mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 05:32:00 +00:00
431844b65f
As discussed during the distro-centric session within the sched_ext Microconference at LPC 2024, introduce a sequence counter that is incremented every time a BPF scheduler is loaded. This feature can help distributions in diagnosing potential performance regressions by identifying systems where users are running (or have ran) custom BPF schedulers. Example: arighi@virtme-ng~> cat /sys/kernel/sched_ext/enable_seq 0 arighi@virtme-ng~> sudo scx_simple local=1 global=0 ^CEXIT: unregistered from user space arighi@virtme-ng~> cat /sys/kernel/sched_ext/enable_seq 1 In this way user-space tools (such as Ubuntu's apport and similar) are able to gather and include this information in bug reports. Cc: Giovanni Gherdovich <giovanni.gherdovich@suse.com> Cc: Kleber Sacilotto de Souza <kleber.souza@canonical.com> Cc: Marcelo Henrique Cerri <marcelo.cerri@canonical.com> Cc: Phil Auld <pauld@redhat.com> Signed-off-by: Andrea Righi <andrea.righi@linux.dev> Signed-off-by: Tejun Heo <tj@kernel.org>
7192 lines
203 KiB
C
7192 lines
203 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
|
|
*
|
|
* Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
|
|
* Copyright (c) 2022 Tejun Heo <tj@kernel.org>
|
|
* Copyright (c) 2022 David Vernet <dvernet@meta.com>
|
|
*/
|
|
#define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
|
|
|
|
enum scx_consts {
|
|
SCX_DSP_DFL_MAX_BATCH = 32,
|
|
SCX_DSP_MAX_LOOPS = 32,
|
|
SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ,
|
|
|
|
SCX_EXIT_BT_LEN = 64,
|
|
SCX_EXIT_MSG_LEN = 1024,
|
|
SCX_EXIT_DUMP_DFL_LEN = 32768,
|
|
|
|
SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE,
|
|
};
|
|
|
|
enum scx_exit_kind {
|
|
SCX_EXIT_NONE,
|
|
SCX_EXIT_DONE,
|
|
|
|
SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */
|
|
SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */
|
|
SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */
|
|
SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */
|
|
|
|
SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */
|
|
SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */
|
|
SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */
|
|
};
|
|
|
|
/*
|
|
* An exit code can be specified when exiting with scx_bpf_exit() or
|
|
* scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
|
|
* respectively. The codes are 64bit of the format:
|
|
*
|
|
* Bits: [63 .. 48 47 .. 32 31 .. 0]
|
|
* [ SYS ACT ] [ SYS RSN ] [ USR ]
|
|
*
|
|
* SYS ACT: System-defined exit actions
|
|
* SYS RSN: System-defined exit reasons
|
|
* USR : User-defined exit codes and reasons
|
|
*
|
|
* Using the above, users may communicate intention and context by ORing system
|
|
* actions and/or system reasons with a user-defined exit code.
|
|
*/
|
|
enum scx_exit_code {
|
|
/* Reasons */
|
|
SCX_ECODE_RSN_HOTPLUG = 1LLU << 32,
|
|
|
|
/* Actions */
|
|
SCX_ECODE_ACT_RESTART = 1LLU << 48,
|
|
};
|
|
|
|
/*
|
|
* scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
|
|
* being disabled.
|
|
*/
|
|
struct scx_exit_info {
|
|
/* %SCX_EXIT_* - broad category of the exit reason */
|
|
enum scx_exit_kind kind;
|
|
|
|
/* exit code if gracefully exiting */
|
|
s64 exit_code;
|
|
|
|
/* textual representation of the above */
|
|
const char *reason;
|
|
|
|
/* backtrace if exiting due to an error */
|
|
unsigned long *bt;
|
|
u32 bt_len;
|
|
|
|
/* informational message */
|
|
char *msg;
|
|
|
|
/* debug dump */
|
|
char *dump;
|
|
};
|
|
|
|
/* sched_ext_ops.flags */
|
|
enum scx_ops_flags {
|
|
/*
|
|
* Keep built-in idle tracking even if ops.update_idle() is implemented.
|
|
*/
|
|
SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
|
|
|
|
/*
|
|
* By default, if there are no other task to run on the CPU, ext core
|
|
* keeps running the current task even after its slice expires. If this
|
|
* flag is specified, such tasks are passed to ops.enqueue() with
|
|
* %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
|
|
*/
|
|
SCX_OPS_ENQ_LAST = 1LLU << 1,
|
|
|
|
/*
|
|
* An exiting task may schedule after PF_EXITING is set. In such cases,
|
|
* bpf_task_from_pid() may not be able to find the task and if the BPF
|
|
* scheduler depends on pid lookup for dispatching, the task will be
|
|
* lost leading to various issues including RCU grace period stalls.
|
|
*
|
|
* To mask this problem, by default, unhashed tasks are automatically
|
|
* dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
|
|
* depend on pid lookups and wants to handle these tasks directly, the
|
|
* following flag can be used.
|
|
*/
|
|
SCX_OPS_ENQ_EXITING = 1LLU << 2,
|
|
|
|
/*
|
|
* If set, only tasks with policy set to SCHED_EXT are attached to
|
|
* sched_ext. If clear, SCHED_NORMAL tasks are also included.
|
|
*/
|
|
SCX_OPS_SWITCH_PARTIAL = 1LLU << 3,
|
|
|
|
/*
|
|
* CPU cgroup support flags
|
|
*/
|
|
SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */
|
|
|
|
SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE |
|
|
SCX_OPS_ENQ_LAST |
|
|
SCX_OPS_ENQ_EXITING |
|
|
SCX_OPS_SWITCH_PARTIAL |
|
|
SCX_OPS_HAS_CGROUP_WEIGHT,
|
|
};
|
|
|
|
/* argument container for ops.init_task() */
|
|
struct scx_init_task_args {
|
|
/*
|
|
* Set if ops.init_task() is being invoked on the fork path, as opposed
|
|
* to the scheduler transition path.
|
|
*/
|
|
bool fork;
|
|
#ifdef CONFIG_EXT_GROUP_SCHED
|
|
/* the cgroup the task is joining */
|
|
struct cgroup *cgroup;
|
|
#endif
|
|
};
|
|
|
|
/* argument container for ops.exit_task() */
|
|
struct scx_exit_task_args {
|
|
/* Whether the task exited before running on sched_ext. */
|
|
bool cancelled;
|
|
};
|
|
|
|
/* argument container for ops->cgroup_init() */
|
|
struct scx_cgroup_init_args {
|
|
/* the weight of the cgroup [1..10000] */
|
|
u32 weight;
|
|
};
|
|
|
|
enum scx_cpu_preempt_reason {
|
|
/* next task is being scheduled by &sched_class_rt */
|
|
SCX_CPU_PREEMPT_RT,
|
|
/* next task is being scheduled by &sched_class_dl */
|
|
SCX_CPU_PREEMPT_DL,
|
|
/* next task is being scheduled by &sched_class_stop */
|
|
SCX_CPU_PREEMPT_STOP,
|
|
/* unknown reason for SCX being preempted */
|
|
SCX_CPU_PREEMPT_UNKNOWN,
|
|
};
|
|
|
|
/*
|
|
* Argument container for ops->cpu_acquire(). Currently empty, but may be
|
|
* expanded in the future.
|
|
*/
|
|
struct scx_cpu_acquire_args {};
|
|
|
|
/* argument container for ops->cpu_release() */
|
|
struct scx_cpu_release_args {
|
|
/* the reason the CPU was preempted */
|
|
enum scx_cpu_preempt_reason reason;
|
|
|
|
/* the task that's going to be scheduled on the CPU */
|
|
struct task_struct *task;
|
|
};
|
|
|
|
/*
|
|
* Informational context provided to dump operations.
|
|
*/
|
|
struct scx_dump_ctx {
|
|
enum scx_exit_kind kind;
|
|
s64 exit_code;
|
|
const char *reason;
|
|
u64 at_ns;
|
|
u64 at_jiffies;
|
|
};
|
|
|
|
/**
|
|
* struct sched_ext_ops - Operation table for BPF scheduler implementation
|
|
*
|
|
* Userland can implement an arbitrary scheduling policy by implementing and
|
|
* loading operations in this table.
|
|
*/
|
|
struct sched_ext_ops {
|
|
/**
|
|
* select_cpu - Pick the target CPU for a task which is being woken up
|
|
* @p: task being woken up
|
|
* @prev_cpu: the cpu @p was on before sleeping
|
|
* @wake_flags: SCX_WAKE_*
|
|
*
|
|
* Decision made here isn't final. @p may be moved to any CPU while it
|
|
* is getting dispatched for execution later. However, as @p is not on
|
|
* the rq at this point, getting the eventual execution CPU right here
|
|
* saves a small bit of overhead down the line.
|
|
*
|
|
* If an idle CPU is returned, the CPU is kicked and will try to
|
|
* dispatch. While an explicit custom mechanism can be added,
|
|
* select_cpu() serves as the default way to wake up idle CPUs.
|
|
*
|
|
* @p may be dispatched directly by calling scx_bpf_dispatch(). If @p
|
|
* is dispatched, the ops.enqueue() callback will be skipped. Finally,
|
|
* if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the
|
|
* local DSQ of whatever CPU is returned by this callback.
|
|
*/
|
|
s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
|
|
|
|
/**
|
|
* enqueue - Enqueue a task on the BPF scheduler
|
|
* @p: task being enqueued
|
|
* @enq_flags: %SCX_ENQ_*
|
|
*
|
|
* @p is ready to run. Dispatch directly by calling scx_bpf_dispatch()
|
|
* or enqueue on the BPF scheduler. If not directly dispatched, the bpf
|
|
* scheduler owns @p and if it fails to dispatch @p, the task will
|
|
* stall.
|
|
*
|
|
* If @p was dispatched from ops.select_cpu(), this callback is
|
|
* skipped.
|
|
*/
|
|
void (*enqueue)(struct task_struct *p, u64 enq_flags);
|
|
|
|
/**
|
|
* dequeue - Remove a task from the BPF scheduler
|
|
* @p: task being dequeued
|
|
* @deq_flags: %SCX_DEQ_*
|
|
*
|
|
* Remove @p from the BPF scheduler. This is usually called to isolate
|
|
* the task while updating its scheduling properties (e.g. priority).
|
|
*
|
|
* The ext core keeps track of whether the BPF side owns a given task or
|
|
* not and can gracefully ignore spurious dispatches from BPF side,
|
|
* which makes it safe to not implement this method. However, depending
|
|
* on the scheduling logic, this can lead to confusing behaviors - e.g.
|
|
* scheduling position not being updated across a priority change.
|
|
*/
|
|
void (*dequeue)(struct task_struct *p, u64 deq_flags);
|
|
|
|
/**
|
|
* dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs
|
|
* @cpu: CPU to dispatch tasks for
|
|
* @prev: previous task being switched out
|
|
*
|
|
* Called when a CPU's local dsq is empty. The operation should dispatch
|
|
* one or more tasks from the BPF scheduler into the DSQs using
|
|
* scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using
|
|
* scx_bpf_consume().
|
|
*
|
|
* The maximum number of times scx_bpf_dispatch() can be called without
|
|
* an intervening scx_bpf_consume() is specified by
|
|
* ops.dispatch_max_batch. See the comments on top of the two functions
|
|
* for more details.
|
|
*
|
|
* When not %NULL, @prev is an SCX task with its slice depleted. If
|
|
* @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
|
|
* @prev->scx.flags, it is not enqueued yet and will be enqueued after
|
|
* ops.dispatch() returns. To keep executing @prev, return without
|
|
* dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST.
|
|
*/
|
|
void (*dispatch)(s32 cpu, struct task_struct *prev);
|
|
|
|
/**
|
|
* tick - Periodic tick
|
|
* @p: task running currently
|
|
*
|
|
* This operation is called every 1/HZ seconds on CPUs which are
|
|
* executing an SCX task. Setting @p->scx.slice to 0 will trigger an
|
|
* immediate dispatch cycle on the CPU.
|
|
*/
|
|
void (*tick)(struct task_struct *p);
|
|
|
|
/**
|
|
* runnable - A task is becoming runnable on its associated CPU
|
|
* @p: task becoming runnable
|
|
* @enq_flags: %SCX_ENQ_*
|
|
*
|
|
* This and the following three functions can be used to track a task's
|
|
* execution state transitions. A task becomes ->runnable() on a CPU,
|
|
* and then goes through one or more ->running() and ->stopping() pairs
|
|
* as it runs on the CPU, and eventually becomes ->quiescent() when it's
|
|
* done running on the CPU.
|
|
*
|
|
* @p is becoming runnable on the CPU because it's
|
|
*
|
|
* - waking up (%SCX_ENQ_WAKEUP)
|
|
* - being moved from another CPU
|
|
* - being restored after temporarily taken off the queue for an
|
|
* attribute change.
|
|
*
|
|
* This and ->enqueue() are related but not coupled. This operation
|
|
* notifies @p's state transition and may not be followed by ->enqueue()
|
|
* e.g. when @p is being dispatched to a remote CPU, or when @p is
|
|
* being enqueued on a CPU experiencing a hotplug event. Likewise, a
|
|
* task may be ->enqueue()'d without being preceded by this operation
|
|
* e.g. after exhausting its slice.
|
|
*/
|
|
void (*runnable)(struct task_struct *p, u64 enq_flags);
|
|
|
|
/**
|
|
* running - A task is starting to run on its associated CPU
|
|
* @p: task starting to run
|
|
*
|
|
* See ->runnable() for explanation on the task state notifiers.
|
|
*/
|
|
void (*running)(struct task_struct *p);
|
|
|
|
/**
|
|
* stopping - A task is stopping execution
|
|
* @p: task stopping to run
|
|
* @runnable: is task @p still runnable?
|
|
*
|
|
* See ->runnable() for explanation on the task state notifiers. If
|
|
* !@runnable, ->quiescent() will be invoked after this operation
|
|
* returns.
|
|
*/
|
|
void (*stopping)(struct task_struct *p, bool runnable);
|
|
|
|
/**
|
|
* quiescent - A task is becoming not runnable on its associated CPU
|
|
* @p: task becoming not runnable
|
|
* @deq_flags: %SCX_DEQ_*
|
|
*
|
|
* See ->runnable() for explanation on the task state notifiers.
|
|
*
|
|
* @p is becoming quiescent on the CPU because it's
|
|
*
|
|
* - sleeping (%SCX_DEQ_SLEEP)
|
|
* - being moved to another CPU
|
|
* - being temporarily taken off the queue for an attribute change
|
|
* (%SCX_DEQ_SAVE)
|
|
*
|
|
* This and ->dequeue() are related but not coupled. This operation
|
|
* notifies @p's state transition and may not be preceded by ->dequeue()
|
|
* e.g. when @p is being dispatched to a remote CPU.
|
|
*/
|
|
void (*quiescent)(struct task_struct *p, u64 deq_flags);
|
|
|
|
/**
|
|
* yield - Yield CPU
|
|
* @from: yielding task
|
|
* @to: optional yield target task
|
|
*
|
|
* If @to is NULL, @from is yielding the CPU to other runnable tasks.
|
|
* The BPF scheduler should ensure that other available tasks are
|
|
* dispatched before the yielding task. Return value is ignored in this
|
|
* case.
|
|
*
|
|
* If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
|
|
* scheduler can implement the request, return %true; otherwise, %false.
|
|
*/
|
|
bool (*yield)(struct task_struct *from, struct task_struct *to);
|
|
|
|
/**
|
|
* core_sched_before - Task ordering for core-sched
|
|
* @a: task A
|
|
* @b: task B
|
|
*
|
|
* Used by core-sched to determine the ordering between two tasks. See
|
|
* Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
|
|
* core-sched.
|
|
*
|
|
* Both @a and @b are runnable and may or may not currently be queued on
|
|
* the BPF scheduler. Should return %true if @a should run before @b.
|
|
* %false if there's no required ordering or @b should run before @a.
|
|
*
|
|
* If not specified, the default is ordering them according to when they
|
|
* became runnable.
|
|
*/
|
|
bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
|
|
|
|
/**
|
|
* set_weight - Set task weight
|
|
* @p: task to set weight for
|
|
* @weight: new weight [1..10000]
|
|
*
|
|
* Update @p's weight to @weight.
|
|
*/
|
|
void (*set_weight)(struct task_struct *p, u32 weight);
|
|
|
|
/**
|
|
* set_cpumask - Set CPU affinity
|
|
* @p: task to set CPU affinity for
|
|
* @cpumask: cpumask of cpus that @p can run on
|
|
*
|
|
* Update @p's CPU affinity to @cpumask.
|
|
*/
|
|
void (*set_cpumask)(struct task_struct *p,
|
|
const struct cpumask *cpumask);
|
|
|
|
/**
|
|
* update_idle - Update the idle state of a CPU
|
|
* @cpu: CPU to udpate the idle state for
|
|
* @idle: whether entering or exiting the idle state
|
|
*
|
|
* This operation is called when @rq's CPU goes or leaves the idle
|
|
* state. By default, implementing this operation disables the built-in
|
|
* idle CPU tracking and the following helpers become unavailable:
|
|
*
|
|
* - scx_bpf_select_cpu_dfl()
|
|
* - scx_bpf_test_and_clear_cpu_idle()
|
|
* - scx_bpf_pick_idle_cpu()
|
|
*
|
|
* The user also must implement ops.select_cpu() as the default
|
|
* implementation relies on scx_bpf_select_cpu_dfl().
|
|
*
|
|
* Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
|
|
* tracking.
|
|
*/
|
|
void (*update_idle)(s32 cpu, bool idle);
|
|
|
|
/**
|
|
* cpu_acquire - A CPU is becoming available to the BPF scheduler
|
|
* @cpu: The CPU being acquired by the BPF scheduler.
|
|
* @args: Acquire arguments, see the struct definition.
|
|
*
|
|
* A CPU that was previously released from the BPF scheduler is now once
|
|
* again under its control.
|
|
*/
|
|
void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
|
|
|
|
/**
|
|
* cpu_release - A CPU is taken away from the BPF scheduler
|
|
* @cpu: The CPU being released by the BPF scheduler.
|
|
* @args: Release arguments, see the struct definition.
|
|
*
|
|
* The specified CPU is no longer under the control of the BPF
|
|
* scheduler. This could be because it was preempted by a higher
|
|
* priority sched_class, though there may be other reasons as well. The
|
|
* caller should consult @args->reason to determine the cause.
|
|
*/
|
|
void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
|
|
|
|
/**
|
|
* init_task - Initialize a task to run in a BPF scheduler
|
|
* @p: task to initialize for BPF scheduling
|
|
* @args: init arguments, see the struct definition
|
|
*
|
|
* Either we're loading a BPF scheduler or a new task is being forked.
|
|
* Initialize @p for BPF scheduling. This operation may block and can
|
|
* be used for allocations, and is called exactly once for a task.
|
|
*
|
|
* Return 0 for success, -errno for failure. An error return while
|
|
* loading will abort loading of the BPF scheduler. During a fork, it
|
|
* will abort that specific fork.
|
|
*/
|
|
s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
|
|
|
|
/**
|
|
* exit_task - Exit a previously-running task from the system
|
|
* @p: task to exit
|
|
*
|
|
* @p is exiting or the BPF scheduler is being unloaded. Perform any
|
|
* necessary cleanup for @p.
|
|
*/
|
|
void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
|
|
|
|
/**
|
|
* enable - Enable BPF scheduling for a task
|
|
* @p: task to enable BPF scheduling for
|
|
*
|
|
* Enable @p for BPF scheduling. enable() is called on @p any time it
|
|
* enters SCX, and is always paired with a matching disable().
|
|
*/
|
|
void (*enable)(struct task_struct *p);
|
|
|
|
/**
|
|
* disable - Disable BPF scheduling for a task
|
|
* @p: task to disable BPF scheduling for
|
|
*
|
|
* @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
|
|
* Disable BPF scheduling for @p. A disable() call is always matched
|
|
* with a prior enable() call.
|
|
*/
|
|
void (*disable)(struct task_struct *p);
|
|
|
|
/**
|
|
* dump - Dump BPF scheduler state on error
|
|
* @ctx: debug dump context
|
|
*
|
|
* Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
|
|
*/
|
|
void (*dump)(struct scx_dump_ctx *ctx);
|
|
|
|
/**
|
|
* dump_cpu - Dump BPF scheduler state for a CPU on error
|
|
* @ctx: debug dump context
|
|
* @cpu: CPU to generate debug dump for
|
|
* @idle: @cpu is currently idle without any runnable tasks
|
|
*
|
|
* Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
|
|
* @cpu. If @idle is %true and this operation doesn't produce any
|
|
* output, @cpu is skipped for dump.
|
|
*/
|
|
void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
|
|
|
|
/**
|
|
* dump_task - Dump BPF scheduler state for a runnable task on error
|
|
* @ctx: debug dump context
|
|
* @p: runnable task to generate debug dump for
|
|
*
|
|
* Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
|
|
* @p.
|
|
*/
|
|
void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
|
|
|
|
#ifdef CONFIG_EXT_GROUP_SCHED
|
|
/**
|
|
* cgroup_init - Initialize a cgroup
|
|
* @cgrp: cgroup being initialized
|
|
* @args: init arguments, see the struct definition
|
|
*
|
|
* Either the BPF scheduler is being loaded or @cgrp created, initialize
|
|
* @cgrp for sched_ext. This operation may block.
|
|
*
|
|
* Return 0 for success, -errno for failure. An error return while
|
|
* loading will abort loading of the BPF scheduler. During cgroup
|
|
* creation, it will abort the specific cgroup creation.
|
|
*/
|
|
s32 (*cgroup_init)(struct cgroup *cgrp,
|
|
struct scx_cgroup_init_args *args);
|
|
|
|
/**
|
|
* cgroup_exit - Exit a cgroup
|
|
* @cgrp: cgroup being exited
|
|
*
|
|
* Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
|
|
* @cgrp for sched_ext. This operation my block.
|
|
*/
|
|
void (*cgroup_exit)(struct cgroup *cgrp);
|
|
|
|
/**
|
|
* cgroup_prep_move - Prepare a task to be moved to a different cgroup
|
|
* @p: task being moved
|
|
* @from: cgroup @p is being moved from
|
|
* @to: cgroup @p is being moved to
|
|
*
|
|
* Prepare @p for move from cgroup @from to @to. This operation may
|
|
* block and can be used for allocations.
|
|
*
|
|
* Return 0 for success, -errno for failure. An error return aborts the
|
|
* migration.
|
|
*/
|
|
s32 (*cgroup_prep_move)(struct task_struct *p,
|
|
struct cgroup *from, struct cgroup *to);
|
|
|
|
/**
|
|
* cgroup_move - Commit cgroup move
|
|
* @p: task being moved
|
|
* @from: cgroup @p is being moved from
|
|
* @to: cgroup @p is being moved to
|
|
*
|
|
* Commit the move. @p is dequeued during this operation.
|
|
*/
|
|
void (*cgroup_move)(struct task_struct *p,
|
|
struct cgroup *from, struct cgroup *to);
|
|
|
|
/**
|
|
* cgroup_cancel_move - Cancel cgroup move
|
|
* @p: task whose cgroup move is being canceled
|
|
* @from: cgroup @p was being moved from
|
|
* @to: cgroup @p was being moved to
|
|
*
|
|
* @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
|
|
* Undo the preparation.
|
|
*/
|
|
void (*cgroup_cancel_move)(struct task_struct *p,
|
|
struct cgroup *from, struct cgroup *to);
|
|
|
|
/**
|
|
* cgroup_set_weight - A cgroup's weight is being changed
|
|
* @cgrp: cgroup whose weight is being updated
|
|
* @weight: new weight [1..10000]
|
|
*
|
|
* Update @tg's weight to @weight.
|
|
*/
|
|
void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
|
|
#endif /* CONFIG_CGROUPS */
|
|
|
|
/*
|
|
* All online ops must come before ops.cpu_online().
|
|
*/
|
|
|
|
/**
|
|
* cpu_online - A CPU became online
|
|
* @cpu: CPU which just came up
|
|
*
|
|
* @cpu just came online. @cpu will not call ops.enqueue() or
|
|
* ops.dispatch(), nor run tasks associated with other CPUs beforehand.
|
|
*/
|
|
void (*cpu_online)(s32 cpu);
|
|
|
|
/**
|
|
* cpu_offline - A CPU is going offline
|
|
* @cpu: CPU which is going offline
|
|
*
|
|
* @cpu is going offline. @cpu will not call ops.enqueue() or
|
|
* ops.dispatch(), nor run tasks associated with other CPUs afterwards.
|
|
*/
|
|
void (*cpu_offline)(s32 cpu);
|
|
|
|
/*
|
|
* All CPU hotplug ops must come before ops.init().
|
|
*/
|
|
|
|
/**
|
|
* init - Initialize the BPF scheduler
|
|
*/
|
|
s32 (*init)(void);
|
|
|
|
/**
|
|
* exit - Clean up after the BPF scheduler
|
|
* @info: Exit info
|
|
*/
|
|
void (*exit)(struct scx_exit_info *info);
|
|
|
|
/**
|
|
* dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
|
|
*/
|
|
u32 dispatch_max_batch;
|
|
|
|
/**
|
|
* flags - %SCX_OPS_* flags
|
|
*/
|
|
u64 flags;
|
|
|
|
/**
|
|
* timeout_ms - The maximum amount of time, in milliseconds, that a
|
|
* runnable task should be able to wait before being scheduled. The
|
|
* maximum timeout may not exceed the default timeout of 30 seconds.
|
|
*
|
|
* Defaults to the maximum allowed timeout value of 30 seconds.
|
|
*/
|
|
u32 timeout_ms;
|
|
|
|
/**
|
|
* exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
|
|
* value of 32768 is used.
|
|
*/
|
|
u32 exit_dump_len;
|
|
|
|
/**
|
|
* hotplug_seq - A sequence number that may be set by the scheduler to
|
|
* detect when a hotplug event has occurred during the loading process.
|
|
* If 0, no detection occurs. Otherwise, the scheduler will fail to
|
|
* load if the sequence number does not match @scx_hotplug_seq on the
|
|
* enable path.
|
|
*/
|
|
u64 hotplug_seq;
|
|
|
|
/**
|
|
* name - BPF scheduler's name
|
|
*
|
|
* Must be a non-zero valid BPF object name including only isalnum(),
|
|
* '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
|
|
* BPF scheduler is enabled.
|
|
*/
|
|
char name[SCX_OPS_NAME_LEN];
|
|
};
|
|
|
|
enum scx_opi {
|
|
SCX_OPI_BEGIN = 0,
|
|
SCX_OPI_NORMAL_BEGIN = 0,
|
|
SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online),
|
|
SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online),
|
|
SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init),
|
|
SCX_OPI_END = SCX_OP_IDX(init),
|
|
};
|
|
|
|
enum scx_wake_flags {
|
|
/* expose select WF_* flags as enums */
|
|
SCX_WAKE_FORK = WF_FORK,
|
|
SCX_WAKE_TTWU = WF_TTWU,
|
|
SCX_WAKE_SYNC = WF_SYNC,
|
|
};
|
|
|
|
enum scx_enq_flags {
|
|
/* expose select ENQUEUE_* flags as enums */
|
|
SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP,
|
|
SCX_ENQ_HEAD = ENQUEUE_HEAD,
|
|
|
|
/* high 32bits are SCX specific */
|
|
|
|
/*
|
|
* Set the following to trigger preemption when calling
|
|
* scx_bpf_dispatch() with a local dsq as the target. The slice of the
|
|
* current task is cleared to zero and the CPU is kicked into the
|
|
* scheduling path. Implies %SCX_ENQ_HEAD.
|
|
*/
|
|
SCX_ENQ_PREEMPT = 1LLU << 32,
|
|
|
|
/*
|
|
* The task being enqueued was previously enqueued on the current CPU's
|
|
* %SCX_DSQ_LOCAL, but was removed from it in a call to the
|
|
* bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
|
|
* invoked in a ->cpu_release() callback, and the task is again
|
|
* dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
|
|
* task will not be scheduled on the CPU until at least the next invocation
|
|
* of the ->cpu_acquire() callback.
|
|
*/
|
|
SCX_ENQ_REENQ = 1LLU << 40,
|
|
|
|
/*
|
|
* The task being enqueued is the only task available for the cpu. By
|
|
* default, ext core keeps executing such tasks but when
|
|
* %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
|
|
* %SCX_ENQ_LAST flag set.
|
|
*
|
|
* The BPF scheduler is responsible for triggering a follow-up
|
|
* scheduling event. Otherwise, Execution may stall.
|
|
*/
|
|
SCX_ENQ_LAST = 1LLU << 41,
|
|
|
|
/* high 8 bits are internal */
|
|
__SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56,
|
|
|
|
SCX_ENQ_CLEAR_OPSS = 1LLU << 56,
|
|
SCX_ENQ_DSQ_PRIQ = 1LLU << 57,
|
|
};
|
|
|
|
enum scx_deq_flags {
|
|
/* expose select DEQUEUE_* flags as enums */
|
|
SCX_DEQ_SLEEP = DEQUEUE_SLEEP,
|
|
|
|
/* high 32bits are SCX specific */
|
|
|
|
/*
|
|
* The generic core-sched layer decided to execute the task even though
|
|
* it hasn't been dispatched yet. Dequeue from the BPF side.
|
|
*/
|
|
SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32,
|
|
};
|
|
|
|
enum scx_pick_idle_cpu_flags {
|
|
SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */
|
|
};
|
|
|
|
enum scx_kick_flags {
|
|
/*
|
|
* Kick the target CPU if idle. Guarantees that the target CPU goes
|
|
* through at least one full scheduling cycle before going idle. If the
|
|
* target CPU can be determined to be currently not idle and going to go
|
|
* through a scheduling cycle before going idle, noop.
|
|
*/
|
|
SCX_KICK_IDLE = 1LLU << 0,
|
|
|
|
/*
|
|
* Preempt the current task and execute the dispatch path. If the
|
|
* current task of the target CPU is an SCX task, its ->scx.slice is
|
|
* cleared to zero before the scheduling path is invoked so that the
|
|
* task expires and the dispatch path is invoked.
