mirror of
https://github.com/torvalds/linux.git
synced 2024-11-05 03:21:32 +00:00
8089fe62c6
Inodes for delayed iput allocate a trivial helper structure, let's place the list hook directly into the inode and save a kmalloc (killing a __GFP_NOFAIL as a bonus) at the cost of increasing size of btrfs_inode. The inode can be put into the delayed_iputs list more than once and we have to keep the count. This means we can't use the list_splice to process a bunch of inodes because we'd lost track of the count if the inode is put into the delayed iputs again while it's processed. Signed-off-by: David Sterba <dsterba@suse.com>
333 lines
8.8 KiB
C
333 lines
8.8 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#ifndef __BTRFS_I__
|
|
#define __BTRFS_I__
|
|
|
|
#include <linux/hash.h>
|
|
#include "extent_map.h"
|
|
#include "extent_io.h"
|
|
#include "ordered-data.h"
|
|
#include "delayed-inode.h"
|
|
|
|
/*
|
|
* ordered_data_close is set by truncate when a file that used
|
|
* to have good data has been truncated to zero. When it is set
|
|
* the btrfs file release call will add this inode to the
|
|
* ordered operations list so that we make sure to flush out any
|
|
* new data the application may have written before commit.
|
|
*/
|
|
#define BTRFS_INODE_ORDERED_DATA_CLOSE 0
|
|
#define BTRFS_INODE_ORPHAN_META_RESERVED 1
|
|
#define BTRFS_INODE_DUMMY 2
|
|
#define BTRFS_INODE_IN_DEFRAG 3
|
|
#define BTRFS_INODE_DELALLOC_META_RESERVED 4
|
|
#define BTRFS_INODE_HAS_ORPHAN_ITEM 5
|
|
#define BTRFS_INODE_HAS_ASYNC_EXTENT 6
|
|
#define BTRFS_INODE_NEEDS_FULL_SYNC 7
|
|
#define BTRFS_INODE_COPY_EVERYTHING 8
|
|
#define BTRFS_INODE_IN_DELALLOC_LIST 9
|
|
#define BTRFS_INODE_READDIO_NEED_LOCK 10
|
|
#define BTRFS_INODE_HAS_PROPS 11
|
|
/*
|
|
* The following 3 bits are meant only for the btree inode.
|
|
* When any of them is set, it means an error happened while writing an
|
|
* extent buffer belonging to:
|
|
* 1) a non-log btree
|
|
* 2) a log btree and first log sub-transaction
|
|
* 3) a log btree and second log sub-transaction
|
|
*/
|
|
#define BTRFS_INODE_BTREE_ERR 12
|
|
#define BTRFS_INODE_BTREE_LOG1_ERR 13
|
|
#define BTRFS_INODE_BTREE_LOG2_ERR 14
|
|
|
|
/* in memory btrfs inode */
|
|
struct btrfs_inode {
|
|
/* which subvolume this inode belongs to */
|
|
struct btrfs_root *root;
|
|
|
|
/* key used to find this inode on disk. This is used by the code
|
|
* to read in roots of subvolumes
|
|
*/
|
|
struct btrfs_key location;
|
|
|
|
/*
|
|
* Lock for counters and all fields used to determine if the inode is in
|
|
* the log or not (last_trans, last_sub_trans, last_log_commit,
|
|
* logged_trans).
|
|
*/
|
|
spinlock_t lock;
|
|
|
|
/* the extent_tree has caches of all the extent mappings to disk */
|
|
struct extent_map_tree extent_tree;
|
|
|
|
/* the io_tree does range state (DIRTY, LOCKED etc) */
|
|
struct extent_io_tree io_tree;
|
|
|
|
/* special utility tree used to record which mirrors have already been
|
|
* tried when checksums fail for a given block
|
|
*/
|
|
struct extent_io_tree io_failure_tree;
|
|
|
|
/* held while logging the inode in tree-log.c */
|
|
struct mutex log_mutex;
|
|
|
|
/* held while doing delalloc reservations */
|
|
struct mutex delalloc_mutex;
|
|
|
|
/* used to order data wrt metadata */
|
|
struct btrfs_ordered_inode_tree ordered_tree;
|
|
|
|
/* list of all the delalloc inodes in the FS. There are times we need
|
|
* to write all the delalloc pages to disk, and this list is used
|
|
* to walk them all.
