mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 12:11:40 +00:00
f220f6da5f
To prepare for adding per-rtgroup bitmap files, make the xfs_rtxnum_t type encode the RT extent number relative to the rtgroup. The biggest part of this to clearly distinguish between the relative extent number that gets masked when converting from a global block number and length values that just have a factor applied to them when converting from file system blocks. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
1187 lines
32 KiB
C
1187 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2017 Oracle. All Rights Reserved.
|
|
* Author: Darrick J. Wong <darrick.wong@oracle.com>
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_rmap_btree.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_rmap.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_bit.h"
|
|
#include <linux/fsmap.h>
|
|
#include "xfs_fsmap.h"
|
|
#include "xfs_refcount.h"
|
|
#include "xfs_refcount_btree.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_rtbitmap.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_rtgroup.h"
|
|
|
|
/* Convert an xfs_fsmap to an fsmap. */
|
|
static void
|
|
xfs_fsmap_from_internal(
|
|
struct fsmap *dest,
|
|
struct xfs_fsmap *src)
|
|
{
|
|
dest->fmr_device = src->fmr_device;
|
|
dest->fmr_flags = src->fmr_flags;
|
|
dest->fmr_physical = BBTOB(src->fmr_physical);
|
|
dest->fmr_owner = src->fmr_owner;
|
|
dest->fmr_offset = BBTOB(src->fmr_offset);
|
|
dest->fmr_length = BBTOB(src->fmr_length);
|
|
dest->fmr_reserved[0] = 0;
|
|
dest->fmr_reserved[1] = 0;
|
|
dest->fmr_reserved[2] = 0;
|
|
}
|
|
|
|
/* Convert an fsmap to an xfs_fsmap. */
|
|
static void
|
|
xfs_fsmap_to_internal(
|
|
struct xfs_fsmap *dest,
|
|
struct fsmap *src)
|
|
{
|
|
dest->fmr_device = src->fmr_device;
|
|
dest->fmr_flags = src->fmr_flags;
|
|
dest->fmr_physical = BTOBBT(src->fmr_physical);
|
|
dest->fmr_owner = src->fmr_owner;
|
|
dest->fmr_offset = BTOBBT(src->fmr_offset);
|
|
dest->fmr_length = BTOBBT(src->fmr_length);
|
|
}
|
|
|
|
/* Convert an fsmap owner into an rmapbt owner. */
|
|
static int
|
|
xfs_fsmap_owner_to_rmap(
|
|
struct xfs_rmap_irec *dest,
|
|
const struct xfs_fsmap *src)
|
|
{
|
|
if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) {
|
|
dest->rm_owner = src->fmr_owner;
|
|
return 0;
|
|
}
|
|
|
|
switch (src->fmr_owner) {
|
|
case 0: /* "lowest owner id possible" */
|
|
case -1ULL: /* "highest owner id possible" */
|
|
dest->rm_owner = src->fmr_owner;
|
|
break;
|
|
case XFS_FMR_OWN_FREE:
|
|
dest->rm_owner = XFS_RMAP_OWN_NULL;
|
|
break;
|
|
case XFS_FMR_OWN_UNKNOWN:
|
|
dest->rm_owner = XFS_RMAP_OWN_UNKNOWN;
|
|
break;
|
|
case XFS_FMR_OWN_FS:
|
|
dest->rm_owner = XFS_RMAP_OWN_FS;
|
|
break;
|
|
case XFS_FMR_OWN_LOG:
|
|
dest->rm_owner = XFS_RMAP_OWN_LOG;
|
|
break;
|
|
case XFS_FMR_OWN_AG:
|
|
dest->rm_owner = XFS_RMAP_OWN_AG;
|
|
break;
|
|
case XFS_FMR_OWN_INOBT:
|
|
dest->rm_owner = XFS_RMAP_OWN_INOBT;
|
|
break;
|
|
case XFS_FMR_OWN_INODES:
|
|
dest->rm_owner = XFS_RMAP_OWN_INODES;
|
|
break;
|
|
case XFS_FMR_OWN_REFC:
|
|
dest->rm_owner = XFS_RMAP_OWN_REFC;
|
|
break;
|
|
case XFS_FMR_OWN_COW:
|
|
dest->rm_owner = XFS_RMAP_OWN_COW;
|
|
break;
|
|
case XFS_FMR_OWN_DEFECTIVE: /* not implemented */
|
|
/* fall through */
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Convert an rmapbt owner into an fsmap owner. */
|
|
static int
|
|
xfs_fsmap_owner_from_frec(
|
|
struct xfs_fsmap *dest,
|
|
const struct xfs_fsmap_irec *frec)
|
|
{
|
|
dest->fmr_flags = 0;
|
|
if (!XFS_RMAP_NON_INODE_OWNER(frec->owner)) {
|
|
dest->fmr_owner = frec->owner;
|
|
return 0;
|
|
}
|
|
dest->fmr_flags |= FMR_OF_SPECIAL_OWNER;
|
|
|
|
switch (frec->owner) {
|
|
case XFS_RMAP_OWN_FS:
|
|
dest->fmr_owner = XFS_FMR_OWN_FS;
|
|
break;
|
|
case XFS_RMAP_OWN_LOG:
|
|
dest->fmr_owner = XFS_FMR_OWN_LOG;
|
|
break;
|
|
case XFS_RMAP_OWN_AG:
|
|
dest->fmr_owner = XFS_FMR_OWN_AG;
