linux/arch/sparc64/kernel/time.c
David S. Miller 7db35f31cb [SPARC64]: Fill holes in hypervisor APIs and fix KTSB registry.
Several interfaces were missing and others misnumbered or
improperly documented.

Also, make sure to check the return value when registering
the kernel TSBs with the hypervisor.  This helped to find
the 4MB kernel TSB alignment bug fixed in a previous changeset.

Signed-off-by: David S. Miller <davem@davemloft.net>
2007-05-29 02:52:15 -07:00

1593 lines
38 KiB
C

/* $Id: time.c,v 1.42 2002/01/23 14:33:55 davem Exp $
* time.c: UltraSparc timer and TOD clock support.
*
* Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
*
* Based largely on code which is:
*
* Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
*/
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/mc146818rtc.h>
#include <linux/delay.h>
#include <linux/profile.h>
#include <linux/bcd.h>
#include <linux/jiffies.h>
#include <linux/cpufreq.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/miscdevice.h>
#include <linux/rtc.h>
#include <linux/kernel_stat.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <asm/oplib.h>
#include <asm/mostek.h>
#include <asm/timer.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/of_device.h>
#include <asm/starfire.h>
#include <asm/smp.h>
#include <asm/sections.h>
#include <asm/cpudata.h>
#include <asm/uaccess.h>
#include <asm/prom.h>
#include <asm/irq_regs.h>
DEFINE_SPINLOCK(mostek_lock);
DEFINE_SPINLOCK(rtc_lock);
void __iomem *mstk48t02_regs = NULL;
#ifdef CONFIG_PCI
unsigned long ds1287_regs = 0UL;
static void __iomem *bq4802_regs;
#endif
static void __iomem *mstk48t08_regs;
static void __iomem *mstk48t59_regs;
static int set_rtc_mmss(unsigned long);
#define TICK_PRIV_BIT (1UL << 63)
#define TICKCMP_IRQ_BIT (1UL << 63)
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
unsigned long pc = instruction_pointer(regs);
if (in_lock_functions(pc))
return regs->u_regs[UREG_RETPC];
return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif
static void tick_disable_protection(void)
{
/* Set things up so user can access tick register for profiling
* purposes. Also workaround BB_ERRATA_1 by doing a dummy
* read back of %tick after writing it.
*/
__asm__ __volatile__(
" ba,pt %%xcc, 1f\n"
" nop\n"
" .align 64\n"
"1: rd %%tick, %%g2\n"
" add %%g2, 6, %%g2\n"
" andn %%g2, %0, %%g2\n"
" wrpr %%g2, 0, %%tick\n"
" rdpr %%tick, %%g0"
: /* no outputs */
: "r" (TICK_PRIV_BIT)
: "g2");
}
static void tick_disable_irq(void)
{
__asm__ __volatile__(
" ba,pt %%xcc, 1f\n"
" nop\n"
" .align 64\n"
"1: wr %0, 0x0, %%tick_cmpr\n"
" rd %%tick_cmpr, %%g0"
: /* no outputs */
: "r" (TICKCMP_IRQ_BIT));
}
static void tick_init_tick(void)
{
tick_disable_protection();
tick_disable_irq();
}
static unsigned long tick_get_tick(void)
{
unsigned long ret;
__asm__ __volatile__("rd %%tick, %0\n\t"
"mov %0, %0"
: "=r" (ret));
return ret & ~TICK_PRIV_BIT;
}
static int tick_add_compare(unsigned long adj)
{
unsigned long orig_tick, new_tick, new_compare;
__asm__ __volatile__("rd %%tick, %0"
: "=r" (orig_tick));
orig_tick &= ~TICKCMP_IRQ_BIT;
/* Workaround for Spitfire Errata (#54 I think??), I discovered
* this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
* number 103640.
*
* On Blackbird writes to %tick_cmpr can fail, the
* workaround seems to be to execute the wr instruction
* at the start of an I-cache line, and perform a dummy
* read back from %tick_cmpr right after writing to it. -DaveM
*/
__asm__ __volatile__("ba,pt %%xcc, 1f\n\t"
" add %1, %2, %0\n\t"
".align 64\n"
"1:\n\t"
"wr %0, 0, %%tick_cmpr\n\t"
"rd %%tick_cmpr, %%g0\n\t"
: "=r" (new_compare)
: "r" (orig_tick), "r" (adj));
__asm__ __volatile__("rd %%tick, %0"
: "=r" (new_tick));
new_tick &= ~TICKCMP_IRQ_BIT;
return ((long)(new_tick - (orig_tick+adj))) > 0L;
}
static unsigned long tick_add_tick(unsigned long adj)
{
unsigned long new_tick;
/* Also need to handle Blackbird bug here too. */
__asm__ __volatile__("rd %%tick, %0\n\t"
"add %0, %1, %0\n\t"
"wrpr %0, 0, %%tick\n\t"
: "=&r" (new_tick)
: "r" (adj));
return new_tick;
}
static struct sparc64_tick_ops tick_operations __read_mostly = {
.name = "tick",
.init_tick = tick_init_tick,
.disable_irq = tick_disable_irq,
.get_tick = tick_get_tick,
.add_tick = tick_add_tick,
.add_compare = tick_add_compare,
.softint_mask = 1UL << 0,
};
struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
static void stick_disable_irq(void)
{
__asm__ __volatile__(
"wr %0, 0x0, %%asr25"
: /* no outputs */
: "r" (TICKCMP_IRQ_BIT));
}
static void stick_init_tick(void)
{
/* Writes to the %tick and %stick register are not
* allowed on sun4v. The Hypervisor controls that
* bit, per-strand.