|
|
*/
|
|
struct list_head delalloc_inodes;
|
|
|
|
/* node for the red-black tree that links inodes in subvolume root */
|
|
struct rb_node rb_node;
|
|
|
|
unsigned long runtime_flags;
|
|
|
|
/* Keep track of who's O_SYNC/fsyncing currently */
|
|
atomic_t sync_writers;
|
|
|
|
/* full 64 bit generation number, struct vfs_inode doesn't have a big
|
|
* enough field for this.
|
|
*/
|
|
u64 generation;
|
|
|
|
/*
|
|
* transid of the trans_handle that last modified this inode
|
|
*/
|
|
u64 last_trans;
|
|
|
|
/*
|
|
* transid that last logged this inode
|
|
*/
|
|
u64 logged_trans;
|
|
|
|
/*
|
|
* log transid when this inode was last modified
|
|
*/
|
|
int last_sub_trans;
|
|
|
|
/* a local copy of root's last_log_commit */
|
|
int last_log_commit;
|
|
|
|
/* total number of bytes pending delalloc, used by stat to calc the
|
|
* real block usage of the file
|
|
*/
|
|
u64 delalloc_bytes;
|
|
|
|
/*
|
|
* total number of bytes pending defrag, used by stat to check whether
|
|
* it needs COW.
|
|
*/
|
|
u64 defrag_bytes;
|
|
|
|
/*
|
|
* the size of the file stored in the metadata on disk. data=ordered
|
|
* means the in-memory i_size might be larger than the size on disk
|
|
* because not all the blocks are written yet.
|
|
*/
|
|
u64 disk_i_size;
|
|
|
|
/*
|
|
* if this is a directory then index_cnt is the counter for the index
|
|
* number for new files that are created
|
|
*/
|
|
u64 index_cnt;
|
|
|
|
/* Cache the directory index number to speed the dir/file remove */
|
|
u64 dir_index;
|
|
|
|
/* the fsync log has some corner cases that mean we have to check
|
|
* directories to see if any unlinks have been done before
|
|
* the directory was logged. See tree-log.c for all the
|
|
* details
|
|
*/
|
|
u64 last_unlink_trans;
|
|
|
|
/*
|
|
* Number of bytes outstanding that are going to need csums. This is
|
|
* used in ENOSPC accounting.
|
|
*/
|
|
u64 csum_bytes;
|
|
|
|
/* flags field from the on disk inode */
|
|
u32 flags;
|
|
|
|
/*
|
|
* Counters to keep track of the number of extent item's we may use due
|
|
* to delalloc and such. outstanding_extents is the number of extent
|
|
* items we think we'll end up using, and reserved_extents is the number
|
|
* of extent items we've reserved metadata for.