|
|
break;
|
|
case XFS_RMAP_OWN_INOBT:
|
|
dest->fmr_owner = XFS_FMR_OWN_INOBT;
|
|
break;
|
|
case XFS_RMAP_OWN_INODES:
|
|
dest->fmr_owner = XFS_FMR_OWN_INODES;
|
|
break;
|
|
case XFS_RMAP_OWN_REFC:
|
|
dest->fmr_owner = XFS_FMR_OWN_REFC;
|
|
break;
|
|
case XFS_RMAP_OWN_COW:
|
|
dest->fmr_owner = XFS_FMR_OWN_COW;
|
|
break;
|
|
case XFS_RMAP_OWN_NULL: /* "free" */
|
|
dest->fmr_owner = XFS_FMR_OWN_FREE;
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* getfsmap query state */
|
|
struct xfs_getfsmap_info {
|
|
struct xfs_fsmap_head *head;
|
|
struct fsmap *fsmap_recs; /* mapping records */
|
|
struct xfs_buf *agf_bp; /* AGF, for refcount queries */
|
|
struct xfs_group *group; /* group info, if applicable */
|
|
xfs_daddr_t next_daddr; /* next daddr we expect */
|
|
/* daddr of low fsmap key when we're using the rtbitmap */
|
|
xfs_daddr_t low_daddr;
|
|
xfs_daddr_t end_daddr; /* daddr of high fsmap key */
|
|
u64 missing_owner; /* owner of holes */
|
|
u32 dev; /* device id */
|
|
/*
|
|
* Low rmap key for the query. If low.rm_blockcount is nonzero, this
|
|
* is the second (or later) call to retrieve the recordset in pieces.
|
|
* xfs_getfsmap_rec_before_start will compare all records retrieved
|
|
* by the rmapbt query to filter out any records that start before
|
|
* the last record.
|
|
*/
|
|
struct xfs_rmap_irec low;
|
|
struct xfs_rmap_irec high; /* high rmap key */
|
|
bool last; /* last extent? */
|
|
};
|
|
|
|
/* Associate a device with a getfsmap handler. */
|
|
struct xfs_getfsmap_dev {
|
|
u32 dev;
|
|
int (*fn)(struct xfs_trans *tp,
|
|
const struct xfs_fsmap *keys,
|
|
struct xfs_getfsmap_info *info);
|
|
sector_t nr_sectors;
|
|
};
|
|
|
|
/* Compare two getfsmap device handlers. */
|
|
static int
|
|
xfs_getfsmap_dev_compare(
|
|
const void *p1,
|
|
const void *p2)
|
|
{
|
|
const struct xfs_getfsmap_dev *d1 = p1;
|
|
const struct xfs_getfsmap_dev *d2 = p2;
|
|
|
|
return d1->dev - d2->dev;
|
|
}
|
|
|
|
/* Decide if this mapping is shared. */
|
|
STATIC int
|
|
xfs_getfsmap_is_shared(
|
|
struct xfs_trans *tp,
|
|
struct xfs_getfsmap_info *info,
|
|
const struct xfs_fsmap_irec *frec,
|
|
bool *stat)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_btree_cur *cur;
|
|
xfs_agblock_t fbno;
|
|
xfs_extlen_t flen;
|
|
int error;
|
|
|
|
*stat = false;
|
|
if (!xfs_has_reflink(mp))
|
|
return 0;
|
|
/* rt files will have no perag structure */
|
|
if (!info->group)
|
|
return 0;
|
|
|
|
/* Are there any shared blocks here? */
|
|
flen = 0;
|
|
cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp,
|
|
to_perag(info->group));
|
|
|
|
error = xfs_refcount_find_shared(cur, frec->rec_key,
|
|
XFS_BB_TO_FSBT(mp, frec->len_daddr), &fbno, &flen,
|
|
false);
|
|
|
|
xfs_btree_del_cursor(cur, error);
|
|
if (error)
|
|
return error;
|
|
|
|
*stat = flen > 0;
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
xfs_getfsmap_format(
|
|
struct xfs_mount *mp,
|
|
struct xfs_fsmap *xfm,
|
|
struct xfs_getfsmap_info *info)
|
|
{
|
|
struct fsmap *rec;
|
|
|
|
trace_xfs_getfsmap_mapping(mp, xfm);
|
|
|
|
rec = &info->fsmap_recs[info->head->fmh_entries++];
|
|
xfs_fsmap_from_internal(rec, xfm);
|
|
}
|
|
|
|
static inline bool
|
|
xfs_getfsmap_frec_before_start(
|
|
struct xfs_getfsmap_info *info,
|
|
const struct xfs_fsmap_irec *frec)
|
|
{
|
|
if (info->low_daddr != XFS_BUF_DADDR_NULL)
|
|
return frec->start_daddr < info->low_daddr;
|
|
if (info->low.rm_blockcount) {
|
|
struct xfs_rmap_irec rec = {
|
|
.rm_startblock = frec->rec_key,
|
|
.rm_owner = frec->owner,
|
|
.rm_flags = frec->rm_flags,
|
|
};
|
|
|
|
return xfs_rmap_compare(&rec, &info->low) < 0;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Format a reverse mapping for getfsmap, having translated rm_startblock
|
|
* into the appropriate daddr units. Pass in a nonzero @len_daddr if the
|
|
* length could be larger than rm_blockcount in struct xfs_rmap_irec.
