap_{addr,len}_set to set these values.
|
|
Example, before:
|
|
|
|
ringp->mapping = FOO;
|
|
ringp->len = BAR;
|
|
|
|
after:
|
|
|
|
dma_unmap_addr_set(ringp, mapping, FOO);
|
|
dma_unmap_len_set(ringp, len, BAR);
|
|
|
|
3) Use dma_unmap_{addr,len} to access these values.
|
|
Example, before:
|
|
|
|
dma_unmap_single(dev, ringp->mapping, ringp->len,
|
|
DMA_FROM_DEVICE);
|
|
|
|
after:
|
|
|
|
dma_unmap_single(dev,
|
|
dma_unmap_addr(ringp, mapping),
|
|
dma_unmap_len(ringp, len),
|
|
DMA_FROM_DEVICE);
|
|
|
|
It really should be self-explanatory. We treat the ADDR and LEN
|
|
separately, because it is possible for an implementation to only
|
|
need the address in order to perform the unmap operation.
|
|
|
|
Platform Issues
|
|
|
|
If you are just writing drivers for Linux and do not maintain
|
|
an architecture port for the kernel, you can safely skip down
|
|
to "Closing".
|
|
|
|
1) Struct scatterlist requirements.
|
|
|
|
Don't invent the architecture specific struct scatterlist; just use
|
|
<asm-generic/scatterlist.h>. You need to enable
|
|
CONFIG_NEED_SG_DMA_LENGTH if the architecture supports IOMMUs
|
|
(including software IOMMU).
|
|
|
|
2) ARCH_DMA_MINALIGN
|
|
|
|
Architectures must ensure that kmalloc'ed buffer is
|
|
DMA-safe. Drivers and subsystems depend on it. If an architecture
|
|
isn't fully DMA-coherent (i.e. hardware doesn't ensure that data in
|
|
the CPU cache is identical to data in main memory),
|
|
ARCH_DMA_MINALIGN must be set so that the memory allocator
|
|
makes sure that kmalloc'ed buffer doesn't share a cache line with
|
|
the others. See arch/arm/include/asm/cache.h as an example.
|
|
|
|
Note that ARCH_DMA_MINALIGN is about DMA memory alignment
|
|
constraints. You don't need to worry about the architecture data
|
|
alignment constraints (e.g. the alignment constraints about 64-bit
|
|
objects).
|
|
|
|
3) Supporting multiple types of IOMMUs
|
|
|
|
If your architecture needs to support multiple types of IOMMUs, you
|
|
can use include/linux/asm-generic/dma-mapping-common.h. It's a
|
|
library to support the DMA API with multiple types of IOMMUs. Lots
|
|
of architectures (x86, powerpc, sh, alpha, ia64, microblaze and
|
|
sparc) use it. Choose one to see how it can be used. If you need to
|
|
support multiple types of IOMMUs in a single system, the example of
|
|
x86 or powerpc helps.
|
|
|
|
Closing
|
|
|
|
This document, and the API itself, would not be in its current
|
|
form without the feedback and suggestions from numerous individuals.
|
|
We would like to specifically mention, in no particular order, the
|
|
following people:
|
|
|
|
Russell King <rmk@arm.linux.org.uk>
|
|
Leo Dagum <dagum@barrel.engr.sgi.com>
|
|
Ralf Baechle <ralf@oss.sgi.com>
|
|
Grant Grundler <grundler@cup.hp.com>
|
|
Jay Estabrook <Jay.Estabrook@compaq.com>
|
|
Thomas Sailer <sailer@ife.ee.ethz.ch>
|
|
Andrea Arcangeli <andrea@suse.de>
|
|
Jens Axboe <jens.axboe@oracle.com>
|
|
David Mosberger-Tang <davidm@hpl.hp.com>
|