linux/tools/perf/util/stat.c
Claire Jensen df936cadfb perf stat: Add JSON output option
CSV output is tricky to format and column layout changes are susceptible
to breaking parsers. New JSON-formatted output has variable names to
identify fields that are consistent and informative, making the output
parseable.

CSV output example:

  1.20,msec,task-clock:u,1204272,100.00,0.697,CPUs utilized
  0,,context-switches:u,1204272,100.00,0.000,/sec
  0,,cpu-migrations:u,1204272,100.00,0.000,/sec
  70,,page-faults:u,1204272,100.00,58.126,K/sec

JSON output example:

  {"counter-value" : "3805.723968", "unit" : "msec", "event" :
  "cpu-clock", "event-runtime" : 3805731510100.00, "pcnt-running"
  : 100.00, "metric-value" : 4.007571, "metric-unit" : "CPUs utilized"}
  {"counter-value" : "6166.000000", "unit" : "", "event" :
  "context-switches", "event-runtime" : 3805723045100.00, "pcnt-running"
  : 100.00, "metric-value" : 1.620191, "metric-unit" : "K/sec"}
  {"counter-value" : "466.000000", "unit" : "", "event" :
  "cpu-migrations", "event-runtime" : 3805727613100.00, "pcnt-running"
  : 100.00, "metric-value" : 122.447136, "metric-unit" : "/sec"}
  {"counter-value" : "208.000000", "unit" : "", "event" :
  "page-faults", "event-runtime" : 3805726799100.00, "pcnt-running"
  : 100.00, "metric-value" : 54.654516, "metric-unit" : "/sec"}

Also added documentation for JSON option.

There is some tidy up of CSV code including a potential memory over run
in the os.nfields set up. To facilitate this an AGGR_MAX value is added.

Committer notes:

Fixed up using PRIu64 to format u64 values, not %lu.

Committer testing:

  ⬢[acme@toolbox perf]$ perf stat -j sleep 1
  {"counter-value" : "0.731750", "unit" : "msec", "event" : "task-clock:u", "event-runtime" : 731750, "pcnt-running" : 100.00, "metric-value" : 0.000731, "metric-unit" : "CPUs utilized"}
  {"counter-value" : "0.000000", "unit" : "", "event" : "context-switches:u", "event-runtime" : 731750, "pcnt-running" : 100.00, "metric-value" : 0.000000, "metric-unit" : "/sec"}
  {"counter-value" : "0.000000", "unit" : "", "event" : "cpu-migrations:u", "event-runtime" : 731750, "pcnt-running" : 100.00, "metric-value" : 0.000000, "metric-unit" : "/sec"}
  {"counter-value" : "75.000000", "unit" : "", "event" : "page-faults:u", "event-runtime" : 731750, "pcnt-running" : 100.00, "metric-value" : 102.494021, "metric-unit" : "K/sec"}
  {"counter-value" : "578765.000000", "unit" : "", "event" : "cycles:u", "event-runtime" : 379366, "pcnt-running" : 49.00, "metric-value" : 0.790933, "metric-unit" : "GHz"}
  {"counter-value" : "1298.000000", "unit" : "", "event" : "stalled-cycles-frontend:u", "event-runtime" : 768020, "pcnt-running" : 100.00, "metric-value" : 0.224271, "metric-unit" : "frontend cycles idle"}
  {"counter-value" : "21984.000000", "unit" : "", "event" : "stalled-cycles-backend:u", "event-runtime" : 768020, "pcnt-running" : 100.00, "metric-value" : 3.798433, "metric-unit" : "backend cycles idle"}
  {"counter-value" : "468197.000000", "unit" : "", "event" : "instructions:u", "event-runtime" : 768020, "pcnt-running" : 100.00, "metric-value" : 0.808959, "metric-unit" : "insn per cycle"}
  {"metric-value" : 0.046955, "metric-unit" : "stalled cycles per insn"}
  {"counter-value" : "103335.000000", "unit" : "", "event" : "branches:u", "event-runtime" : 768020, "pcnt-running" : 100.00, "metric-value" : 141.216262, "metric-unit" : "M/sec"}
  {"counter-value" : "2381.000000", "unit" : "", "event" : "branch-misses:u", "event-runtime" : 388654, "pcnt-running" : 50.00, "metric-value" : 2.304156, "metric-unit" : "of all branches"}
  ⬢[acme@toolbox perf]$