*/
if (tlb_type != hypervisor) {
tick_disable_protection();
tick_disable_irq();
/* Let the user get at STICK too. */
__asm__ __volatile__(
" rd %%asr24, %%g2\n"
" andn %%g2, %0, %%g2\n"
" wr %%g2, 0, %%asr24"
: /* no outputs */
: "r" (TICK_PRIV_BIT)
: "g1", "g2");
}
stick_disable_irq();
}
static unsigned long stick_get_tick(void)
{
unsigned long ret;
__asm__ __volatile__("rd %%asr24, %0"
: "=r" (ret));
return ret & ~TICK_PRIV_BIT;
}
static unsigned long stick_add_tick(unsigned long adj)
{
unsigned long new_tick;
__asm__ __volatile__("rd %%asr24, %0\n\t"
"add %0, %1, %0\n\t"
"wr %0, 0, %%asr24\n\t"
: "=&r" (new_tick)
: "r" (adj));
return new_tick;
}
static int stick_add_compare(unsigned long adj)
{
unsigned long orig_tick, new_tick;
__asm__ __volatile__("rd %%asr24, %0"
: "=r" (orig_tick));
orig_tick &= ~TICKCMP_IRQ_BIT;
__asm__ __volatile__("wr %0, 0, %%asr25"
: /* no outputs */
: "r" (orig_tick + adj));
__asm__ __volatile__("rd %%asr24, %0"
: "=r" (new_tick));
new_tick &= ~TICKCMP_IRQ_BIT;
return ((long)(new_tick - (orig_tick+adj))) > 0L;
}
static struct sparc64_tick_ops stick_operations __read_mostly = {
.name = "stick",
.init_tick = stick_init_tick,
.disable_irq = stick_disable_irq,
.get_tick = stick_get_tick,
.add_tick = stick_add_tick,
.add_compare = stick_add_compare,
.softint_mask = 1UL << 16,
};
/* On Hummingbird the STICK/STICK_CMPR register is implemented
* in I/O space. There are two 64-bit registers each, the
* first holds the low 32-bits of the value and the second holds
* the high 32-bits.
*
* Since STICK is constantly updating, we have to access it carefully.
*
* The sequence we use to read is:
* 1) read high
* 2) read low
* 3) read high again, if it rolled re-read both low and high again.
*
* Writing STICK safely is also tricky:
* 1) write low to zero
* 2) write high
* 3) write low
*/
#define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL
#define HBIRD_STICK_ADDR 0x1fe0000f070UL
static unsigned long __hbird_read_stick(void)
{
unsigned long ret, tmp1, tmp2, tmp3;
unsigned long addr = HBIRD_STICK_ADDR+8;
__asm__ __volatile__("ldxa [%1] %5, %2\n"
"1:\n\t"
"sub %1, 0x8, %1\n\t"
"ldxa [%1] %5, %3\n\t"
"add %1, 0x8, %1\n\t"
"ldxa [%1] %5, %4\n\t"
"cmp %4, %2\n\t"
"bne,a,pn %%xcc, 1b\n\t"
" mov %4, %2\n\t"
"sllx %4, 32, %4\n\t"
"or %3, %4, %0\n\t"
: "=&r" (ret), "=&r" (addr),
"=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
: "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
return ret;
}
static void __hbird_write_stick(unsigned long val)
{
unsigned long low = (val & 0xffffffffUL);
unsigned long high = (val >> 32UL);
unsigned long addr = HBIRD_STICK_ADDR;
__asm__ __volatile__("stxa %%g0, [%0] %4\n\t"
"add %0, 0x8, %0\n\t"
"stxa %3, [%0] %4\n\t"
"sub %0, 0x8, %0\n\t"
"stxa %2, [%0] %4"
: "=&r" (addr)
: "0" (addr), "r" (low), "r" (high),
"i" (ASI_PHYS_BYPASS_EC_E));
}
static void __hbird_write_compare(unsigned long val)
{
unsigned long low = (val & 0xffffffffUL);
unsigned long high = (val >> 32UL);
unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
__asm__ __volatile__("stxa %3, [%0] %4\n\t"
"sub %0, 0x8, %0\n\t"
"stxa %2, [%0] %4"
: "=&r" (addr)
: "0" (addr), "r" (low), "r" (high),
"i" (ASI_PHYS_BYPASS_EC_E));
}
static void hbtick_disable_irq(void)
{
__hbird_write_compare(TICKCMP_IRQ_BIT);
}
static void hbtick_init_tick(void)
{
tick_disable_protection();
/* XXX This seems to be necessary to 'jumpstart' Hummingbird
* XXX into actually sending STICK interrupts. I think because
* XXX of how we store %tick_cmpr in head.S this somehow resets the
* XXX {TICK + STICK} interrupt mux. -DaveM
*/
__hbird_write_stick(__hbird_read_stick());
hbtick_disable_irq();
}
static unsigned long hbtick_get_tick(void)
{
return __hbird_read_stick() & ~TICK_PRIV_BIT;
}
static unsigned long hbtick_add_tick(unsigned long adj)
{
unsigned long val;
val = __hbird_read_stick() + adj;
__hbird_write_stick(val);
return val;
}
static int hbtick_add_compare(unsigned long adj)
{
unsigned long val = __hbird_read_stick();
unsigned long val2;
val &= ~TICKCMP_IRQ_BIT;
val += adj;
__hbird_write_compare(val);
val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT;
return ((long)(val2 - val)) > 0L;
}
static struct sparc64_tick_ops hbtick_operations __read_mostly = {
.name = "hbtick",
.init_tick = hbtick_init_tick,
.disable_irq = hbtick_disable_irq,
.get_tick = hbtick_get_tick,
.add_tick = hbtick_add_tick,
.add_compare = hbtick_add_compare,
.softint_mask = 1UL << 0,
};
static unsigned long timer_ticks_per_nsec_quotient __read_mostly;
#define TICK_SIZE (tick_nsec / 1000)
#define USEC_AFTER 500000
#define USEC_BEFORE 500000
static void sync_cmos_clock(unsigned long dummy);
static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);
static void sync_cmos_clock(unsigned long dummy)
{
struct timeval now, next;
int fail = 1;
/*
* If we have an externally synchronized Linux clock, then update
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
* called as close as possible to 500 ms before the new second starts.