|
|
*/
|
|
STATIC int
|
|
xfs_getfsmap_helper(
|
|
struct xfs_trans *tp,
|
|
struct xfs_getfsmap_info *info,
|
|
const struct xfs_fsmap_irec *frec)
|
|
{
|
|
struct xfs_fsmap fmr;
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
bool shared;
|
|
int error = 0;
|
|
|
|
if (fatal_signal_pending(current))
|
|
return -EINTR;
|
|
|
|
/*
|
|
* Filter out records that start before our startpoint, if the
|
|
* caller requested that.
|
|
*/
|
|
if (xfs_getfsmap_frec_before_start(info, frec))
|
|
goto out;
|
|
|
|
/* Are we just counting mappings? */
|
|
if (info->head->fmh_count == 0) {
|
|
if (info->head->fmh_entries == UINT_MAX)
|
|
return -ECANCELED;
|
|
|
|
if (frec->start_daddr > info->next_daddr)
|
|
info->head->fmh_entries++;
|
|
|
|
if (info->last)
|
|
return 0;
|
|
|
|
info->head->fmh_entries++;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If the record starts past the last physical block we saw,
|
|
* then we've found a gap. Report the gap as being owned by
|
|
* whatever the caller specified is the missing owner.
|
|
*/
|
|
if (frec->start_daddr > info->next_daddr) {
|
|
if (info->head->fmh_entries >= info->head->fmh_count)
|
|
return -ECANCELED;
|
|
|
|
fmr.fmr_device = info->dev;
|
|
fmr.fmr_physical = info->next_daddr;
|
|
fmr.fmr_owner = info->missing_owner;
|
|
fmr.fmr_offset = 0;
|
|
fmr.fmr_length = frec->start_daddr - info->next_daddr;
|
|
fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
|
|
xfs_getfsmap_format(mp, &fmr, info);
|
|
}
|
|
|
|
if (info->last)
|
|
goto out;
|
|
|
|
/* Fill out the extent we found */
|
|
if (info->head->fmh_entries >= info->head->fmh_count)
|
|
return -ECANCELED;
|
|
|
|
trace_xfs_fsmap_mapping(mp, info->dev,
|
|
info->group ? info->group->xg_gno : NULLAGNUMBER,
|
|
frec);
|
|
|
|
fmr.fmr_device = info->dev;
|
|
fmr.fmr_physical = frec->start_daddr;
|
|
error = xfs_fsmap_owner_from_frec(&fmr, frec);
|
|
if (error)
|
|
return error;
|
|
fmr.fmr_offset = XFS_FSB_TO_BB(mp, frec->offset);
|
|
fmr.fmr_length = frec->len_daddr;
|
|
if (frec->rm_flags & XFS_RMAP_UNWRITTEN)
|
|
fmr.fmr_flags |= FMR_OF_PREALLOC;
|
|
if (frec->rm_flags & XFS_RMAP_ATTR_FORK)
|
|
fmr.fmr_flags |= FMR_OF_ATTR_FORK;
|
|
if (frec->rm_flags & XFS_RMAP_BMBT_BLOCK)
|
|
fmr.fmr_flags |= FMR_OF_EXTENT_MAP;
|
|
if (fmr.fmr_flags == 0) {
|
|
error = xfs_getfsmap_is_shared(tp, info, frec, &shared);
|
|
if (error)
|
|
return error;
|
|
if (shared)
|
|
fmr.fmr_flags |= FMR_OF_SHARED;
|
|
}
|
|
|
|
xfs_getfsmap_format(mp, &fmr, info);
|
|
out:
|
|
info->next_daddr = max(info->next_daddr,
|
|
frec->start_daddr + frec->len_daddr);
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
xfs_getfsmap_group_helper(
|
|
struct xfs_getfsmap_info *info,
|
|
struct xfs_trans *tp,
|
|
struct xfs_group *xg,
|
|
xfs_agblock_t startblock,
|
|
xfs_extlen_t blockcount,
|
|
struct xfs_fsmap_irec *frec)
|
|
{
|
|
/*
|
|
* For an info->last query, we're looking for a gap between the last
|
|
* mapping emitted and the high key specified by userspace. If the
|
|
* user's query spans less than 1 fsblock, then info->high and
|
|
* info->low will have the same rm_startblock, which causes rec_daddr
|
|
* and next_daddr to be the same. Therefore, use the end_daddr that
|
|
* we calculated from userspace's high key to synthesize the record.