|
|
*/
|
|
SCX_KICK_PREEMPT = 1LLU << 1,
|
|
|
|
/*
|
|
* Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
|
|
* return after the target CPU finishes picking the next task.
|
|
*/
|
|
SCX_KICK_WAIT = 1LLU << 2,
|
|
};
|
|
|
|
enum scx_tg_flags {
|
|
SCX_TG_ONLINE = 1U << 0,
|
|
SCX_TG_INITED = 1U << 1,
|
|
};
|
|
|
|
enum scx_ops_enable_state {
|
|
SCX_OPS_PREPPING,
|
|
SCX_OPS_ENABLING,
|
|
SCX_OPS_ENABLED,
|
|
SCX_OPS_DISABLING,
|
|
SCX_OPS_DISABLED,
|
|
};
|
|
|
|
static const char *scx_ops_enable_state_str[] = {
|
|
[SCX_OPS_PREPPING] = "prepping",
|
|
[SCX_OPS_ENABLING] = "enabling",
|
|
[SCX_OPS_ENABLED] = "enabled",
|
|
[SCX_OPS_DISABLING] = "disabling",
|
|
[SCX_OPS_DISABLED] = "disabled",
|
|
};
|
|
|
|
/*
|
|
* sched_ext_entity->ops_state
|
|
*
|
|
* Used to track the task ownership between the SCX core and the BPF scheduler.
|
|
* State transitions look as follows:
|
|
*
|
|
* NONE -> QUEUEING -> QUEUED -> DISPATCHING
|
|
* ^ | |
|
|
* | v v
|
|
* \-------------------------------/
|
|
*
|
|
* QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
|
|
* sites for explanations on the conditions being waited upon and why they are
|
|
* safe. Transitions out of them into NONE or QUEUED must store_release and the
|
|
* waiters should load_acquire.
|
|
*
|
|
* Tracking scx_ops_state enables sched_ext core to reliably determine whether
|
|
* any given task can be dispatched by the BPF scheduler at all times and thus
|
|
* relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
|
|
* to try to dispatch any task anytime regardless of its state as the SCX core
|
|
* can safely reject invalid dispatches.
|
|
*/
|
|
enum scx_ops_state {
|
|
SCX_OPSS_NONE, /* owned by the SCX core */
|
|
SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */
|
|
SCX_OPSS_QUEUED, /* owned by the BPF scheduler */
|
|
SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */
|
|
|
|
/*
|
|
* QSEQ brands each QUEUED instance so that, when dispatch races
|
|
* dequeue/requeue, the dispatcher can tell whether it still has a claim
|
|
* on the task being dispatched.
|
|
*
|
|
* As some 32bit archs can't do 64bit store_release/load_acquire,
|
|
* p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
|
|
* 32bit machines. The dispatch race window QSEQ protects is very narrow
|
|
* and runs with IRQ disabled. 30 bits should be sufficient.
|
|
*/
|
|
SCX_OPSS_QSEQ_SHIFT = 2,
|
|
};
|
|
|
|
/* Use macros to ensure that the type is unsigned long for the masks */
|
|
#define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
|
|
#define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK)
|
|
|
|
/*
|
|
* During exit, a task may schedule after losing its PIDs. When disabling the
|
|
* BPF scheduler, we need to be able to iterate tasks in every state to
|
|
* guarantee system safety. Maintain a dedicated task list which contains every
|
|
* task between its fork and eventual free.
|
|
*/
|
|
static DEFINE_SPINLOCK(scx_tasks_lock);
|
|
static LIST_HEAD(scx_tasks);
|
|
|
|
/* ops enable/disable */
|
|
static struct kthread_worker *scx_ops_helper;
|
|
static DEFINE_MUTEX(scx_ops_enable_mutex);
|
|
DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
|
|
DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
|
|
static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
|
|
static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0);
|
|
static bool scx_switching_all;
|
|
DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
|
|
|
|
static struct sched_ext_ops scx_ops;
|
|
static bool scx_warned_zero_slice;
|
|
|
|
static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
|
|
static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
|
|
static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
|
|
static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
|
|
|
|
static struct static_key_false scx_has_op[SCX_OPI_END] =
|
|
{ [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
|
|
|
|
static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
|
|
static struct scx_exit_info *scx_exit_info;
|
|
|
|
static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
|
|
static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
|
|
|
|
/*
|
|
* A monotically increasing sequence number that is incremented every time a
|
|
* scheduler is enabled. This can be used by to check if any custom sched_ext
|
|
* scheduler has ever been used in the system.
|
|
*/
|
|
static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
|
|
|
|
/*
|
|
* The maximum amount of time in jiffies that a task may be runnable without
|
|
* being scheduled on a CPU. If this timeout is exceeded, it will trigger
|
|
* scx_ops_error().
|
|
*/
|
|
static unsigned long scx_watchdog_timeout;
|
|
|
|
/*
|
|
* The last time the delayed work was run. This delayed work relies on
|
|
* ksoftirqd being able to run to service timer interrupts, so it's possible
|
|
* that this work itself could get wedged. To account for this, we check that
|
|
* it's not stalled in the timer tick, and trigger an error if it is.
|
|
*/
|
|
static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
|
|
|
|
static struct delayed_work scx_watchdog_work;
|
|
|
|
/* idle tracking */
|
|
#ifdef CONFIG_SMP
|
|
#ifdef CONFIG_CPUMASK_OFFSTACK
|
|
#define CL_ALIGNED_IF_ONSTACK
|
|
#else
|
|
#define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
|
|
#endif
|
|
|
|
static struct {
|
|
cpumask_var_t cpu;
|
|
cpumask_var_t smt;
|
|
} idle_masks CL_ALIGNED_IF_ONSTACK;
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/* for %SCX_KICK_WAIT */
|
|
static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
|
|
|
|
/*
|
|
* Direct dispatch marker.
|
|
*
|
|
* Non-NULL values are used for direct dispatch from enqueue path. A valid
|
|
* pointer points to the task currently being enqueued. An ERR_PTR value is used
|
|
* to indicate that direct dispatch has already happened.
|
|
*/
|
|
static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
|
|
|
|
/* dispatch queues */
|
|
static struct scx_dispatch_q __cacheline_aligned_in_smp scx_dsq_global;
|
|
|
|
static const struct rhashtable_params dsq_hash_params = {
|
|
.key_len = 8,
|
|
.key_offset = offsetof(struct scx_dispatch_q, id),
|
|
.head_offset = offsetof(struct scx_dispatch_q, hash_node),
|
|
};
|
|
|
|
static struct rhashtable dsq_hash;
|
|
static LLIST_HEAD(dsqs_to_free);
|
|
|
|
/* dispatch buf */
|
|
struct scx_dsp_buf_ent {
|
|
struct task_struct *task;
|
|
unsigned long qseq;
|
|
u64 dsq_id;
|
|
u64 enq_flags;
|
|
};
|
|
|
|
static u32 scx_dsp_max_batch;
|
|
|
|
struct scx_dsp_ctx {
|
|
struct rq *rq;
|
|
u32 cursor;
|
|
u32 nr_tasks;
|
|
struct scx_dsp_buf_ent buf[];
|
|
};
|
|
|
|
static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
|
|
|
|
/* string formatting from BPF */
|
|
struct scx_bstr_buf {
|
|
u64 data[MAX_BPRINTF_VARARGS];
|
|
char line[SCX_EXIT_MSG_LEN];
|
|
};
|
|
|
|
static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
|
|
static struct scx_bstr_buf scx_exit_bstr_buf;
|
|
|
|
/* ops debug dump */
|
|
struct scx_dump_data {
|
|
s32 cpu;
|
|
bool first;
|
|
s32 cursor;
|
|
struct seq_buf *s;
|
|
const char *prefix;
|
|
struct scx_bstr_buf buf;
|
|
};
|
|
|
|
static struct scx_dump_data scx_dump_data = {
|
|
.cpu = -1,
|
|
};
|
|
|
|
/* /sys/kernel/sched_ext interface */
|
|
static struct kset *scx_kset;
|
|
static struct kobject *scx_root_kobj;
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/sched_ext.h>
|
|
|
|
static void process_ddsp_deferred_locals(struct rq *rq);
|
|
static void scx_bpf_kick_cpu(s32 cpu, u64 flags);
|
|
static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
|
|
s64 exit_code,
|
|
const char *fmt, ...);
|
|
|
|
#define scx_ops_error_kind(err, fmt, args...) \
|
|
scx_ops_exit_kind((err), 0, fmt, ##args)
|
|
|
|
#define scx_ops_exit(code, fmt, args...) \
|
|
scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
|
|
|
|
#define scx_ops_error(fmt, args...) \
|
|
scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
|
|
|
|
#define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
|
|
|
|
static long jiffies_delta_msecs(unsigned long at, unsigned long now)
|
|
{
|
|
if (time_after(at, now))
|
|
return jiffies_to_msecs(at - now);
|
|
else
|
|
return -(long)jiffies_to_msecs(now - at);
|
|
}
|
|
|
|
/* if the highest set bit is N, return a mask with bits [N+1, 31] set */
|
|
static u32 higher_bits(u32 flags)
|
|
{
|
|
return ~((1 << fls(flags)) - 1);
|
|
}
|
|
|
|
/* return the mask with only the highest bit set */
|
|
static u32 highest_bit(u32 flags)
|
|
{
|
|
int bit = fls(flags);
|
|
return ((u64)1 << bit) >> 1;
|
|
}
|
|
|
|
static bool u32_before(u32 a, u32 b)
|
|
{
|
|
return (s32)(a - b) < 0;
|
|
}
|
|
|
|
/*
|
|
* scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
|
|
* ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
|
|
* the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
|
|
* whether it's running from an allowed context.
|
|
*
|
|
* @mask is constant, always inline to cull the mask calculations.
|
|
*/
|
|
static __always_inline void scx_kf_allow(u32 mask)
|
|
{
|
|
/* nesting is allowed only in increasing scx_kf_mask order */
|
|
WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
|
|
"invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
|
|
current->scx.kf_mask, mask);
|
|
current->scx.kf_mask |= mask;
|
|
barrier();
|
|
}
|
|
|
|
static void scx_kf_disallow(u32 mask)
|
|
{
|
|
barrier();
|
|
current->scx.kf_mask &= ~mask;
|
|
}
|
|
|
|
#define SCX_CALL_OP(mask, op, args...) \
|
|
do { \
|
|
if (mask) { \
|
|
scx_kf_allow(mask); \
|
|
scx_ops.op(args); \
|
|
scx_kf_disallow(mask); \
|
|
} else { \
|
|
scx_ops.op(args); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define SCX_CALL_OP_RET(mask, op, args...) \
|
|
({ \
|
|
__typeof__(scx_ops.op(args)) __ret; \
|
|
if (mask) { \
|
|
scx_kf_allow(mask); \
|
|
__ret = scx_ops.op(args); \
|
|
scx_kf_disallow(mask); \
|
|
} else { \
|
|
__ret = scx_ops.op(args); \
|
|
} \
|
|
__ret; \
|
|
})
|
|
|
|
/*
|
|
* Some kfuncs are allowed only on the tasks that are subjects of the
|
|
* in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
|
|
* restrictions, the following SCX_CALL_OP_*() variants should be used when
|
|
* invoking scx_ops operations that take task arguments. These can only be used
|
|
* for non-nesting operations due to the way the tasks are tracked.
|
|
*
|
|
* kfuncs which can only operate on such tasks can in turn use
|
|
* scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
|
|
* the specific task.
|
|
*/
|
|
#define SCX_CALL_OP_TASK(mask, op, task, args...) \
|
|
do { \
|
|
BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
|
|
current->scx.kf_tasks[0] = task; \
|
|
SCX_CALL_OP(mask, op, task, ##args); \
|
|
current->scx.kf_tasks[0] = NULL; \
|
|
} while (0)
|
|
|
|
#define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \
|
|
({ \
|
|
__typeof__(scx_ops.op(task, ##args)) __ret; \
|
|
BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
|
|
current->scx.kf_tasks[0] = task; \
|
|
__ret = SCX_CALL_OP_RET(mask, op, task, ##args); \
|
|
current->scx.kf_tasks[0] = NULL; \
|
|
__ret; \
|
|
})
|
|
|
|
#define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \
|
|
({ \
|
|
__typeof__(scx_ops.op(task0, task1, ##args)) __ret; \
|
|
BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
|
|
current->scx.kf_tasks[0] = task0; \
|
|
current->scx.kf_tasks[1] = task1; \
|
|
__ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \
|
|
current->scx.kf_tasks[0] = NULL; \
|
|
current->scx.kf_tasks[1] = NULL; \
|
|
__ret; \
|
|
})
|
|
|
|
/* @mask is constant, always inline to cull unnecessary branches */
|
|
static __always_inline bool scx_kf_allowed(u32 mask)
|
|
{
|
|
if (unlikely(!(current->scx.kf_mask & mask))) {
|
|
scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
|
|
mask, current->scx.kf_mask);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Enforce nesting boundaries. e.g. A kfunc which can be called from
|
|
* DISPATCH must not be called if we're running DEQUEUE which is nested
|
|
* inside ops.dispatch(). We don't need to check boundaries for any
|
|
* blocking kfuncs as the verifier ensures they're only called from
|
|
* sleepable progs.
|
|
*/
|
|
if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
|
|
(current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
|
|
scx_ops_error("cpu_release kfunc called from a nested operation");
|
|
return false;
|
|
}
|
|
|
|
if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
|
|
(current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
|
|
scx_ops_error("dispatch kfunc called from a nested operation");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* see SCX_CALL_OP_TASK() */
|
|
static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask,
|
|
struct task_struct *p)
|
|
{
|
|
if (!scx_kf_allowed(mask))
|
|
return false;
|
|
|
|
if (unlikely((p != current->scx.kf_tasks[0] &&
|
|
p != current->scx.kf_tasks[1]))) {
|
|
scx_ops_error("called on a task not being operated on");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool scx_kf_allowed_if_unlocked(void)
|
|
{
|
|
return !current->scx.kf_mask;
|
|
}
|
|
|
|
/**
|
|
* nldsq_next_task - Iterate to the next task in a non-local DSQ
|
|
* @dsq: user dsq being interated
|
|
* @cur: current position, %NULL to start iteration
|
|
* @rev: walk backwards
|
|
*
|
|
* Returns %NULL when iteration is finished.
|
|
*/
|
|
static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
|
|
struct task_struct *cur, bool rev)
|
|
{
|
|
struct list_head *list_node;
|
|
struct scx_dsq_list_node *dsq_lnode;
|
|
|
|
lockdep_assert_held(&dsq->lock);
|
|
|
|
if (cur)
|
|
list_node = &cur->scx.dsq_list.node;
|
|
else
|
|
list_node = &dsq->list;
|
|
|
|
/* find the next task, need to skip BPF iteration cursors */
|
|
do {
|
|
if (rev)
|
|
list_node = list_node->prev;
|
|
else
|
|
list_node = list_node->next;
|
|
|
|
if (list_node == &dsq->list)
|
|
return NULL;
|
|
|
|
dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
|
|
node);
|
|
} while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
|
|
|
|
return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
|
|
}
|
|
|
|
#define nldsq_for_each_task(p, dsq) \
|
|
for ((p) = nldsq_next_task((dsq), NULL, false); (p); \
|
|
(p) = nldsq_next_task((dsq), (p), false))
|
|
|
|
|
|
/*
|
|
* BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
|
|
* dispatch order. BPF-visible iterator is opaque and larger to allow future
|
|
* changes without breaking backward compatibility. Can be used with
|
|
* bpf_for_each(). See bpf_iter_scx_dsq_*().
|
|
*/
|
|
enum scx_dsq_iter_flags {
|
|
/* iterate in the reverse dispatch order */
|
|
SCX_DSQ_ITER_REV = 1U << 16,
|
|
|
|
__SCX_DSQ_ITER_HAS_SLICE = 1U << 30,
|
|
__SCX_DSQ_ITER_HAS_VTIME = 1U << 31,
|
|
|
|
__SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV,
|
|
__SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS |
|
|
__SCX_DSQ_ITER_HAS_SLICE |
|
|
__SCX_DSQ_ITER_HAS_VTIME,
|
|
};
|
|
|
|
struct bpf_iter_scx_dsq_kern {
|
|
struct scx_dsq_list_node cursor;
|
|
struct scx_dispatch_q *dsq;
|
|
u64 slice;
|
|
u64 vtime;
|
|
} __attribute__((aligned(8)));
|
|
|
|
struct bpf_iter_scx_dsq {
|
|
u64 __opaque[6];
|
|
} __attribute__((aligned(8)));
|
|
|
|
|
|
/*
|
|
* SCX task iterator.
|
|
*/
|
|
struct scx_task_iter {
|
|
struct sched_ext_entity cursor;
|
|
struct task_struct *locked;
|
|
struct rq *rq;
|
|
struct rq_flags rf;
|
|
};
|
|
|
|
/**
|
|
* scx_task_iter_init - Initialize a task iterator
|
|
* @iter: iterator to init
|
|
*
|
|
* Initialize @iter. Must be called with scx_tasks_lock held. Once initialized,
|
|
* @iter must eventually be exited with scx_task_iter_exit().
|
|
*
|
|
* scx_tasks_lock may be released between this and the first next() call or
|
|
* between any two next() calls. If scx_tasks_lock is released between two
|
|
* next() calls, the caller is responsible for ensuring that the task being
|
|
* iterated remains accessible either through RCU read lock or obtaining a
|
|
* reference count.
|
|
*
|
|
* All tasks which existed when the iteration started are guaranteed to be
|
|
* visited as long as they still exist.
|
|
*/
|
|
static void scx_task_iter_init(struct scx_task_iter *iter)
|
|
{
|
|
lockdep_assert_held(&scx_tasks_lock);
|
|
|
|
BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
|
|
((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
|
|
|
|
iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
|
|
list_add(&iter->cursor.tasks_node, &scx_tasks);
|
|
iter->locked = NULL;
|
|
}
|
|
|
|
/**
|
|
* scx_task_iter_rq_unlock - Unlock rq locked by a task iterator
|
|
* @iter: iterator to unlock rq for
|
|
*
|
|
* If @iter is in the middle of a locked iteration, it may be locking the rq of
|
|
* the task currently being visited. Unlock the rq if so. This function can be
|
|
* safely called anytime during an iteration.
|
|
*
|
|
* Returns %true if the rq @iter was locking is unlocked. %false if @iter was
|
|
* not locking an rq.
|
|
*/
|
|
static bool scx_task_iter_rq_unlock(struct scx_task_iter *iter)
|
|
{
|
|
if (iter->locked) {
|
|
task_rq_unlock(iter->rq, iter->locked, &iter->rf);
|
|
iter->locked = NULL;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* scx_task_iter_exit - Exit a task iterator
|
|
* @iter: iterator to exit
|
|
*
|
|
* Exit a previously initialized @iter. Must be called with scx_tasks_lock held.
|
|
* If the iterator holds a task's rq lock, that rq lock is released. See
|
|
* scx_task_iter_init() for details.
|
|
*/
|
|
static void scx_task_iter_exit(struct scx_task_iter *iter)
|
|
{
|
|
lockdep_assert_held(&scx_tasks_lock);
|
|
|
|
scx_task_iter_rq_unlock(iter);
|
|
list_del_init(&iter->cursor.tasks_node);
|
|
}
|
|
|
|
/**
|
|
* scx_task_iter_next - Next task
|
|
* @iter: iterator to walk
|
|
*
|
|
* Visit the next task. See scx_task_iter_init() for details.
|
|
*/
|
|
static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
|
|
{
|
|
struct list_head *cursor = &iter->cursor.tasks_node;
|
|
struct sched_ext_entity *pos;
|
|
|
|
lockdep_assert_held(&scx_tasks_lock);
|
|
|
|
list_for_each_entry(pos, cursor, tasks_node) {
|
|
if (&pos->tasks_node == &scx_tasks)
|
|
return NULL;
|
|
if (!(pos->flags & SCX_TASK_CURSOR)) {
|
|
list_move(cursor, &pos->tasks_node);
|
|
return container_of(pos, struct task_struct, scx);
|
|
}
|
|
}
|
|
|
|
/* can't happen, should always terminate at scx_tasks above */
|
|
BUG();
|
|
}
|
|
|
|
/**
|
|
* scx_task_iter_next_locked - Next non-idle task with its rq locked
|
|
* @iter: iterator to walk
|
|
* @include_dead: Whether we should include dead tasks in the iteration
|
|
*
|
|
* Visit the non-idle task with its rq lock held. Allows callers to specify
|
|
* whether they would like to filter out dead tasks. See scx_task_iter_init()
|
|
* for details.
|
|
*/
|
|
static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
scx_task_iter_rq_unlock(iter);
|
|
|
|
while ((p = scx_task_iter_next(iter))) {
|
|
/*
|
|
* scx_task_iter is used to prepare and move tasks into SCX
|
|
* while loading the BPF scheduler and vice-versa while
|
|
* unloading. The init_tasks ("swappers") should be excluded
|
|
* from the iteration because:
|
|
*
|
|
* - It's unsafe to use __setschduler_prio() on an init_task to
|
|
* determine the sched_class to use as it won't preserve its
|
|
* idle_sched_class.
|
|
*
|
|
* - ops.init/exit_task() can easily be confused if called with
|
|
* init_tasks as they, e.g., share PID 0.
|
|
*
|
|
* As init_tasks are never scheduled through SCX, they can be
|
|
* skipped safely. Note that is_idle_task() which tests %PF_IDLE
|
|
* doesn't work here:
|
|
*
|
|
* - %PF_IDLE may not be set for an init_task whose CPU hasn't
|
|
* yet been onlined.
|
|
*
|
|
* - %PF_IDLE can be set on tasks that are not init_tasks. See
|
|
* play_idle_precise() used by CONFIG_IDLE_INJECT.
|
|
*
|
|
* Test for idle_sched_class as only init_tasks are on it.
|
|
*/
|
|
if (p->sched_class != &idle_sched_class)
|
|
break;
|
|
}
|
|
if (!p)
|
|
return NULL;
|
|
|
|
iter->rq = task_rq_lock(p, &iter->rf);
|
|
iter->locked = p;
|
|
|
|
return p;
|
|
}
|
|
|
|
static enum scx_ops_enable_state scx_ops_enable_state(void)
|
|
{
|
|
return atomic_read(&scx_ops_enable_state_var);
|
|
}
|
|
|
|
static enum scx_ops_enable_state
|
|
scx_ops_set_enable_state(enum scx_ops_enable_state to)
|
|
{
|
|
return atomic_xchg(&scx_ops_enable_state_var, to);
|
|
}
|
|
|
|
static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
|
|
enum scx_ops_enable_state from)
|
|
{
|
|
int from_v = from;
|
|
|
|
return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
|
|
}
|
|
|
|
static bool scx_rq_bypassing(struct rq *rq)
|
|
{
|
|
return unlikely(rq->scx.flags & SCX_RQ_BYPASSING);
|
|
}
|
|
|
|
/**
|
|
* wait_ops_state - Busy-wait the specified ops state to end
|
|
* @p: target task
|
|
* @opss: state to wait the end of
|
|
*
|
|
* Busy-wait for @p to transition out of @opss. This can only be used when the
|
|
* state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
|
|
* has load_acquire semantics to ensure that the caller can see the updates made
|
|
* in the enqueueing and dispatching paths.
|
|
*/
|
|
static void wait_ops_state(struct task_struct *p, unsigned long opss)
|
|
{
|
|
do {
|
|
cpu_relax();
|
|
} while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
|
|
}
|
|
|
|
/**
|
|
* ops_cpu_valid - Verify a cpu number
|
|
* @cpu: cpu number which came from a BPF ops
|
|
* @where: extra information reported on error
|
|
*
|
|
* @cpu is a cpu number which came from the BPF scheduler and can be any value.
|
|
* Verify that it is in range and one of the possible cpus. If invalid, trigger
|
|
* an ops error.
|
|
*/
|
|
static bool ops_cpu_valid(s32 cpu, const char *where)
|
|
{
|
|
if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
|
|
return true;
|
|
} else {
|
|
scx_ops_error("invalid CPU %d%s%s", cpu,
|
|
where ? " " : "", where ?: "");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ops_sanitize_err - Sanitize a -errno value
|
|
* @ops_name: operation to blame on failure
|
|
* @err: -errno value to sanitize
|
|
*
|
|
* Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
|
|
* -%EPROTO. This is necessary because returning a rogue -errno up the chain can
|
|
* cause misbehaviors. For an example, a large negative return from
|
|
* ops.init_task() triggers an oops when passed up the call chain because the
|
|
* value fails IS_ERR() test after being encoded with ERR_PTR() and then is
|
|
* handled as a pointer.
|
|
*/
|
|
static int ops_sanitize_err(const char *ops_name, s32 err)
|
|
{
|
|
if (err < 0 && err >= -MAX_ERRNO)
|
|
return err;
|
|
|
|
scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
|
|
return -EPROTO;
|
|
}
|
|
|
|
static void run_deferred(struct rq *rq)
|
|
{
|
|
process_ddsp_deferred_locals(rq);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void deferred_bal_cb_workfn(struct rq *rq)
|
|
{
|
|
run_deferred(rq);
|
|
}
|
|
#endif
|
|
|
|
static void deferred_irq_workfn(struct irq_work *irq_work)
|
|
{
|
|
struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
|
|
|
|
raw_spin_rq_lock(rq);
|
|
run_deferred(rq);
|
|
raw_spin_rq_unlock(rq);
|
|
}
|
|
|
|
/**
|
|
* schedule_deferred - Schedule execution of deferred actions on an rq
|
|
* @rq: target rq
|
|
*
|
|
* Schedule execution of deferred actions on @rq. Must be called with @rq
|
|
* locked. Deferred actions are executed with @rq locked but unpinned, and thus
|
|
* can unlock @rq to e.g. migrate tasks to other rqs.
|
|
*/
|
|
static void schedule_deferred(struct rq *rq)
|
|
{
|
|
lockdep_assert_rq_held(rq);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* If in the middle of waking up a task, task_woken_scx() will be called
|
|
* afterwards which will then run the deferred actions, no need to
|
|
* schedule anything.
|
|
*/
|
|
if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
|
|
return;
|
|
|
|
/*
|
|
* If in balance, the balance callbacks will be called before rq lock is
|
|
* released. Schedule one.
|
|
*/
|
|
if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
|
|
queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
|
|
deferred_bal_cb_workfn);
|
|
return;
|
|
}
|
|
#endif
|
|
/*
|
|
* No scheduler hooks available. Queue an irq work. They are executed on
|
|
* IRQ re-enable which may take a bit longer than the scheduler hooks.
|
|
* The above WAKEUP and BALANCE paths should cover most of the cases and
|
|
* the time to IRQ re-enable shouldn't be long.
|
|
*/
|
|
irq_work_queue(&rq->scx.deferred_irq_work);
|
|
}
|
|
|
|
/**
|
|
* touch_core_sched - Update timestamp used for core-sched task ordering
|
|
* @rq: rq to read clock from, must be locked
|
|
* @p: task to update the timestamp for
|
|
*
|
|
* Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
|
|
* implement global or local-DSQ FIFO ordering for core-sched. Should be called
|
|
* when a task becomes runnable and its turn on the CPU ends (e.g. slice
|
|
* exhaustion).
|
|
*/
|
|
static void touch_core_sched(struct rq *rq, struct task_struct *p)
|
|
{
|
|
lockdep_assert_rq_held(rq);
|
|
|
|
#ifdef CONFIG_SCHED_CORE
|
|
/*
|
|
* It's okay to update the timestamp spuriously. Use
|
|
* sched_core_disabled() which is cheaper than enabled().
|
|
*
|
|
* As this is used to determine ordering between tasks of sibling CPUs,
|
|
* it may be better to use per-core dispatch sequence instead.
|
|
*/
|
|
if (!sched_core_disabled())
|
|
p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* touch_core_sched_dispatch - Update core-sched timestamp on dispatch
|
|
* @rq: rq to read clock from, must be locked
|
|
* @p: task being dispatched
|
|
*
|
|
* If the BPF scheduler implements custom core-sched ordering via
|
|
* ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
|
|
* ordering within each local DSQ. This function is called from dispatch paths
|
|
* and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
|
|
*/
|
|
static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
|
|
{
|
|
lockdep_assert_rq_held(rq);
|
|
|
|
#ifdef CONFIG_SCHED_CORE
|
|
if (SCX_HAS_OP(core_sched_before))
|
|
touch_core_sched(rq, p);
|
|
#endif
|
|
}
|
|
|
|
static void update_curr_scx(struct rq *rq)
|
|
{
|
|
struct task_struct *curr = rq->curr;
|
|
s64 delta_exec;
|
|
|
|
delta_exec = update_curr_common(rq);
|
|
if (unlikely(delta_exec <= 0))
|
|
return;
|
|
|
|
if (curr->scx.slice != SCX_SLICE_INF) {
|
|
curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
|
|
if (!curr->scx.slice)
|
|
touch_core_sched(rq, curr);
|
|
}
|
|
}
|
|
|
|
static bool scx_dsq_priq_less(struct rb_node *node_a,
|
|
const struct rb_node *node_b)
|
|
{
|
|
const struct task_struct *a =
|
|
container_of(node_a, struct task_struct, scx.dsq_priq);
|
|
const struct task_struct *b =
|
|
container_of(node_b, struct task_struct, scx.dsq_priq);
|
|
|
|
return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
|
|
}
|
|
|
|
static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
|
|
{
|
|
/* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
|
|
WRITE_ONCE(dsq->nr, dsq->nr + delta);
|
|
}
|
|
|
|
static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
|
|
u64 enq_flags)
|
|
{
|
|
bool is_local = dsq->id == SCX_DSQ_LOCAL;
|
|
|
|
WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
|
|
WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
|
|
!RB_EMPTY_NODE(&p->scx.dsq_priq));
|
|
|
|
if (!is_local) {
|
|
raw_spin_lock(&dsq->lock);
|
|
if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
|
|
scx_ops_error("attempting to dispatch to a destroyed dsq");
|
|
/* fall back to the global dsq */
|
|
raw_spin_unlock(&dsq->lock);
|
|
dsq = &scx_dsq_global;
|
|
raw_spin_lock(&dsq->lock);
|
|
}
|
|
}
|
|
|
|
if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
|
|
(enq_flags & SCX_ENQ_DSQ_PRIQ))) {
|
|
/*
|
|
* SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
|
|
* their FIFO queues. To avoid confusion and accidentally
|
|
* starving vtime-dispatched tasks by FIFO-dispatched tasks, we
|
|
* disallow any internal DSQ from doing vtime ordering of
|
|
* tasks.