* This code is run on a timer. If the clock is set, that timer
* may not expire at the correct time. Thus, we adjust...
*/
if (!ntp_synced())
/*
* Not synced, exit, do not restart a timer (if one is
* running, let it run out).
*/
return;
do_gettimeofday(&now);
if (now.tv_usec >= USEC_AFTER - ((unsigned) TICK_SIZE) / 2 &&
now.tv_usec <= USEC_BEFORE + ((unsigned) TICK_SIZE) / 2)
fail = set_rtc_mmss(now.tv_sec);
next.tv_usec = USEC_AFTER - now.tv_usec;
if (next.tv_usec <= 0)
next.tv_usec += USEC_PER_SEC;
if (!fail)
next.tv_sec = 659;
else
next.tv_sec = 0;
if (next.tv_usec >= USEC_PER_SEC) {
next.tv_sec++;
next.tv_usec -= USEC_PER_SEC;
}
mod_timer(&sync_cmos_timer, jiffies + timeval_to_jiffies(&next));
}
void notify_arch_cmos_timer(void)
{
mod_timer(&sync_cmos_timer, jiffies + 1);
}
/* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
static void __init kick_start_clock(void)
{
void __iomem *regs = mstk48t02_regs;
u8 sec, tmp;
int i, count;
prom_printf("CLOCK: Clock was stopped. Kick start ");
spin_lock_irq(&mostek_lock);
/* Turn on the kick start bit to start the oscillator. */
tmp = mostek_read(regs + MOSTEK_CREG);
tmp |= MSTK_CREG_WRITE;
mostek_write(regs + MOSTEK_CREG, tmp);
tmp = mostek_read(regs + MOSTEK_SEC);
tmp &= ~MSTK_STOP;
mostek_write(regs + MOSTEK_SEC, tmp);
tmp = mostek_read(regs + MOSTEK_HOUR);
tmp |= MSTK_KICK_START;
mostek_write(regs + MOSTEK_HOUR, tmp);
tmp = mostek_read(regs + MOSTEK_CREG);
tmp &= ~MSTK_CREG_WRITE;
mostek_write(regs + MOSTEK_CREG, tmp);
spin_unlock_irq(&mostek_lock);
/* Delay to allow the clock oscillator to start. */
sec = MSTK_REG_SEC(regs);
for (i = 0; i < 3; i++) {
while (sec == MSTK_REG_SEC(regs))
for (count = 0; count < 100000; count++)
/* nothing */ ;
prom_printf(".");
sec = MSTK_REG_SEC(regs);
}
prom_printf("\n");
spin_lock_irq(&mostek_lock);
/* Turn off kick start and set a "valid" time and date. */
tmp = mostek_read(regs + MOSTEK_CREG);
tmp |= MSTK_CREG_WRITE;
mostek_write(regs + MOSTEK_CREG, tmp);
tmp = mostek_read(regs + MOSTEK_HOUR);
tmp &= ~MSTK_KICK_START;
mostek_write(regs + MOSTEK_HOUR, tmp);
MSTK_SET_REG_SEC(regs,0);
MSTK_SET_REG_MIN(regs,0);
MSTK_SET_REG_HOUR(regs,0);
MSTK_SET_REG_DOW(regs,5);
MSTK_SET_REG_DOM(regs,1);
MSTK_SET_REG_MONTH(regs,8);
MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO);
tmp = mostek_read(regs + MOSTEK_CREG);
tmp &= ~MSTK_CREG_WRITE;
mostek_write(regs + MOSTEK_CREG, tmp);
spin_unlock_irq(&mostek_lock);
/* Ensure the kick start bit is off. If it isn't, turn it off. */
while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) {
prom_printf("CLOCK: Kick start still on!\n");
spin_lock_irq(&mostek_lock);
tmp = mostek_read(regs + MOSTEK_CREG);
tmp |= MSTK_CREG_WRITE;
mostek_write(regs + MOSTEK_CREG, tmp);
tmp = mostek_read(regs + MOSTEK_HOUR);
tmp &= ~MSTK_KICK_START;
mostek_write(regs + MOSTEK_HOUR, tmp);
tmp = mostek_read(regs + MOSTEK_CREG);
tmp &= ~MSTK_CREG_WRITE;
mostek_write(regs + MOSTEK_CREG, tmp);
spin_unlock_irq(&mostek_lock);
}
prom_printf("CLOCK: Kick start procedure successful.\n");
}
/* Return nonzero if the clock chip battery is low. */
static int __init has_low_battery(void)
{
void __iomem *regs = mstk48t02_regs;
u8 data1, data2;
spin_lock_irq(&mostek_lock);
data1 = mostek_read(regs + MOSTEK_EEPROM); /* Read some data. */
mostek_write(regs + MOSTEK_EEPROM, ~data1); /* Write back the complement. */
data2 = mostek_read(regs + MOSTEK_EEPROM); /* Read back the complement. */
mostek_write(regs + MOSTEK_EEPROM, data1); /* Restore original value. */
spin_unlock_irq(&mostek_lock);
return (data1 == data2); /* Was the write blocked? */
}
/* Probe for the real time clock chip. */
static void __init set_system_time(void)
{
unsigned int year, mon, day, hour, min, sec;
void __iomem *mregs = mstk48t02_regs;
#ifdef CONFIG_PCI
unsigned long dregs = ds1287_regs;