|
|
* Note that if the btree query found a mapping, there won't be a gap.
|
|
*/
|
|
if (info->last && info->end_daddr != XFS_BUF_DADDR_NULL)
|
|
frec->start_daddr = info->end_daddr;
|
|
else
|
|
frec->start_daddr = xfs_gbno_to_daddr(xg, startblock);
|
|
|
|
frec->len_daddr = XFS_FSB_TO_BB(xg->xg_mount, blockcount);
|
|
return xfs_getfsmap_helper(tp, info, frec);
|
|
}
|
|
|
|
/* Transform a rmapbt irec into a fsmap */
|
|
STATIC int
|
|
xfs_getfsmap_rmapbt_helper(
|
|
struct xfs_btree_cur *cur,
|
|
const struct xfs_rmap_irec *rec,
|
|
void *priv)
|
|
{
|
|
struct xfs_fsmap_irec frec = {
|
|
.owner = rec->rm_owner,
|
|
.offset = rec->rm_offset,
|
|
.rm_flags = rec->rm_flags,
|
|
.rec_key = rec->rm_startblock,
|
|
};
|
|
struct xfs_getfsmap_info *info = priv;
|
|
|
|
return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group,
|
|
rec->rm_startblock, rec->rm_blockcount, &frec);
|
|
}
|
|
|
|
/* Transform a bnobt irec into a fsmap */
|
|
STATIC int
|
|
xfs_getfsmap_datadev_bnobt_helper(
|
|
struct xfs_btree_cur *cur,
|
|
const struct xfs_alloc_rec_incore *rec,
|
|
void *priv)
|
|
{
|
|
struct xfs_fsmap_irec frec = {
|
|
.owner = XFS_RMAP_OWN_NULL, /* "free" */
|
|
.rec_key = rec->ar_startblock,
|
|
};
|
|
struct xfs_getfsmap_info *info = priv;
|
|
|
|
return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group,
|
|
rec->ar_startblock, rec->ar_blockcount, &frec);
|
|
}
|
|
|
|
/* Set rmap flags based on the getfsmap flags */
|
|
static void
|
|
xfs_getfsmap_set_irec_flags(
|
|
struct xfs_rmap_irec *irec,
|
|
const struct xfs_fsmap *fmr)
|
|
{
|
|
irec->rm_flags = 0;
|
|
if (fmr->fmr_flags & FMR_OF_ATTR_FORK)
|
|
irec->rm_flags |= XFS_RMAP_ATTR_FORK;
|
|
if (fmr->fmr_flags & FMR_OF_EXTENT_MAP)
|
|
irec->rm_flags |= XFS_RMAP_BMBT_BLOCK;
|
|
if (fmr->fmr_flags & FMR_OF_PREALLOC)
|
|
irec->rm_flags |= XFS_RMAP_UNWRITTEN;
|
|
}
|
|
|
|
static inline bool
|
|
rmap_not_shareable(struct xfs_mount *mp, const struct xfs_rmap_irec *r)
|
|
{
|
|
if (!xfs_has_reflink(mp))
|
|
return true;
|
|
if (XFS_RMAP_NON_INODE_OWNER(r->rm_owner))
|
|
return true;
|
|
if (r->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK |
|
|
XFS_RMAP_UNWRITTEN))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Execute a getfsmap query against the regular data device. */
|
|
STATIC int
|
|
__xfs_getfsmap_datadev(
|
|
struct xfs_trans *tp,
|
|
const struct xfs_fsmap *keys,
|
|
struct xfs_getfsmap_info *info,
|
|
int (*query_fn)(struct xfs_trans *,
|
|
struct xfs_getfsmap_info *,
|
|
struct xfs_btree_cur **,
|
|
void *),
|
|
void *priv)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_perag *pag = NULL;
|
|
struct xfs_btree_cur *bt_cur = NULL;
|
|
xfs_fsblock_t start_fsb;
|
|
xfs_fsblock_t end_fsb;
|
|
xfs_agnumber_t start_ag, end_ag;
|
|
uint64_t eofs;
|
|
int error = 0;
|
|
|
|
eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
|
|
if (keys[0].fmr_physical >= eofs)
|
|
return 0;
|
|
start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical);
|
|
end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
|
|
|
|
/*
|
|
* Convert the fsmap low/high keys to AG based keys. Initialize
|
|
* low to the fsmap low key and max out the high key to the end
|
|
* of the AG.