|
|
*/
|
|
scx_ops_error("cannot use vtime ordering for built-in DSQs");
|
|
enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
|
|
}
|
|
|
|
if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
|
|
struct rb_node *rbp;
|
|
|
|
/*
|
|
* A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
|
|
* linked to both the rbtree and list on PRIQs, this can only be
|
|
* tested easily when adding the first task.
|
|
*/
|
|
if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
|
|
nldsq_next_task(dsq, NULL, false)))
|
|
scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
|
|
dsq->id);
|
|
|
|
p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
|
|
rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
|
|
|
|
/*
|
|
* Find the previous task and insert after it on the list so
|
|
* that @dsq->list is vtime ordered.
|
|
*/
|
|
rbp = rb_prev(&p->scx.dsq_priq);
|
|
if (rbp) {
|
|
struct task_struct *prev =
|
|
container_of(rbp, struct task_struct,
|
|
scx.dsq_priq);
|
|
list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
|
|
} else {
|
|
list_add(&p->scx.dsq_list.node, &dsq->list);
|
|
}
|
|
} else {
|
|
/* a FIFO DSQ shouldn't be using PRIQ enqueuing */
|
|
if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
|
|
scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
|
|
dsq->id);
|
|
|
|
if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
|
|
list_add(&p->scx.dsq_list.node, &dsq->list);
|
|
else
|
|
list_add_tail(&p->scx.dsq_list.node, &dsq->list);
|
|
}
|
|
|
|
/* seq records the order tasks are queued, used by BPF DSQ iterator */
|
|
dsq->seq++;
|
|
p->scx.dsq_seq = dsq->seq;
|
|
|
|
dsq_mod_nr(dsq, 1);
|
|
p->scx.dsq = dsq;
|
|
|
|
/*
|
|
* scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
|
|
* direct dispatch path, but we clear them here because the direct
|
|
* dispatch verdict may be overridden on the enqueue path during e.g.
|
|
* bypass.
|
|
*/
|
|
p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
|
|
p->scx.ddsp_enq_flags = 0;
|
|
|
|
/*
|
|
* We're transitioning out of QUEUEING or DISPATCHING. store_release to
|
|
* match waiters' load_acquire.
|
|
*/
|
|
if (enq_flags & SCX_ENQ_CLEAR_OPSS)
|
|
atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
|
|
|
|
if (is_local) {
|
|
struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
|
|
bool preempt = false;
|
|
|
|
if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
|
|
rq->curr->sched_class == &ext_sched_class) {
|
|
rq->curr->scx.slice = 0;
|
|
preempt = true;
|
|
}
|
|
|
|
if (preempt || sched_class_above(&ext_sched_class,
|
|
rq->curr->sched_class))
|
|
resched_curr(rq);
|
|
} else {
|
|
raw_spin_unlock(&dsq->lock);
|
|
}
|
|
}
|
|
|
|
static void task_unlink_from_dsq(struct task_struct *p,
|
|
struct scx_dispatch_q *dsq)
|
|
{
|
|
WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
|
|
|
|
if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
|
|
rb_erase(&p->scx.dsq_priq, &dsq->priq);
|
|
RB_CLEAR_NODE(&p->scx.dsq_priq);
|
|
p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
|
|
}
|
|
|
|
list_del_init(&p->scx.dsq_list.node);
|
|
dsq_mod_nr(dsq, -1);
|
|
}
|
|
|
|
static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
|
|
{
|
|
struct scx_dispatch_q *dsq = p->scx.dsq;
|
|
bool is_local = dsq == &rq->scx.local_dsq;
|
|
|
|
if (!dsq) {
|
|
/*
|
|
* If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
|
|
* Unlinking is all that's needed to cancel.
|
|
*/
|
|
if (unlikely(!list_empty(&p->scx.dsq_list.node)))
|
|
list_del_init(&p->scx.dsq_list.node);
|
|
|
|
/*
|
|
* When dispatching directly from the BPF scheduler to a local
|
|
* DSQ, the task isn't associated with any DSQ but
|
|
* @p->scx.holding_cpu may be set under the protection of
|
|
* %SCX_OPSS_DISPATCHING.
|
|
*/
|
|
if (p->scx.holding_cpu >= 0)
|
|
p->scx.holding_cpu = -1;
|
|
|
|
return;
|
|
}
|
|
|
|
if (!is_local)
|
|
raw_spin_lock(&dsq->lock);
|
|
|
|
/*
|
|
* Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
|
|
* change underneath us.
|
|
*/
|
|
if (p->scx.holding_cpu < 0) {
|
|
/* @p must still be on @dsq, dequeue */
|
|
task_unlink_from_dsq(p, dsq);
|
|
} else {
|
|
/*
|
|
* We're racing against dispatch_to_local_dsq() which already
|
|
* removed @p from @dsq and set @p->scx.holding_cpu. Clear the
|
|
* holding_cpu which tells dispatch_to_local_dsq() that it lost
|
|
* the race.
|
|
*/
|
|
WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
|
|
p->scx.holding_cpu = -1;
|
|
}
|
|
p->scx.dsq = NULL;
|
|
|
|
if (!is_local)
|
|
raw_spin_unlock(&dsq->lock);
|
|
}
|
|
|
|
static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
|
|
{
|
|
return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
|
|
}
|
|
|
|
static struct scx_dispatch_q *find_non_local_dsq(u64 dsq_id)
|
|
{
|
|
lockdep_assert(rcu_read_lock_any_held());
|
|
|
|
if (dsq_id == SCX_DSQ_GLOBAL)
|
|
return &scx_dsq_global;
|
|
else
|
|
return find_user_dsq(dsq_id);
|
|
}
|
|
|
|
static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
|
|
struct task_struct *p)
|
|
{
|
|
struct scx_dispatch_q *dsq;
|
|
|
|
if (dsq_id == SCX_DSQ_LOCAL)
|
|
return &rq->scx.local_dsq;
|
|
|
|
if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
|
|
s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
|
|
|
|
if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
|
|
return &scx_dsq_global;
|
|
|
|
return &cpu_rq(cpu)->scx.local_dsq;
|
|
}
|
|
|
|
dsq = find_non_local_dsq(dsq_id);
|
|
if (unlikely(!dsq)) {
|
|
scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
|
|
dsq_id, p->comm, p->pid);
|
|
return &scx_dsq_global;
|
|
}
|
|
|
|
return dsq;
|
|
}
|
|
|
|
static void mark_direct_dispatch(struct task_struct *ddsp_task,
|
|
struct task_struct *p, u64 dsq_id,
|
|
u64 enq_flags)
|
|
{
|
|
/*
|
|
* Mark that dispatch already happened from ops.select_cpu() or
|
|
* ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
|
|
* which can never match a valid task pointer.
|
|
*/
|
|
__this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
|
|
|
|
/* @p must match the task on the enqueue path */
|
|
if (unlikely(p != ddsp_task)) {
|
|
if (IS_ERR(ddsp_task))
|
|
scx_ops_error("%s[%d] already direct-dispatched",
|
|
p->comm, p->pid);
|
|
else
|
|
scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
|
|
ddsp_task->comm, ddsp_task->pid,
|
|
p->comm, p->pid);
|
|
return;
|
|
}
|
|
|
|
WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
|
|
WARN_ON_ONCE(p->scx.ddsp_enq_flags);
|
|
|
|
p->scx.ddsp_dsq_id = dsq_id;
|
|
p->scx.ddsp_enq_flags = enq_flags;
|
|
}
|
|
|
|
static void direct_dispatch(struct task_struct *p, u64 enq_flags)
|
|
{
|
|
struct rq *rq = task_rq(p);
|
|
struct scx_dispatch_q *dsq =
|
|
find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
|
|
|
|
touch_core_sched_dispatch(rq, p);
|
|
|
|
p->scx.ddsp_enq_flags |= enq_flags;
|
|
|
|
/*
|
|
* We are in the enqueue path with @rq locked and pinned, and thus can't
|
|
* double lock a remote rq and enqueue to its local DSQ. For
|
|
* DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
|
|
* the enqueue so that it's executed when @rq can be unlocked.
|
|
*/
|
|
if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
|
|
unsigned long opss;
|
|
|
|
opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
|
|
|
|
switch (opss & SCX_OPSS_STATE_MASK) {
|
|
case SCX_OPSS_NONE:
|
|
break;
|
|
case SCX_OPSS_QUEUEING:
|
|
/*
|
|
* As @p was never passed to the BPF side, _release is
|
|
* not strictly necessary. Still do it for consistency.
|
|
*/
|
|
atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
|
|
break;
|
|
default:
|
|
WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
|
|
p->comm, p->pid, opss);
|
|
atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
|
|
break;
|
|
}
|
|
|
|
WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
|
|
list_add_tail(&p->scx.dsq_list.node,
|
|
&rq->scx.ddsp_deferred_locals);
|
|
schedule_deferred(rq);
|
|
return;
|
|
}
|
|
|
|
dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
|
|
}
|
|
|
|
static bool scx_rq_online(struct rq *rq)
|
|
{
|
|
/*
|
|
* Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
|
|
* the online state as seen from the BPF scheduler. cpu_active() test
|
|
* guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
|
|
* stay set until the current scheduling operation is complete even if
|
|
* we aren't locking @rq.
|
|
*/
|
|
return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
|
|
}
|
|
|
|
static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
|
|
int sticky_cpu)
|
|
{
|
|
struct task_struct **ddsp_taskp;
|
|
unsigned long qseq;
|
|
|
|
WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
|
|
|
|
/* rq migration */
|
|
if (sticky_cpu == cpu_of(rq))
|
|
goto local_norefill;
|
|
|
|
/*
|
|
* If !scx_rq_online(), we already told the BPF scheduler that the CPU
|
|
* is offline and are just running the hotplug path. Don't bother the
|
|
* BPF scheduler.
|
|
*/
|
|
if (!scx_rq_online(rq))
|
|
goto local;
|
|
|
|
if (scx_rq_bypassing(rq))
|
|
goto global;
|
|
|
|
if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
|
|
goto direct;
|
|
|
|
/* see %SCX_OPS_ENQ_EXITING */
|
|
if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
|
|
unlikely(p->flags & PF_EXITING))
|
|
goto local;
|
|
|
|
if (!SCX_HAS_OP(enqueue))
|
|
goto global;
|
|
|
|
/* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
|
|
qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
|
|
|
|
WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
|
|
atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
|
|
|
|
ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
|
|
WARN_ON_ONCE(*ddsp_taskp);
|
|
*ddsp_taskp = p;
|
|
|
|
SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
|
|
|
|
*ddsp_taskp = NULL;
|
|
if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
|
|
goto direct;
|
|
|
|
/*
|
|
* If not directly dispatched, QUEUEING isn't clear yet and dispatch or
|
|
* dequeue may be waiting. The store_release matches their load_acquire.
|
|
*/
|
|
atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
|
|
return;
|
|
|
|
direct:
|
|
direct_dispatch(p, enq_flags);
|
|
return;
|
|
|
|
local:
|
|
/*
|
|
* For task-ordering, slice refill must be treated as implying the end
|
|
* of the current slice. Otherwise, the longer @p stays on the CPU, the
|
|
* higher priority it becomes from scx_prio_less()'s POV.
|
|
*/
|
|
touch_core_sched(rq, p);
|
|
p->scx.slice = SCX_SLICE_DFL;
|
|
local_norefill:
|
|
dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
|
|
return;
|
|
|
|
global:
|
|
touch_core_sched(rq, p); /* see the comment in local: */
|
|
p->scx.slice = SCX_SLICE_DFL;
|
|
dispatch_enqueue(&scx_dsq_global, p, enq_flags);
|
|
}
|
|
|
|
static bool task_runnable(const struct task_struct *p)
|
|
{
|
|
return !list_empty(&p->scx.runnable_node);
|
|
}
|
|
|
|
static void set_task_runnable(struct rq *rq, struct task_struct *p)
|
|
{
|
|
lockdep_assert_rq_held(rq);
|
|
|
|
if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
|
|
p->scx.runnable_at = jiffies;
|
|
p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
|
|
}
|
|
|
|
/*
|
|
* list_add_tail() must be used. scx_ops_bypass() depends on tasks being
|
|
* appened to the runnable_list.
|
|
*/
|
|
list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
|
|
}
|
|
|
|
static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
|
|
{
|
|
list_del_init(&p->scx.runnable_node);
|
|
if (reset_runnable_at)
|
|
p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
|
|
}
|
|
|
|
static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
|
|
{
|
|
int sticky_cpu = p->scx.sticky_cpu;
|
|
|
|
if (enq_flags & ENQUEUE_WAKEUP)
|
|
rq->scx.flags |= SCX_RQ_IN_WAKEUP;
|
|
|
|
enq_flags |= rq->scx.extra_enq_flags;
|
|
|
|
if (sticky_cpu >= 0)
|
|
p->scx.sticky_cpu = -1;
|
|
|
|
/*
|
|
* Restoring a running task will be immediately followed by
|
|
* set_next_task_scx() which expects the task to not be on the BPF
|
|
* scheduler as tasks can only start running through local DSQs. Force
|
|
* direct-dispatch into the local DSQ by setting the sticky_cpu.
|
|
*/
|
|
if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
|
|
sticky_cpu = cpu_of(rq);
|
|
|
|
if (p->scx.flags & SCX_TASK_QUEUED) {
|
|
WARN_ON_ONCE(!task_runnable(p));
|
|
goto out;
|
|
}
|
|
|
|
set_task_runnable(rq, p);
|
|
p->scx.flags |= SCX_TASK_QUEUED;
|
|
rq->scx.nr_running++;
|
|
add_nr_running(rq, 1);
|
|
|
|
if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p))
|
|
SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags);
|
|
|
|
if (enq_flags & SCX_ENQ_WAKEUP)
|
|
touch_core_sched(rq, p);
|
|
|
|
do_enqueue_task(rq, p, enq_flags, sticky_cpu);
|
|
out:
|
|
rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
|
|
}
|
|
|
|
static void ops_dequeue(struct task_struct *p, u64 deq_flags)
|
|
{
|
|
unsigned long opss;
|
|
|
|
/* dequeue is always temporary, don't reset runnable_at */
|
|
clr_task_runnable(p, false);
|
|
|
|
/* acquire ensures that we see the preceding updates on QUEUED */
|
|
opss = atomic_long_read_acquire(&p->scx.ops_state);
|
|
|
|
switch (opss & SCX_OPSS_STATE_MASK) {
|
|
case SCX_OPSS_NONE:
|
|
break;
|
|
case SCX_OPSS_QUEUEING:
|
|
/*
|
|
* QUEUEING is started and finished while holding @p's rq lock.
|
|
* As we're holding the rq lock now, we shouldn't see QUEUEING.
|
|
*/
|
|
BUG();
|
|
case SCX_OPSS_QUEUED:
|
|
if (SCX_HAS_OP(dequeue))
|
|
SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags);
|
|
|
|
if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
|
|
SCX_OPSS_NONE))
|
|
break;
|
|
fallthrough;
|
|
case SCX_OPSS_DISPATCHING:
|
|
/*
|
|
* If @p is being dispatched from the BPF scheduler to a DSQ,
|
|
* wait for the transfer to complete so that @p doesn't get
|
|
* added to its DSQ after dequeueing is complete.
|
|
*
|
|
* As we're waiting on DISPATCHING with the rq locked, the
|
|
* dispatching side shouldn't try to lock the rq while
|
|
* DISPATCHING is set. See dispatch_to_local_dsq().
|
|
*
|
|
* DISPATCHING shouldn't have qseq set and control can reach
|
|
* here with NONE @opss from the above QUEUED case block.
|
|
* Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
|
|
*/
|
|
wait_ops_state(p, SCX_OPSS_DISPATCHING);
|
|
BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
|
|
{
|
|
if (!(p->scx.flags & SCX_TASK_QUEUED)) {
|
|
WARN_ON_ONCE(task_runnable(p));
|
|
return true;
|
|
}
|
|
|
|
ops_dequeue(p, deq_flags);
|
|
|
|
/*
|
|
* A currently running task which is going off @rq first gets dequeued
|
|
* and then stops running. As we want running <-> stopping transitions
|
|
* to be contained within runnable <-> quiescent transitions, trigger
|
|
* ->stopping() early here instead of in put_prev_task_scx().
|
|
*
|
|
* @p may go through multiple stopping <-> running transitions between
|
|
* here and put_prev_task_scx() if task attribute changes occur while
|
|
* balance_scx() leaves @rq unlocked. However, they don't contain any
|
|
* information meaningful to the BPF scheduler and can be suppressed by
|
|
* skipping the callbacks if the task is !QUEUED.
|
|
*/
|
|
if (SCX_HAS_OP(stopping) && task_current(rq, p)) {
|
|
update_curr_scx(rq);
|
|
SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false);
|
|
}
|
|
|
|
if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p))
|
|
SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags);
|
|
|
|
if (deq_flags & SCX_DEQ_SLEEP)
|
|
p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
|
|
else
|
|
p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
|
|
|
|
p->scx.flags &= ~SCX_TASK_QUEUED;
|
|
rq->scx.nr_running--;
|
|
sub_nr_running(rq, 1);
|
|
|
|
dispatch_dequeue(rq, p);
|
|
return true;
|
|
}
|
|
|
|
static void yield_task_scx(struct rq *rq)
|
|
{
|
|
struct task_struct *p = rq->curr;
|
|
|
|
if (SCX_HAS_OP(yield))
|
|
SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL);
|
|
else
|
|
p->scx.slice = 0;
|
|
}
|
|
|
|
static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
|
|
{
|
|
struct task_struct *from = rq->curr;
|
|
|
|
if (SCX_HAS_OP(yield))
|
|
return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to);
|
|
else
|
|
return false;
|
|
}
|
|
|
|
static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
|
|
struct scx_dispatch_q *src_dsq,
|
|
struct rq *dst_rq)
|
|
{
|
|
struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
|
|
|
|
/* @dsq is locked and @p is on @dst_rq */
|
|
lockdep_assert_held(&src_dsq->lock);
|
|
lockdep_assert_rq_held(dst_rq);
|
|
|
|
WARN_ON_ONCE(p->scx.holding_cpu >= 0);
|
|
|
|
if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
|
|
list_add(&p->scx.dsq_list.node, &dst_dsq->list);
|
|
else
|
|
list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
|
|
|
|
dsq_mod_nr(dst_dsq, 1);
|
|
p->scx.dsq = dst_dsq;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/**
|
|
* move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
|
|
* @p: task to move
|
|
* @enq_flags: %SCX_ENQ_*
|
|
* @src_rq: rq to move the task from, locked on entry, released on return
|
|
* @dst_rq: rq to move the task into, locked on return
|
|
*
|
|
* Move @p which is currently on @src_rq to @dst_rq's local DSQ.
|
|
*/
|
|
static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
|
|
struct rq *src_rq, struct rq *dst_rq)
|
|
{
|
|
lockdep_assert_rq_held(src_rq);
|
|
|
|
/* the following marks @p MIGRATING which excludes dequeue */
|
|
deactivate_task(src_rq, p, 0);
|
|
set_task_cpu(p, cpu_of(dst_rq));
|
|
p->scx.sticky_cpu = cpu_of(dst_rq);
|
|
|
|
raw_spin_rq_unlock(src_rq);
|
|
raw_spin_rq_lock(dst_rq);
|
|
|
|
/*
|
|
* We want to pass scx-specific enq_flags but activate_task() will
|
|
* truncate the upper 32 bit. As we own @rq, we can pass them through
|
|
* @rq->scx.extra_enq_flags instead.
|
|
*/
|
|
WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
|
|
WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
|
|
dst_rq->scx.extra_enq_flags = enq_flags;
|
|
activate_task(dst_rq, p, 0);
|
|
dst_rq->scx.extra_enq_flags = 0;
|
|
}
|
|
|
|
/*
|
|
* Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
|
|
* differences:
|
|
*
|
|
* - is_cpu_allowed() asks "Can this task run on this CPU?" while
|
|
* task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
|
|
* this CPU?".
|
|
*
|
|
* While migration is disabled, is_cpu_allowed() has to say "yes" as the task
|
|
* must be allowed to finish on the CPU that it's currently on regardless of
|
|
* the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
|
|
* BPF scheduler shouldn't attempt to migrate a task which has migration
|
|
* disabled.
|
|
*
|
|
* - The BPF scheduler is bypassed while the rq is offline and we can always say
|
|
* no to the BPF scheduler initiated migrations while offline.
|
|
*/
|
|
static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
|
|
bool trigger_error)
|
|
{
|
|
int cpu = cpu_of(rq);
|
|
|
|
/*
|
|
* We don't require the BPF scheduler to avoid dispatching to offline
|
|
* CPUs mostly for convenience but also because CPUs can go offline
|
|
* between scx_bpf_dispatch() calls and here. Trigger error iff the
|
|
* picked CPU is outside the allowed mask.
|
|
*/
|
|
if (!task_allowed_on_cpu(p, cpu)) {
|
|
if (trigger_error)
|
|
scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
|
|
cpu_of(rq), p->comm, p->pid);
|
|
return false;
|
|
}
|
|
|
|
if (unlikely(is_migration_disabled(p)))
|
|
return false;
|
|
|
|
if (!scx_rq_online(rq))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
|
|
* @p: target task
|
|
* @dsq: locked DSQ @p is currently on
|
|
* @src_rq: rq @p is currently on, stable with @dsq locked
|
|
*
|
|
* Called with @dsq locked but no rq's locked. We want to move @p to a different
|
|
* DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
|
|
* required when transferring into a local DSQ. Even when transferring into a
|
|
* non-local DSQ, it's better to use the same mechanism to protect against
|
|
* dequeues and maintain the invariant that @p->scx.dsq can only change while
|
|
* @src_rq is locked, which e.g. scx_dump_task() depends on.
|
|
*
|
|
* We want to grab @src_rq but that can deadlock if we try while locking @dsq,
|
|
* so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
|
|
* this may race with dequeue, which can't drop the rq lock or fail, do a little
|
|
* dancing from our side.
|
|
*
|
|
* @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
|
|
* dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
|
|
* would be cleared to -1. While other cpus may have updated it to different
|
|
* values afterwards, as this operation can't be preempted or recurse, the
|
|
* holding_cpu can never become this CPU again before we're done. Thus, we can
|
|
* tell whether we lost to dequeue by testing whether the holding_cpu still
|
|
* points to this CPU. See dispatch_dequeue() for the counterpart.
|
|
*
|
|
* On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
|
|
* still valid. %false if lost to dequeue.
|
|
*/
|
|
static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
|
|
struct scx_dispatch_q *dsq,
|
|
struct rq *src_rq)
|
|
{
|
|
s32 cpu = raw_smp_processor_id();
|
|
|
|
lockdep_assert_held(&dsq->lock);
|
|
|
|
WARN_ON_ONCE(p->scx.holding_cpu >= 0);
|
|
task_unlink_from_dsq(p, dsq);
|
|
p->scx.holding_cpu = cpu;
|
|
|
|
raw_spin_unlock(&dsq->lock);
|
|
raw_spin_rq_lock(src_rq);
|
|
|
|
/* task_rq couldn't have changed if we're still the holding cpu */
|
|
return likely(p->scx.holding_cpu == cpu) &&
|
|
!WARN_ON_ONCE(src_rq != task_rq(p));
|
|
}
|
|
|
|
static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
|
|
struct scx_dispatch_q *dsq, struct rq *src_rq)
|
|
{
|
|
raw_spin_rq_unlock(this_rq);
|
|
|
|
if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
|
|
move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
|
|
return true;
|
|
} else {
|
|
raw_spin_rq_unlock(src_rq);
|
|
raw_spin_rq_lock(this_rq);
|
|
return false;
|
|
}
|
|
}
|
|
#else /* CONFIG_SMP */
|
|
static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; }
|
|
static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; }
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
|
|
{
|
|
struct task_struct *p;
|
|
retry:
|
|
/*
|
|
* The caller can't expect to successfully consume a task if the task's
|
|
* addition to @dsq isn't guaranteed to be visible somehow. Test
|
|
* @dsq->list without locking and skip if it seems empty.
|
|
*/
|
|
if (list_empty(&dsq->list))
|
|
return false;
|
|
|
|
raw_spin_lock(&dsq->lock);
|
|
|
|
nldsq_for_each_task(p, dsq) {
|
|
struct rq *task_rq = task_rq(p);
|
|
|
|
if (rq == task_rq) {
|
|
task_unlink_from_dsq(p, dsq);
|
|
move_local_task_to_local_dsq(p, 0, dsq, rq);
|
|
raw_spin_unlock(&dsq->lock);
|
|
return true;
|
|
}
|
|
|
|
if (task_can_run_on_remote_rq(p, rq, false)) {
|
|
if (likely(consume_remote_task(rq, p, dsq, task_rq)))
|
|
return true;
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
raw_spin_unlock(&dsq->lock);
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* dispatch_to_local_dsq - Dispatch a task to a local dsq
|
|
* @rq: current rq which is locked
|
|
* @dst_dsq: destination DSQ
|
|
* @p: task to dispatch
|
|
* @enq_flags: %SCX_ENQ_*
|
|
*
|
|
* We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
|
|
* DSQ. This function performs all the synchronization dancing needed because
|
|
* local DSQs are protected with rq locks.
|
|
*
|
|
* The caller must have exclusive ownership of @p (e.g. through
|
|
* %SCX_OPSS_DISPATCHING).
|
|
*/
|
|
static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
|
|
struct task_struct *p, u64 enq_flags)
|
|
{
|
|
struct rq *src_rq = task_rq(p);
|
|
struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
|
|
|
|
/*
|
|
* We're synchronized against dequeue through DISPATCHING. As @p can't
|
|
* be dequeued, its task_rq and cpus_allowed are stable too.
|
|
*
|
|
* If dispatching to @rq that @p is already on, no lock dancing needed.
|
|
*/
|
|
if (rq == src_rq && rq == dst_rq) {
|
|
dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) {
|
|
dispatch_enqueue(&scx_dsq_global, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* @p is on a possibly remote @src_rq which we need to lock to move the
|
|
* task. If dequeue is in progress, it'd be locking @src_rq and waiting
|
|
* on DISPATCHING, so we can't grab @src_rq lock while holding
|
|
* DISPATCHING.
|
|
*
|
|
* As DISPATCHING guarantees that @p is wholly ours, we can pretend that
|
|
* we're moving from a DSQ and use the same mechanism - mark the task
|
|
* under transfer with holding_cpu, release DISPATCHING and then follow
|
|
* the same protocol. See unlink_dsq_and_lock_src_rq().
|
|
*/
|
|
p->scx.holding_cpu = raw_smp_processor_id();
|
|
|
|
/* store_release ensures that dequeue sees the above */
|
|
atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
|
|
|
|
/* switch to @src_rq lock */
|
|
if (rq != src_rq) {
|
|
raw_spin_rq_unlock(rq);
|
|
raw_spin_rq_lock(src_rq);
|
|
}
|
|
|
|
/* task_rq couldn't have changed if we're still the holding cpu */
|
|
if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
|
|
!WARN_ON_ONCE(src_rq != task_rq(p))) {
|
|
/*
|
|
* If @p is staying on the same rq, there's no need to go
|
|
* through the full deactivate/activate cycle. Optimize by
|
|
* abbreviating move_remote_task_to_local_dsq().
|
|
*/
|
|
if (src_rq == dst_rq) {
|
|
p->scx.holding_cpu = -1;
|
|
dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags);
|
|
} else {
|
|
move_remote_task_to_local_dsq(p, enq_flags,
|
|
src_rq, dst_rq);
|
|
}
|
|
|
|
/* if the destination CPU is idle, wake it up */
|
|
if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
|
|
resched_curr(dst_rq);
|
|
}
|
|
|
|
/* switch back to @rq lock */
|
|
if (rq != dst_rq) {
|
|
raw_spin_rq_unlock(dst_rq);
|
|
raw_spin_rq_lock(rq);
|
|
}
|
|
#else /* CONFIG_SMP */
|
|
BUG(); /* control can not reach here on UP */
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
|
|
/**
|
|
* finish_dispatch - Asynchronously finish dispatching a task
|
|
* @rq: current rq which is locked
|
|
* @p: task to finish dispatching
|
|
* @qseq_at_dispatch: qseq when @p started getting dispatched
|
|
* @dsq_id: destination DSQ ID
|
|
* @enq_flags: %SCX_ENQ_*
|
|
*
|
|
* Dispatching to local DSQs may need to wait for queueing to complete or
|
|
* require rq lock dancing. As we don't wanna do either while inside
|
|
* ops.dispatch() to avoid locking order inversion, we split dispatching into
|
|
* two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the
|
|
* task and its qseq. Once ops.dispatch() returns, this function is called to
|
|
* finish up.
|
|
*
|
|
* There is no guarantee that @p is still valid for dispatching or even that it
|
|
* was valid in the first place. Make sure that the task is still owned by the
|
|
* BPF scheduler and claim the ownership before dispatching.
|
|
*/
|
|
static void finish_dispatch(struct rq *rq, struct task_struct *p,
|
|
unsigned long qseq_at_dispatch,
|
|
u64 dsq_id, u64 enq_flags)
|
|
{
|
|
struct scx_dispatch_q *dsq;
|
|
unsigned long opss;
|
|
|
|
touch_core_sched_dispatch(rq, p);
|
|
retry:
|
|
/*
|
|
* No need for _acquire here. @p is accessed only after a successful
|
|
* try_cmpxchg to DISPATCHING.