|
|
*/
|
|
unsigned outstanding_extents;
|
|
unsigned reserved_extents;
|
|
|
|
/*
|
|
* always compress this one file
|
|
*/
|
|
unsigned force_compress;
|
|
|
|
struct btrfs_delayed_node *delayed_node;
|
|
|
|
/* File creation time. */
|
|
struct timespec i_otime;
|
|
|
|
/* Hook into fs_info->delayed_iputs */
|
|
struct list_head delayed_iput;
|
|
long delayed_iput_count;
|
|
|
|
struct inode vfs_inode;
|
|
};
|
|
|
|
extern unsigned char btrfs_filetype_table[];
|
|
|
|
static inline struct btrfs_inode *BTRFS_I(struct inode *inode)
|
|
{
|
|
return container_of(inode, struct btrfs_inode, vfs_inode);
|
|
}
|
|
|
|
static inline unsigned long btrfs_inode_hash(u64 objectid,
|
|
const struct btrfs_root *root)
|
|
{
|
|
u64 h = objectid ^ (root->objectid * GOLDEN_RATIO_PRIME);
|
|
|
|
#if BITS_PER_LONG == 32
|
|
h = (h >> 32) ^ (h & 0xffffffff);
|
|
#endif
|
|
|
|
return (unsigned long)h;
|
|
}
|
|
|
|
static inline void btrfs_insert_inode_hash(struct inode *inode)
|
|
{
|
|
unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
|
|
|
|
__insert_inode_hash(inode, h);
|
|
}
|
|
|
|
static inline u64 btrfs_ino(struct inode *inode)
|
|
{
|
|
u64 ino = BTRFS_I(inode)->location.objectid;
|
|
|
|
/*
|
|
* !ino: btree_inode
|
|
* type == BTRFS_ROOT_ITEM_KEY: subvol dir
|
|
*/
|
|
if (!ino || BTRFS_I(inode)->location.type == BTRFS_ROOT_ITEM_KEY)
|
|
ino = inode->i_ino;
|
|
return ino;
|
|
}
|
|
|
|
static inline void btrfs_i_size_write(struct inode *inode, u64 size)
|
|
{
|
|
i_size_write(inode, size);
|
|
BTRFS_I(inode)->disk_i_size = size;
|
|
}
|
|
|
|
static inline bool btrfs_is_free_space_inode(struct inode *inode)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
|
|
if (root == root->fs_info->tree_root &&
|
|
btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
|
|
return true;
|
|
if (BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static inline int btrfs_inode_in_log(struct inode *inode, u64 generation)
|
|
{
|
|
int ret = 0;
|
|
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
if (BTRFS_I(inode)->logged_trans == generation &&
|
|
BTRFS_I(inode)->last_sub_trans <=
|
|
BTRFS_I(inode)->last_log_commit &&
|
|
BTRFS_I(inode)->last_sub_trans <=
|
|
BTRFS_I(inode)->root->last_log_commit) {
|
|
/*
|
|
* After a ranged fsync we might have left some extent maps
|
|
* (that fall outside the fsync's range). So return false
|
|
* here if the list isn't empty, to make sure btrfs_log_inode()
|
|
* will be called and process those extent maps.
|
|
*/
|
|
smp_mb();
|
|
if (list_empty(&BTRFS_I(inode)->extent_tree.modified_extents))
|
|
ret = 1;
|
|
}
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
return ret;
|
|
}
|
|
|
|
#define BTRFS_DIO_ORIG_BIO_SUBMITTED 0x1
|
|
|
|
struct btrfs_dio_private {
|
|
struct inode *inode;
|
|
unsigned long flags;
|
|
u64 logical_offset;
|
|
u64 disk_bytenr;
|
|
u64 bytes;
|
|
void *private;
|
|
|
|
/* number of bios pending for this dio */
|
|
atomic_t pending_bios;
|
|
|
|
/* IO errors */
|
|
int errors;
|
|
|
|
/* orig_bio is our btrfs_io_bio */
|
|
struct bio *orig_bio;
|
|
|
|
/* dio_bio came from fs/direct-io.c */
|
|
struct bio *dio_bio;
|
|
|
|
/*
|
|
* The original bio may be splited to several sub-bios, this is
|
|
* done during endio of sub-bios
|
|
*/
|
|
int (*subio_endio)(struct inode *, struct btrfs_io_bio *, int);
|
|
};
|
|
|
|
/*
|
|
* Disable DIO read nolock optimization, so new dio readers will be forced
|
|
* to grab i_mutex. It is used to avoid the endless truncate due to
|
|
* nonlocked dio read.
|
|
*/
|
|
static inline void btrfs_inode_block_unlocked_dio(struct inode *inode)
|
|
{
|
|
set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &BTRFS_I(inode)->runtime_flags);
|
|
smp_mb();
|
|
}
|
|
|
|
static inline void btrfs_inode_resume_unlocked_dio(struct inode *inode)
|
|
{
|
|
smp_mb__before_atomic();
|
|
clear_bit(BTRFS_INODE_READDIO_NEED_LOCK,
|
|
&BTRFS_I(inode)->runtime_flags);
|
|
}
|
|
|
|
bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end);
|
|
|
|
#endif
|