|
|
*/
|
|
info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
|
|
error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
|
|
if (error)
|
|
return error;
|
|
info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, keys[0].fmr_length);
|
|
xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
|
|
|
|
/* Adjust the low key if we are continuing from where we left off. */
|
|
if (info->low.rm_blockcount == 0) {
|
|
/* No previous record from which to continue */
|
|
} else if (rmap_not_shareable(mp, &info->low)) {
|
|
/* Last record seen was an unshareable extent */
|
|
info->low.rm_owner = 0;
|
|
info->low.rm_offset = 0;
|
|
|
|
start_fsb += info->low.rm_blockcount;
|
|
if (XFS_FSB_TO_DADDR(mp, start_fsb) >= eofs)
|
|
return 0;
|
|
} else {
|
|
/* Last record seen was a shareable file data extent */
|
|
info->low.rm_offset += info->low.rm_blockcount;
|
|
}
|
|
info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb);
|
|
|
|
info->high.rm_startblock = -1U;
|
|
info->high.rm_owner = ULLONG_MAX;
|
|
info->high.rm_offset = ULLONG_MAX;
|
|
info->high.rm_blockcount = 0;
|
|
info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
|
|
|
|
start_ag = XFS_FSB_TO_AGNO(mp, start_fsb);
|
|
end_ag = XFS_FSB_TO_AGNO(mp, end_fsb);
|
|
|
|
while ((pag = xfs_perag_next_range(mp, pag, start_ag, end_ag))) {
|
|
/*
|
|
* Set the AG high key from the fsmap high key if this
|
|
* is the last AG that we're querying.
|
|
*/
|
|
info->group = pag_group(pag);
|
|
if (pag_agno(pag) == end_ag) {
|
|
info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp,
|
|
end_fsb);
|
|
info->high.rm_offset = XFS_BB_TO_FSBT(mp,
|
|
keys[1].fmr_offset);
|
|
error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
|
|
if (error)
|
|
break;
|
|
xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
|
|
}
|
|
|
|
if (bt_cur) {
|
|
xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
|
|
bt_cur = NULL;
|
|
xfs_trans_brelse(tp, info->agf_bp);
|
|
info->agf_bp = NULL;
|
|
}
|
|
|
|
error = xfs_alloc_read_agf(pag, tp, 0, &info->agf_bp);
|
|
if (error)
|
|
break;
|
|
|
|
trace_xfs_fsmap_low_group_key(mp, info->dev, pag_agno(pag),
|
|
&info->low);
|
|
trace_xfs_fsmap_high_group_key(mp, info->dev, pag_agno(pag),
|
|
&info->high);
|
|
|
|
error = query_fn(tp, info, &bt_cur, priv);
|
|
if (error)
|
|
break;
|
|
|
|
/*
|
|
* Set the AG low key to the start of the AG prior to
|
|
* moving on to the next AG.
|
|
*/
|
|
if (pag_agno(pag) == start_ag)
|
|
memset(&info->low, 0, sizeof(info->low));
|
|
|
|
/*
|
|
* If this is the last AG, report any gap at the end of it
|
|
* before we drop the reference to the perag when the loop
|
|
* terminates.