|
|
*/
|
|
opss = atomic_long_read(&p->scx.ops_state);
|
|
|
|
switch (opss & SCX_OPSS_STATE_MASK) {
|
|
case SCX_OPSS_DISPATCHING:
|
|
case SCX_OPSS_NONE:
|
|
/* someone else already got to it */
|
|
return;
|
|
case SCX_OPSS_QUEUED:
|
|
/*
|
|
* If qseq doesn't match, @p has gone through at least one
|
|
* dispatch/dequeue and re-enqueue cycle between
|
|
* scx_bpf_dispatch() and here and we have no claim on it.
|
|
*/
|
|
if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
|
|
return;
|
|
|
|
/*
|
|
* While we know @p is accessible, we don't yet have a claim on
|
|
* it - the BPF scheduler is allowed to dispatch tasks
|
|
* spuriously and there can be a racing dequeue attempt. Let's
|
|
* claim @p by atomically transitioning it from QUEUED to
|
|
* DISPATCHING.
|
|
*/
|
|
if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
|
|
SCX_OPSS_DISPATCHING)))
|
|
break;
|
|
goto retry;
|
|
case SCX_OPSS_QUEUEING:
|
|
/*
|
|
* do_enqueue_task() is in the process of transferring the task
|
|
* to the BPF scheduler while holding @p's rq lock. As we aren't
|
|
* holding any kernel or BPF resource that the enqueue path may
|
|
* depend upon, it's safe to wait.
|
|
*/
|
|
wait_ops_state(p, opss);
|
|
goto retry;
|
|
}
|
|
|
|
BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
|
|
|
|
dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p);
|
|
|
|
if (dsq->id == SCX_DSQ_LOCAL)
|
|
dispatch_to_local_dsq(rq, dsq, p, enq_flags);
|
|
else
|
|
dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
|
|
}
|
|
|
|
static void flush_dispatch_buf(struct rq *rq)
|
|
{
|
|
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
|
|
u32 u;
|
|
|
|
for (u = 0; u < dspc->cursor; u++) {
|
|
struct scx_dsp_buf_ent *ent = &dspc->buf[u];
|
|
|
|
finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id,
|
|
ent->enq_flags);
|
|
}
|
|
|
|
dspc->nr_tasks += dspc->cursor;
|
|
dspc->cursor = 0;
|
|
}
|
|
|
|
static int balance_one(struct rq *rq, struct task_struct *prev)
|
|
{
|
|
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
|
|
bool prev_on_scx = prev->sched_class == &ext_sched_class;
|
|
int nr_loops = SCX_DSP_MAX_LOOPS;
|
|
|
|
lockdep_assert_rq_held(rq);
|
|
rq->scx.flags |= SCX_RQ_IN_BALANCE;
|
|
rq->scx.flags &= ~SCX_RQ_BAL_KEEP;
|
|
|
|
if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
|
|
unlikely(rq->scx.cpu_released)) {
|
|
/*
|
|
* If the previous sched_class for the current CPU was not SCX,
|
|
* notify the BPF scheduler that it again has control of the
|
|
* core. This callback complements ->cpu_release(), which is
|
|
* emitted in scx_next_task_picked().
|
|
*/
|
|
if (SCX_HAS_OP(cpu_acquire))
|
|
SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL);
|
|
rq->scx.cpu_released = false;
|
|
}
|
|
|
|
if (prev_on_scx) {
|
|
update_curr_scx(rq);
|
|
|
|
/*
|
|
* If @prev is runnable & has slice left, it has priority and
|
|
* fetching more just increases latency for the fetched tasks.
|
|
* Tell pick_task_scx() to keep running @prev. If the BPF
|
|
* scheduler wants to handle this explicitly, it should
|
|
* implement ->cpu_release().
|
|
*
|
|
* See scx_ops_disable_workfn() for the explanation on the
|
|
* bypassing test.
|
|
*/
|
|
if ((prev->scx.flags & SCX_TASK_QUEUED) &&
|
|
prev->scx.slice && !scx_rq_bypassing(rq)) {
|
|
rq->scx.flags |= SCX_RQ_BAL_KEEP;
|
|
goto has_tasks;
|
|
}
|
|
}
|
|
|
|
/* if there already are tasks to run, nothing to do */
|
|
if (rq->scx.local_dsq.nr)
|
|
goto has_tasks;
|
|
|
|
if (consume_dispatch_q(rq, &scx_dsq_global))
|
|
goto has_tasks;
|
|
|
|
if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq))
|
|
goto no_tasks;
|
|
|
|
dspc->rq = rq;
|
|
|
|
/*
|
|
* The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
|
|
* the local DSQ might still end up empty after a successful
|
|
* ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
|
|
* produced some tasks, retry. The BPF scheduler may depend on this
|
|
* looping behavior to simplify its implementation.
|
|
*/
|
|
do {
|
|
dspc->nr_tasks = 0;
|
|
|
|
SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
|
|
prev_on_scx ? prev : NULL);
|
|
|
|
flush_dispatch_buf(rq);
|
|
|
|
if (rq->scx.local_dsq.nr)
|
|
goto has_tasks;
|
|
if (consume_dispatch_q(rq, &scx_dsq_global))
|
|
goto has_tasks;
|
|
|
|
/*
|
|
* ops.dispatch() can trap us in this loop by repeatedly
|
|
* dispatching ineligible tasks. Break out once in a while to
|
|
* allow the watchdog to run. As IRQ can't be enabled in
|
|
* balance(), we want to complete this scheduling cycle and then
|
|
* start a new one. IOW, we want to call resched_curr() on the
|
|
* next, most likely idle, task, not the current one. Use
|
|
* scx_bpf_kick_cpu() for deferred kicking.
|
|
*/
|
|
if (unlikely(!--nr_loops)) {
|
|
scx_bpf_kick_cpu(cpu_of(rq), 0);
|
|
break;
|
|
}
|
|
} while (dspc->nr_tasks);
|
|
|
|
no_tasks:
|
|
/*
|
|
* Didn't find another task to run. Keep running @prev unless
|
|
* %SCX_OPS_ENQ_LAST is in effect.
|
|
*/
|
|
if ((prev->scx.flags & SCX_TASK_QUEUED) &&
|
|
(!static_branch_unlikely(&scx_ops_enq_last) ||
|
|
scx_rq_bypassing(rq))) {
|
|
rq->scx.flags |= SCX_RQ_BAL_KEEP;
|
|
goto has_tasks;
|
|
}
|
|
rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
|
|
return false;
|
|
|
|
has_tasks:
|
|
rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
|
|
return true;
|
|
}
|
|
|
|
static int balance_scx(struct rq *rq, struct task_struct *prev,
|
|
struct rq_flags *rf)
|
|
{
|
|
int ret;
|
|
|
|
rq_unpin_lock(rq, rf);
|
|
|
|
ret = balance_one(rq, prev);
|
|
|
|
#ifdef CONFIG_SCHED_SMT
|
|
/*
|
|
* When core-sched is enabled, this ops.balance() call will be followed
|
|
* by pick_task_scx() on this CPU and the SMT siblings. Balance the
|
|
* siblings too.
|
|
*/
|
|
if (sched_core_enabled(rq)) {
|
|
const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
|
|
int scpu;
|
|
|
|
for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
|
|
struct rq *srq = cpu_rq(scpu);
|
|
struct task_struct *sprev = srq->curr;
|
|
|
|
WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
|
|
update_rq_clock(srq);
|
|
balance_one(srq, sprev);
|
|
}
|
|
}
|
|
#endif
|
|
rq_repin_lock(rq, rf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void process_ddsp_deferred_locals(struct rq *rq)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
lockdep_assert_rq_held(rq);
|
|
|
|
/*
|
|
* Now that @rq can be unlocked, execute the deferred enqueueing of
|
|
* tasks directly dispatched to the local DSQs of other CPUs. See
|
|
* direct_dispatch(). Keep popping from the head instead of using
|
|
* list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
|
|
* temporarily.
|
|
*/
|
|
while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
|
|
struct task_struct, scx.dsq_list.node))) {
|
|
struct scx_dispatch_q *dsq;
|
|
|
|
list_del_init(&p->scx.dsq_list.node);
|
|
|
|
dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
|
|
if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
|
|
dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags);
|
|
}
|
|
}
|
|
|
|
static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
|
|
{
|
|
if (p->scx.flags & SCX_TASK_QUEUED) {
|
|
/*
|
|
* Core-sched might decide to execute @p before it is
|
|
* dispatched. Call ops_dequeue() to notify the BPF scheduler.
|
|
*/
|
|
ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC);
|
|
dispatch_dequeue(rq, p);
|
|
}
|
|
|
|
p->se.exec_start = rq_clock_task(rq);
|
|
|
|
/* see dequeue_task_scx() on why we skip when !QUEUED */
|
|
if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED))
|
|
SCX_CALL_OP_TASK(SCX_KF_REST, running, p);
|
|
|
|
clr_task_runnable(p, true);
|
|
|
|
/*
|
|
* @p is getting newly scheduled or got kicked after someone updated its
|
|
* slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
|
|
*/
|
|
if ((p->scx.slice == SCX_SLICE_INF) !=
|
|
(bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
|
|
if (p->scx.slice == SCX_SLICE_INF)
|
|
rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
|
|
else
|
|
rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
|
|
|
|
sched_update_tick_dependency(rq);
|
|
|
|
/*
|
|
* For now, let's refresh the load_avgs just when transitioning
|
|
* in and out of nohz. In the future, we might want to add a
|
|
* mechanism which calls the following periodically on
|
|
* tick-stopped CPUs.
|
|
*/
|
|
update_other_load_avgs(rq);
|
|
}
|
|
}
|
|
|
|
static enum scx_cpu_preempt_reason
|
|
preempt_reason_from_class(const struct sched_class *class)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
if (class == &stop_sched_class)
|
|
return SCX_CPU_PREEMPT_STOP;
|
|
#endif
|
|
if (class == &dl_sched_class)
|
|
return SCX_CPU_PREEMPT_DL;
|
|
if (class == &rt_sched_class)
|
|
return SCX_CPU_PREEMPT_RT;
|
|
return SCX_CPU_PREEMPT_UNKNOWN;
|
|
}
|
|
|
|
static void switch_class(struct rq *rq, struct task_struct *next)
|
|
{
|
|
const struct sched_class *next_class = next->sched_class;
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Pairs with the smp_load_acquire() issued by a CPU in
|
|
* kick_cpus_irq_workfn() who is waiting for this CPU to perform a
|
|
* resched.
|
|
*/
|
|
smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
|
|
#endif
|
|
if (!static_branch_unlikely(&scx_ops_cpu_preempt))
|
|
return;
|
|
|
|
/*
|
|
* The callback is conceptually meant to convey that the CPU is no
|
|
* longer under the control of SCX. Therefore, don't invoke the callback
|
|
* if the next class is below SCX (in which case the BPF scheduler has
|
|
* actively decided not to schedule any tasks on the CPU).
|
|
*/
|
|
if (sched_class_above(&ext_sched_class, next_class))
|
|
return;
|
|
|
|
/*
|
|
* At this point we know that SCX was preempted by a higher priority
|
|
* sched_class, so invoke the ->cpu_release() callback if we have not
|
|
* done so already. We only send the callback once between SCX being
|
|
* preempted, and it regaining control of the CPU.
|
|
*
|
|
* ->cpu_release() complements ->cpu_acquire(), which is emitted the
|
|
* next time that balance_scx() is invoked.
|
|
*/
|
|
if (!rq->scx.cpu_released) {
|
|
if (SCX_HAS_OP(cpu_release)) {
|
|
struct scx_cpu_release_args args = {
|
|
.reason = preempt_reason_from_class(next_class),
|
|
.task = next,
|
|
};
|
|
|
|
SCX_CALL_OP(SCX_KF_CPU_RELEASE,
|
|
cpu_release, cpu_of(rq), &args);
|
|
}
|
|
rq->scx.cpu_released = true;
|
|
}
|
|
}
|
|
|
|
static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
|
|
struct task_struct *next)
|
|
{
|
|
update_curr_scx(rq);
|
|
|
|
/* see dequeue_task_scx() on why we skip when !QUEUED */
|
|
if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED))
|
|
SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true);
|
|
|
|
if (p->scx.flags & SCX_TASK_QUEUED) {
|
|
set_task_runnable(rq, p);
|
|
|
|
/*
|
|
* If @p has slice left and is being put, @p is getting
|
|
* preempted by a higher priority scheduler class or core-sched
|
|
* forcing a different task. Leave it at the head of the local
|
|
* DSQ.
|
|
*/
|
|
if (p->scx.slice && !scx_rq_bypassing(rq)) {
|
|
dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If @p is runnable but we're about to enter a lower
|
|
* sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
|
|
* ops.enqueue() that @p is the only one available for this cpu,
|
|
* which should trigger an explicit follow-up scheduling event.
|
|
*/
|
|
if (sched_class_above(&ext_sched_class, next->sched_class)) {
|
|
WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last));
|
|
do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
|
|
} else {
|
|
do_enqueue_task(rq, p, 0, -1);
|
|
}
|
|
}
|
|
|
|
if (next && next->sched_class != &ext_sched_class)
|
|
switch_class(rq, next);
|
|
}
|
|
|
|
static struct task_struct *first_local_task(struct rq *rq)
|
|
{
|
|
return list_first_entry_or_null(&rq->scx.local_dsq.list,
|
|
struct task_struct, scx.dsq_list.node);
|
|
}
|
|
|
|
static struct task_struct *pick_task_scx(struct rq *rq)
|
|
{
|
|
struct task_struct *prev = rq->curr;
|
|
struct task_struct *p;
|
|
|
|
/*
|
|
* If balance_scx() is telling us to keep running @prev, replenish slice
|
|
* if necessary and keep running @prev. Otherwise, pop the first one
|
|
* from the local DSQ.
|
|
*
|
|
* WORKAROUND:
|
|
*
|
|
* %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
|
|
* have gone through balance_scx(). Unfortunately, there currently is a
|
|
* bug where fair could say yes on balance() but no on pick_task(),
|
|
* which then ends up calling pick_task_scx() without preceding
|
|
* balance_scx().
|
|
*
|
|
* For now, ignore cases where $prev is not on SCX. This isn't great and
|
|
* can theoretically lead to stalls. However, for switch_all cases, this
|
|
* happens only while a BPF scheduler is being loaded or unloaded, and,
|
|
* for partial cases, fair will likely keep triggering this CPU.
|
|
*
|
|
* Once fair is fixed, restore WARN_ON_ONCE().
|
|
*/
|
|
if ((rq->scx.flags & SCX_RQ_BAL_KEEP) &&
|
|
prev->sched_class == &ext_sched_class) {
|
|
p = prev;
|
|
if (!p->scx.slice)
|
|
p->scx.slice = SCX_SLICE_DFL;
|
|
} else {
|
|
p = first_local_task(rq);
|
|
if (!p)
|
|
return NULL;
|
|
|
|
if (unlikely(!p->scx.slice)) {
|
|
if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) {
|
|
printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in pick_next_task_scx()\n",
|
|
p->comm, p->pid);
|
|
scx_warned_zero_slice = true;
|
|
}
|
|
p->scx.slice = SCX_SLICE_DFL;
|
|
}
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_CORE
|
|
/**
|
|
* scx_prio_less - Task ordering for core-sched
|
|
* @a: task A
|
|
* @b: task B
|
|
*
|
|
* Core-sched is implemented as an additional scheduling layer on top of the
|
|
* usual sched_class'es and needs to find out the expected task ordering. For
|
|
* SCX, core-sched calls this function to interrogate the task ordering.
|
|
*
|
|
* Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
|
|
* to implement the default task ordering. The older the timestamp, the higher
|
|
* prority the task - the global FIFO ordering matching the default scheduling
|
|
* behavior.
|
|
*
|
|
* When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
|
|
* implement FIFO ordering within each local DSQ. See pick_task_scx().
|
|
*/
|
|
bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
|
|
bool in_fi)
|
|
{
|
|
/*
|
|
* The const qualifiers are dropped from task_struct pointers when
|
|
* calling ops.core_sched_before(). Accesses are controlled by the
|
|
* verifier.
|
|
*/
|
|
if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a)))
|
|
return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before,
|
|
(struct task_struct *)a,
|
|
(struct task_struct *)b);
|
|
else
|
|
return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
|
|
}
|
|
#endif /* CONFIG_SCHED_CORE */
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static bool test_and_clear_cpu_idle(int cpu)
|
|
{
|
|
#ifdef CONFIG_SCHED_SMT
|
|
/*
|
|
* SMT mask should be cleared whether we can claim @cpu or not. The SMT
|
|
* cluster is not wholly idle either way. This also prevents
|
|
* scx_pick_idle_cpu() from getting caught in an infinite loop.
|
|
*/
|
|
if (sched_smt_active()) {
|
|
const struct cpumask *smt = cpu_smt_mask(cpu);
|
|
|
|
/*
|
|
* If offline, @cpu is not its own sibling and
|
|
* scx_pick_idle_cpu() can get caught in an infinite loop as
|
|
* @cpu is never cleared from idle_masks.smt. Ensure that @cpu
|
|
* is eventually cleared.
|
|
*/
|
|
if (cpumask_intersects(smt, idle_masks.smt))
|
|
cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
|
|
else if (cpumask_test_cpu(cpu, idle_masks.smt))
|
|
__cpumask_clear_cpu(cpu, idle_masks.smt);
|
|
}
|
|
#endif
|
|
return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
|
|
}
|
|
|
|
static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
|
|
{
|
|
int cpu;
|
|
|
|
retry:
|
|
if (sched_smt_active()) {
|
|
cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
|
|
if (cpu < nr_cpu_ids)
|
|
goto found;
|
|
|
|
if (flags & SCX_PICK_IDLE_CORE)
|
|
return -EBUSY;
|
|
}
|
|
|
|
cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
|
|
if (cpu >= nr_cpu_ids)
|
|
return -EBUSY;
|
|
|
|
found:
|
|
if (test_and_clear_cpu_idle(cpu))
|
|
return cpu;
|
|
else
|
|
goto retry;
|
|
}
|
|
|
|
static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
|
|
u64 wake_flags, bool *found)
|
|
{
|
|
s32 cpu;
|
|
|
|
*found = false;
|
|
|
|
if (!static_branch_likely(&scx_builtin_idle_enabled)) {
|
|
scx_ops_error("built-in idle tracking is disabled");
|
|
return prev_cpu;
|
|
}
|
|
|
|
/*
|
|
* If WAKE_SYNC, the waker's local DSQ is empty, and the system is
|
|
* under utilized, wake up @p to the local DSQ of the waker. Checking
|
|
* only for an empty local DSQ is insufficient as it could give the
|
|
* wakee an unfair advantage when the system is oversaturated.
|
|
* Checking only for the presence of idle CPUs is also insufficient as
|
|
* the local DSQ of the waker could have tasks piled up on it even if
|
|
* there is an idle core elsewhere on the system.
|
|
*/
|
|
cpu = smp_processor_id();
|
|
if ((wake_flags & SCX_WAKE_SYNC) && p->nr_cpus_allowed > 1 &&
|
|
!cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) &&
|
|
cpu_rq(cpu)->scx.local_dsq.nr == 0) {
|
|
if (cpumask_test_cpu(cpu, p->cpus_ptr))
|
|
goto cpu_found;
|
|
}
|
|
|
|
if (p->nr_cpus_allowed == 1) {
|
|
if (test_and_clear_cpu_idle(prev_cpu)) {
|
|
cpu = prev_cpu;
|
|
goto cpu_found;
|
|
} else {
|
|
return prev_cpu;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If CPU has SMT, any wholly idle CPU is likely a better pick than
|
|
* partially idle @prev_cpu.
|
|
*/
|
|
if (sched_smt_active()) {
|
|
if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
|
|
test_and_clear_cpu_idle(prev_cpu)) {
|
|
cpu = prev_cpu;
|
|
goto cpu_found;
|
|
}
|
|
|
|
cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
|
|
if (cpu >= 0)
|
|
goto cpu_found;
|
|
}
|
|
|
|
if (test_and_clear_cpu_idle(prev_cpu)) {
|
|
cpu = prev_cpu;
|
|
goto cpu_found;
|
|
}
|
|
|
|
cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
|
|
if (cpu >= 0)
|
|
goto cpu_found;
|
|
|
|
return prev_cpu;
|
|
|
|
cpu_found:
|
|
*found = true;
|
|
return cpu;
|
|
}
|
|
|
|
static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
|
|
{
|
|
/*
|
|
* sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
|
|
* can be a good migration opportunity with low cache and memory
|
|
* footprint. Returning a CPU different than @prev_cpu triggers
|
|
* immediate rq migration. However, for SCX, as the current rq
|
|
* association doesn't dictate where the task is going to run, this
|
|
* doesn't fit well. If necessary, we can later add a dedicated method
|
|
* which can decide to preempt self to force it through the regular
|
|
* scheduling path.
|
|
*/
|
|
if (unlikely(wake_flags & WF_EXEC))
|
|
return prev_cpu;
|
|
|
|
if (SCX_HAS_OP(select_cpu)) {
|
|
s32 cpu;
|
|
struct task_struct **ddsp_taskp;
|
|
|
|
ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
|
|
WARN_ON_ONCE(*ddsp_taskp);
|
|
*ddsp_taskp = p;
|
|
|
|
cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
|
|
select_cpu, p, prev_cpu, wake_flags);
|
|
*ddsp_taskp = NULL;
|
|
if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
|
|
return cpu;
|
|
else
|
|
return prev_cpu;
|
|
} else {
|
|
bool found;
|
|
s32 cpu;
|
|
|
|
cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
|
|
if (found) {
|
|
p->scx.slice = SCX_SLICE_DFL;
|
|
p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
|
|
}
|
|
return cpu;
|
|
}
|
|
}
|
|
|
|
static void task_woken_scx(struct rq *rq, struct task_struct *p)
|
|
{
|
|
run_deferred(rq);
|
|
}
|
|
|
|
static void set_cpus_allowed_scx(struct task_struct *p,
|
|
struct affinity_context *ac)
|
|
{
|
|
set_cpus_allowed_common(p, ac);
|
|
|
|
/*
|
|
* The effective cpumask is stored in @p->cpus_ptr which may temporarily
|
|
* differ from the configured one in @p->cpus_mask. Always tell the bpf
|
|
* scheduler the effective one.
|
|
*
|
|
* Fine-grained memory write control is enforced by BPF making the const
|
|
* designation pointless. Cast it away when calling the operation.
|
|
*/
|
|
if (SCX_HAS_OP(set_cpumask))
|
|
SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
|
|
(struct cpumask *)p->cpus_ptr);
|
|
}
|
|
|
|
static void reset_idle_masks(void)
|
|
{
|
|
/*
|
|
* Consider all online cpus idle. Should converge to the actual state
|
|
* quickly.
|
|
*/
|
|
cpumask_copy(idle_masks.cpu, cpu_online_mask);
|
|
cpumask_copy(idle_masks.smt, cpu_online_mask);
|
|
}
|
|
|
|
void __scx_update_idle(struct rq *rq, bool idle)
|
|
{
|
|
int cpu = cpu_of(rq);
|
|
|
|
if (SCX_HAS_OP(update_idle)) {
|
|
SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
|
|
if (!static_branch_unlikely(&scx_builtin_idle_enabled))
|
|
return;
|
|
}
|
|
|
|
if (idle)
|
|
cpumask_set_cpu(cpu, idle_masks.cpu);
|
|
else
|
|
cpumask_clear_cpu(cpu, idle_masks.cpu);
|
|
|
|
#ifdef CONFIG_SCHED_SMT
|
|
if (sched_smt_active()) {
|
|
const struct cpumask *smt = cpu_smt_mask(cpu);
|
|
|
|
if (idle) {
|
|
/*
|
|
* idle_masks.smt handling is racy but that's fine as
|
|
* it's only for optimization and self-correcting.
|
|
*/
|
|
for_each_cpu(cpu, smt) {
|
|
if (!cpumask_test_cpu(cpu, idle_masks.cpu))
|
|
return;
|
|
}
|
|
cpumask_or(idle_masks.smt, idle_masks.smt, smt);
|
|
} else {
|
|
cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void handle_hotplug(struct rq *rq, bool online)
|
|
{
|
|
int cpu = cpu_of(rq);
|
|
|
|
atomic_long_inc(&scx_hotplug_seq);
|
|
|
|
if (online && SCX_HAS_OP(cpu_online))
|
|
SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
|
|
else if (!online && SCX_HAS_OP(cpu_offline))
|
|
SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu);
|
|
else
|
|
scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
|
|
"cpu %d going %s, exiting scheduler", cpu,
|
|
online ? "online" : "offline");
|
|
}
|
|
|
|
void scx_rq_activate(struct rq *rq)
|
|
{
|
|
handle_hotplug(rq, true);
|
|
}
|
|
|
|
void scx_rq_deactivate(struct rq *rq)
|
|
{
|
|
handle_hotplug(rq, false);
|
|
}
|
|
|
|
static void rq_online_scx(struct rq *rq)
|
|
{
|
|
rq->scx.flags |= SCX_RQ_ONLINE;
|
|
}
|
|
|
|
static void rq_offline_scx(struct rq *rq)
|
|
{
|
|
rq->scx.flags &= ~SCX_RQ_ONLINE;
|
|
}
|
|
|
|
#else /* CONFIG_SMP */
|
|
|
|
static bool test_and_clear_cpu_idle(int cpu) { return false; }
|
|
static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
|
|
static void reset_idle_masks(void) {}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static bool check_rq_for_timeouts(struct rq *rq)
|
|
{
|
|
struct task_struct *p;
|
|
struct rq_flags rf;
|
|
bool timed_out = false;
|
|
|
|
rq_lock_irqsave(rq, &rf);
|
|
list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
|
|
unsigned long last_runnable = p->scx.runnable_at;
|
|
|
|
if (unlikely(time_after(jiffies,
|
|
last_runnable + scx_watchdog_timeout))) {
|
|
u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
|
|
|
|
scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
|
|
"%s[%d] failed to run for %u.%03us",
|
|
p->comm, p->pid,
|
|
dur_ms / 1000, dur_ms % 1000);
|
|
timed_out = true;
|
|
break;
|
|
}
|
|
}
|
|
rq_unlock_irqrestore(rq, &rf);
|
|
|
|
return timed_out;
|
|
}
|
|
|
|
static void scx_watchdog_workfn(struct work_struct *work)
|
|
{
|
|
int cpu;
|
|
|
|
WRITE_ONCE(scx_watchdog_timestamp, jiffies);
|
|
|
|
for_each_online_cpu(cpu) {
|
|
if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
|
|
break;
|
|
|
|
cond_resched();
|
|
}
|
|
queue_delayed_work(system_unbound_wq, to_delayed_work(work),
|
|
scx_watchdog_timeout / 2);
|
|
}
|
|
|
|
void scx_tick(struct rq *rq)
|
|
{
|
|
unsigned long last_check;
|
|
|
|
if (!scx_enabled())
|
|
return;
|
|
|
|
last_check = READ_ONCE(scx_watchdog_timestamp);
|
|
if (unlikely(time_after(jiffies,
|
|
last_check + READ_ONCE(scx_watchdog_timeout)))) {
|
|
u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
|
|
|
|
scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
|
|
"watchdog failed to check in for %u.%03us",
|
|
dur_ms / 1000, dur_ms % 1000);
|
|
}
|
|
|
|
update_other_load_avgs(rq);
|
|
}
|
|
|
|
static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
|
|
{
|
|
update_curr_scx(rq);
|
|
|
|
/*
|
|
* While disabling, always resched and refresh core-sched timestamp as
|
|
* we can't trust the slice management or ops.core_sched_before().
|
|
*/
|
|
if (scx_rq_bypassing(rq)) {
|
|
curr->scx.slice = 0;
|
|
touch_core_sched(rq, curr);
|
|
} else if (SCX_HAS_OP(tick)) {
|
|
SCX_CALL_OP(SCX_KF_REST, tick, curr);
|
|
}
|
|
|
|
if (!curr->scx.slice)
|
|
resched_curr(rq);
|
|
}
|
|
|
|
#ifdef CONFIG_EXT_GROUP_SCHED
|
|
static struct cgroup *tg_cgrp(struct task_group *tg)
|
|
{
|
|
/*
|
|
* If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
|
|
* @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
|
|
* root cgroup.
|
|
*/
|
|
if (tg && tg->css.cgroup)
|
|
return tg->css.cgroup;
|
|
else
|
|
return &cgrp_dfl_root.cgrp;
|
|
}
|
|
|
|
#define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg),
|
|
|
|
#else /* CONFIG_EXT_GROUP_SCHED */
|
|
|
|
#define SCX_INIT_TASK_ARGS_CGROUP(tg)
|
|
|
|
#endif /* CONFIG_EXT_GROUP_SCHED */
|
|
|
|
static enum scx_task_state scx_get_task_state(const struct task_struct *p)
|
|
{
|
|
return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
|
|
}
|
|
|
|
static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
|
|
{
|
|
enum scx_task_state prev_state = scx_get_task_state(p);
|
|
bool warn = false;
|
|
|
|
BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
|
|
|
|
switch (state) {
|
|
case SCX_TASK_NONE:
|
|
break;
|
|
case SCX_TASK_INIT:
|
|
warn = prev_state != SCX_TASK_NONE;
|
|
break;
|
|
case SCX_TASK_READY:
|
|
warn = prev_state == SCX_TASK_NONE;
|
|
break;
|
|
case SCX_TASK_ENABLED:
|
|
warn = prev_state != SCX_TASK_READY;
|
|
break;
|
|
default:
|
|
warn = true;
|
|
return;
|
|
}
|
|
|
|
WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
|
|
prev_state, state, p->comm, p->pid);
|
|
|
|
p->scx.flags &= ~SCX_TASK_STATE_MASK;
|
|
p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
|
|
}
|
|
|
|
static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
|
|
{
|
|
int ret;
|
|
|
|
p->scx.disallow = false;
|
|
|
|
if (SCX_HAS_OP(init_task)) {
|
|
struct scx_init_task_args args = {
|
|
SCX_INIT_TASK_ARGS_CGROUP(tg)
|
|
.fork = fork,
|
|
};
|
|
|
|
ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args);
|
|
if (unlikely(ret)) {
|
|
ret = ops_sanitize_err("init_task", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
scx_set_task_state(p, SCX_TASK_INIT);
|
|
|
|
if (p->scx.disallow) {
|
|
if (!fork) {
|
|
struct rq *rq;
|
|
struct rq_flags rf;
|
|
|
|
rq = task_rq_lock(p, &rf);
|
|
|
|
/*
|
|
* We're in the load path and @p->policy will be applied
|
|
* right after. Reverting @p->policy here and rejecting
|
|
* %SCHED_EXT transitions from scx_check_setscheduler()
|
|
* guarantees that if ops.init_task() sets @p->disallow,
|
|
* @p can never be in SCX.