Signed-off-by: Claire Jensen <cjense@google.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alyssa Ross <hi@alyssa.is>
Cc: Claire Jensen <clairej735@gmail.com>
Cc: Florian Fischer <florian.fischer@muhq.space>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Clark <james.clark@arm.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Like Xu <likexu@tencent.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sandipan Das <sandipan.das@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Link: https://lore.kernel.org/r/20220805200105.2020995-2-irogers@google.com
Signed-off-by: Ian Rogers <irogers@google.com>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2022-08-10 10:43:29 -03:00

606 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <errno.h>
#include <linux/err.h>
#include <inttypes.h>
#include <math.h>
#include <string.h>
#include "counts.h"
#include "cpumap.h"
#include "debug.h"
#include "header.h"
#include "stat.h"
#include "session.h"
#include "target.h"
#include "evlist.h"
#include "evsel.h"
#include "thread_map.h"
#include "hashmap.h"
#include <linux/zalloc.h>
void update_stats(struct stats *stats, u64 val)
{
double delta;
stats->n++;
delta = val - stats->mean;
stats->mean += delta / stats->n;
stats->M2 += delta*(val - stats->mean);
if (val > stats->max)
stats->max = val;
if (val < stats->min)
stats->min = val;
}
double avg_stats(struct stats *stats)
{
return stats->mean;
}
/*
* http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
*
* (\Sum n_i^2) - ((\Sum n_i)^2)/n
* s^2 = -------------------------------
* n - 1
*
* http://en.wikipedia.org/wiki/Stddev
*
* The std dev of the mean is related to the std dev by:
*
* s
* s_mean = -------
* sqrt(n)
*
*/
double stddev_stats(struct stats *stats)
{
double variance, variance_mean;
if (stats->n < 2)
return 0.0;
variance = stats->M2 / (stats->n - 1);
variance_mean = variance / stats->n;
return sqrt(variance_mean);
}
double rel_stddev_stats(double stddev, double avg)
{
double pct = 0.0;
if (avg)
pct = 100.0 * stddev/avg;
return pct;
}
bool __perf_stat_evsel__is(struct evsel *evsel, enum perf_stat_evsel_id id)
{
struct perf_stat_evsel *ps = evsel->stats;
return ps->id == id;
}
#define ID(id, name) [PERF_STAT_EVSEL_ID__##id] = #name
static const char *id_str[PERF_STAT_EVSEL_ID__MAX] = {
ID(NONE, x),
ID(CYCLES_IN_TX, cpu/cycles-t/),
ID(TRANSACTION_START, cpu/tx-start/),
ID(ELISION_START, cpu/el-start/),
ID(CYCLES_IN_TX_CP, cpu/cycles-ct/),
ID(TOPDOWN_TOTAL_SLOTS, topdown-total-slots),
ID(TOPDOWN_SLOTS_ISSUED, topdown-slots-issued),
ID(TOPDOWN_SLOTS_RETIRED, topdown-slots-retired),
ID(TOPDOWN_FETCH_BUBBLES, topdown-fetch-bubbles),
ID(TOPDOWN_RECOVERY_BUBBLES, topdown-recovery-bubbles),
ID(TOPDOWN_RETIRING, topdown-retiring),
ID(TOPDOWN_BAD_SPEC, topdown-bad-spec),
ID(TOPDOWN_FE_BOUND, topdown-fe-bound),
ID(TOPDOWN_BE_BOUND, topdown-be-bound),
ID(TOPDOWN_HEAVY_OPS, topdown-heavy-ops),
ID(TOPDOWN_BR_MISPREDICT, topdown-br-mispredict),
ID(TOPDOWN_FETCH_LAT, topdown-fetch-lat),
ID(TOPDOWN_MEM_BOUND, topdown-mem-bound),
ID(SMI_NUM, msr/smi/),
ID(APERF, msr/aperf/),
};
#undef ID
static void perf_stat_evsel_id_init(struct evsel *evsel)
{
struct perf_stat_evsel *ps = evsel->stats;
int i;
/* ps->id is 0 hence PERF_STAT_EVSEL_ID__NONE by default */
for (i = 0; i < PERF_STAT_EVSEL_ID__MAX; i++) {
if (!strcmp(evsel__name(evsel), id_str[i]) ||
(strstr(evsel__name(evsel), id_str[i]) && evsel->pmu_name
&& strstr(evsel__name(evsel), evsel->pmu_name))) {
ps->id = i;
break;
}
}
}
static void evsel__reset_stat_priv(struct evsel *evsel)
{
int i;
struct perf_stat_evsel *ps = evsel->stats;