|
|
*/
|
|
if (pag_agno(pag) == end_ag) {
|
|
info->last = true;
|
|
error = query_fn(tp, info, &bt_cur, priv);
|
|
if (error)
|
|
break;
|
|
}
|
|
info->group = NULL;
|
|
}
|
|
|
|
if (bt_cur)
|
|
xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
|
|
XFS_BTREE_NOERROR);
|
|
if (info->agf_bp) {
|
|
xfs_trans_brelse(tp, info->agf_bp);
|
|
info->agf_bp = NULL;
|
|
}
|
|
if (info->group) {
|
|
xfs_perag_rele(pag);
|
|
info->group = NULL;
|
|
} else if (pag) {
|
|
/* loop termination case */
|
|
xfs_perag_rele(pag);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Actually query the rmap btree. */
|
|
STATIC int
|
|
xfs_getfsmap_datadev_rmapbt_query(
|
|
struct xfs_trans *tp,
|
|
struct xfs_getfsmap_info *info,
|
|
struct xfs_btree_cur **curpp,
|
|
void *priv)
|
|
{
|
|
/* Report any gap at the end of the last AG. */
|
|
if (info->last)
|
|
return xfs_getfsmap_rmapbt_helper(*curpp, &info->high, info);
|
|
|
|
/* Allocate cursor for this AG and query_range it. */
|
|
*curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
|
|
to_perag(info->group));
|
|
return xfs_rmap_query_range(*curpp, &info->low, &info->high,
|
|
xfs_getfsmap_rmapbt_helper, info);
|
|
}
|
|
|
|
/* Execute a getfsmap query against the regular data device rmapbt. */
|
|
STATIC int
|
|
xfs_getfsmap_datadev_rmapbt(
|
|
struct xfs_trans *tp,
|
|
const struct xfs_fsmap *keys,
|
|
struct xfs_getfsmap_info *info)
|
|
{
|
|
info->missing_owner = XFS_FMR_OWN_FREE;
|
|
return __xfs_getfsmap_datadev(tp, keys, info,
|
|
xfs_getfsmap_datadev_rmapbt_query, NULL);
|
|
}
|
|
|
|
/* Actually query the bno btree. */
|
|
STATIC int
|
|
xfs_getfsmap_datadev_bnobt_query(
|
|
struct xfs_trans *tp,
|
|
struct xfs_getfsmap_info *info,
|
|
struct xfs_btree_cur **curpp,
|
|
void *priv)
|
|
{
|
|
struct xfs_alloc_rec_incore *key = priv;
|
|
|
|
/* Report any gap at the end of the last AG. */
|
|
if (info->last)
|
|
return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info);
|
|
|
|
/* Allocate cursor for this AG and query_range it. */
|
|
*curpp = xfs_bnobt_init_cursor(tp->t_mountp, tp, info->agf_bp,
|
|
to_perag(info->group));
|
|
key->ar_startblock = info->low.rm_startblock;
|
|
key[1].ar_startblock = info->high.rm_startblock;
|
|
return xfs_alloc_query_range(*curpp, key, &key[1],
|
|
xfs_getfsmap_datadev_bnobt_helper, info);
|
|
}
|
|
|
|
/* Execute a getfsmap query against the regular data device's bnobt. */
|
|
STATIC int
|
|
xfs_getfsmap_datadev_bnobt(
|
|
struct xfs_trans *tp,
|
|
const struct xfs_fsmap *keys,
|
|
struct xfs_getfsmap_info *info)
|
|
{
|
|
struct xfs_alloc_rec_incore akeys[2];
|
|
|
|
memset(akeys, 0, sizeof(akeys));
|
|
info->missing_owner = XFS_FMR_OWN_UNKNOWN;
|
|
return __xfs_getfsmap_datadev(tp, keys, info,
|
|
xfs_getfsmap_datadev_bnobt_query, &akeys[0]);
|
|
}
|
|
|
|
/* Execute a getfsmap query against the log device. */
|
|
STATIC int
|
|
xfs_getfsmap_logdev(
|
|
struct xfs_trans *tp,
|
|
const struct xfs_fsmap *keys,
|
|
struct xfs_getfsmap_info *info)
|
|
{
|
|
struct xfs_fsmap_irec frec = {
|
|
.start_daddr = 0,
|
|
.rec_key = 0,
|
|
.owner = XFS_RMAP_OWN_LOG,
|
|
};
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
xfs_fsblock_t start_fsb, end_fsb;
|
|
uint64_t eofs;
|
|
|
|
eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
|
|
if (keys[0].fmr_physical >= eofs)
|
|
return 0;
|
|
start_fsb = XFS_BB_TO_FSBT(mp,
|
|
keys[0].fmr_physical + keys[0].fmr_length);
|
|
end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
|
|
|
|
/* Adjust the low key if we are continuing from where we left off. */
|
|
if (keys[0].fmr_length > 0)
|
|
info->low_daddr = XFS_FSB_TO_BB(mp, start_fsb);
|
|
|
|
trace_xfs_fsmap_low_linear_key(mp, info->dev, start_fsb);
|
|
trace_xfs_fsmap_high_linear_key(mp, info->dev, end_fsb);
|
|
|
|
if (start_fsb > 0)
|
|
return 0;
|
|
|
|
/* Fabricate an rmap entry for the external log device. */
|
|
frec.len_daddr = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
|
|
return xfs_getfsmap_helper(tp, info, &frec);
|
|
}
|
|
|
|
#ifdef CONFIG_XFS_RT
|
|
/* Transform a rtbitmap "record" into a fsmap */
|
|
STATIC int
|
|
xfs_getfsmap_rtdev_rtbitmap_helper(
|
|
struct xfs_rtgroup *rtg,
|
|
struct xfs_trans *tp,
|
|
const struct xfs_rtalloc_rec *rec,
|
|
void *priv)
|
|
{
|
|
struct xfs_fsmap_irec frec = {
|
|
.owner = XFS_RMAP_OWN_NULL, /* "free" */
|
|
};
|
|
struct xfs_mount *mp = rtg_mount(rtg);
|
|
struct xfs_getfsmap_info *info = priv;
|
|
xfs_rtblock_t start_rtb =
|
|
xfs_rtx_to_rtb(rtg, rec->ar_startext);
|
|
uint64_t rtbcount =
|
|
xfs_rtbxlen_to_blen(mp, rec->ar_extcount);
|
|
|
|
/*
|
|
* For an info->last query, we're looking for a gap between the last
|
|
* mapping emitted and the high key specified by userspace. If the
|
|
* user's query spans less than 1 fsblock, then info->high and
|
|
* info->low will have the same rm_startblock, which causes rec_daddr
|
|
* and next_daddr to be the same. Therefore, use the end_daddr that
|
|
* we calculated from userspace's high key to synthesize the record.