|
|
*/
|
|
if (p->policy == SCHED_EXT) {
|
|
p->policy = SCHED_NORMAL;
|
|
atomic_long_inc(&scx_nr_rejected);
|
|
}
|
|
|
|
task_rq_unlock(rq, p, &rf);
|
|
} else if (p->policy == SCHED_EXT) {
|
|
scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
|
|
p->comm, p->pid);
|
|
}
|
|
}
|
|
|
|
p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
|
|
return 0;
|
|
}
|
|
|
|
static void scx_ops_enable_task(struct task_struct *p)
|
|
{
|
|
u32 weight;
|
|
|
|
lockdep_assert_rq_held(task_rq(p));
|
|
|
|
/*
|
|
* Set the weight before calling ops.enable() so that the scheduler
|
|
* doesn't see a stale value if they inspect the task struct.
|
|
*/
|
|
if (task_has_idle_policy(p))
|
|
weight = WEIGHT_IDLEPRIO;
|
|
else
|
|
weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
|
|
|
|
p->scx.weight = sched_weight_to_cgroup(weight);
|
|
|
|
if (SCX_HAS_OP(enable))
|
|
SCX_CALL_OP_TASK(SCX_KF_REST, enable, p);
|
|
scx_set_task_state(p, SCX_TASK_ENABLED);
|
|
|
|
if (SCX_HAS_OP(set_weight))
|
|
SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
|
|
}
|
|
|
|
static void scx_ops_disable_task(struct task_struct *p)
|
|
{
|
|
lockdep_assert_rq_held(task_rq(p));
|
|
WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
|
|
|
|
if (SCX_HAS_OP(disable))
|
|
SCX_CALL_OP(SCX_KF_REST, disable, p);
|
|
scx_set_task_state(p, SCX_TASK_READY);
|
|
}
|
|
|
|
static void scx_ops_exit_task(struct task_struct *p)
|
|
{
|
|
struct scx_exit_task_args args = {
|
|
.cancelled = false,
|
|
};
|
|
|
|
lockdep_assert_rq_held(task_rq(p));
|
|
|
|
switch (scx_get_task_state(p)) {
|
|
case SCX_TASK_NONE:
|
|
return;
|
|
case SCX_TASK_INIT:
|
|
args.cancelled = true;
|
|
break;
|
|
case SCX_TASK_READY:
|
|
break;
|
|
case SCX_TASK_ENABLED:
|
|
scx_ops_disable_task(p);
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(true);
|
|
return;
|
|
}
|
|
|
|
if (SCX_HAS_OP(exit_task))
|
|
SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args);
|
|
scx_set_task_state(p, SCX_TASK_NONE);
|
|
}
|
|
|
|
void init_scx_entity(struct sched_ext_entity *scx)
|
|
{
|
|
/*
|
|
* init_idle() calls this function again after fork sequence is
|
|
* complete. Don't touch ->tasks_node as it's already linked.
|
|
*/
|
|
memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node));
|
|
|
|
INIT_LIST_HEAD(&scx->dsq_list.node);
|
|
RB_CLEAR_NODE(&scx->dsq_priq);
|
|
scx->sticky_cpu = -1;
|
|
scx->holding_cpu = -1;
|
|
INIT_LIST_HEAD(&scx->runnable_node);
|
|
scx->runnable_at = jiffies;
|
|
scx->ddsp_dsq_id = SCX_DSQ_INVALID;
|
|
scx->slice = SCX_SLICE_DFL;
|
|
}
|
|
|
|
void scx_pre_fork(struct task_struct *p)
|
|
{
|
|
/*
|
|
* BPF scheduler enable/disable paths want to be able to iterate and
|
|
* update all tasks which can become complex when racing forks. As
|
|
* enable/disable are very cold paths, let's use a percpu_rwsem to
|
|
* exclude forks.
|
|
*/
|
|
percpu_down_read(&scx_fork_rwsem);
|
|
}
|
|
|
|
int scx_fork(struct task_struct *p)
|
|
{
|
|
percpu_rwsem_assert_held(&scx_fork_rwsem);
|
|
|
|
if (scx_enabled())
|
|
return scx_ops_init_task(p, task_group(p), true);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
void scx_post_fork(struct task_struct *p)
|
|
{
|
|
if (scx_enabled()) {
|
|
scx_set_task_state(p, SCX_TASK_READY);
|
|
|
|
/*
|
|
* Enable the task immediately if it's running on sched_ext.
|
|
* Otherwise, it'll be enabled in switching_to_scx() if and
|
|
* when it's ever configured to run with a SCHED_EXT policy.
|
|
*/
|
|
if (p->sched_class == &ext_sched_class) {
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
|
|
rq = task_rq_lock(p, &rf);
|
|
scx_ops_enable_task(p);
|
|
task_rq_unlock(rq, p, &rf);
|
|
}
|
|
}
|
|
|
|
spin_lock_irq(&scx_tasks_lock);
|
|
list_add_tail(&p->scx.tasks_node, &scx_tasks);
|
|
spin_unlock_irq(&scx_tasks_lock);
|
|
|
|
percpu_up_read(&scx_fork_rwsem);
|
|
}
|
|
|
|
void scx_cancel_fork(struct task_struct *p)
|
|
{
|
|
if (scx_enabled()) {
|
|
struct rq *rq;
|
|
struct rq_flags rf;
|
|
|
|
rq = task_rq_lock(p, &rf);
|
|
WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
|
|
scx_ops_exit_task(p);
|
|
task_rq_unlock(rq, p, &rf);
|
|
}
|
|
|
|
percpu_up_read(&scx_fork_rwsem);
|
|
}
|
|
|
|
void sched_ext_free(struct task_struct *p)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&scx_tasks_lock, flags);
|
|
list_del_init(&p->scx.tasks_node);
|
|
spin_unlock_irqrestore(&scx_tasks_lock, flags);
|
|
|
|
/*
|
|
* @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
|
|
* ENABLED transitions can't race us. Disable ops for @p.
|
|
*/
|
|
if (scx_get_task_state(p) != SCX_TASK_NONE) {
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
|
|
rq = task_rq_lock(p, &rf);
|
|
scx_ops_exit_task(p);
|
|
task_rq_unlock(rq, p, &rf);
|
|
}
|
|
}
|
|
|
|
static void reweight_task_scx(struct rq *rq, struct task_struct *p,
|
|
const struct load_weight *lw)
|
|
{
|
|
lockdep_assert_rq_held(task_rq(p));
|
|
|
|
p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
|
|
if (SCX_HAS_OP(set_weight))
|
|
SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
|
|
}
|
|
|
|
static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
|
|
{
|
|
}
|
|
|
|
static void switching_to_scx(struct rq *rq, struct task_struct *p)
|
|
{
|
|
scx_ops_enable_task(p);
|
|
|
|
/*
|
|
* set_cpus_allowed_scx() is not called while @p is associated with a
|
|
* different scheduler class. Keep the BPF scheduler up-to-date.
|
|
*/
|
|
if (SCX_HAS_OP(set_cpumask))
|
|
SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
|
|
(struct cpumask *)p->cpus_ptr);
|
|
}
|
|
|
|
static void switched_from_scx(struct rq *rq, struct task_struct *p)
|
|
{
|
|
scx_ops_disable_task(p);
|
|
}
|
|
|
|
static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
|
|
static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
|
|
|
|
int scx_check_setscheduler(struct task_struct *p, int policy)
|
|
{
|
|
lockdep_assert_rq_held(task_rq(p));
|
|
|
|
/* if disallow, reject transitioning into SCX */
|
|
if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
|
|
p->policy != policy && policy == SCHED_EXT)
|
|
return -EACCES;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
bool scx_can_stop_tick(struct rq *rq)
|
|
{
|
|
struct task_struct *p = rq->curr;
|
|
|
|
if (scx_rq_bypassing(rq))
|
|
return false;
|
|
|
|
if (p->sched_class != &ext_sched_class)
|
|
return true;
|
|
|
|
/*
|
|
* @rq can dispatch from different DSQs, so we can't tell whether it
|
|
* needs the tick or not by looking at nr_running. Allow stopping ticks
|
|
* iff the BPF scheduler indicated so. See set_next_task_scx().
|
|
*/
|
|
return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_EXT_GROUP_SCHED
|
|
|
|
DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem);
|
|
static bool cgroup_warned_missing_weight;
|
|
static bool cgroup_warned_missing_idle;
|
|
|
|
static void scx_cgroup_warn_missing_weight(struct task_group *tg)
|
|
{
|
|
if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
|
|
cgroup_warned_missing_weight)
|
|
return;
|
|
|
|
if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent)
|
|
return;
|
|
|
|
pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n",
|
|
scx_ops.name);
|
|
cgroup_warned_missing_weight = true;
|
|
}
|
|
|
|
static void scx_cgroup_warn_missing_idle(struct task_group *tg)
|
|
{
|
|
if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
|
|
cgroup_warned_missing_idle)
|
|
return;
|
|
|
|
if (!tg->idle)
|
|
return;
|
|
|
|
pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n",
|
|
scx_ops.name);
|
|
cgroup_warned_missing_idle = true;
|
|
}
|
|
|
|
int scx_tg_online(struct task_group *tg)
|
|
{
|
|
int ret = 0;
|
|
|
|
WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED));
|
|
|
|
percpu_down_read(&scx_cgroup_rwsem);
|
|
|
|
scx_cgroup_warn_missing_weight(tg);
|
|
|
|
if (SCX_HAS_OP(cgroup_init)) {
|
|
struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
|
|
|
|
ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
|
|
tg->css.cgroup, &args);
|
|
if (!ret)
|
|
tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED;
|
|
else
|
|
ret = ops_sanitize_err("cgroup_init", ret);
|
|
} else {
|
|
tg->scx_flags |= SCX_TG_ONLINE;
|
|
}
|
|
|
|
percpu_up_read(&scx_cgroup_rwsem);
|
|
return ret;
|
|
}
|
|
|
|
void scx_tg_offline(struct task_group *tg)
|
|
{
|
|
WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE));
|
|
|
|
percpu_down_read(&scx_cgroup_rwsem);
|
|
|
|
if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED))
|
|
SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup);
|
|
tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
|
|
|
|
percpu_up_read(&scx_cgroup_rwsem);
|
|
}
|
|
|
|
int scx_cgroup_can_attach(struct cgroup_taskset *tset)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
struct task_struct *p;
|
|
int ret;
|
|
|
|
/* released in scx_finish/cancel_attach() */
|
|
percpu_down_read(&scx_cgroup_rwsem);
|
|
|
|
if (!scx_enabled())
|
|
return 0;
|
|
|
|
cgroup_taskset_for_each(p, css, tset) {
|
|
struct cgroup *from = tg_cgrp(task_group(p));
|
|
struct cgroup *to = tg_cgrp(css_tg(css));
|
|
|
|
WARN_ON_ONCE(p->scx.cgrp_moving_from);
|
|
|
|
/*
|
|
* sched_move_task() omits identity migrations. Let's match the
|
|
* behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
|
|
* always match one-to-one.
|
|
*/
|
|
if (from == to)
|
|
continue;
|
|
|
|
if (SCX_HAS_OP(cgroup_prep_move)) {
|
|
ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move,
|
|
p, from, css->cgroup);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
p->scx.cgrp_moving_from = from;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
cgroup_taskset_for_each(p, css, tset) {
|
|
if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
|
|
SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
|
|
p->scx.cgrp_moving_from, css->cgroup);
|
|
p->scx.cgrp_moving_from = NULL;
|
|
}
|
|
|
|
percpu_up_read(&scx_cgroup_rwsem);
|
|
return ops_sanitize_err("cgroup_prep_move", ret);
|
|
}
|
|
|
|
void scx_move_task(struct task_struct *p)
|
|
{
|
|
if (!scx_enabled())
|
|
return;
|
|
|
|
/*
|
|
* We're called from sched_move_task() which handles both cgroup and
|
|
* autogroup moves. Ignore the latter.
|
|
*
|
|
* Also ignore exiting tasks, because in the exit path tasks transition
|
|
* from the autogroup to the root group, so task_group_is_autogroup()
|
|
* alone isn't able to catch exiting autogroup tasks. This is safe for
|
|
* cgroup_move(), because cgroup migrations never happen for PF_EXITING
|
|
* tasks.
|
|
*/
|
|
if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING))
|
|
return;
|
|
|
|
/*
|
|
* @p must have ops.cgroup_prep_move() called on it and thus
|
|
* cgrp_moving_from set.
|
|
*/
|
|
if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
|
|
SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p,
|
|
p->scx.cgrp_moving_from, tg_cgrp(task_group(p)));
|
|
p->scx.cgrp_moving_from = NULL;
|
|
}
|
|
|
|
void scx_cgroup_finish_attach(void)
|
|
{
|
|
percpu_up_read(&scx_cgroup_rwsem);
|
|
}
|
|
|
|
void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
struct task_struct *p;
|
|
|
|
if (!scx_enabled())
|
|
goto out_unlock;
|
|
|
|
cgroup_taskset_for_each(p, css, tset) {
|
|
if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
|
|
SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
|
|
p->scx.cgrp_moving_from, css->cgroup);
|
|
p->scx.cgrp_moving_from = NULL;
|
|
}
|
|
out_unlock:
|
|
percpu_up_read(&scx_cgroup_rwsem);
|
|
}
|
|
|
|
void scx_group_set_weight(struct task_group *tg, unsigned long weight)
|
|
{
|
|
percpu_down_read(&scx_cgroup_rwsem);
|
|
|
|
if (tg->scx_weight != weight) {
|
|
if (SCX_HAS_OP(cgroup_set_weight))
|
|
SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight,
|
|
tg_cgrp(tg), weight);
|
|
tg->scx_weight = weight;
|
|
}
|
|
|
|
percpu_up_read(&scx_cgroup_rwsem);
|
|
}
|
|
|
|
void scx_group_set_idle(struct task_group *tg, bool idle)
|
|
{
|
|
percpu_down_read(&scx_cgroup_rwsem);
|
|
scx_cgroup_warn_missing_idle(tg);
|
|
percpu_up_read(&scx_cgroup_rwsem);
|
|
}
|
|
|
|
static void scx_cgroup_lock(void)
|
|
{
|
|
percpu_down_write(&scx_cgroup_rwsem);
|
|
}
|
|
|
|
static void scx_cgroup_unlock(void)
|
|
{
|
|
percpu_up_write(&scx_cgroup_rwsem);
|
|
}
|
|
|
|
#else /* CONFIG_EXT_GROUP_SCHED */
|
|
|
|
static inline void scx_cgroup_lock(void) {}
|
|
static inline void scx_cgroup_unlock(void) {}
|
|
|
|
#endif /* CONFIG_EXT_GROUP_SCHED */
|
|
|
|
/*
|
|
* Omitted operations:
|
|
*
|
|
* - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
|
|
* isn't tied to the CPU at that point. Preemption is implemented by resetting
|
|
* the victim task's slice to 0 and triggering reschedule on the target CPU.
|
|
*
|
|
* - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
|
|
*
|
|
* - task_fork/dead: We need fork/dead notifications for all tasks regardless of
|
|
* their current sched_class. Call them directly from sched core instead.
|
|
*/
|
|
DEFINE_SCHED_CLASS(ext) = {
|
|
.enqueue_task = enqueue_task_scx,
|
|
.dequeue_task = dequeue_task_scx,
|
|
.yield_task = yield_task_scx,
|
|
.yield_to_task = yield_to_task_scx,
|
|
|
|
.wakeup_preempt = wakeup_preempt_scx,
|
|
|
|
.balance = balance_scx,
|
|
.pick_task = pick_task_scx,
|
|
|
|
.put_prev_task = put_prev_task_scx,
|
|
.set_next_task = set_next_task_scx,
|
|
|
|
#ifdef CONFIG_SMP
|
|
.select_task_rq = select_task_rq_scx,
|
|
.task_woken = task_woken_scx,
|
|
.set_cpus_allowed = set_cpus_allowed_scx,
|
|
|
|
.rq_online = rq_online_scx,
|
|
.rq_offline = rq_offline_scx,
|
|
#endif
|
|
|
|
.task_tick = task_tick_scx,
|
|
|
|
.switching_to = switching_to_scx,
|
|
.switched_from = switched_from_scx,
|
|
.switched_to = switched_to_scx,
|
|
.reweight_task = reweight_task_scx,
|
|
.prio_changed = prio_changed_scx,
|
|
|
|
.update_curr = update_curr_scx,
|
|
|
|
#ifdef CONFIG_UCLAMP_TASK
|
|
.uclamp_enabled = 1,
|
|
#endif
|
|
};
|
|
|
|
static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
|
|
{
|
|
memset(dsq, 0, sizeof(*dsq));
|
|
|
|
raw_spin_lock_init(&dsq->lock);
|
|
INIT_LIST_HEAD(&dsq->list);
|
|
dsq->id = dsq_id;
|
|
}
|
|
|
|
static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
|
|
{
|
|
struct scx_dispatch_q *dsq;
|
|
int ret;
|
|
|
|
if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
|
|
if (!dsq)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
init_dsq(dsq, dsq_id);
|
|
|
|
ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node,
|
|
dsq_hash_params);
|
|
if (ret) {
|
|
kfree(dsq);
|
|
return ERR_PTR(ret);
|
|
}
|
|
return dsq;
|
|
}
|
|
|
|
static void free_dsq_irq_workfn(struct irq_work *irq_work)
|
|
{
|
|
struct llist_node *to_free = llist_del_all(&dsqs_to_free);
|
|
struct scx_dispatch_q *dsq, *tmp_dsq;
|
|
|
|
llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
|
|
kfree_rcu(dsq, rcu);
|
|
}
|
|
|
|
static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
|
|
|
|
static void destroy_dsq(u64 dsq_id)
|
|
{
|
|
struct scx_dispatch_q *dsq;
|
|
unsigned long flags;
|
|
|
|
rcu_read_lock();
|
|
|
|
dsq = find_user_dsq(dsq_id);
|
|
if (!dsq)
|
|
goto out_unlock_rcu;
|
|
|
|
raw_spin_lock_irqsave(&dsq->lock, flags);
|
|
|
|
if (dsq->nr) {
|
|
scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
|
|
dsq->id, dsq->nr);
|
|
goto out_unlock_dsq;
|
|
}
|
|
|
|
if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
|
|
goto out_unlock_dsq;
|
|
|
|
/*
|
|
* Mark dead by invalidating ->id to prevent dispatch_enqueue() from
|
|
* queueing more tasks. As this function can be called from anywhere,
|
|
* freeing is bounced through an irq work to avoid nesting RCU
|
|
* operations inside scheduler locks.
|
|
*/
|
|
dsq->id = SCX_DSQ_INVALID;
|
|
llist_add(&dsq->free_node, &dsqs_to_free);
|
|
irq_work_queue(&free_dsq_irq_work);
|
|
|
|
out_unlock_dsq:
|
|
raw_spin_unlock_irqrestore(&dsq->lock, flags);
|
|
out_unlock_rcu:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
#ifdef CONFIG_EXT_GROUP_SCHED
|
|
static void scx_cgroup_exit(void)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
|
|
percpu_rwsem_assert_held(&scx_cgroup_rwsem);
|
|
|
|
/*
|
|
* scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk
|
|
* cgroups and exit all the inited ones, all online cgroups are exited.
|
|
*/
|
|
rcu_read_lock();
|
|
css_for_each_descendant_post(css, &root_task_group.css) {
|
|
struct task_group *tg = css_tg(css);
|
|
|
|
if (!(tg->scx_flags & SCX_TG_INITED))
|
|
continue;
|
|
tg->scx_flags &= ~SCX_TG_INITED;
|
|
|
|
if (!scx_ops.cgroup_exit)
|
|
continue;
|
|
|
|
if (WARN_ON_ONCE(!css_tryget(css)))
|
|
continue;
|
|
rcu_read_unlock();
|
|
|
|
SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup);
|
|
|
|
rcu_read_lock();
|
|
css_put(css);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static int scx_cgroup_init(void)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
int ret;
|
|
|
|
percpu_rwsem_assert_held(&scx_cgroup_rwsem);
|
|
|
|
cgroup_warned_missing_weight = false;
|
|
cgroup_warned_missing_idle = false;
|
|
|
|
/*
|
|
* scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk
|
|
* cgroups and init, all online cgroups are initialized.
|
|
*/
|
|
rcu_read_lock();
|
|
css_for_each_descendant_pre(css, &root_task_group.css) {
|
|
struct task_group *tg = css_tg(css);
|
|
struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
|
|
|
|
scx_cgroup_warn_missing_weight(tg);
|
|
scx_cgroup_warn_missing_idle(tg);
|
|
|
|
if ((tg->scx_flags &
|
|
(SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
|
|
continue;
|
|
|
|
if (!scx_ops.cgroup_init) {
|
|
tg->scx_flags |= SCX_TG_INITED;
|
|
continue;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(!css_tryget(css)))
|
|
continue;
|
|
rcu_read_unlock();
|
|
|
|
ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
|
|
css->cgroup, &args);
|
|
if (ret) {
|
|
css_put(css);
|
|
return ret;
|
|
}
|
|
tg->scx_flags |= SCX_TG_INITED;
|
|
|
|
rcu_read_lock();
|
|
css_put(css);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
static void scx_cgroup_exit(void) {}
|
|
static int scx_cgroup_init(void) { return 0; }
|
|
#endif
|
|
|
|
|
|
/********************************************************************************
|
|
* Sysfs interface and ops enable/disable.
|
|
*/
|
|
|
|
#define SCX_ATTR(_name) \
|
|
static struct kobj_attribute scx_attr_##_name = { \
|
|
.attr = { .name = __stringify(_name), .mode = 0444 }, \
|
|
.show = scx_attr_##_name##_show, \
|
|
}
|
|
|
|
static ssize_t scx_attr_state_show(struct kobject *kobj,
|
|
struct kobj_attribute *ka, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%s\n",
|
|
scx_ops_enable_state_str[scx_ops_enable_state()]);
|
|
}
|
|
SCX_ATTR(state);
|
|
|
|
static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
|
|
struct kobj_attribute *ka, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
|
|
}
|
|
SCX_ATTR(switch_all);
|
|
|
|
static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
|
|
struct kobj_attribute *ka, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
|
|
}
|
|
SCX_ATTR(nr_rejected);
|
|
|
|
static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
|
|
struct kobj_attribute *ka, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
|
|
}
|
|
SCX_ATTR(hotplug_seq);
|
|
|
|
static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
|
|
struct kobj_attribute *ka, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
|
|
}
|
|
SCX_ATTR(enable_seq);
|
|
|
|
static struct attribute *scx_global_attrs[] = {
|
|
&scx_attr_state.attr,
|
|
&scx_attr_switch_all.attr,
|
|
&scx_attr_nr_rejected.attr,
|
|
&scx_attr_hotplug_seq.attr,
|
|
&scx_attr_enable_seq.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group scx_global_attr_group = {
|
|
.attrs = scx_global_attrs,
|
|
};
|
|
|
|
static void scx_kobj_release(struct kobject *kobj)
|
|
{
|
|
kfree(kobj);
|
|
}
|
|
|
|
static ssize_t scx_attr_ops_show(struct kobject *kobj,
|
|
struct kobj_attribute *ka, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%s\n", scx_ops.name);
|
|
}
|
|
SCX_ATTR(ops);
|
|
|
|
static struct attribute *scx_sched_attrs[] = {
|
|
&scx_attr_ops.attr,
|
|
NULL,
|
|
};
|
|
ATTRIBUTE_GROUPS(scx_sched);
|
|
|
|
static const struct kobj_type scx_ktype = {
|
|
.release = scx_kobj_release,
|
|
.sysfs_ops = &kobj_sysfs_ops,
|
|
.default_groups = scx_sched_groups,
|
|
};
|
|
|
|
static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
|
|
{
|
|
return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
|
|
}
|
|
|
|
static const struct kset_uevent_ops scx_uevent_ops = {
|
|
.uevent = scx_uevent,
|
|
};
|
|
|
|
/*
|
|
* Used by sched_fork() and __setscheduler_prio() to pick the matching
|
|
* sched_class. dl/rt are already handled.
|
|
*/
|
|
bool task_should_scx(struct task_struct *p)
|
|
{
|
|
if (!scx_enabled() ||
|
|
unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
|
|
return false;
|
|
if (READ_ONCE(scx_switching_all))
|
|
return true;
|
|
return p->policy == SCHED_EXT;
|
|
}
|
|
|
|
/**
|
|
* scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
|
|
*
|
|
* Bypassing guarantees that all runnable tasks make forward progress without
|
|
* trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
|
|
* be held by tasks that the BPF scheduler is forgetting to run, which
|
|
* unfortunately also excludes toggling the static branches.
|
|
*
|
|
* Let's work around by overriding a couple ops and modifying behaviors based on
|
|
* the DISABLING state and then cycling the queued tasks through dequeue/enqueue
|
|
* to force global FIFO scheduling.
|
|
*
|
|
* a. ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
|
|
* %SCX_OPS_ENQ_LAST is also ignored.
|
|
*
|
|
* b. ops.dispatch() is ignored.
|
|
*
|
|
* c. balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
|
|
* can't be trusted. Whenever a tick triggers, the running task is rotated to
|
|
* the tail of the queue with core_sched_at touched.
|
|
*
|
|
* d. pick_next_task() suppresses zero slice warning.
|
|
*
|
|
* e. scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
|
|
* operations.
|
|
*
|
|
* f. scx_prio_less() reverts to the default core_sched_at order.
|
|
*/
|
|
static void scx_ops_bypass(bool bypass)
|
|
{
|
|
int depth, cpu;
|
|
|
|
if (bypass) {
|
|
depth = atomic_inc_return(&scx_ops_bypass_depth);
|
|
WARN_ON_ONCE(depth <= 0);
|
|
if (depth != 1)
|
|
return;
|
|
} else {
|
|
depth = atomic_dec_return(&scx_ops_bypass_depth);
|
|
WARN_ON_ONCE(depth < 0);
|
|
if (depth != 0)
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* No task property is changing. We just need to make sure all currently
|
|
* queued tasks are re-queued according to the new scx_rq_bypassing()
|
|
* state. As an optimization, walk each rq's runnable_list instead of
|
|
* the scx_tasks list.
|
|
*
|
|
* This function can't trust the scheduler and thus can't use
|
|
* cpus_read_lock(). Walk all possible CPUs instead of online.