void __iomem *bregs = bq4802_regs;
#else
unsigned long dregs = 0UL;
void __iomem *bregs = 0UL;
#endif
u8 tmp;
if (!mregs && !dregs && !bregs) {
prom_printf("Something wrong, clock regs not mapped yet.\n");
prom_halt();
}
if (mregs) {
spin_lock_irq(&mostek_lock);
/* Traditional Mostek chip. */
tmp = mostek_read(mregs + MOSTEK_CREG);
tmp |= MSTK_CREG_READ;
mostek_write(mregs + MOSTEK_CREG, tmp);
sec = MSTK_REG_SEC(mregs);
min = MSTK_REG_MIN(mregs);
hour = MSTK_REG_HOUR(mregs);
day = MSTK_REG_DOM(mregs);
mon = MSTK_REG_MONTH(mregs);
year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) );
} else if (bregs) {
unsigned char val = readb(bregs + 0x0e);
unsigned int century;
/* BQ4802 RTC chip. */
writeb(val | 0x08, bregs + 0x0e);
sec = readb(bregs + 0x00);
min = readb(bregs + 0x02);
hour = readb(bregs + 0x04);
day = readb(bregs + 0x06);
mon = readb(bregs + 0x09);
year = readb(bregs + 0x0a);
century = readb(bregs + 0x0f);
writeb(val, bregs + 0x0e);
BCD_TO_BIN(sec);
BCD_TO_BIN(min);
BCD_TO_BIN(hour);
BCD_TO_BIN(day);
BCD_TO_BIN(mon);
BCD_TO_BIN(year);
BCD_TO_BIN(century);
year += (century * 100);
} else {
/* Dallas 12887 RTC chip. */
do {
sec = CMOS_READ(RTC_SECONDS);
min = CMOS_READ(RTC_MINUTES);
hour = CMOS_READ(RTC_HOURS);
day = CMOS_READ(RTC_DAY_OF_MONTH);
mon = CMOS_READ(RTC_MONTH);
year = CMOS_READ(RTC_YEAR);
} while (sec != CMOS_READ(RTC_SECONDS));
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
BCD_TO_BIN(sec);
BCD_TO_BIN(min);
BCD_TO_BIN(hour);
BCD_TO_BIN(day);
BCD_TO_BIN(mon);
BCD_TO_BIN(year);
}
if ((year += 1900) < 1970)
year += 100;
}
xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
set_normalized_timespec(&wall_to_monotonic,
-xtime.tv_sec, -xtime.tv_nsec);
if (mregs) {
tmp = mostek_read(mregs + MOSTEK_CREG);
tmp &= ~MSTK_CREG_READ;
mostek_write(mregs + MOSTEK_CREG, tmp);
spin_unlock_irq(&mostek_lock);
}
}
/* davem suggests we keep this within the 4M locked kernel image */
static u32 starfire_get_time(void)
{
static char obp_gettod[32];
static u32 unix_tod;
sprintf(obp_gettod, "h# %08x unix-gettod",
(unsigned int) (long) &unix_tod);
prom_feval(obp_gettod);
return unix_tod;
}
static int starfire_set_time(u32 val)
{
/* Do nothing, time is set using the service processor
* console on this platform.
*/
return 0;
}
static u32 hypervisor_get_time(void)
{
unsigned long ret, time;
int retries = 10000;
retry:
ret = sun4v_tod_get(&time);
if (ret == HV_EOK)
return time;
if (ret == HV_EWOULDBLOCK) {
if (--retries > 0) {
udelay(100);
goto retry;
}
printk(KERN_WARNING "SUN4V: tod_get() timed out.\n");
return 0;
}
printk(KERN_WARNING "SUN4V: tod_get() not supported.\n");
return 0;
}
static int hypervisor_set_time(u32 secs)
{
unsigned long ret;
int retries = 10000;
retry:
ret = sun4v_tod_set(secs);
if (ret == HV_EOK)
return 0;
if (ret == HV_EWOULDBLOCK) {
if (--retries > 0) {
udelay(100);
goto retry;
}
printk(KERN_WARNING "SUN4V: tod_set() timed out.\n");
return -EAGAIN;
}
printk(KERN_WARNING "SUN4V: tod_set() not supported.\n");
return -EOPNOTSUPP;
}
static int __init clock_model_matches(const char *model)
{
if (strcmp(model, "mk48t02") &&
strcmp(model, "mk48t08") &&
strcmp(model, "mk48t59") &&
strcmp(model, "m5819") &&
strcmp(model, "m5819p") &&
strcmp(model, "m5823") &&
strcmp(model, "ds1287") &&
strcmp(model, "bq4802"))
return 0;
return 1;
}
static int __devinit clock_probe(struct of_device *op, const struct of_device_id *match)
{
struct device_node *dp = op->node;
const char *model = of_get_property(dp, "model", NULL);
const char *compat = of_get_property(dp, "compatible", NULL);
unsigned long size, flags;
void __iomem *regs;
if (!model)
model = compat;
if (!model || !clock_model_matches(model))
return -ENODEV;
/* On an Enterprise system there can be multiple mostek clocks.
* We should only match the one that is on the central FHC bus.