|
|
* Note that if the btree query found a mapping, there won't be a gap.
|
|
*/
|
|
if (info->last && info->end_daddr != XFS_BUF_DADDR_NULL) {
|
|
frec.start_daddr = info->end_daddr;
|
|
} else {
|
|
frec.start_daddr = xfs_rtb_to_daddr(mp, start_rtb);
|
|
}
|
|
|
|
frec.len_daddr = XFS_FSB_TO_BB(mp, rtbcount);
|
|
return xfs_getfsmap_helper(tp, info, &frec);
|
|
}
|
|
|
|
/* Execute a getfsmap query against the realtime device rtbitmap. */
|
|
STATIC int
|
|
xfs_getfsmap_rtdev_rtbitmap(
|
|
struct xfs_trans *tp,
|
|
const struct xfs_fsmap *keys,
|
|
struct xfs_getfsmap_info *info)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
xfs_rtblock_t start_rtbno, end_rtbno;
|
|
xfs_rtxnum_t start_rtx, end_rtx;
|
|
xfs_rgnumber_t start_rgno, end_rgno;
|
|
struct xfs_rtgroup *rtg = NULL;
|
|
uint64_t eofs;
|
|
int error;
|
|
|
|
eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
|
|
if (keys[0].fmr_physical >= eofs)
|
|
return 0;
|
|
|
|
info->missing_owner = XFS_FMR_OWN_UNKNOWN;
|
|
|
|
/* Adjust the low key if we are continuing from where we left off. */
|
|
start_rtbno = xfs_daddr_to_rtb(mp,
|
|
keys[0].fmr_physical + keys[0].fmr_length);
|
|
if (keys[0].fmr_length > 0) {
|
|
info->low_daddr = xfs_rtb_to_daddr(mp, start_rtbno);
|
|
if (info->low_daddr >= eofs)
|
|
return 0;
|
|
}
|
|
start_rtx = xfs_rtb_to_rtx(mp, start_rtbno);
|
|
start_rgno = xfs_rtb_to_rgno(mp, start_rtbno);
|
|
|
|
end_rtbno = xfs_daddr_to_rtb(mp, min(eofs - 1, keys[1].fmr_physical));
|
|
end_rgno = xfs_rtb_to_rgno(mp, end_rtbno);
|
|
|
|
trace_xfs_fsmap_low_linear_key(mp, info->dev, start_rtbno);
|
|
trace_xfs_fsmap_high_linear_key(mp, info->dev, end_rtbno);
|
|
|
|
end_rtx = -1ULL;
|
|
|
|
while ((rtg = xfs_rtgroup_next_range(mp, rtg, start_rgno, end_rgno))) {
|
|
if (rtg_rgno(rtg) == end_rgno)
|
|
end_rtx = xfs_rtb_to_rtx(mp,
|
|
end_rtbno + mp->m_sb.sb_rextsize - 1);
|
|
|
|
info->group = rtg_group(rtg);
|
|
xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
|
|
error = xfs_rtalloc_query_range(rtg, tp, start_rtx, end_rtx,
|
|
xfs_getfsmap_rtdev_rtbitmap_helper, info);
|
|
if (error)
|
|
break;
|
|
|
|
/*
|
|
* Report any gaps at the end of the rtbitmap by simulating a
|
|
* zero-length free extent starting at the rtx after the end
|
|
* of the query range.