for (i = 0; i < 3; i++)
init_stats(&ps->res_stats[i]);
perf_stat_evsel_id_init(evsel);
}
static int evsel__alloc_stat_priv(struct evsel *evsel)
{
evsel->stats = zalloc(sizeof(struct perf_stat_evsel));
if (evsel->stats == NULL)
return -ENOMEM;
evsel__reset_stat_priv(evsel);
return 0;
}
static void evsel__free_stat_priv(struct evsel *evsel)
{
struct perf_stat_evsel *ps = evsel->stats;
if (ps)
zfree(&ps->group_data);
zfree(&evsel->stats);
}
static int evsel__alloc_prev_raw_counts(struct evsel *evsel)
{
int cpu_map_nr = evsel__nr_cpus(evsel);
int nthreads = perf_thread_map__nr(evsel->core.threads);
struct perf_counts *counts;
counts = perf_counts__new(cpu_map_nr, nthreads);
if (counts)
evsel->prev_raw_counts = counts;
return counts ? 0 : -ENOMEM;
}
static void evsel__free_prev_raw_counts(struct evsel *evsel)
{
perf_counts__delete(evsel->prev_raw_counts);
evsel->prev_raw_counts = NULL;
}
static void evsel__reset_prev_raw_counts(struct evsel *evsel)
{
if (evsel->prev_raw_counts)
perf_counts__reset(evsel->prev_raw_counts);
}
static int evsel__alloc_stats(struct evsel *evsel, bool alloc_raw)
{
if (evsel__alloc_stat_priv(evsel) < 0 ||
evsel__alloc_counts(evsel) < 0 ||
(alloc_raw && evsel__alloc_prev_raw_counts(evsel) < 0))
return -ENOMEM;
return 0;
}
int evlist__alloc_stats(struct evlist *evlist, bool alloc_raw)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (evsel__alloc_stats(evsel, alloc_raw))
goto out_free;
}
return 0;
out_free:
evlist__free_stats(evlist);
return -1;
}
void evlist__free_stats(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
evsel__free_stat_priv(evsel);
evsel__free_counts(evsel);
evsel__free_prev_raw_counts(evsel);
}
}
void evlist__reset_stats(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
evsel__reset_stat_priv(evsel);
evsel__reset_counts(evsel);
}
}
void evlist__reset_prev_raw_counts(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel)
evsel__reset_prev_raw_counts(evsel);
}
static void evsel__copy_prev_raw_counts(struct evsel *evsel)
{
int idx, nthreads = perf_thread_map__nr(evsel->core.threads);
for (int thread = 0; thread < nthreads; thread++) {
perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) {
*perf_counts(evsel->counts, idx, thread) =
*perf_counts(evsel->prev_raw_counts, idx, thread);
}
}
evsel->counts->aggr = evsel->prev_raw_counts->aggr;
}
void evlist__copy_prev_raw_counts(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel)
evsel__copy_prev_raw_counts(evsel);
}
void evlist__save_aggr_prev_raw_counts(struct evlist *evlist)
{
struct evsel *evsel;
/*
* To collect the overall statistics for interval mode,
* we copy the counts from evsel->prev_raw_counts to
* evsel->counts. The perf_stat_process_counter creates
* aggr values from per cpu values, but the per cpu values
* are 0 for AGGR_GLOBAL. So we use a trick that saves the
* previous aggr value to the first member of perf_counts,
* then aggr calculation in process_counter_values can work
* correctly.
*/
evlist__for_each_entry(evlist, evsel) {
*perf_counts(evsel->prev_raw_counts, 0, 0) =
evsel->prev_raw_counts->aggr;
}
}
static size_t pkg_id_hash(const void *__key, void *ctx __maybe_unused)
{
uint64_t *key = (uint64_t *) __key;
return *key & 0xffffffff;
}
static bool pkg_id_equal(const void *__key1, const void *__key2,
void *ctx __maybe_unused)
{
uint64_t *key1 = (uint64_t *) __key1;
uint64_t *key2 = (uint64_t *) __key2;
return *key1 == *key2;
}
static int check_per_pkg(struct evsel *counter, struct perf_counts_values *vals,
int cpu_map_idx, bool *skip)
{
struct hashmap *mask = counter->per_pkg_mask;
struct perf_cpu_map *cpus = evsel__cpus(counter);