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
struct rq *rq = cpu_rq(cpu);
|
|
struct rq_flags rf;
|
|
struct task_struct *p, *n;
|
|
|
|
rq_lock_irqsave(rq, &rf);
|
|
|
|
if (bypass) {
|
|
WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
|
|
rq->scx.flags |= SCX_RQ_BYPASSING;
|
|
} else {
|
|
WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
|
|
rq->scx.flags &= ~SCX_RQ_BYPASSING;
|
|
}
|
|
|
|
/*
|
|
* We need to guarantee that no tasks are on the BPF scheduler
|
|
* while bypassing. Either we see enabled or the enable path
|
|
* sees scx_rq_bypassing() before moving tasks to SCX.
|
|
*/
|
|
if (!scx_enabled()) {
|
|
rq_unlock_irqrestore(rq, &rf);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The use of list_for_each_entry_safe_reverse() is required
|
|
* because each task is going to be removed from and added back
|
|
* to the runnable_list during iteration. Because they're added
|
|
* to the tail of the list, safe reverse iteration can still
|
|
* visit all nodes.
|
|
*/
|
|
list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
|
|
scx.runnable_node) {
|
|
struct sched_enq_and_set_ctx ctx;
|
|
|
|
/* cycling deq/enq is enough, see the function comment */
|
|
sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
|
|
sched_enq_and_set_task(&ctx);
|
|
}
|
|
|
|
rq_unlock_irqrestore(rq, &rf);
|
|
|
|
/* kick to restore ticks */
|
|
resched_cpu(cpu);
|
|
}
|
|
}
|
|
|
|
static void free_exit_info(struct scx_exit_info *ei)
|
|
{
|
|
kfree(ei->dump);
|
|
kfree(ei->msg);
|
|
kfree(ei->bt);
|
|
kfree(ei);
|
|
}
|
|
|
|
static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
|
|
{
|
|
struct scx_exit_info *ei;
|
|
|
|
ei = kzalloc(sizeof(*ei), GFP_KERNEL);
|
|
if (!ei)
|
|
return NULL;
|
|
|
|
ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
|
|
ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
|
|
ei->dump = kzalloc(exit_dump_len, GFP_KERNEL);
|
|
|
|
if (!ei->bt || !ei->msg || !ei->dump) {
|
|
free_exit_info(ei);
|
|
return NULL;
|
|
}
|
|
|
|
return ei;
|
|
}
|
|
|
|
static const char *scx_exit_reason(enum scx_exit_kind kind)
|
|
{
|
|
switch (kind) {
|
|
case SCX_EXIT_UNREG:
|
|
return "unregistered from user space";
|
|
case SCX_EXIT_UNREG_BPF:
|
|
return "unregistered from BPF";
|
|
case SCX_EXIT_UNREG_KERN:
|
|
return "unregistered from the main kernel";
|
|
case SCX_EXIT_SYSRQ:
|
|
return "disabled by sysrq-S";
|
|
case SCX_EXIT_ERROR:
|
|
return "runtime error";
|
|
case SCX_EXIT_ERROR_BPF:
|
|
return "scx_bpf_error";
|
|
case SCX_EXIT_ERROR_STALL:
|
|
return "runnable task stall";
|
|
default:
|
|
return "<UNKNOWN>";
|
|
}
|
|
}
|
|
|
|
static void scx_ops_disable_workfn(struct kthread_work *work)
|
|
{
|
|
struct scx_exit_info *ei = scx_exit_info;
|
|
struct scx_task_iter sti;
|
|
struct task_struct *p;
|
|
struct rhashtable_iter rht_iter;
|
|
struct scx_dispatch_q *dsq;
|
|
int i, kind;
|
|
|
|
kind = atomic_read(&scx_exit_kind);
|
|
while (true) {
|
|
/*
|
|
* NONE indicates that a new scx_ops has been registered since
|
|
* disable was scheduled - don't kill the new ops. DONE
|
|
* indicates that the ops has already been disabled.
|
|
*/
|
|
if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
|
|
return;
|
|
if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
|
|
break;
|
|
}
|
|
ei->kind = kind;
|
|
ei->reason = scx_exit_reason(ei->kind);
|
|
|
|
/* guarantee forward progress by bypassing scx_ops */
|
|
scx_ops_bypass(true);
|
|
|
|
switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
|
|
case SCX_OPS_DISABLING:
|
|
WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
|
|
break;
|
|
case SCX_OPS_DISABLED:
|
|
pr_warn("sched_ext: ops error detected without ops (%s)\n",
|
|
scx_exit_info->msg);
|
|
WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
|
|
SCX_OPS_DISABLING);
|
|
goto done;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Here, every runnable task is guaranteed to make forward progress and
|
|
* we can safely use blocking synchronization constructs. Actually
|
|
* disable ops.
|
|
*/
|
|
mutex_lock(&scx_ops_enable_mutex);
|
|
|
|
static_branch_disable(&__scx_switched_all);
|
|
WRITE_ONCE(scx_switching_all, false);
|
|
|
|
/*
|
|
* Avoid racing against fork and cgroup changes. See scx_ops_enable()
|
|
* for explanation on the locking order.
|
|
*/
|
|
percpu_down_write(&scx_fork_rwsem);
|
|
cpus_read_lock();
|
|
scx_cgroup_lock();
|
|
|
|
spin_lock_irq(&scx_tasks_lock);
|
|
scx_task_iter_init(&sti);
|
|
/*
|
|
* The BPF scheduler is going away. All tasks including %TASK_DEAD ones
|
|
* must be switched out and exited synchronously.
|
|
*/
|
|
while ((p = scx_task_iter_next_locked(&sti))) {
|
|
const struct sched_class *old_class = p->sched_class;
|
|
struct sched_enq_and_set_ctx ctx;
|
|
|
|
sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
|
|
|
|
p->scx.slice = min_t(u64, p->scx.slice, SCX_SLICE_DFL);
|
|
__setscheduler_prio(p, p->prio);
|
|
check_class_changing(task_rq(p), p, old_class);
|
|
|
|
sched_enq_and_set_task(&ctx);
|
|
|
|
check_class_changed(task_rq(p), p, old_class, p->prio);
|
|
scx_ops_exit_task(p);
|
|
}
|
|
scx_task_iter_exit(&sti);
|
|
spin_unlock_irq(&scx_tasks_lock);
|
|
|
|
/* no task is on scx, turn off all the switches and flush in-progress calls */
|
|
static_branch_disable_cpuslocked(&__scx_ops_enabled);
|
|
for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
|
|
static_branch_disable_cpuslocked(&scx_has_op[i]);
|
|
static_branch_disable_cpuslocked(&scx_ops_enq_last);
|
|
static_branch_disable_cpuslocked(&scx_ops_enq_exiting);
|
|
static_branch_disable_cpuslocked(&scx_ops_cpu_preempt);
|
|
static_branch_disable_cpuslocked(&scx_builtin_idle_enabled);
|
|
synchronize_rcu();
|
|
|
|
scx_cgroup_exit();
|
|
|
|
scx_cgroup_unlock();
|
|
cpus_read_unlock();
|
|
percpu_up_write(&scx_fork_rwsem);
|
|
|
|
if (ei->kind >= SCX_EXIT_ERROR) {
|
|
pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
|
|
scx_ops.name, ei->reason);
|
|
|
|
if (ei->msg[0] != '\0')
|
|
pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg);
|
|
#ifdef CONFIG_STACKTRACE
|
|
stack_trace_print(ei->bt, ei->bt_len, 2);
|
|
#endif
|
|
} else {
|
|
pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
|
|
scx_ops.name, ei->reason);
|
|
}
|
|
|
|
if (scx_ops.exit)
|
|
SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
|
|
|
|
cancel_delayed_work_sync(&scx_watchdog_work);
|
|
|
|
/*
|
|
* Delete the kobject from the hierarchy eagerly in addition to just
|
|
* dropping a reference. Otherwise, if the object is deleted
|
|
* asynchronously, sysfs could observe an object of the same name still
|
|
* in the hierarchy when another scheduler is loaded.
|
|
*/
|
|
kobject_del(scx_root_kobj);
|
|
kobject_put(scx_root_kobj);
|
|
scx_root_kobj = NULL;
|
|
|
|
memset(&scx_ops, 0, sizeof(scx_ops));
|
|
|
|
rhashtable_walk_enter(&dsq_hash, &rht_iter);
|
|
do {
|
|
rhashtable_walk_start(&rht_iter);
|
|
|
|
while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
|
|
destroy_dsq(dsq->id);
|
|
|
|
rhashtable_walk_stop(&rht_iter);
|
|
} while (dsq == ERR_PTR(-EAGAIN));
|
|
rhashtable_walk_exit(&rht_iter);
|
|
|
|
free_percpu(scx_dsp_ctx);
|
|
scx_dsp_ctx = NULL;
|
|
scx_dsp_max_batch = 0;
|
|
|
|
free_exit_info(scx_exit_info);
|
|
scx_exit_info = NULL;
|
|
|
|
mutex_unlock(&scx_ops_enable_mutex);
|
|
|
|
WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
|
|
SCX_OPS_DISABLING);
|
|
done:
|
|
scx_ops_bypass(false);
|
|
}
|
|
|
|
static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
|
|
|
|
static void schedule_scx_ops_disable_work(void)
|
|
{
|
|
struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
|
|
|
|
/*
|
|
* We may be called spuriously before the first bpf_sched_ext_reg(). If
|
|
* scx_ops_helper isn't set up yet, there's nothing to do.
|
|
*/
|
|
if (helper)
|
|
kthread_queue_work(helper, &scx_ops_disable_work);
|
|
}
|
|
|
|
static void scx_ops_disable(enum scx_exit_kind kind)
|
|
{
|
|
int none = SCX_EXIT_NONE;
|
|
|
|
if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
|
|
kind = SCX_EXIT_ERROR;
|
|
|
|
atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
|
|
|
|
schedule_scx_ops_disable_work();
|
|
}
|
|
|
|
static void dump_newline(struct seq_buf *s)
|
|
{
|
|
trace_sched_ext_dump("");
|
|
|
|
/* @s may be zero sized and seq_buf triggers WARN if so */
|
|
if (s->size)
|
|
seq_buf_putc(s, '\n');
|
|
}
|
|
|
|
static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
|
|
#ifdef CONFIG_TRACEPOINTS
|
|
if (trace_sched_ext_dump_enabled()) {
|
|
/* protected by scx_dump_state()::dump_lock */
|
|
static char line_buf[SCX_EXIT_MSG_LEN];
|
|
|
|
va_start(args, fmt);
|
|
vscnprintf(line_buf, sizeof(line_buf), fmt, args);
|
|
va_end(args);
|
|
|
|
trace_sched_ext_dump(line_buf);
|
|
}
|
|
#endif
|
|
/* @s may be zero sized and seq_buf triggers WARN if so */
|
|
if (s->size) {
|
|
va_start(args, fmt);
|
|
seq_buf_vprintf(s, fmt, args);
|
|
va_end(args);
|
|
|
|
seq_buf_putc(s, '\n');
|
|
}
|
|
}
|
|
|
|
static void dump_stack_trace(struct seq_buf *s, const char *prefix,
|
|
const unsigned long *bt, unsigned int len)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
dump_line(s, "%s%pS", prefix, (void *)bt[i]);
|
|
}
|
|
|
|
static void ops_dump_init(struct seq_buf *s, const char *prefix)
|
|
{
|
|
struct scx_dump_data *dd = &scx_dump_data;
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */
|
|
dd->first = true;
|
|
dd->cursor = 0;
|
|
dd->s = s;
|
|
dd->prefix = prefix;
|
|
}
|
|
|
|
static void ops_dump_flush(void)
|
|
{
|
|
struct scx_dump_data *dd = &scx_dump_data;
|
|
char *line = dd->buf.line;
|
|
|
|
if (!dd->cursor)
|
|
return;
|
|
|
|
/*
|
|
* There's something to flush and this is the first line. Insert a blank
|
|
* line to distinguish ops dump.
|
|
*/
|
|
if (dd->first) {
|
|
dump_newline(dd->s);
|
|
dd->first = false;
|
|
}
|
|
|
|
/*
|
|
* There may be multiple lines in $line. Scan and emit each line
|
|
* separately.
|
|
*/
|
|
while (true) {
|
|
char *end = line;
|
|
char c;
|
|
|
|
while (*end != '\n' && *end != '\0')
|
|
end++;
|
|
|
|
/*
|
|
* If $line overflowed, it may not have newline at the end.
|
|
* Always emit with a newline.
|
|
*/
|
|
c = *end;
|
|
*end = '\0';
|
|
dump_line(dd->s, "%s%s", dd->prefix, line);
|
|
if (c == '\0')
|
|
break;
|
|
|
|
/* move to the next line */
|
|
end++;
|
|
if (*end == '\0')
|
|
break;
|
|
line = end;
|
|
}
|
|
|
|
dd->cursor = 0;
|
|
}
|
|
|
|
static void ops_dump_exit(void)
|
|
{
|
|
ops_dump_flush();
|
|
scx_dump_data.cpu = -1;
|
|
}
|
|
|
|
static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
|
|
struct task_struct *p, char marker)
|
|
{
|
|
static unsigned long bt[SCX_EXIT_BT_LEN];
|
|
char dsq_id_buf[19] = "(n/a)";
|
|
unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
|
|
unsigned int bt_len = 0;
|
|
|
|
if (p->scx.dsq)
|
|
scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
|
|
(unsigned long long)p->scx.dsq->id);
|
|
|
|
dump_newline(s);
|
|
dump_line(s, " %c%c %s[%d] %+ldms",
|
|
marker, task_state_to_char(p), p->comm, p->pid,
|
|
jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
|
|
dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
|
|
scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
|
|
p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
|
|
ops_state >> SCX_OPSS_QSEQ_SHIFT);
|
|
dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu",
|
|
p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf,
|
|
p->scx.dsq_vtime);
|
|
dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr));
|
|
|
|
if (SCX_HAS_OP(dump_task)) {
|
|
ops_dump_init(s, " ");
|
|
SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p);
|
|
ops_dump_exit();
|
|
}
|
|
|
|
#ifdef CONFIG_STACKTRACE
|
|
bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
|
|
#endif
|
|
if (bt_len) {
|
|
dump_newline(s);
|
|
dump_stack_trace(s, " ", bt, bt_len);
|
|
}
|
|
}
|
|
|
|
static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
|
|
{
|
|
static DEFINE_SPINLOCK(dump_lock);
|
|
static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
|
|
struct scx_dump_ctx dctx = {
|
|
.kind = ei->kind,
|
|
.exit_code = ei->exit_code,
|
|
.reason = ei->reason,
|
|
.at_ns = ktime_get_ns(),
|
|
.at_jiffies = jiffies,
|
|
};
|
|
struct seq_buf s;
|
|
unsigned long flags;
|
|
char *buf;
|
|
int cpu;
|
|
|
|
spin_lock_irqsave(&dump_lock, flags);
|
|
|
|
seq_buf_init(&s, ei->dump, dump_len);
|
|
|
|
if (ei->kind == SCX_EXIT_NONE) {
|
|
dump_line(&s, "Debug dump triggered by %s", ei->reason);
|
|
} else {
|
|
dump_line(&s, "%s[%d] triggered exit kind %d:",
|
|
current->comm, current->pid, ei->kind);
|
|
dump_line(&s, " %s (%s)", ei->reason, ei->msg);
|
|
dump_newline(&s);
|
|
dump_line(&s, "Backtrace:");
|
|
dump_stack_trace(&s, " ", ei->bt, ei->bt_len);
|
|
}
|
|
|
|
if (SCX_HAS_OP(dump)) {
|
|
ops_dump_init(&s, "");
|
|
SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx);
|
|
ops_dump_exit();
|
|
}
|
|
|
|
dump_newline(&s);
|
|
dump_line(&s, "CPU states");
|
|
dump_line(&s, "----------");
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct rq *rq = cpu_rq(cpu);
|
|
struct rq_flags rf;
|
|
struct task_struct *p;
|
|
struct seq_buf ns;
|
|
size_t avail, used;
|
|
bool idle;
|
|
|
|
rq_lock(rq, &rf);
|
|
|
|
idle = list_empty(&rq->scx.runnable_list) &&
|
|
rq->curr->sched_class == &idle_sched_class;
|
|
|
|
if (idle && !SCX_HAS_OP(dump_cpu))
|
|
goto next;
|
|
|
|
/*
|
|
* We don't yet know whether ops.dump_cpu() will produce output
|
|
* and we may want to skip the default CPU dump if it doesn't.
|
|
* Use a nested seq_buf to generate the standard dump so that we
|
|
* can decide whether to commit later.
|
|
*/
|
|
avail = seq_buf_get_buf(&s, &buf);
|
|
seq_buf_init(&ns, buf, avail);
|
|
|
|
dump_newline(&ns);
|
|
dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
|
|
cpu, rq->scx.nr_running, rq->scx.flags,
|
|
rq->scx.cpu_released, rq->scx.ops_qseq,
|
|
rq->scx.pnt_seq);
|
|
dump_line(&ns, " curr=%s[%d] class=%ps",
|
|
rq->curr->comm, rq->curr->pid,
|
|
rq->curr->sched_class);
|
|
if (!cpumask_empty(rq->scx.cpus_to_kick))
|
|
dump_line(&ns, " cpus_to_kick : %*pb",
|
|
cpumask_pr_args(rq->scx.cpus_to_kick));
|
|
if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
|
|
dump_line(&ns, " idle_to_kick : %*pb",
|
|
cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
|
|
if (!cpumask_empty(rq->scx.cpus_to_preempt))
|
|
dump_line(&ns, " cpus_to_preempt: %*pb",
|
|
cpumask_pr_args(rq->scx.cpus_to_preempt));
|
|
if (!cpumask_empty(rq->scx.cpus_to_wait))
|
|
dump_line(&ns, " cpus_to_wait : %*pb",
|
|
cpumask_pr_args(rq->scx.cpus_to_wait));
|
|
|
|
used = seq_buf_used(&ns);
|
|
if (SCX_HAS_OP(dump_cpu)) {
|
|
ops_dump_init(&ns, " ");
|
|
SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle);
|
|
ops_dump_exit();
|
|
}
|
|
|
|
/*
|
|
* If idle && nothing generated by ops.dump_cpu(), there's
|
|
* nothing interesting. Skip.
|
|
*/
|
|
if (idle && used == seq_buf_used(&ns))
|
|
goto next;
|
|
|
|
/*
|
|
* $s may already have overflowed when $ns was created. If so,
|
|
* calling commit on it will trigger BUG.
|
|
*/
|
|
if (avail) {
|
|
seq_buf_commit(&s, seq_buf_used(&ns));
|
|
if (seq_buf_has_overflowed(&ns))
|
|
seq_buf_set_overflow(&s);
|
|
}
|
|
|
|
if (rq->curr->sched_class == &ext_sched_class)
|
|
scx_dump_task(&s, &dctx, rq->curr, '*');
|
|
|
|
list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
|
|
scx_dump_task(&s, &dctx, p, ' ');
|
|
next:
|
|
rq_unlock(rq, &rf);
|
|
}
|
|
|
|
if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
|
|
memcpy(ei->dump + dump_len - sizeof(trunc_marker),
|
|
trunc_marker, sizeof(trunc_marker));
|
|
|
|
spin_unlock_irqrestore(&dump_lock, flags);
|
|
}
|
|
|
|
static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
|
|
{
|
|
struct scx_exit_info *ei = scx_exit_info;
|
|
|
|
if (ei->kind >= SCX_EXIT_ERROR)
|
|
scx_dump_state(ei, scx_ops.exit_dump_len);
|
|
|
|
schedule_scx_ops_disable_work();
|
|
}
|
|
|
|
static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
|
|
|
|
static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
|
|
s64 exit_code,
|
|
const char *fmt, ...)
|
|
{
|
|
struct scx_exit_info *ei = scx_exit_info;
|
|
int none = SCX_EXIT_NONE;
|
|
va_list args;
|
|
|
|
if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
|
|
return;
|
|
|
|
ei->exit_code = exit_code;
|
|
#ifdef CONFIG_STACKTRACE
|
|
if (kind >= SCX_EXIT_ERROR)
|
|
ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
|
|
#endif
|
|
va_start(args, fmt);
|
|
vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
|
|
va_end(args);
|
|
|
|
/*
|
|
* Set ei->kind and ->reason for scx_dump_state(). They'll be set again
|
|
* in scx_ops_disable_workfn().
|
|
*/
|
|
ei->kind = kind;
|
|
ei->reason = scx_exit_reason(ei->kind);
|
|
|
|
irq_work_queue(&scx_ops_error_irq_work);
|
|
}
|
|
|
|
static struct kthread_worker *scx_create_rt_helper(const char *name)
|
|
{
|
|
struct kthread_worker *helper;
|
|
|
|
helper = kthread_create_worker(0, name);
|
|
if (helper)
|
|
sched_set_fifo(helper->task);
|
|
return helper;
|
|
}
|
|
|
|
static void check_hotplug_seq(const struct sched_ext_ops *ops)
|
|
{
|
|
unsigned long long global_hotplug_seq;
|
|
|
|
/*
|
|
* If a hotplug event has occurred between when a scheduler was
|
|
* initialized, and when we were able to attach, exit and notify user
|
|
* space about it.
|
|
*/
|
|
if (ops->hotplug_seq) {
|
|
global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
|
|
if (ops->hotplug_seq != global_hotplug_seq) {
|
|
scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
|
|
"expected hotplug seq %llu did not match actual %llu",
|
|
ops->hotplug_seq, global_hotplug_seq);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int validate_ops(const struct sched_ext_ops *ops)
|
|
{
|
|
/*
|
|
* It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
|
|
* ops.enqueue() callback isn't implemented.
|
|
*/
|
|
if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
|
|
scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
|
|
{
|
|
struct scx_task_iter sti;
|
|
struct task_struct *p;
|
|
unsigned long timeout;
|
|
int i, cpu, ret;
|
|
|
|
if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
|
|
cpu_possible_mask)) {
|
|
pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation");
|
|
return -EINVAL;
|
|
}
|
|
|
|
mutex_lock(&scx_ops_enable_mutex);
|
|
|
|
if (!scx_ops_helper) {
|
|
WRITE_ONCE(scx_ops_helper,
|
|
scx_create_rt_helper("sched_ext_ops_helper"));
|
|
if (!scx_ops_helper) {
|
|
ret = -ENOMEM;
|
|
goto err_unlock;
|
|
}
|
|
}
|
|
|
|
if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
|
|
ret = -EBUSY;
|
|
goto err_unlock;
|
|
}
|
|
|
|
scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
|
|
if (!scx_root_kobj) {
|
|
ret = -ENOMEM;
|
|
goto err_unlock;
|
|
}
|
|
|
|
scx_root_kobj->kset = scx_kset;
|
|
ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
scx_exit_info = alloc_exit_info(ops->exit_dump_len);
|
|
if (!scx_exit_info) {
|
|
ret = -ENOMEM;
|
|
goto err_del;
|
|
}
|
|
|
|
/*
|
|
* Set scx_ops, transition to PREPPING and clear exit info to arm the
|
|
* disable path. Failure triggers full disabling from here on.
|
|
*/
|
|
scx_ops = *ops;
|
|
|
|
WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_PREPPING) !=
|
|
SCX_OPS_DISABLED);
|
|
|
|
atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
|
|
scx_warned_zero_slice = false;
|
|
|
|
atomic_long_set(&scx_nr_rejected, 0);
|
|
|
|
for_each_possible_cpu(cpu)
|
|
cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
|
|
|
|
/*
|
|
* Keep CPUs stable during enable so that the BPF scheduler can track
|
|
* online CPUs by watching ->on/offline_cpu() after ->init().
|
|
*/
|
|
cpus_read_lock();
|
|
|
|
if (scx_ops.init) {
|
|
ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init);
|
|
if (ret) {
|
|
ret = ops_sanitize_err("init", ret);
|
|
goto err_disable_unlock_cpus;
|
|
}
|
|
}
|
|
|
|
for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
|
|
if (((void (**)(void))ops)[i])
|
|
static_branch_enable_cpuslocked(&scx_has_op[i]);
|
|
|
|
cpus_read_unlock();
|
|
|
|
ret = validate_ops(ops);
|
|
if (ret)
|
|
goto err_disable;
|
|
|
|
WARN_ON_ONCE(scx_dsp_ctx);
|
|
scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
|
|
scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
|
|
scx_dsp_max_batch),
|
|
__alignof__(struct scx_dsp_ctx));
|
|
if (!scx_dsp_ctx) {
|
|
ret = -ENOMEM;
|
|
goto err_disable;
|
|
}
|
|
|
|
if (ops->timeout_ms)
|
|
timeout = msecs_to_jiffies(ops->timeout_ms);
|
|
else
|
|
timeout = SCX_WATCHDOG_MAX_TIMEOUT;
|
|
|
|
WRITE_ONCE(scx_watchdog_timeout, timeout);
|
|
WRITE_ONCE(scx_watchdog_timestamp, jiffies);
|
|
queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
|
|
scx_watchdog_timeout / 2);
|
|
|
|
/*
|
|
* Lock out forks, cgroup on/offlining and moves before opening the
|
|
* floodgate so that they don't wander into the operations prematurely.
|
|
*
|
|
* We don't need to keep the CPUs stable but static_branch_*() requires
|
|
* cpus_read_lock() and scx_cgroup_rwsem must nest inside
|
|
* cpu_hotplug_lock because of the following dependency chain:
|
|
*
|
|
* cpu_hotplug_lock --> cgroup_threadgroup_rwsem --> scx_cgroup_rwsem
|
|
*
|
|
* So, we need to do cpus_read_lock() before scx_cgroup_lock() and use
|
|
* static_branch_*_cpuslocked().
|
|
*
|
|
* Note that cpu_hotplug_lock must nest inside scx_fork_rwsem due to the
|
|
* following dependency chain:
|
|
*
|
|
* scx_fork_rwsem --> pernet_ops_rwsem --> cpu_hotplug_lock
|
|
*/
|
|
percpu_down_write(&scx_fork_rwsem);
|
|
cpus_read_lock();
|
|
scx_cgroup_lock();
|
|
|
|
check_hotplug_seq(ops);
|
|
|
|
for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
|
|
if (((void (**)(void))ops)[i])
|
|
static_branch_enable_cpuslocked(&scx_has_op[i]);
|
|
|
|
if (ops->flags & SCX_OPS_ENQ_LAST)
|
|
static_branch_enable_cpuslocked(&scx_ops_enq_last);
|
|
|
|
if (ops->flags & SCX_OPS_ENQ_EXITING)
|
|
static_branch_enable_cpuslocked(&scx_ops_enq_exiting);
|
|
if (scx_ops.cpu_acquire || scx_ops.cpu_release)
|
|
static_branch_enable_cpuslocked(&scx_ops_cpu_preempt);
|
|
|
|
if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
|
|
reset_idle_masks();
|
|
static_branch_enable_cpuslocked(&scx_builtin_idle_enabled);
|
|
} else {
|
|
static_branch_disable_cpuslocked(&scx_builtin_idle_enabled);
|
|
}
|
|
|
|
/*
|
|
* All cgroups should be initialized before letting in tasks. cgroup
|
|
* on/offlining and task migrations are already locked out.
|
|
*/
|
|
ret = scx_cgroup_init();
|
|
if (ret)
|
|
goto err_disable_unlock_all;
|
|
|
|
static_branch_enable_cpuslocked(&__scx_ops_enabled);
|
|
|
|
/*
|
|
* Enable ops for every task. Fork is excluded by scx_fork_rwsem
|
|
* preventing new tasks from being added. No need to exclude tasks
|
|
* leaving as sched_ext_free() can handle both prepped and enabled
|
|
* tasks. Prep all tasks first and then enable them with preemption
|
|
* disabled.
|
|
*/
|
|
spin_lock_irq(&scx_tasks_lock);
|
|
|
|
scx_task_iter_init(&sti);
|
|
while ((p = scx_task_iter_next_locked(&sti))) {
|
|
/*
|
|
* @p may already be dead, have lost all its usages counts and
|
|
* be waiting for RCU grace period before being freed. @p can't
|
|
* be initialized for SCX in such cases and should be ignored.
|
|
*/
|
|
if (!tryget_task_struct(p))
|
|
continue;
|
|
|
|
scx_task_iter_rq_unlock(&sti);
|
|
spin_unlock_irq(&scx_tasks_lock);
|
|
|
|
ret = scx_ops_init_task(p, task_group(p), false);
|
|
if (ret) {
|
|
put_task_struct(p);
|
|
spin_lock_irq(&scx_tasks_lock);
|
|
scx_task_iter_exit(&sti);
|
|
spin_unlock_irq(&scx_tasks_lock);
|
|
pr_err("sched_ext: ops.init_task() failed (%d) for %s[%d] while loading\n",
|
|
ret, p->comm, p->pid);
|
|
goto err_disable_unlock_all;
|
|
}
|
|
|
|
put_task_struct(p);
|
|
spin_lock_irq(&scx_tasks_lock);
|
|
}
|
|
scx_task_iter_exit(&sti);
|
|
|
|
/*
|
|
* All tasks are prepped but are still ops-disabled. Ensure that
|
|
* %current can't be scheduled out and switch everyone.
|
|
* preempt_disable() is necessary because we can't guarantee that
|
|
* %current won't be starved if scheduled out while switching.
|
|
*/
|
|
preempt_disable();
|
|
|
|
/*
|
|
* From here on, the disable path must assume that tasks have ops
|
|
* enabled and need to be recovered.
|
|
*
|
|
* Transition to ENABLING fails iff the BPF scheduler has already
|
|
* triggered scx_bpf_error(). Returning an error code here would lose
|
|
* the recorded error information. Exit indicating success so that the
|
|
* error is notified through ops.exit() with all the details.
|
|
*/
|
|
if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLING, SCX_OPS_PREPPING)) {
|
|
preempt_enable();
|
|
spin_unlock_irq(&scx_tasks_lock);
|
|
WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
|
|
ret = 0;
|
|
goto err_disable_unlock_all;
|
|
}
|
|
|
|
/*
|
|
* We're fully committed and can't fail. The PREPPED -> ENABLED
|
|
* transitions here are synchronized against sched_ext_free() through
|
|
* scx_tasks_lock.
|
|
*/
|
|
WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
|
|
|
|
scx_task_iter_init(&sti);
|
|
while ((p = scx_task_iter_next_locked(&sti))) {
|
|
const struct sched_class *old_class = p->sched_class;
|
|
struct sched_enq_and_set_ctx ctx;
|
|
|
|
sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
|
|
|
|
scx_set_task_state(p, SCX_TASK_READY);
|
|
__setscheduler_prio(p, p->prio);
|
|
check_class_changing(task_rq(p), p, old_class);
|
|
|
|
sched_enq_and_set_task(&ctx);
|
|
|
|
check_class_changed(task_rq(p), p, old_class, p->prio);
|
|
}
|
|
scx_task_iter_exit(&sti);
|
|
|
|
spin_unlock_irq(&scx_tasks_lock);
|
|
preempt_enable();
|
|
scx_cgroup_unlock();
|
|
cpus_read_unlock();
|
|
percpu_up_write(&scx_fork_rwsem);
|
|
|
|
/* see above ENABLING transition for the explanation on exiting with 0 */
|
|
if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
|
|
WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
|
|
ret = 0;
|
|
goto err_disable;
|
|
}
|
|
|
|
if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
|
|
static_branch_enable(&__scx_switched_all);
|
|
|
|
pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
|
|
scx_ops.name, scx_switched_all() ? "" : " (partial)");
|
|
kobject_uevent(scx_root_kobj, KOBJ_ADD);
|
|
mutex_unlock(&scx_ops_enable_mutex);
|
|
|
|
atomic_long_inc(&scx_enable_seq);
|
|
|
|
return 0;
|
|
|
|
err_del:
|
|
kobject_del(scx_root_kobj);
|
|
err:
|
|
kobject_put(scx_root_kobj);
|
|
scx_root_kobj = NULL;
|
|
if (scx_exit_info) {
|
|
free_exit_info(scx_exit_info);
|
|
scx_exit_info = NULL;
|
|
}
|
|
err_unlock:
|
|
mutex_unlock(&scx_ops_enable_mutex);
|
|
return ret;
|
|
|
|
err_disable_unlock_all:
|
|
scx_cgroup_unlock();
|
|
percpu_up_write(&scx_fork_rwsem);
|
|
err_disable_unlock_cpus:
|
|
cpus_read_unlock();
|
|
err_disable:
|
|
mutex_unlock(&scx_ops_enable_mutex);
|
|
/* must be fully disabled before returning */
|
|
scx_ops_disable(SCX_EXIT_ERROR);
|
|
kthread_flush_work(&scx_ops_disable_work);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/********************************************************************************
|
|
* bpf_struct_ops plumbing.