*/
if (!strcmp(dp->parent->name, "fhc") &&
strcmp(dp->parent->parent->name, "central") != 0)
return -ENODEV;
size = (op->resource[0].end - op->resource[0].start) + 1;
regs = of_ioremap(&op->resource[0], 0, size, "clock");
if (!regs)
return -ENOMEM;
#ifdef CONFIG_PCI
if (!strcmp(model, "ds1287") ||
!strcmp(model, "m5819") ||
!strcmp(model, "m5819p") ||
!strcmp(model, "m5823")) {
ds1287_regs = (unsigned long) regs;
} else if (!strcmp(model, "bq4802")) {
bq4802_regs = regs;
} else
#endif
if (model[5] == '0' && model[6] == '2') {
mstk48t02_regs = regs;
} else if(model[5] == '0' && model[6] == '8') {
mstk48t08_regs = regs;
mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02;
} else {
mstk48t59_regs = regs;
mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
}
printk(KERN_INFO "%s: Clock regs at %p\n", dp->full_name, regs);
local_irq_save(flags);
if (mstk48t02_regs != NULL) {
/* Report a low battery voltage condition. */
if (has_low_battery())
prom_printf("NVRAM: Low battery voltage!\n");
/* Kick start the clock if it is completely stopped. */
if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP)
kick_start_clock();
}
set_system_time();
local_irq_restore(flags);
return 0;
}
static struct of_device_id clock_match[] = {
{
.name = "eeprom",
},
{
.name = "rtc",
},
{},
};
static struct of_platform_driver clock_driver = {
.name = "clock",
.match_table = clock_match,
.probe = clock_probe,
};
static int __init clock_init(void)
{
if (this_is_starfire) {
xtime.tv_sec = starfire_get_time();
xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
set_normalized_timespec(&wall_to_monotonic,
-xtime.tv_sec, -xtime.tv_nsec);
return 0;
}
if (tlb_type == hypervisor) {
xtime.tv_sec = hypervisor_get_time();
xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
set_normalized_timespec(&wall_to_monotonic,
-xtime.tv_sec, -xtime.tv_nsec);
return 0;
}
return of_register_driver(&clock_driver, &of_bus_type);
}
/* Must be after subsys_initcall() so that busses are probed. Must
* be before device_initcall() because things like the RTC driver
* need to see the clock registers.
*/
fs_initcall(clock_init);
/* This is gets the master TICK_INT timer going. */
static unsigned long sparc64_init_timers(void)
{
struct device_node *dp;
unsigned long clock;
#ifdef CONFIG_SMP
extern void smp_tick_init(void);
#endif
dp = of_find_node_by_path("/");
if (tlb_type == spitfire) {
unsigned long ver, manuf, impl;
__asm__ __volatile__ ("rdpr %%ver, %0"
: "=&r" (ver));
manuf = ((ver >> 48) & 0xffff);
impl = ((ver >> 32) & 0xffff);
if (manuf == 0x17 && impl == 0x13) {
/* Hummingbird, aka Ultra-IIe */
tick_ops = &hbtick_operations;
clock = of_getintprop_default(dp, "stick-frequency", 0);
} else {
tick_ops = &tick_operations;
clock = local_cpu_data().clock_tick;
}
} else {
tick_ops = &stick_operations;
clock = of_getintprop_default(dp, "stick-frequency", 0);
}
#ifdef CONFIG_SMP
smp_tick_init();
#endif
return clock;
}
struct freq_table {
unsigned long clock_tick_ref;
unsigned int ref_freq;
};
static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
unsigned long sparc64_get_clock_tick(unsigned int cpu)
{
struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
if (ft->clock_tick_ref)
return ft->clock_tick_ref;
return cpu_data(cpu).clock_tick;
}
#ifdef CONFIG_CPU_FREQ
static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_freqs *freq = data;
unsigned int cpu = freq->cpu;
struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
if (!ft->ref_freq) {
ft->ref_freq = freq->old;
ft->clock_tick_ref = cpu_data(cpu).clock_tick;
}
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
(val == CPUFREQ_RESUMECHANGE)) {
cpu_data(cpu).clock_tick =
cpufreq_scale(ft->clock_tick_ref,
ft->ref_freq,
freq->new);
}
return 0;
}
static struct notifier_block sparc64_cpufreq_notifier_block = {
.notifier_call = sparc64_cpufreq_notifier
};
#endif /* CONFIG_CPU_FREQ */
static int sparc64_next_event(unsigned long delta,
struct clock_event_device *evt)
{
return tick_ops->add_compare(delta) ? -ETIME : 0;
}
static void sparc64_timer_setup(enum clock_event_mode mode,
struct clock_event_device *evt)
{
switch (mode) {
case CLOCK_EVT_MODE_ONESHOT:
break;
case CLOCK_EVT_MODE_SHUTDOWN:
tick_ops->disable_irq();
break;
case CLOCK_EVT_MODE_PERIODIC:
case CLOCK_EVT_MODE_UNUSED:
WARN_ON(1);
break;
};
}
static struct clock_event_device sparc64_clockevent = {
.features = CLOCK_EVT_FEAT_ONESHOT,
.set_mode = sparc64_timer_setup,
.set_next_event = sparc64_next_event,
.rating = 100,
.shift = 30,
.irq = -1,
};
static DEFINE_PER_CPU(struct clock_event_device, sparc64_events);
void timer_interrupt(int irq, struct pt_regs *regs)
{
struct pt_regs *old_regs = set_irq_regs(regs);
unsigned long tick_mask = tick_ops->softint_mask;
int cpu = smp_processor_id();
struct clock_event_device *evt = &per_cpu(sparc64_events, cpu);
clear_softint(tick_mask);
irq_enter();
kstat_this_cpu.irqs[0]++;
if (unlikely(!evt->event_handler)) {
printk(KERN_WARNING
"Spurious SPARC64 timer interrupt on cpu %d\n", cpu);
} else
evt->event_handler(evt);
irq_exit();
set_irq_regs(old_regs);
}
void __devinit setup_sparc64_timer(void)
{
struct clock_event_device *sevt;
unsigned long pstate;
/* Guarantee that the following sequences execute
* uninterrupted.