struct perf_cpu cpu = perf_cpu_map__cpu(cpus, cpu_map_idx);
int s, d, ret = 0;
uint64_t *key;
*skip = false;
if (!counter->per_pkg)
return 0;
if (perf_cpu_map__empty(cpus))
return 0;
if (!mask) {
mask = hashmap__new(pkg_id_hash, pkg_id_equal, NULL);
if (IS_ERR(mask))
return -ENOMEM;
counter->per_pkg_mask = mask;
}
/*
* we do not consider an event that has not run as a good
* instance to mark a package as used (skip=1). Otherwise
* we may run into a situation where the first CPU in a package
* is not running anything, yet the second is, and this function
* would mark the package as used after the first CPU and would
* not read the values from the second CPU.
*/
if (!(vals->run && vals->ena))
return 0;
s = cpu__get_socket_id(cpu);
if (s < 0)
return -1;
/*
* On multi-die system, die_id > 0. On no-die system, die_id = 0.
* We use hashmap(socket, die) to check the used socket+die pair.
*/
d = cpu__get_die_id(cpu);
if (d < 0)
return -1;
key = malloc(sizeof(*key));
if (!key)
return -ENOMEM;
*key = (uint64_t)d << 32 | s;
if (hashmap__find(mask, (void *)key, NULL)) {
*skip = true;
free(key);
} else
ret = hashmap__add(mask, (void *)key, (void *)1);
return ret;
}
static int
process_counter_values(struct perf_stat_config *config, struct evsel *evsel,
int cpu_map_idx, int thread,
struct perf_counts_values *count)
{
struct perf_counts_values *aggr = &evsel->counts->aggr;
static struct perf_counts_values zero;
bool skip = false;
if (check_per_pkg(evsel, count, cpu_map_idx, &skip)) {
pr_err("failed to read per-pkg counter\n");
return -1;
}
if (skip)
count = &zero;
switch (config->aggr_mode) {
case AGGR_THREAD:
case AGGR_CORE:
case AGGR_DIE:
case AGGR_SOCKET:
case AGGR_NODE:
case AGGR_NONE:
if (!evsel->snapshot)
evsel__compute_deltas(evsel, cpu_map_idx, thread, count);
perf_counts_values__scale(count, config->scale, NULL);
if ((config->aggr_mode == AGGR_NONE) && (!evsel->percore)) {
perf_stat__update_shadow_stats(evsel, count->val,
cpu_map_idx, &rt_stat);
}
if (config->aggr_mode == AGGR_THREAD) {
if (config->stats)
perf_stat__update_shadow_stats(evsel,
count->val, 0, &config->stats[thread]);
else
perf_stat__update_shadow_stats(evsel,
count->val, 0, &rt_stat);
}
break;
case AGGR_GLOBAL:
aggr->val += count->val;
aggr->ena += count->ena;
aggr->run += count->run;
case AGGR_UNSET:
case AGGR_MAX:
default:
break;
}
return 0;
}
static int process_counter_maps(struct perf_stat_config *config,
struct evsel *counter)
{
int nthreads = perf_thread_map__nr(counter->core.threads);
int ncpus = evsel__nr_cpus(counter);
int idx, thread;
if (counter->core.system_wide)
nthreads = 1;
for (thread = 0; thread < nthreads; thread++) {
for (idx = 0; idx < ncpus; idx++) {
if (process_counter_values(config, counter, idx, thread,
perf_counts(counter->counts, idx, thread)))
return -1;
}
}
return 0;
}
int perf_stat_process_counter(struct perf_stat_config *config,
struct evsel *counter)
{
struct perf_counts_values *aggr = &counter->counts->aggr;
struct perf_stat_evsel *ps = counter->stats;
u64 *count = counter->counts->aggr.values;
int i, ret;
aggr->val = aggr->ena = aggr->run = 0;
if (counter->per_pkg)
evsel__zero_per_pkg(counter);
ret = process_counter_maps(config, counter);
if (ret)
return ret;
if (config->aggr_mode != AGGR_GLOBAL)
return 0;
if (!counter->snapshot)
evsel__compute_deltas(counter, -1, -1, aggr);
perf_counts_values__scale(aggr, config->scale, &counter->counts->scaled);
for (i = 0; i < 3; i++)
update_stats(&ps->res_stats[i], count[i]);
if (verbose > 0) {
fprintf(config->output, "%s: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
evsel__name(counter), count[0], count[1], count[2]);