|
|
*/
|
|
#include <linux/bpf_verifier.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/btf.h>
|
|
|
|
extern struct btf *btf_vmlinux;
|
|
static const struct btf_type *task_struct_type;
|
|
static u32 task_struct_type_id;
|
|
|
|
static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size,
|
|
enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
struct btf *btf = bpf_get_btf_vmlinux();
|
|
const struct bpf_struct_ops_desc *st_ops_desc;
|
|
const struct btf_member *member;
|
|
const struct btf_type *t;
|
|
u32 btf_id, member_idx;
|
|
const char *mname;
|
|
|
|
/* struct_ops op args are all sequential, 64-bit numbers */
|
|
if (off != arg_n * sizeof(__u64))
|
|
return false;
|
|
|
|
/* btf_id should be the type id of struct sched_ext_ops */
|
|
btf_id = prog->aux->attach_btf_id;
|
|
st_ops_desc = bpf_struct_ops_find(btf, btf_id);
|
|
if (!st_ops_desc)
|
|
return false;
|
|
|
|
/* BTF type of struct sched_ext_ops */
|
|
t = st_ops_desc->type;
|
|
|
|
member_idx = prog->expected_attach_type;
|
|
if (member_idx >= btf_type_vlen(t))
|
|
return false;
|
|
|
|
/*
|
|
* Get the member name of this struct_ops program, which corresponds to
|
|
* a field in struct sched_ext_ops. For example, the member name of the
|
|
* dispatch struct_ops program (callback) is "dispatch".
|
|
*/
|
|
member = &btf_type_member(t)[member_idx];
|
|
mname = btf_name_by_offset(btf_vmlinux, member->name_off);
|
|
|
|
if (!strcmp(mname, op)) {
|
|
/*
|
|
* The value is a pointer to a type (struct task_struct) given
|
|
* by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED),
|
|
* however, can be a NULL (PTR_MAYBE_NULL). The BPF program
|
|
* should check the pointer to make sure it is not NULL before
|
|
* using it, or the verifier will reject the program.
|
|
*
|
|
* Longer term, this is something that should be addressed by
|
|
* BTF, and be fully contained within the verifier.
|
|
*/
|
|
info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED;
|
|
info->btf = btf_vmlinux;
|
|
info->btf_id = task_struct_type_id;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool bpf_scx_is_valid_access(int off, int size,
|
|
enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
if (type != BPF_READ)
|
|
return false;
|
|
if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) ||
|
|
set_arg_maybe_null("yield", 1, off, size, type, prog, info))
|
|
return true;
|
|
if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
|
|
return false;
|
|
if (off % size != 0)
|
|
return false;
|
|
|
|
return btf_ctx_access(off, size, type, prog, info);
|
|
}
|
|
|
|
static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
|
|
const struct bpf_reg_state *reg, int off,
|
|
int size)
|
|
{
|
|
const struct btf_type *t;
|
|
|
|
t = btf_type_by_id(reg->btf, reg->btf_id);
|
|
if (t == task_struct_type) {
|
|
if (off >= offsetof(struct task_struct, scx.slice) &&
|
|
off + size <= offsetofend(struct task_struct, scx.slice))
|
|
return SCALAR_VALUE;
|
|
if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
|
|
off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
|
|
return SCALAR_VALUE;
|
|
if (off >= offsetof(struct task_struct, scx.disallow) &&
|
|
off + size <= offsetofend(struct task_struct, scx.disallow))
|
|
return SCALAR_VALUE;
|
|
}
|
|
|
|
return -EACCES;
|
|
}
|
|
|
|
static const struct bpf_func_proto *
|
|
bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_task_storage_get:
|
|
return &bpf_task_storage_get_proto;
|
|
case BPF_FUNC_task_storage_delete:
|
|
return &bpf_task_storage_delete_proto;
|
|
default:
|
|
return bpf_base_func_proto(func_id, prog);
|
|
}
|
|
}
|
|
|
|
static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
|
|
.get_func_proto = bpf_scx_get_func_proto,
|
|
.is_valid_access = bpf_scx_is_valid_access,
|
|
.btf_struct_access = bpf_scx_btf_struct_access,
|
|
};
|
|
|
|
static int bpf_scx_init_member(const struct btf_type *t,
|
|
const struct btf_member *member,
|
|
void *kdata, const void *udata)
|
|
{
|
|
const struct sched_ext_ops *uops = udata;
|
|
struct sched_ext_ops *ops = kdata;
|
|
u32 moff = __btf_member_bit_offset(t, member) / 8;
|
|
int ret;
|
|
|
|
switch (moff) {
|
|
case offsetof(struct sched_ext_ops, dispatch_max_batch):
|
|
if (*(u32 *)(udata + moff) > INT_MAX)
|
|
return -E2BIG;
|
|
ops->dispatch_max_batch = *(u32 *)(udata + moff);
|
|
return 1;
|
|
case offsetof(struct sched_ext_ops, flags):
|
|
if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
|
|
return -EINVAL;
|
|
ops->flags = *(u64 *)(udata + moff);
|
|
return 1;
|
|
case offsetof(struct sched_ext_ops, name):
|
|
ret = bpf_obj_name_cpy(ops->name, uops->name,
|
|
sizeof(ops->name));
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret == 0)
|
|
return -EINVAL;
|
|
return 1;
|
|
case offsetof(struct sched_ext_ops, timeout_ms):
|
|
if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
|
|
SCX_WATCHDOG_MAX_TIMEOUT)
|
|
return -E2BIG;
|
|
ops->timeout_ms = *(u32 *)(udata + moff);
|
|
return 1;
|
|
case offsetof(struct sched_ext_ops, exit_dump_len):
|
|
ops->exit_dump_len =
|
|
*(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
|
|
return 1;
|
|
case offsetof(struct sched_ext_ops, hotplug_seq):
|
|
ops->hotplug_seq = *(u64 *)(udata + moff);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bpf_scx_check_member(const struct btf_type *t,
|
|
const struct btf_member *member,
|
|
const struct bpf_prog *prog)
|
|
{
|
|
u32 moff = __btf_member_bit_offset(t, member) / 8;
|
|
|
|
switch (moff) {
|
|
case offsetof(struct sched_ext_ops, init_task):
|
|
#ifdef CONFIG_EXT_GROUP_SCHED
|
|
case offsetof(struct sched_ext_ops, cgroup_init):
|
|
case offsetof(struct sched_ext_ops, cgroup_exit):
|
|
case offsetof(struct sched_ext_ops, cgroup_prep_move):
|
|
#endif
|
|
case offsetof(struct sched_ext_ops, cpu_online):
|
|
case offsetof(struct sched_ext_ops, cpu_offline):
|
|
case offsetof(struct sched_ext_ops, init):
|
|
case offsetof(struct sched_ext_ops, exit):
|
|
break;
|
|
default:
|
|
if (prog->sleepable)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bpf_scx_reg(void *kdata, struct bpf_link *link)
|
|
{
|
|
return scx_ops_enable(kdata, link);
|
|
}
|
|
|
|
static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
|
|
{
|
|
scx_ops_disable(SCX_EXIT_UNREG);
|
|
kthread_flush_work(&scx_ops_disable_work);
|
|
}
|
|
|
|
static int bpf_scx_init(struct btf *btf)
|
|
{
|
|
s32 type_id;
|
|
|
|
type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT);
|
|
if (type_id < 0)
|
|
return -EINVAL;
|
|
task_struct_type = btf_type_by_id(btf, type_id);
|
|
task_struct_type_id = type_id;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
|
|
{
|
|
/*
|
|
* sched_ext does not support updating the actively-loaded BPF
|
|
* scheduler, as registering a BPF scheduler can always fail if the
|
|
* scheduler returns an error code for e.g. ops.init(), ops.init_task(),
|
|
* etc. Similarly, we can always race with unregistration happening
|
|
* elsewhere, such as with sysrq.
|
|
*/
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int bpf_scx_validate(void *kdata)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
|
|
static void enqueue_stub(struct task_struct *p, u64 enq_flags) {}
|
|
static void dequeue_stub(struct task_struct *p, u64 enq_flags) {}
|
|
static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {}
|
|
static void tick_stub(struct task_struct *p) {}
|
|
static void runnable_stub(struct task_struct *p, u64 enq_flags) {}
|
|
static void running_stub(struct task_struct *p) {}
|
|
static void stopping_stub(struct task_struct *p, bool runnable) {}
|
|
static void quiescent_stub(struct task_struct *p, u64 deq_flags) {}
|
|
static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; }
|
|
static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; }
|
|
static void set_weight_stub(struct task_struct *p, u32 weight) {}
|
|
static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {}
|
|
static void update_idle_stub(s32 cpu, bool idle) {}
|
|
static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {}
|
|
static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {}
|
|
static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
|
|
static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {}
|
|
static void enable_stub(struct task_struct *p) {}
|
|
static void disable_stub(struct task_struct *p) {}
|
|
#ifdef CONFIG_EXT_GROUP_SCHED
|
|
static s32 cgroup_init_stub(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
|
|
static void cgroup_exit_stub(struct cgroup *cgrp) {}
|
|
static s32 cgroup_prep_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
|
|
static void cgroup_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
|
|
static void cgroup_cancel_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
|
|
static void cgroup_set_weight_stub(struct cgroup *cgrp, u32 weight) {}
|
|
#endif
|
|
static void cpu_online_stub(s32 cpu) {}
|
|
static void cpu_offline_stub(s32 cpu) {}
|
|
static s32 init_stub(void) { return -EINVAL; }
|
|
static void exit_stub(struct scx_exit_info *info) {}
|
|
static void dump_stub(struct scx_dump_ctx *ctx) {}
|
|
static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
|
|
static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {}
|
|
|
|
static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
|
|
.select_cpu = select_cpu_stub,
|
|
.enqueue = enqueue_stub,
|
|
.dequeue = dequeue_stub,
|
|
.dispatch = dispatch_stub,
|
|
.tick = tick_stub,
|
|
.runnable = runnable_stub,
|
|
.running = running_stub,
|
|
.stopping = stopping_stub,
|
|
.quiescent = quiescent_stub,
|
|
.yield = yield_stub,
|
|
.core_sched_before = core_sched_before_stub,
|
|
.set_weight = set_weight_stub,
|
|
.set_cpumask = set_cpumask_stub,
|
|
.update_idle = update_idle_stub,
|
|
.cpu_acquire = cpu_acquire_stub,
|
|
.cpu_release = cpu_release_stub,
|
|
.init_task = init_task_stub,
|
|
.exit_task = exit_task_stub,
|
|
.enable = enable_stub,
|
|
.disable = disable_stub,
|
|
#ifdef CONFIG_EXT_GROUP_SCHED
|
|
.cgroup_init = cgroup_init_stub,
|
|
.cgroup_exit = cgroup_exit_stub,
|
|
.cgroup_prep_move = cgroup_prep_move_stub,
|
|
.cgroup_move = cgroup_move_stub,
|
|
.cgroup_cancel_move = cgroup_cancel_move_stub,
|
|
.cgroup_set_weight = cgroup_set_weight_stub,
|
|
#endif
|
|
.cpu_online = cpu_online_stub,
|
|
.cpu_offline = cpu_offline_stub,
|
|
.init = init_stub,
|
|
.exit = exit_stub,
|
|
.dump = dump_stub,
|
|
.dump_cpu = dump_cpu_stub,
|
|
.dump_task = dump_task_stub,
|
|
};
|
|
|
|
static struct bpf_struct_ops bpf_sched_ext_ops = {
|
|
.verifier_ops = &bpf_scx_verifier_ops,
|
|
.reg = bpf_scx_reg,
|
|
.unreg = bpf_scx_unreg,
|
|
.check_member = bpf_scx_check_member,
|
|
.init_member = bpf_scx_init_member,
|
|
.init = bpf_scx_init,
|
|
.update = bpf_scx_update,
|
|
.validate = bpf_scx_validate,
|
|
.name = "sched_ext_ops",
|
|
.owner = THIS_MODULE,
|
|
.cfi_stubs = &__bpf_ops_sched_ext_ops
|
|
};
|
|
|
|
|
|
/********************************************************************************
|
|
* System integration and init.
|
|
*/
|
|
|
|
static void sysrq_handle_sched_ext_reset(u8 key)
|
|
{
|
|
if (scx_ops_helper)
|
|
scx_ops_disable(SCX_EXIT_SYSRQ);
|
|
else
|
|
pr_info("sched_ext: BPF scheduler not yet used\n");
|
|
}
|
|
|
|
static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
|
|
.handler = sysrq_handle_sched_ext_reset,
|
|
.help_msg = "reset-sched-ext(S)",
|
|
.action_msg = "Disable sched_ext and revert all tasks to CFS",
|
|
.enable_mask = SYSRQ_ENABLE_RTNICE,
|
|
};
|
|
|
|
static void sysrq_handle_sched_ext_dump(u8 key)
|
|
{
|
|
struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
|
|
|
|
if (scx_enabled())
|
|
scx_dump_state(&ei, 0);
|
|
}
|
|
|
|
static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
|
|
.handler = sysrq_handle_sched_ext_dump,
|
|
.help_msg = "dump-sched-ext(D)",
|
|
.action_msg = "Trigger sched_ext debug dump",
|
|
.enable_mask = SYSRQ_ENABLE_RTNICE,
|
|
};
|
|
|
|
static bool can_skip_idle_kick(struct rq *rq)
|
|
{
|
|
lockdep_assert_rq_held(rq);
|
|
|
|
/*
|
|
* We can skip idle kicking if @rq is going to go through at least one
|
|
* full SCX scheduling cycle before going idle. Just checking whether
|
|
* curr is not idle is insufficient because we could be racing
|
|
* balance_one() trying to pull the next task from a remote rq, which
|
|
* may fail, and @rq may become idle afterwards.
|
|
*
|
|
* The race window is small and we don't and can't guarantee that @rq is
|
|
* only kicked while idle anyway. Skip only when sure.
|
|
*/
|
|
return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
|
|
}
|
|
|
|
static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
struct scx_rq *this_scx = &this_rq->scx;
|
|
bool should_wait = false;
|
|
unsigned long flags;
|
|
|
|
raw_spin_rq_lock_irqsave(rq, flags);
|
|
|
|
/*
|
|
* During CPU hotplug, a CPU may depend on kicking itself to make
|
|
* forward progress. Allow kicking self regardless of online state.
|
|
*/
|
|
if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
|
|
if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
|
|
if (rq->curr->sched_class == &ext_sched_class)
|
|
rq->curr->scx.slice = 0;
|
|
cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
|
|
}
|
|
|
|
if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
|
|
pseqs[cpu] = rq->scx.pnt_seq;
|
|
should_wait = true;
|
|
}
|
|
|
|
resched_curr(rq);
|
|
} else {
|
|
cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
|
|
cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
|
|
}
|
|
|
|
raw_spin_rq_unlock_irqrestore(rq, flags);
|
|
|
|
return should_wait;
|
|
}
|
|
|
|
static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long flags;
|
|
|
|
raw_spin_rq_lock_irqsave(rq, flags);
|
|
|
|
if (!can_skip_idle_kick(rq) &&
|
|
(cpu_online(cpu) || cpu == cpu_of(this_rq)))
|
|
resched_curr(rq);
|
|
|
|
raw_spin_rq_unlock_irqrestore(rq, flags);
|
|
}
|
|
|
|
static void kick_cpus_irq_workfn(struct irq_work *irq_work)
|
|
{
|
|
struct rq *this_rq = this_rq();
|
|
struct scx_rq *this_scx = &this_rq->scx;
|
|
unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
|
|
bool should_wait = false;
|
|
s32 cpu;
|
|
|
|
for_each_cpu(cpu, this_scx->cpus_to_kick) {
|
|
should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
|
|
cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
|
|
cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
|
|
}
|
|
|
|
for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
|
|
kick_one_cpu_if_idle(cpu, this_rq);
|
|
cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
|
|
}
|
|
|
|
if (!should_wait)
|
|
return;
|
|
|
|
for_each_cpu(cpu, this_scx->cpus_to_wait) {
|
|
unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
|
|
|
|
if (cpu != cpu_of(this_rq)) {
|
|
/*
|
|
* Pairs with smp_store_release() issued by this CPU in
|
|
* scx_next_task_picked() on the resched path.
|
|
*
|
|
* We busy-wait here to guarantee that no other task can
|
|
* be scheduled on our core before the target CPU has
|
|
* entered the resched path.
|
|
*/
|
|
while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
|
|
cpu_relax();
|
|
}
|
|
|
|
cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* print_scx_info - print out sched_ext scheduler state
|
|
* @log_lvl: the log level to use when printing
|
|
* @p: target task
|
|
*
|
|
* If a sched_ext scheduler is enabled, print the name and state of the
|
|
* scheduler. If @p is on sched_ext, print further information about the task.
|
|
*
|
|
* This function can be safely called on any task as long as the task_struct
|
|
* itself is accessible. While safe, this function isn't synchronized and may
|
|
* print out mixups or garbages of limited length.
|
|
*/
|
|
void print_scx_info(const char *log_lvl, struct task_struct *p)
|
|
{
|
|
enum scx_ops_enable_state state = scx_ops_enable_state();
|
|
const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
|
|
char runnable_at_buf[22] = "?";
|
|
struct sched_class *class;
|
|
unsigned long runnable_at;
|
|
|
|
if (state == SCX_OPS_DISABLED)
|
|
return;
|
|
|
|
/*
|
|
* Carefully check if the task was running on sched_ext, and then
|
|
* carefully copy the time it's been runnable, and its state.
|
|
*/
|
|
if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
|
|
class != &ext_sched_class) {
|
|
printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name,
|
|
scx_ops_enable_state_str[state], all);
|
|
return;
|
|
}
|
|
|
|
if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
|
|
sizeof(runnable_at)))
|
|
scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
|
|
jiffies_delta_msecs(runnable_at, jiffies));
|
|
|
|
/* print everything onto one line to conserve console space */
|
|
printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
|
|
log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all,
|
|
runnable_at_buf);
|
|
}
|
|
|
|
static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
|
|
{
|
|
/*
|
|
* SCX schedulers often have userspace components which are sometimes
|
|
* involved in critial scheduling paths. PM operations involve freezing
|
|
* userspace which can lead to scheduling misbehaviors including stalls.
|
|
* Let's bypass while PM operations are in progress.
|
|
*/
|
|
switch (event) {
|
|
case PM_HIBERNATION_PREPARE:
|
|
case PM_SUSPEND_PREPARE:
|
|
case PM_RESTORE_PREPARE:
|
|
scx_ops_bypass(true);
|
|
break;
|
|
case PM_POST_HIBERNATION:
|
|
case PM_POST_SUSPEND:
|
|
case PM_POST_RESTORE:
|
|
scx_ops_bypass(false);
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block scx_pm_notifier = {
|
|
.notifier_call = scx_pm_handler,
|
|
};
|
|
|
|
void __init init_sched_ext_class(void)
|
|
{
|
|
s32 cpu, v;
|
|
|
|
/*
|
|
* The following is to prevent the compiler from optimizing out the enum
|
|
* definitions so that BPF scheduler implementations can use them
|
|
* through the generated vmlinux.h.
|
|
*/
|
|
WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
|
|
SCX_TG_ONLINE);
|
|
|
|
BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
|
|
init_dsq(&scx_dsq_global, SCX_DSQ_GLOBAL);
|
|
#ifdef CONFIG_SMP
|
|
BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
|
|
BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
|
|
#endif
|
|
scx_kick_cpus_pnt_seqs =
|
|
__alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
|
|
__alignof__(scx_kick_cpus_pnt_seqs[0]));
|
|
BUG_ON(!scx_kick_cpus_pnt_seqs);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
|
|
INIT_LIST_HEAD(&rq->scx.runnable_list);
|
|
INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
|
|
|
|
BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL));
|
|
BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL));
|
|
BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL));
|
|
BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL));
|
|
init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
|
|
init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
|
|
|
|
if (cpu_online(cpu))
|
|
cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
|
|
}
|
|
|
|
register_sysrq_key('S', &sysrq_sched_ext_reset_op);
|
|
register_sysrq_key('D', &sysrq_sched_ext_dump_op);
|
|
INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
|
|
}
|
|
|
|
|
|
/********************************************************************************
|
|
* Helpers that can be called from the BPF scheduler.
|
|
*/
|
|
#include <linux/btf_ids.h>
|
|
|
|
__bpf_kfunc_start_defs();
|
|
|
|
/**
|
|
* scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
|
|
* @p: task_struct to select a CPU for
|
|
* @prev_cpu: CPU @p was on previously
|
|
* @wake_flags: %SCX_WAKE_* flags
|
|
* @is_idle: out parameter indicating whether the returned CPU is idle
|
|
*
|
|
* Can only be called from ops.select_cpu() if the built-in CPU selection is
|
|
* enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
|
|
* @p, @prev_cpu and @wake_flags match ops.select_cpu().
|
|
*
|
|
* Returns the picked CPU with *@is_idle indicating whether the picked CPU is
|
|
* currently idle and thus a good candidate for direct dispatching.
|
|
*/
|
|
__bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
|
|
u64 wake_flags, bool *is_idle)
|
|
{
|
|
if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) {
|
|
*is_idle = false;
|
|
return prev_cpu;
|
|
}
|
|
#ifdef CONFIG_SMP
|
|
return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
|
|
#else
|
|
*is_idle = false;
|
|
return prev_cpu;
|
|
#endif
|
|
}
|
|
|
|
__bpf_kfunc_end_defs();
|
|
|
|
BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
|
|
BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
|
|
BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
|
|
|
|
static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
|
|
.owner = THIS_MODULE,
|
|
.set = &scx_kfunc_ids_select_cpu,
|
|
};
|
|
|
|
static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags)
|
|
{
|
|
if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
|
|
return false;
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
if (unlikely(!p)) {
|
|
scx_ops_error("called with NULL task");
|
|
return false;
|
|
}
|
|
|
|
if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
|
|
scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags)
|
|
{
|
|
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
|
|
struct task_struct *ddsp_task;
|
|
|
|
ddsp_task = __this_cpu_read(direct_dispatch_task);
|
|
if (ddsp_task) {
|
|
mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
|
|
return;
|
|
}
|
|
|
|
if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
|
|
scx_ops_error("dispatch buffer overflow");
|
|
return;
|
|
}
|
|
|
|
dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
|
|
.task = p,
|
|
.qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
|
|
.dsq_id = dsq_id,
|
|
.enq_flags = enq_flags,
|
|
};
|
|
}
|
|
|
|
__bpf_kfunc_start_defs();
|
|
|
|
/**
|
|
* scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ
|
|
* @p: task_struct to dispatch
|
|
* @dsq_id: DSQ to dispatch to
|
|
* @slice: duration @p can run for in nsecs, 0 to keep the current value
|
|
* @enq_flags: SCX_ENQ_*
|
|
*
|
|
* Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe
|
|
* to call this function spuriously. Can be called from ops.enqueue(),
|
|
* ops.select_cpu(), and ops.dispatch().
|
|
*
|
|
* When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
|
|
* and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
|
|
* used to target the local DSQ of a CPU other than the enqueueing one. Use
|
|
* ops.select_cpu() to be on the target CPU in the first place.
|
|
*
|
|
* When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
|
|
* will be directly dispatched to the corresponding dispatch queue after
|
|
* ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be
|
|
* dispatched to the local DSQ of the CPU returned by ops.select_cpu().
|
|
* @enq_flags are OR'd with the enqueue flags on the enqueue path before the
|
|
* task is dispatched.
|
|
*
|
|
* When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
|
|
* and this function can be called upto ops.dispatch_max_batch times to dispatch
|
|
* multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
|
|
* remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
|
|
*
|
|
* This function doesn't have any locking restrictions and may be called under
|
|
* BPF locks (in the future when BPF introduces more flexible locking).
|
|
*
|
|
* @p is allowed to run for @slice. The scheduling path is triggered on slice
|
|
* exhaustion. If zero, the current residual slice is maintained. If
|
|
* %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
|
|
* scx_bpf_kick_cpu() to trigger scheduling.
|
|
*/
|
|
__bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
|
|
u64 enq_flags)
|
|
{
|
|
if (!scx_dispatch_preamble(p, enq_flags))
|
|
return;
|
|
|
|
if (slice)
|
|
p->scx.slice = slice;
|
|
else
|
|
p->scx.slice = p->scx.slice ?: 1;
|
|
|
|
scx_dispatch_commit(p, dsq_id, enq_flags);
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ
|
|
* @p: task_struct to dispatch
|
|
* @dsq_id: DSQ to dispatch to
|
|
* @slice: duration @p can run for in nsecs, 0 to keep the current value
|
|
* @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
|
|
* @enq_flags: SCX_ENQ_*
|
|
*
|
|
* Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id.
|
|
* Tasks queued into the priority queue are ordered by @vtime and always
|
|
* consumed after the tasks in the FIFO queue. All other aspects are identical
|
|
* to scx_bpf_dispatch().
|
|
*
|
|
* @vtime ordering is according to time_before64() which considers wrapping. A
|
|
* numerically larger vtime may indicate an earlier position in the ordering and
|
|
* vice-versa.
|
|
*/
|
|
__bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
|
|
u64 slice, u64 vtime, u64 enq_flags)
|
|
{
|
|
if (!scx_dispatch_preamble(p, enq_flags))
|
|
return;
|
|
|
|
if (slice)
|
|
p->scx.slice = slice;
|
|
else
|
|
p->scx.slice = p->scx.slice ?: 1;
|
|
|
|
p->scx.dsq_vtime = vtime;
|
|
|
|
scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
|
|
}
|
|
|
|
__bpf_kfunc_end_defs();
|
|
|
|
BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
|
|
BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
|
|
BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
|
|
BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
|
|
|
|
static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
|
|
.owner = THIS_MODULE,
|
|
.set = &scx_kfunc_ids_enqueue_dispatch,
|
|
};
|
|
|
|
static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit,
|
|
struct task_struct *p, u64 dsq_id,
|
|
u64 enq_flags)
|
|
{
|
|
struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
|
|
struct rq *this_rq, *src_rq, *dst_rq, *locked_rq;
|
|
bool dispatched = false;
|
|
bool in_balance;
|
|
unsigned long flags;
|
|
|
|
if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH))
|
|
return false;
|
|
|
|
/*
|
|
* Can be called from either ops.dispatch() locking this_rq() or any
|
|
* context where no rq lock is held. If latter, lock @p's task_rq which
|
|
* we'll likely need anyway.
|
|
*/
|
|
src_rq = task_rq(p);
|
|
|
|
local_irq_save(flags);
|
|
this_rq = this_rq();
|
|
in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
|
|
|
|
if (in_balance) {
|
|
if (this_rq != src_rq) {
|
|
raw_spin_rq_unlock(this_rq);
|
|
raw_spin_rq_lock(src_rq);
|
|
}
|
|
} else {
|
|
raw_spin_rq_lock(src_rq);
|
|
}
|
|
|
|
locked_rq = src_rq;
|
|
raw_spin_lock(&src_dsq->lock);
|
|
|
|
/*
|
|
* Did someone else get to it? @p could have already left $src_dsq, got
|
|
* re-enqueud, or be in the process of being consumed by someone else.
|
|
*/
|
|
if (unlikely(p->scx.dsq != src_dsq ||
|
|
u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
|
|
p->scx.holding_cpu >= 0) ||
|
|
WARN_ON_ONCE(src_rq != task_rq(p))) {
|
|
raw_spin_unlock(&src_dsq->lock);
|
|
goto out;
|
|
}
|
|
|
|
/* @p is still on $src_dsq and stable, determine the destination */
|
|
dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p);
|
|
|
|
if (dst_dsq->id == SCX_DSQ_LOCAL) {
|
|
dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
|
|
if (!task_can_run_on_remote_rq(p, dst_rq, true)) {
|
|
dst_dsq = &scx_dsq_global;
|
|
dst_rq = src_rq;
|
|
}
|
|
} else {
|
|
/* no need to migrate if destination is a non-local DSQ */
|
|
dst_rq = src_rq;
|
|
}
|
|
|
|
/*
|
|
* Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
|
|
* CPU, @p will be migrated.
|
|
*/
|
|
if (dst_dsq->id == SCX_DSQ_LOCAL) {
|
|
/* @p is going from a non-local DSQ to a local DSQ */
|
|
if (src_rq == dst_rq) {
|
|
task_unlink_from_dsq(p, src_dsq);
|
|
move_local_task_to_local_dsq(p, enq_flags,
|
|
src_dsq, dst_rq);
|
|
raw_spin_unlock(&src_dsq->lock);
|
|
} else {
|
|
raw_spin_unlock(&src_dsq->lock);
|
|
move_remote_task_to_local_dsq(p, enq_flags,
|
|
src_rq, dst_rq);
|
|
locked_rq = dst_rq;
|
|
}
|
|
} else {
|
|
/*
|
|
* @p is going from a non-local DSQ to a non-local DSQ. As
|
|
* $src_dsq is already locked, do an abbreviated dequeue.
|
|
*/
|
|
task_unlink_from_dsq(p, src_dsq);
|
|
p->scx.dsq = NULL;
|
|
raw_spin_unlock(&src_dsq->lock);
|
|
|
|
if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
|
|
p->scx.dsq_vtime = kit->vtime;
|
|
dispatch_enqueue(dst_dsq, p, enq_flags);
|
|
}
|
|
|
|
if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
|
|
p->scx.slice = kit->slice;
|
|
|
|
dispatched = true;
|
|
out:
|
|
if (in_balance) {
|
|
if (this_rq != locked_rq) {
|
|
raw_spin_rq_unlock(locked_rq);
|
|
raw_spin_rq_lock(this_rq);
|
|
}
|
|
} else {
|
|
raw_spin_rq_unlock_irqrestore(locked_rq, flags);
|
|
}
|
|
|
|
kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
|
|
__SCX_DSQ_ITER_HAS_VTIME);
|
|
return dispatched;
|
|
}
|
|
|
|
__bpf_kfunc_start_defs();
|
|
|
|
/**
|
|
* scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
|
|
*
|
|
* Can only be called from ops.dispatch().
|
|
*/
|
|
__bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
|
|
{
|
|
if (!scx_kf_allowed(SCX_KF_DISPATCH))
|
|
return 0;
|
|
|
|
return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_dispatch_cancel - Cancel the latest dispatch
|
|
*
|
|
* Cancel the latest dispatch. Can be called multiple times to cancel further
|
|
* dispatches. Can only be called from ops.dispatch().