*/
__asm__ __volatile__("rdpr %%pstate, %0\n\t"
"wrpr %0, %1, %%pstate"
: "=r" (pstate)
: "i" (PSTATE_IE));
tick_ops->init_tick();
/* Restore PSTATE_IE. */
__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
: /* no outputs */
: "r" (pstate));
sevt = &__get_cpu_var(sparc64_events);
memcpy(sevt, &sparc64_clockevent, sizeof(*sevt));
sevt->cpumask = cpumask_of_cpu(smp_processor_id());
clockevents_register_device(sevt);
}
#define SPARC64_NSEC_PER_CYC_SHIFT 10UL
static struct clocksource clocksource_tick = {
.rating = 100,
.mask = CLOCKSOURCE_MASK(64),
.shift = 16,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static void __init setup_clockevent_multiplier(unsigned long hz)
{
unsigned long mult, shift = 32;
while (1) {
mult = div_sc(hz, NSEC_PER_SEC, shift);
if (mult && (mult >> 32UL) == 0UL)
break;
shift--;
}
sparc64_clockevent.shift = shift;
sparc64_clockevent.mult = mult;
}
void __init time_init(void)
{
unsigned long clock = sparc64_init_timers();
timer_ticks_per_nsec_quotient =
clocksource_hz2mult(clock, SPARC64_NSEC_PER_CYC_SHIFT);
clocksource_tick.name = tick_ops->name;
clocksource_tick.mult =
clocksource_hz2mult(clock,
clocksource_tick.shift);
clocksource_tick.read = tick_ops->get_tick;
printk("clocksource: mult[%x] shift[%d]\n",
clocksource_tick.mult, clocksource_tick.shift);
clocksource_register(&clocksource_tick);
sparc64_clockevent.name = tick_ops->name;
setup_clockevent_multiplier(clock);
sparc64_clockevent.max_delta_ns =
clockevent_delta2ns(0x7fffffffffffffff, &sparc64_clockevent);
sparc64_clockevent.min_delta_ns =
clockevent_delta2ns(0xF, &sparc64_clockevent);
printk("clockevent: mult[%lx] shift[%d]\n",
sparc64_clockevent.mult, sparc64_clockevent.shift);
setup_sparc64_timer();
#ifdef CONFIG_CPU_FREQ
cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
#endif
}
unsigned long long sched_clock(void)
{
unsigned long ticks = tick_ops->get_tick();
return (ticks * timer_ticks_per_nsec_quotient)
>> SPARC64_NSEC_PER_CYC_SHIFT;
}
static int set_rtc_mmss(unsigned long nowtime)
{
int real_seconds, real_minutes, chip_minutes;
void __iomem *mregs = mstk48t02_regs;
#ifdef CONFIG_PCI
unsigned long dregs = ds1287_regs;
void __iomem *bregs = bq4802_regs;
#else
unsigned long dregs = 0UL;
void __iomem *bregs = 0UL;
#endif
unsigned long flags;
u8 tmp;
/*
* Not having a register set can lead to trouble.
* Also starfire doesn't have a tod clock.
*/
if (!mregs && !dregs & !bregs)
return -1;
if (mregs) {
spin_lock_irqsave(&mostek_lock, flags);
/* Read the current RTC minutes. */
tmp = mostek_read(mregs + MOSTEK_CREG);
tmp |= MSTK_CREG_READ;
mostek_write(mregs + MOSTEK_CREG, tmp);
chip_minutes = MSTK_REG_MIN(mregs);
tmp = mostek_read(mregs + MOSTEK_CREG);
tmp &= ~MSTK_CREG_READ;
mostek_write(mregs + MOSTEK_CREG, tmp);
/*
* since we're only adjusting minutes and seconds,
* don't interfere with hour overflow. This avoids
* messing with unknown time zones but requires your
* RTC not to be off by more than 15 minutes
*/
real_seconds = nowtime % 60;
real_minutes = nowtime / 60;
if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
real_minutes += 30; /* correct for half hour time zone */
real_minutes %= 60;
if (abs(real_minutes - chip_minutes) < 30) {
tmp = mostek_read(mregs + MOSTEK_CREG);
tmp |= MSTK_CREG_WRITE;
mostek_write(mregs + MOSTEK_CREG, tmp);
MSTK_SET_REG_SEC(mregs,real_seconds);
MSTK_SET_REG_MIN(mregs,real_minutes);
tmp = mostek_read(mregs + MOSTEK_CREG);
tmp &= ~MSTK_CREG_WRITE;
mostek_write(mregs + MOSTEK_CREG, tmp);
spin_unlock_irqrestore(&mostek_lock, flags);
return 0;
} else {
spin_unlock_irqrestore(&mostek_lock, flags);
return -1;
}
} else if (bregs) {
int retval = 0;
unsigned char val = readb(bregs + 0x0e);
/* BQ4802 RTC chip. */
writeb(val | 0x08, bregs + 0x0e);
chip_minutes = readb(bregs + 0x02);
BCD_TO_BIN(chip_minutes);
real_seconds = nowtime % 60;
real_minutes = nowtime / 60;
if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
real_minutes += 30;
real_minutes %= 60;
if (abs(real_minutes - chip_minutes) < 30) {
BIN_TO_BCD(real_seconds);
BIN_TO_BCD(real_minutes);
writeb(real_seconds, bregs + 0x00);
writeb(real_minutes, bregs + 0x02);
} else {
printk(KERN_WARNING
"set_rtc_mmss: can't update from %d to %d\n",
chip_minutes, real_minutes);
retval = -1;
}
writeb(val, bregs + 0x0e);
return retval;
} else {
int retval = 0;
unsigned char save_control, save_freq_select;
/* Stolen from arch/i386/kernel/time.c, see there for
* credits and descriptive comments.