}
/*
* Save the full runtime - to allow normalization during printout:
*/
perf_stat__update_shadow_stats(counter, *count, 0, &rt_stat);
return 0;
}
int perf_event__process_stat_event(struct perf_session *session,
union perf_event *event)
{
struct perf_counts_values count, *ptr;
struct perf_record_stat *st = &event->stat;
struct evsel *counter;
int cpu_map_idx;
count.val = st->val;
count.ena = st->ena;
count.run = st->run;
counter = evlist__id2evsel(session->evlist, st->id);
if (!counter) {
pr_err("Failed to resolve counter for stat event.\n");
return -EINVAL;
}
cpu_map_idx = perf_cpu_map__idx(evsel__cpus(counter), (struct perf_cpu){.cpu = st->cpu});
if (cpu_map_idx == -1) {
pr_err("Invalid CPU %d for event %s.\n", st->cpu, evsel__name(counter));
return -EINVAL;
}
ptr = perf_counts(counter->counts, cpu_map_idx, st->thread);
if (ptr == NULL) {
pr_err("Failed to find perf count for CPU %d thread %d on event %s.\n",
st->cpu, st->thread, evsel__name(counter));
return -EINVAL;
}
*ptr = count;
counter->supported = true;
return 0;
}
size_t perf_event__fprintf_stat(union perf_event *event, FILE *fp)
{
struct perf_record_stat *st = (struct perf_record_stat *)event;
size_t ret;
ret = fprintf(fp, "\n... id %" PRI_lu64 ", cpu %d, thread %d\n",
st->id, st->cpu, st->thread);
ret += fprintf(fp, "... value %" PRI_lu64 ", enabled %" PRI_lu64 ", running %" PRI_lu64 "\n",
st->val, st->ena, st->run);
return ret;
}
size_t perf_event__fprintf_stat_round(union perf_event *event, FILE *fp)
{
struct perf_record_stat_round *rd = (struct perf_record_stat_round *)event;
size_t ret;
ret = fprintf(fp, "\n... time %" PRI_lu64 ", type %s\n", rd->time,
rd->type == PERF_STAT_ROUND_TYPE__FINAL ? "FINAL" : "INTERVAL");
return ret;
}
size_t perf_event__fprintf_stat_config(union perf_event *event, FILE *fp)
{
struct perf_stat_config sc;
size_t ret;
perf_event__read_stat_config(&sc, &event->stat_config);
ret = fprintf(fp, "\n");
ret += fprintf(fp, "... aggr_mode %d\n", sc.aggr_mode);
ret += fprintf(fp, "... scale %d\n", sc.scale);
ret += fprintf(fp, "... interval %u\n", sc.interval);
return ret;
}
int create_perf_stat_counter(struct evsel *evsel,
struct perf_stat_config *config,
struct target *target,
int cpu_map_idx)
{
struct perf_event_attr *attr = &evsel->core.attr;
struct evsel *leader = evsel__leader(evsel);
attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
PERF_FORMAT_TOTAL_TIME_RUNNING;
/*
* The event is part of non trivial group, let's enable
* the group read (for leader) and ID retrieval for all
* members.
*/
if (leader->core.nr_members > 1)
attr->read_format |= PERF_FORMAT_ID|PERF_FORMAT_GROUP;
attr->inherit = !config->no_inherit && list_empty(&evsel->bpf_counter_list);
/*
* Some events get initialized with sample_(period/type) set,
* like tracepoints. Clear it up for counting.
*/
attr->sample_period = 0;
if (config->identifier)
attr->sample_type = PERF_SAMPLE_IDENTIFIER;
if (config->all_user) {
attr->exclude_kernel = 1;
attr->exclude_user = 0;
}
if (config->all_kernel) {
attr->exclude_kernel = 0;
attr->exclude_user = 1;
}
/*
* Disabling all counters initially, they will be enabled
* either manually by us or by kernel via enable_on_exec
* set later.
*/
if (evsel__is_group_leader(evsel)) {
attr->disabled = 1;
/*
* In case of initial_delay we enable tracee
* events manually.
*/
if (target__none(target) && !config->initial_delay)
attr->enable_on_exec = 1;
}
if (target__has_cpu(target) && !target__has_per_thread(target))
return evsel__open_per_cpu(evsel, evsel__cpus(evsel), cpu_map_idx);
return evsel__open_per_thread(evsel, evsel->core.threads);
}