|
|
*/
|
|
__bpf_kfunc void scx_bpf_dispatch_cancel(void)
|
|
{
|
|
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
|
|
|
|
if (!scx_kf_allowed(SCX_KF_DISPATCH))
|
|
return;
|
|
|
|
if (dspc->cursor > 0)
|
|
dspc->cursor--;
|
|
else
|
|
scx_ops_error("dispatch buffer underflow");
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ
|
|
* @dsq_id: DSQ to consume
|
|
*
|
|
* Consume a task from the non-local DSQ identified by @dsq_id and transfer it
|
|
* to the current CPU's local DSQ for execution. Can only be called from
|
|
* ops.dispatch().
|
|
*
|
|
* This function flushes the in-flight dispatches from scx_bpf_dispatch() before
|
|
* trying to consume the specified DSQ. It may also grab rq locks and thus can't
|
|
* be called under any BPF locks.
|
|
*
|
|
* Returns %true if a task has been consumed, %false if there isn't any task to
|
|
* consume.
|
|
*/
|
|
__bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
|
|
{
|
|
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
|
|
struct scx_dispatch_q *dsq;
|
|
|
|
if (!scx_kf_allowed(SCX_KF_DISPATCH))
|
|
return false;
|
|
|
|
flush_dispatch_buf(dspc->rq);
|
|
|
|
dsq = find_non_local_dsq(dsq_id);
|
|
if (unlikely(!dsq)) {
|
|
scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
|
|
return false;
|
|
}
|
|
|
|
if (consume_dispatch_q(dspc->rq, dsq)) {
|
|
/*
|
|
* A successfully consumed task can be dequeued before it starts
|
|
* running while the CPU is trying to migrate other dispatched
|
|
* tasks. Bump nr_tasks to tell balance_scx() to retry on empty
|
|
* local DSQ.
|
|
*/
|
|
dspc->nr_tasks++;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ
|
|
* @it__iter: DSQ iterator in progress
|
|
* @slice: duration the dispatched task can run for in nsecs
|
|
*
|
|
* Override the slice of the next task that will be dispatched from @it__iter
|
|
* using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called,
|
|
* the previous slice duration is kept.
|
|
*/
|
|
__bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
|
|
struct bpf_iter_scx_dsq *it__iter, u64 slice)
|
|
{
|
|
struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
|
|
|
|
kit->slice = slice;
|
|
kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ
|
|
* @it__iter: DSQ iterator in progress
|
|
* @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
|
|
*
|
|
* Override the vtime of the next task that will be dispatched from @it__iter
|
|
* using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the
|
|
* previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to
|
|
* dispatch the next task, the override is ignored and cleared.
|
|
*/
|
|
__bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
|
|
struct bpf_iter_scx_dsq *it__iter, u64 vtime)
|
|
{
|
|
struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
|
|
|
|
kit->vtime = vtime;
|
|
kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ
|
|
* @it__iter: DSQ iterator in progress
|
|
* @p: task to transfer
|
|
* @dsq_id: DSQ to move @p to
|
|
* @enq_flags: SCX_ENQ_*
|
|
*
|
|
* Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
|
|
* specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
|
|
* be the destination.
|
|
*
|
|
* For the transfer to be successful, @p must still be on the DSQ and have been
|
|
* queued before the DSQ iteration started. This function doesn't care whether
|
|
* @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
|
|
* been queued before the iteration started.
|
|
*
|
|
* @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to
|
|
* update.
|
|
*
|
|
* Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
|
|
* lock (e.g. BPF timers or SYSCALL programs).
|
|
*
|
|
* Returns %true if @p has been consumed, %false if @p had already been consumed
|
|
* or dequeued.
|
|
*/
|
|
__bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter,
|
|
struct task_struct *p, u64 dsq_id,
|
|
u64 enq_flags)
|
|
{
|
|
return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
|
|
p, dsq_id, enq_flags);
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ
|
|
* @it__iter: DSQ iterator in progress
|
|
* @p: task to transfer
|
|
* @dsq_id: DSQ to move @p to
|
|
* @enq_flags: SCX_ENQ_*
|
|
*
|
|
* Transfer @p which is on the DSQ currently iterated by @it__iter to the
|
|
* priority queue of the DSQ specified by @dsq_id. The destination must be a
|
|
* user DSQ as only user DSQs support priority queue.
|
|
*
|
|
* @p's slice and vtime are kept by default. Use
|
|
* scx_bpf_dispatch_from_dsq_set_slice() and
|
|
* scx_bpf_dispatch_from_dsq_set_vtime() to update.
|
|
*
|
|
* All other aspects are identical to scx_bpf_dispatch_from_dsq(). See
|
|
* scx_bpf_dispatch_vtime() for more information on @vtime.
|
|
*/
|
|
__bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter,
|
|
struct task_struct *p, u64 dsq_id,
|
|
u64 enq_flags)
|
|
{
|
|
return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
|
|
p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
|
|
}
|
|
|
|
__bpf_kfunc_end_defs();
|
|
|
|
BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
|
|
BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
|
|
BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
|
|
BTF_ID_FLAGS(func, scx_bpf_consume)
|
|
BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
|
|
BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
|
|
BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
|
|
BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
|
|
BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
|
|
|
|
static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
|
|
.owner = THIS_MODULE,
|
|
.set = &scx_kfunc_ids_dispatch,
|
|
};
|
|
|
|
__bpf_kfunc_start_defs();
|
|
|
|
/**
|
|
* scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
|
|
*
|
|
* Iterate over all of the tasks currently enqueued on the local DSQ of the
|
|
* caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
|
|
* processed tasks. Can only be called from ops.cpu_release().
|
|
*/
|
|
__bpf_kfunc u32 scx_bpf_reenqueue_local(void)
|
|
{
|
|
LIST_HEAD(tasks);
|
|
u32 nr_enqueued = 0;
|
|
struct rq *rq;
|
|
struct task_struct *p, *n;
|
|
|
|
if (!scx_kf_allowed(SCX_KF_CPU_RELEASE))
|
|
return 0;
|
|
|
|
rq = cpu_rq(smp_processor_id());
|
|
lockdep_assert_rq_held(rq);
|
|
|
|
/*
|
|
* The BPF scheduler may choose to dispatch tasks back to
|
|
* @rq->scx.local_dsq. Move all candidate tasks off to a private list
|
|
* first to avoid processing the same tasks repeatedly.
|
|
*/
|
|
list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
|
|
scx.dsq_list.node) {
|
|
/*
|
|
* If @p is being migrated, @p's current CPU may not agree with
|
|
* its allowed CPUs and the migration_cpu_stop is about to
|
|
* deactivate and re-activate @p anyway. Skip re-enqueueing.
|
|
*
|
|
* While racing sched property changes may also dequeue and
|
|
* re-enqueue a migrating task while its current CPU and allowed
|
|
* CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
|
|
* the current local DSQ for running tasks and thus are not
|
|
* visible to the BPF scheduler.
|
|
*/
|
|
if (p->migration_pending)
|
|
continue;
|
|
|
|
dispatch_dequeue(rq, p);
|
|
list_add_tail(&p->scx.dsq_list.node, &tasks);
|
|
}
|
|
|
|
list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
|
|
list_del_init(&p->scx.dsq_list.node);
|
|
do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
|
|
nr_enqueued++;
|
|
}
|
|
|
|
return nr_enqueued;
|
|
}
|
|
|
|
__bpf_kfunc_end_defs();
|
|
|
|
BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
|
|
BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
|
|
BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
|
|
|
|
static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
|
|
.owner = THIS_MODULE,
|
|
.set = &scx_kfunc_ids_cpu_release,
|
|
};
|
|
|
|
__bpf_kfunc_start_defs();
|
|
|
|
/**
|
|
* scx_bpf_create_dsq - Create a custom DSQ
|
|
* @dsq_id: DSQ to create
|
|
* @node: NUMA node to allocate from
|
|
*
|
|
* Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
|
|
* scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
|
|
*/
|
|
__bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
|
|
{
|
|
if (unlikely(node >= (int)nr_node_ids ||
|
|
(node < 0 && node != NUMA_NO_NODE)))
|
|
return -EINVAL;
|
|
return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
|
|
}
|
|
|
|
__bpf_kfunc_end_defs();
|
|
|
|
BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
|
|
BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
|
|
BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
|
|
BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
|
|
BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
|
|
|
|
static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
|
|
.owner = THIS_MODULE,
|
|
.set = &scx_kfunc_ids_unlocked,
|
|
};
|
|
|
|
__bpf_kfunc_start_defs();
|
|
|
|
/**
|
|
* scx_bpf_kick_cpu - Trigger reschedule on a CPU
|
|
* @cpu: cpu to kick
|
|
* @flags: %SCX_KICK_* flags
|
|
*
|
|
* Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
|
|
* trigger rescheduling on a busy CPU. This can be called from any online
|
|
* scx_ops operation and the actual kicking is performed asynchronously through
|
|
* an irq work.
|
|
*/
|
|
__bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
|
|
{
|
|
struct rq *this_rq;
|
|
unsigned long irq_flags;
|
|
|
|
if (!ops_cpu_valid(cpu, NULL))
|
|
return;
|
|
|
|
local_irq_save(irq_flags);
|
|
|
|
this_rq = this_rq();
|
|
|
|
/*
|
|
* While bypassing for PM ops, IRQ handling may not be online which can
|
|
* lead to irq_work_queue() malfunction such as infinite busy wait for
|
|
* IRQ status update. Suppress kicking.
|
|
*/
|
|
if (scx_rq_bypassing(this_rq))
|
|
goto out;
|
|
|
|
/*
|
|
* Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
|
|
* rq locks. We can probably be smarter and avoid bouncing if called
|
|
* from ops which don't hold a rq lock.
|
|
*/
|
|
if (flags & SCX_KICK_IDLE) {
|
|
struct rq *target_rq = cpu_rq(cpu);
|
|
|
|
if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
|
|
scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
|
|
|
|
if (raw_spin_rq_trylock(target_rq)) {
|
|
if (can_skip_idle_kick(target_rq)) {
|
|
raw_spin_rq_unlock(target_rq);
|
|
goto out;
|
|
}
|
|
raw_spin_rq_unlock(target_rq);
|
|
}
|
|
cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
|
|
} else {
|
|
cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
|
|
|
|
if (flags & SCX_KICK_PREEMPT)
|
|
cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
|
|
if (flags & SCX_KICK_WAIT)
|
|
cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
|
|
}
|
|
|
|
irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
|
|
out:
|
|
local_irq_restore(irq_flags);
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_dsq_nr_queued - Return the number of queued tasks
|
|
* @dsq_id: id of the DSQ
|
|
*
|
|
* Return the number of tasks in the DSQ matching @dsq_id. If not found,
|
|
* -%ENOENT is returned.
|
|
*/
|
|
__bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
|
|
{
|
|
struct scx_dispatch_q *dsq;
|
|
s32 ret;
|
|
|
|
preempt_disable();
|
|
|
|
if (dsq_id == SCX_DSQ_LOCAL) {
|
|
ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
|
|
goto out;
|
|
} else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
|
|
s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
|
|
|
|
if (ops_cpu_valid(cpu, NULL)) {
|
|
ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
|
|
goto out;
|
|
}
|
|
} else {
|
|
dsq = find_non_local_dsq(dsq_id);
|
|
if (dsq) {
|
|
ret = READ_ONCE(dsq->nr);
|
|
goto out;
|
|
}
|
|
}
|
|
ret = -ENOENT;
|
|
out:
|
|
preempt_enable();
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_destroy_dsq - Destroy a custom DSQ
|
|
* @dsq_id: DSQ to destroy
|
|
*
|
|
* Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
|
|
* scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
|
|
* empty and no further tasks are dispatched to it. Ignored if called on a DSQ
|
|
* which doesn't exist. Can be called from any online scx_ops operations.
|
|
*/
|
|
__bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
|
|
{
|
|
destroy_dsq(dsq_id);
|
|
}
|
|
|
|
/**
|
|
* bpf_iter_scx_dsq_new - Create a DSQ iterator
|
|
* @it: iterator to initialize
|
|
* @dsq_id: DSQ to iterate
|
|
* @flags: %SCX_DSQ_ITER_*
|
|
*
|
|
* Initialize BPF iterator @it which can be used with bpf_for_each() to walk
|
|
* tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
|
|
* tasks which are already queued when this function is invoked.
|
|
*/
|
|
__bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
|
|
u64 flags)
|
|
{
|
|
struct bpf_iter_scx_dsq_kern *kit = (void *)it;
|
|
|
|
BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
|
|
sizeof(struct bpf_iter_scx_dsq));
|
|
BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
|
|
__alignof__(struct bpf_iter_scx_dsq));
|
|
|
|
if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
|
|
return -EINVAL;
|
|
|
|
kit->dsq = find_non_local_dsq(dsq_id);
|
|
if (!kit->dsq)
|
|
return -ENOENT;
|
|
|
|
INIT_LIST_HEAD(&kit->cursor.node);
|
|
kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags;
|
|
kit->cursor.priv = READ_ONCE(kit->dsq->seq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bpf_iter_scx_dsq_next - Progress a DSQ iterator
|
|
* @it: iterator to progress
|
|
*
|
|
* Return the next task. See bpf_iter_scx_dsq_new().
|
|
*/
|
|
__bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
|
|
{
|
|
struct bpf_iter_scx_dsq_kern *kit = (void *)it;
|
|
bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
|
|
struct task_struct *p;
|
|
unsigned long flags;
|
|
|
|
if (!kit->dsq)
|
|
return NULL;
|
|
|
|
raw_spin_lock_irqsave(&kit->dsq->lock, flags);
|
|
|
|
if (list_empty(&kit->cursor.node))
|
|
p = NULL;
|
|
else
|
|
p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
|
|
|
|
/*
|
|
* Only tasks which were queued before the iteration started are
|
|
* visible. This bounds BPF iterations and guarantees that vtime never
|
|
* jumps in the other direction while iterating.
|
|
*/
|
|
do {
|
|
p = nldsq_next_task(kit->dsq, p, rev);
|
|
} while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
|
|
|
|
if (p) {
|
|
if (rev)
|
|
list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
|
|
else
|
|
list_move(&kit->cursor.node, &p->scx.dsq_list.node);
|
|
} else {
|
|
list_del_init(&kit->cursor.node);
|
|
}
|
|
|
|
raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
|
|
* @it: iterator to destroy
|
|
*
|
|
* Undo scx_iter_scx_dsq_new().
|
|
*/
|
|
__bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
|
|
{
|
|
struct bpf_iter_scx_dsq_kern *kit = (void *)it;
|
|
|
|
if (!kit->dsq)
|
|
return;
|
|
|
|
if (!list_empty(&kit->cursor.node)) {
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&kit->dsq->lock, flags);
|
|
list_del_init(&kit->cursor.node);
|
|
raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
|
|
}
|
|
kit->dsq = NULL;
|
|
}
|
|
|
|
__bpf_kfunc_end_defs();
|
|
|
|
static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
|
|
char *fmt, unsigned long long *data, u32 data__sz)
|
|
{
|
|
struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
|
|
s32 ret;
|
|
|
|
if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
|
|
(data__sz && !data)) {
|
|
scx_ops_error("invalid data=%p and data__sz=%u",
|
|
(void *)data, data__sz);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = copy_from_kernel_nofault(data_buf, data, data__sz);
|
|
if (ret < 0) {
|
|
scx_ops_error("failed to read data fields (%d)", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
|
|
&bprintf_data);
|
|
if (ret < 0) {
|
|
scx_ops_error("format preparation failed (%d)", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = bstr_printf(line_buf, line_size, fmt,
|
|
bprintf_data.bin_args);
|
|
bpf_bprintf_cleanup(&bprintf_data);
|
|
if (ret < 0) {
|
|
scx_ops_error("(\"%s\", %p, %u) failed to format",
|
|
fmt, data, data__sz);
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static s32 bstr_format(struct scx_bstr_buf *buf,
|
|
char *fmt, unsigned long long *data, u32 data__sz)
|
|
{
|
|
return __bstr_format(buf->data, buf->line, sizeof(buf->line),
|
|
fmt, data, data__sz);
|
|
}
|
|
|
|
__bpf_kfunc_start_defs();
|
|
|
|
/**
|
|
* scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
|
|
* @exit_code: Exit value to pass to user space via struct scx_exit_info.
|
|
* @fmt: error message format string
|
|
* @data: format string parameters packaged using ___bpf_fill() macro
|
|
* @data__sz: @data len, must end in '__sz' for the verifier
|
|
*
|
|
* Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
|
|
* disabling.
|
|
*/
|
|
__bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
|
|
unsigned long long *data, u32 data__sz)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
|
|
if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
|
|
scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s",
|
|
scx_exit_bstr_buf.line);
|
|
raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_error_bstr - Indicate fatal error
|
|
* @fmt: error message format string
|
|
* @data: format string parameters packaged using ___bpf_fill() macro
|
|
* @data__sz: @data len, must end in '__sz' for the verifier
|
|
*
|
|
* Indicate that the BPF scheduler encountered a fatal error and initiate ops
|
|
* disabling.
|
|
*/
|
|
__bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
|
|
u32 data__sz)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
|
|
if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
|
|
scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s",
|
|
scx_exit_bstr_buf.line);
|
|
raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
|
|
* @fmt: format string
|
|
* @data: format string parameters packaged using ___bpf_fill() macro
|
|
* @data__sz: @data len, must end in '__sz' for the verifier
|
|
*
|
|
* To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
|
|
* dump_task() to generate extra debug dump specific to the BPF scheduler.
|
|
*
|
|
* The extra dump may be multiple lines. A single line may be split over
|
|
* multiple calls. The last line is automatically terminated.
|
|
*/
|
|
__bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
|
|
u32 data__sz)
|
|
{
|
|
struct scx_dump_data *dd = &scx_dump_data;
|
|
struct scx_bstr_buf *buf = &dd->buf;
|
|
s32 ret;
|
|
|
|
if (raw_smp_processor_id() != dd->cpu) {
|
|
scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
|
|
return;
|
|
}
|
|
|
|
/* append the formatted string to the line buf */
|
|
ret = __bstr_format(buf->data, buf->line + dd->cursor,
|
|
sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
|
|
if (ret < 0) {
|
|
dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
|
|
dd->prefix, fmt, data, data__sz, ret);
|
|
return;
|
|
}
|
|
|
|
dd->cursor += ret;
|
|
dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
|
|
|
|
if (!dd->cursor)
|
|
return;
|
|
|
|
/*
|
|
* If the line buf overflowed or ends in a newline, flush it into the
|
|
* dump. This is to allow the caller to generate a single line over
|
|
* multiple calls. As ops_dump_flush() can also handle multiple lines in
|
|
* the line buf, the only case which can lead to an unexpected
|
|
* truncation is when the caller keeps generating newlines in the middle
|
|
* instead of the end consecutively. Don't do that.
|
|
*/
|
|
if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
|
|
ops_dump_flush();
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
|
|
* @cpu: CPU of interest
|
|
*
|
|
* Return the maximum relative capacity of @cpu in relation to the most
|
|
* performant CPU in the system. The return value is in the range [1,
|
|
* %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
|
|
*/
|
|
__bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
|
|
{
|
|
if (ops_cpu_valid(cpu, NULL))
|
|
return arch_scale_cpu_capacity(cpu);
|
|
else
|
|
return SCX_CPUPERF_ONE;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
|
|
* @cpu: CPU of interest
|
|
*
|
|
* Return the current relative performance of @cpu in relation to its maximum.
|
|
* The return value is in the range [1, %SCX_CPUPERF_ONE].
|
|
*
|
|
* The current performance level of a CPU in relation to the maximum performance
|
|
* available in the system can be calculated as follows:
|
|
*
|
|
* scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
|
|
*
|
|
* The result is in the range [1, %SCX_CPUPERF_ONE].
|
|
*/
|
|
__bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
|
|
{
|
|
if (ops_cpu_valid(cpu, NULL))
|
|
return arch_scale_freq_capacity(cpu);
|
|
else
|
|
return SCX_CPUPERF_ONE;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_cpuperf_set - Set the relative performance target of a CPU
|
|
* @cpu: CPU of interest
|
|
* @perf: target performance level [0, %SCX_CPUPERF_ONE]
|
|
* @flags: %SCX_CPUPERF_* flags
|
|
*
|
|
* Set the target performance level of @cpu to @perf. @perf is in linear
|
|
* relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
|
|
* schedutil cpufreq governor chooses the target frequency.
|
|
*
|
|
* The actual performance level chosen, CPU grouping, and the overhead and
|
|
* latency of the operations are dependent on the hardware and cpufreq driver in
|
|
* use. Consult hardware and cpufreq documentation for more information. The
|
|
* current performance level can be monitored using scx_bpf_cpuperf_cur().
|
|
*/
|
|
__bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
|
|
{
|
|
if (unlikely(perf > SCX_CPUPERF_ONE)) {
|
|
scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu);
|
|
return;
|
|
}
|
|
|
|
if (ops_cpu_valid(cpu, NULL)) {
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
rq->scx.cpuperf_target = perf;
|
|
|
|
rcu_read_lock_sched_notrace();
|
|
cpufreq_update_util(cpu_rq(cpu), 0);
|
|
rcu_read_unlock_sched_notrace();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
|
|
*
|
|
* All valid CPU IDs in the system are smaller than the returned value.
|
|
*/
|
|
__bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
|
|
{
|
|
return nr_cpu_ids;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
|
|
*/
|
|
__bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
|
|
{
|
|
return cpu_possible_mask;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
|
|
*/
|
|
__bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
|
|
{
|
|
return cpu_online_mask;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_put_cpumask - Release a possible/online cpumask
|
|
* @cpumask: cpumask to release
|
|
*/
|
|
__bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
|
|
{
|
|
/*
|
|
* Empty function body because we aren't actually acquiring or releasing
|
|
* a reference to a global cpumask, which is read-only in the caller and
|
|
* is never released. The acquire / release semantics here are just used
|
|
* to make the cpumask is a trusted pointer in the caller.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
|
|
* per-CPU cpumask.
|
|
*
|
|
* Returns NULL if idle tracking is not enabled, or running on a UP kernel.
|
|
*/
|
|
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
|
|
{
|
|
if (!static_branch_likely(&scx_builtin_idle_enabled)) {
|
|
scx_ops_error("built-in idle tracking is disabled");
|
|
return cpu_none_mask;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
return idle_masks.cpu;
|
|
#else
|
|
return cpu_none_mask;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
|
|
* per-physical-core cpumask. Can be used to determine if an entire physical
|
|
* core is free.
|
|
*
|
|
* Returns NULL if idle tracking is not enabled, or running on a UP kernel.
|
|
*/
|
|
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
|
|
{
|
|
if (!static_branch_likely(&scx_builtin_idle_enabled)) {
|
|
scx_ops_error("built-in idle tracking is disabled");
|
|
return cpu_none_mask;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (sched_smt_active())
|
|
return idle_masks.smt;
|
|
else
|
|
return idle_masks.cpu;
|
|
#else
|
|
return cpu_none_mask;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
|
|
* either the percpu, or SMT idle-tracking cpumask.
|
|
*/
|
|
__bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
|
|
{
|
|
/*
|
|
* Empty function body because we aren't actually acquiring or releasing
|
|
* a reference to a global idle cpumask, which is read-only in the
|
|
* caller and is never released. The acquire / release semantics here
|
|
* are just used to make the cpumask a trusted pointer in the caller.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
|
|
* @cpu: cpu to test and clear idle for
|
|
*
|
|
* Returns %true if @cpu was idle and its idle state was successfully cleared.
|
|
* %false otherwise.
|
|
*
|
|
* Unavailable if ops.update_idle() is implemented and
|
|
* %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
|
|
*/
|
|
__bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
|
|
{
|
|
if (!static_branch_likely(&scx_builtin_idle_enabled)) {
|
|
scx_ops_error("built-in idle tracking is disabled");
|
|
return false;
|
|
}
|
|
|
|
if (ops_cpu_valid(cpu, NULL))
|
|
return test_and_clear_cpu_idle(cpu);
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
|
|
* @cpus_allowed: Allowed cpumask
|
|
* @flags: %SCX_PICK_IDLE_CPU_* flags
|
|
*
|
|
* Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
|
|
* number on success. -%EBUSY if no matching cpu was found.
|
|
*
|
|
* Idle CPU tracking may race against CPU scheduling state transitions. For
|
|
* example, this function may return -%EBUSY as CPUs are transitioning into the
|
|
* idle state. If the caller then assumes that there will be dispatch events on
|
|
* the CPUs as they were all busy, the scheduler may end up stalling with CPUs
|
|
* idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
|
|
* scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
|
|
* event in the near future.
|
|
*
|
|
* Unavailable if ops.update_idle() is implemented and
|
|
* %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
|
|
*/
|
|
__bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
|
|
u64 flags)
|
|
{
|
|
if (!static_branch_likely(&scx_builtin_idle_enabled)) {
|
|
scx_ops_error("built-in idle tracking is disabled");
|
|
return -EBUSY;
|
|
}
|
|
|
|
return scx_pick_idle_cpu(cpus_allowed, flags);
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
|
|
* @cpus_allowed: Allowed cpumask
|
|
* @flags: %SCX_PICK_IDLE_CPU_* flags
|
|
*
|
|
* Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
|
|
* CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
|
|
* number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
|
|
* empty.
|
|
*
|
|
* If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
|
|
* set, this function can't tell which CPUs are idle and will always pick any
|
|
* CPU.
|
|
*/
|
|
__bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
|
|
u64 flags)
|
|
{
|
|
s32 cpu;
|
|
|
|
if (static_branch_likely(&scx_builtin_idle_enabled)) {
|
|
cpu = scx_pick_idle_cpu(cpus_allowed, flags);
|
|
if (cpu >= 0)
|
|
return cpu;
|
|
}
|
|
|
|
cpu = cpumask_any_distribute(cpus_allowed);
|
|
if (cpu < nr_cpu_ids)
|
|
return cpu;
|
|
else
|
|
return -EBUSY;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_task_running - Is task currently running?
|
|
* @p: task of interest
|
|
*/
|
|
__bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
|
|
{
|
|
return task_rq(p)->curr == p;
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_task_cpu - CPU a task is currently associated with
|
|
* @p: task of interest
|
|
*/
|
|
__bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
|
|
{
|
|
return task_cpu(p);
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_cpu_rq - Fetch the rq of a CPU
|
|
* @cpu: CPU of the rq
|
|
*/
|
|
__bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
|
|
{
|
|
if (!ops_cpu_valid(cpu, NULL))
|
|
return NULL;
|
|
|
|
return cpu_rq(cpu);
|
|
}
|
|
|
|
/**
|
|
* scx_bpf_task_cgroup - Return the sched cgroup of a task
|
|
* @p: task of interest
|
|
*
|
|
* @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
|
|
* from the scheduler's POV. SCX operations should use this function to
|
|
* determine @p's current cgroup as, unlike following @p->cgroups,
|
|
* @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
|
|
* rq-locked operations. Can be called on the parameter tasks of rq-locked
|
|
* operations. The restriction guarantees that @p's rq is locked by the caller.
|
|
*/
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
__bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
|
|
{
|
|
struct task_group *tg = p->sched_task_group;
|
|
struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
|
|
|
|
if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p))
|
|
goto out;
|
|
|
|
/*
|
|
* A task_group may either be a cgroup or an autogroup. In the latter
|
|
* case, @tg->css.cgroup is %NULL. A task_group can't become the other
|
|
* kind once created.
|
|
*/
|
|
if (tg && tg->css.cgroup)
|
|
cgrp = tg->css.cgroup;
|
|
else
|
|
cgrp = &cgrp_dfl_root.cgrp;
|
|
out:
|
|
cgroup_get(cgrp);
|
|
return cgrp;
|
|
}
|
|
#endif
|
|
|
|
__bpf_kfunc_end_defs();
|
|
|
|
BTF_KFUNCS_START(scx_kfunc_ids_any)
|
|
BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
|
|
BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
|
|
BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
|
|
BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
|
|
BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
|
|
BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
|
|
BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
|
|
BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
|
|
BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
|
|
BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
|
|
BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
|
|
BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
|
|
BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
|
|
BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
|
|
BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
|
|
BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
|
|
BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
|
|
BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
|
|
BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
|
|
BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
|
|
BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
|
|
BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
|
|
BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
|
|
BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
|
|
BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
|
|
#endif
|
|
BTF_KFUNCS_END(scx_kfunc_ids_any)
|
|
|
|
static const struct btf_kfunc_id_set scx_kfunc_set_any = {
|
|
.owner = THIS_MODULE,
|
|
.set = &scx_kfunc_ids_any,
|
|
};
|
|
|
|
static int __init scx_init(void)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* kfunc registration can't be done from init_sched_ext_class() as
|
|
* register_btf_kfunc_id_set() needs most of the system to be up.
|
|
*
|
|
* Some kfuncs are context-sensitive and can only be called from
|
|
* specific SCX ops. They are grouped into BTF sets accordingly.
|
|
* Unfortunately, BPF currently doesn't have a way of enforcing such
|
|
* restrictions. Eventually, the verifier should be able to enforce
|
|
* them. For now, register them the same and make each kfunc explicitly
|
|
* check using scx_kf_allowed().
|
|
*/
|
|
if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
|
|
&scx_kfunc_set_select_cpu)) ||
|
|
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
|
|
&scx_kfunc_set_enqueue_dispatch)) ||
|
|
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
|
|
&scx_kfunc_set_dispatch)) ||
|
|
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
|
|
&scx_kfunc_set_cpu_release)) ||
|
|
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
|
|
&scx_kfunc_set_unlocked)) ||
|
|
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
|
|
&scx_kfunc_set_unlocked)) ||
|
|
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
|
|
&scx_kfunc_set_any)) ||
|
|
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
|
|
&scx_kfunc_set_any)) ||
|
|
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
|
|
&scx_kfunc_set_any))) {
|
|
pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
|
|
if (ret) {
|
|
pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = register_pm_notifier(&scx_pm_notifier);
|
|
if (ret) {
|
|
pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
|
|
if (!scx_kset) {
|
|
pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
|
|
if (ret < 0) {
|
|
pr_err("sched_ext: Failed to add global attributes\n");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
__initcall(scx_init);
|