*/
spin_lock_irqsave(&rtc_lock, flags);
save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
chip_minutes = CMOS_READ(RTC_MINUTES);
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
BCD_TO_BIN(chip_minutes);
real_seconds = nowtime % 60;
real_minutes = nowtime / 60;
if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
real_minutes += 30;
real_minutes %= 60;
if (abs(real_minutes - chip_minutes) < 30) {
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
BIN_TO_BCD(real_seconds);
BIN_TO_BCD(real_minutes);
}
CMOS_WRITE(real_seconds,RTC_SECONDS);
CMOS_WRITE(real_minutes,RTC_MINUTES);
} else {
printk(KERN_WARNING
"set_rtc_mmss: can't update from %d to %d\n",
chip_minutes, real_minutes);
retval = -1;
}
CMOS_WRITE(save_control, RTC_CONTROL);
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
spin_unlock_irqrestore(&rtc_lock, flags);
return retval;
}
}
#define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
static unsigned char mini_rtc_status; /* bitmapped status byte. */
#define FEBRUARY 2
#define STARTOFTIME 1970
#define SECDAY 86400L
#define SECYR (SECDAY * 365)
#define leapyear(year) ((year) % 4 == 0 && \
((year) % 100 != 0 || (year) % 400 == 0))
#define days_in_year(a) (leapyear(a) ? 366 : 365)
#define days_in_month(a) (month_days[(a) - 1])
static int month_days[12] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
/*
* This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
*/
static void GregorianDay(struct rtc_time * tm)
{
int leapsToDate;
int lastYear;
int day;
int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
lastYear = tm->tm_year - 1;
/*
* Number of leap corrections to apply up to end of last year
*/
leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
/*
* This year is a leap year if it is divisible by 4 except when it is
* divisible by 100 unless it is divisible by 400
*
* e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
*/
day = tm->tm_mon > 2 && leapyear(tm->tm_year);
day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
tm->tm_mday;
tm->tm_wday = day % 7;
}
static void to_tm(int tim, struct rtc_time *tm)
{
register int i;
register long hms, day;
day = tim / SECDAY;
hms = tim % SECDAY;
/* Hours, minutes, seconds are easy */
tm->tm_hour = hms / 3600;
tm->tm_min = (hms % 3600) / 60;
tm->tm_sec = (hms % 3600) % 60;
/* Number of years in days */
for (i = STARTOFTIME; day >= days_in_year(i); i++)
day -= days_in_year(i);
tm->tm_year = i;
/* Number of months in days left */
if (leapyear(tm->tm_year))
days_in_month(FEBRUARY) = 29;
for (i = 1; day >= days_in_month(i); i++)
day -= days_in_month(i);
days_in_month(FEBRUARY) = 28;
tm->tm_mon = i;
/* Days are what is left over (+1) from all that. */
tm->tm_mday = day + 1;
/*
* Determine the day of week
*/
GregorianDay(tm);
}
/* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
* aka Unix time. So we have to convert to/from rtc_time.
*/
static void starfire_get_rtc_time(struct rtc_time *time)
{
u32 seconds = starfire_get_time();
to_tm(seconds, time);
time->tm_year -= 1900;
time->tm_mon -= 1;
}
static int starfire_set_rtc_time(struct rtc_time *time)
{
u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
time->tm_mday, time->tm_hour,
time->tm_min, time->tm_sec);
return starfire_set_time(seconds);
}
static void hypervisor_get_rtc_time(struct rtc_time *time)
{
u32 seconds = hypervisor_get_time();
to_tm(seconds, time);
time->tm_year -= 1900;
time->tm_mon -= 1;
}
static int hypervisor_set_rtc_time(struct rtc_time *time)
{
u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
time->tm_mday, time->tm_hour,
time->tm_min, time->tm_sec);
return hypervisor_set_time(seconds);
}
#ifdef CONFIG_PCI
static void bq4802_get_rtc_time(struct rtc_time *time)
{
unsigned char val = readb(bq4802_regs + 0x0e);
unsigned int century;
writeb(val | 0x08, bq4802_regs + 0x0e);
time->tm_sec = readb(bq4802_regs + 0x00);
time->tm_min = readb(bq4802_regs + 0x02);
time->tm_hour = readb(bq4802_regs + 0x04);
time->tm_mday = readb(bq4802_regs + 0x06);
time->tm_mon = readb(bq4802_regs + 0x09);
time->tm_year = readb(bq4802_regs + 0x0a);
time->tm_wday = readb(bq4802_regs + 0x08);
century = readb(bq4802_regs + 0x0f);
writeb(val, bq4802_regs + 0x0e);
BCD_TO_BIN(time->tm_sec);
BCD_TO_BIN(time->tm_min);
BCD_TO_BIN(time->tm_hour);
BCD_TO_BIN(time->tm_mday);
BCD_TO_BIN(time->tm_mon);
BCD_TO_BIN(time->tm_year);
BCD_TO_BIN(time->tm_wday);
BCD_TO_BIN(century);
time->tm_year += (century * 100);
time->tm_year -= 1900;
time->tm_mon--;
}
static int bq4802_set_rtc_time(struct rtc_time *time)
{
unsigned char val = readb(bq4802_regs + 0x0e);
unsigned char sec, min, hrs, day, mon, yrs, century;
unsigned int year;
year = time->tm_year + 1900;
century = year / 100;
yrs = year % 100;
mon = time->tm_mon + 1; /* tm_mon starts at zero */
day = time->tm_mday;
hrs = time->tm_hour;
min = time->tm_min;
sec = time->tm_sec;
BIN_TO_BCD(sec);
BIN_TO_BCD(min);
BIN_TO_BCD(hrs);
BIN_TO_BCD(day);
BIN_TO_BCD(mon);
BIN_TO_BCD(yrs);
BIN_TO_BCD(century);
writeb(val | 0x08, bq4802_regs + 0x0e);
writeb(sec, bq4802_regs + 0x00);
writeb(min, bq4802_regs + 0x02);
writeb(hrs, bq4802_regs + 0x04);
writeb(day, bq4802_regs + 0x06);
writeb(mon, bq4802_regs + 0x09);
writeb(yrs, bq4802_regs + 0x0a);
writeb(century, bq4802_regs + 0x0f);
writeb(val, bq4802_regs + 0x0e);
return 0;
}
#endif /* CONFIG_PCI */
struct mini_rtc_ops {
void (*get_rtc_time)(struct rtc_time *);
int (*set_rtc_time)(struct rtc_time *);
};
static struct mini_rtc_ops starfire_rtc_ops = {
.get_rtc_time = starfire_get_rtc_time,
.set_rtc_time = starfire_set_rtc_time,
};
static struct mini_rtc_ops hypervisor_rtc_ops = {
.get_rtc_time = hypervisor_get_rtc_time,
.set_rtc_time = hypervisor_set_rtc_time,
};
#ifdef CONFIG_PCI
static struct mini_rtc_ops bq4802_rtc_ops = {
.get_rtc_time = bq4802_get_rtc_time,
.set_rtc_time = bq4802_set_rtc_time,
};
#endif /* CONFIG_PCI */
static struct mini_rtc_ops *mini_rtc_ops;
static inline void mini_get_rtc_time(struct rtc_time *time)
{
unsigned long flags;
spin_lock_irqsave(&rtc_lock, flags);
mini_rtc_ops->get_rtc_time(time);
spin_unlock_irqrestore(&rtc_lock, flags);
}
static inline int mini_set_rtc_time(struct rtc_time *time)
{
unsigned long flags;
int err;
spin_lock_irqsave(&rtc_lock, flags);
err = mini_rtc_ops->set_rtc_time(time);
spin_unlock_irqrestore(&rtc_lock, flags);
return err;
}
static int mini_rtc_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct rtc_time wtime;
void __user *argp = (void __user *)arg;
switch (cmd) {
case RTC_PLL_GET:
return -EINVAL;
case RTC_PLL_SET:
return -EINVAL;
case RTC_UIE_OFF: /* disable ints from RTC updates. */
return 0;
case RTC_UIE_ON: /* enable ints for RTC updates. */
return -EINVAL;
case RTC_RD_TIME: /* Read the time/date from RTC */
/* this doesn't get week-day, who cares */
memset(&wtime, 0, sizeof(wtime));
mini_get_rtc_time(&wtime);
return copy_to_user(argp, &wtime, sizeof(wtime)) ? -EFAULT : 0;
case RTC_SET_TIME: /* Set the RTC */
{
int year, days;
if (!capable(CAP_SYS_TIME))
return -EACCES;
if (copy_from_user(&wtime, argp, sizeof(wtime)))
return -EFAULT;
year = wtime.tm_year + 1900;
days = month_days[wtime.tm_mon] +
((wtime.tm_mon == 1) && leapyear(year));
if ((wtime.tm_mon < 0 || wtime.tm_mon > 11) ||
(wtime.tm_mday < 1))
return -EINVAL;
if (wtime.tm_mday < 0 || wtime.tm_mday > days)
return -EINVAL;
if (wtime.tm_hour < 0 || wtime.tm_hour >= 24 ||
wtime.tm_min < 0 || wtime.tm_min >= 60 ||
wtime.tm_sec < 0 || wtime.tm_sec >= 60)
return -EINVAL;
return mini_set_rtc_time(&wtime);
}
}
return -EINVAL;
}
static int mini_rtc_open(struct inode *inode, struct file *file)
{
if (mini_rtc_status & RTC_IS_OPEN)
return -EBUSY;
mini_rtc_status |= RTC_IS_OPEN;
return 0;
}
static int mini_rtc_release(struct inode *inode, struct file *file)
{
mini_rtc_status &= ~RTC_IS_OPEN;
return 0;
}
static const struct file_operations mini_rtc_fops = {
.owner = THIS_MODULE,
.ioctl = mini_rtc_ioctl,
.open = mini_rtc_open,
.release = mini_rtc_release,
};
static struct miscdevice rtc_mini_dev =
{
.minor = RTC_MINOR,
.name = "rtc",
.fops = &mini_rtc_fops,
};
static int __init rtc_mini_init(void)
{
int retval;
if (tlb_type == hypervisor)
mini_rtc_ops = &hypervisor_rtc_ops;
else if (this_is_starfire)
mini_rtc_ops = &starfire_rtc_ops;
#ifdef CONFIG_PCI
else if (bq4802_regs)
mini_rtc_ops = &bq4802_rtc_ops;
#endif /* CONFIG_PCI */
else
return -ENODEV;
printk(KERN_INFO "Mini RTC Driver\n");
retval = misc_register(&rtc_mini_dev);
if (retval < 0)
return retval;
return 0;
}
static void __exit rtc_mini_exit(void)
{
misc_deregister(&rtc_mini_dev);
}
module_init(rtc_mini_init);
module_exit(rtc_mini_exit);