|
|
*/
|
|
if (rtg_rgno(rtg) == end_rgno) {
|
|
struct xfs_rtalloc_rec ahigh = {
|
|
.ar_startext = min(end_rtx + 1,
|
|
rtg->rtg_extents),
|
|
};
|
|
|
|
info->last = true;
|
|
error = xfs_getfsmap_rtdev_rtbitmap_helper(rtg, tp,
|
|
&ahigh, info);
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
|
|
info->group = NULL;
|
|
start_rtx = 0;
|
|
}
|
|
|
|
/* loop termination case */
|
|
if (rtg) {
|
|
if (info->group) {
|
|
xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
|
|
info->group = NULL;
|
|
}
|
|
xfs_rtgroup_rele(rtg);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
#endif /* CONFIG_XFS_RT */
|
|
|
|
/* Do we recognize the device? */
|
|
STATIC bool
|
|
xfs_getfsmap_is_valid_device(
|
|
struct xfs_mount *mp,
|
|
struct xfs_fsmap *fm)
|
|
{
|
|
if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX ||
|
|
fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev))
|
|
return true;
|
|
if (mp->m_logdev_targp &&
|
|
fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev))
|
|
return true;
|
|
if (mp->m_rtdev_targp &&
|
|
fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Ensure that the low key is less than the high key. */
|
|
STATIC bool
|
|
xfs_getfsmap_check_keys(
|
|
struct xfs_fsmap *low_key,
|
|
struct xfs_fsmap *high_key)
|
|
{
|
|
if (low_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) {
|
|
if (low_key->fmr_offset)
|
|
return false;
|
|
}
|
|
if (high_key->fmr_flags != -1U &&
|
|
(high_key->fmr_flags & (FMR_OF_SPECIAL_OWNER |
|
|
FMR_OF_EXTENT_MAP))) {
|
|
if (high_key->fmr_offset && high_key->fmr_offset != -1ULL)
|
|
return false;
|
|
}
|
|
if (high_key->fmr_length && high_key->fmr_length != -1ULL)
|
|
return false;
|
|
|
|
if (low_key->fmr_device > high_key->fmr_device)
|
|
return false;
|
|
if (low_key->fmr_device < high_key->fmr_device)
|
|
return true;
|
|
|
|
if (low_key->fmr_physical > high_key->fmr_physical)
|
|
return false;
|
|
if (low_key->fmr_physical < high_key->fmr_physical)
|
|
return true;
|
|
|
|
if (low_key->fmr_owner > high_key->fmr_owner)
|
|
return false;
|
|
if (low_key->fmr_owner < high_key->fmr_owner)
|
|
return true;
|
|
|
|
if (low_key->fmr_offset > high_key->fmr_offset)
|
|
return false;
|
|
if (low_key->fmr_offset < high_key->fmr_offset)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* There are only two devices if we didn't configure RT devices at build time.
|
|
*/
|
|
#ifdef CONFIG_XFS_RT
|
|
#define XFS_GETFSMAP_DEVS 3
|
|
#else
|
|
#define XFS_GETFSMAP_DEVS 2
|
|
#endif /* CONFIG_XFS_RT */
|
|
|
|
/*
|
|
* Get filesystem's extents as described in head, and format for output. Fills
|
|
* in the supplied records array until there are no more reverse mappings to
|
|
* return or head.fmh_entries == head.fmh_count. In the second case, this
|
|
* function returns -ECANCELED to indicate that more records would have been
|
|
* returned.
|
|
*
|
|
* Key to Confusion
|
|
* ----------------
|
|
* There are multiple levels of keys and counters at work here:
|
|
* xfs_fsmap_head.fmh_keys -- low and high fsmap keys passed in;
|
|
* these reflect fs-wide sector addrs.
|
|
* dkeys -- fmh_keys used to query each device;
|
|
* these are fmh_keys but w/ the low key
|
|
* bumped up by fmr_length.
|
|
* xfs_getfsmap_info.next_daddr -- next disk addr we expect to see; this
|
|
* is how we detect gaps in the fsmap
|
|
records and report them.
|
|
* xfs_getfsmap_info.low/high -- per-AG low/high keys computed from
|
|
* dkeys; used to query the metadata.
|
|
*/
|
|
STATIC int
|
|
xfs_getfsmap(
|
|
struct xfs_mount *mp,
|
|
struct xfs_fsmap_head *head,
|
|
struct fsmap *fsmap_recs)
|
|
{
|
|
struct xfs_trans *tp = NULL;
|
|
struct xfs_fsmap dkeys[2]; /* per-dev keys */
|
|
struct xfs_getfsmap_dev handlers[XFS_GETFSMAP_DEVS];
|
|
struct xfs_getfsmap_info info = { NULL };
|
|
bool use_rmap;
|
|
int i;
|
|
int error = 0;
|
|
|
|
if (head->fmh_iflags & ~FMH_IF_VALID)
|
|
return -EINVAL;
|
|
if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) ||
|
|
!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1]))
|
|
return -EINVAL;
|
|
if (!xfs_getfsmap_check_keys(&head->fmh_keys[0], &head->fmh_keys[1]))
|
|
return -EINVAL;
|
|
|
|
use_rmap = xfs_has_rmapbt(mp) &&
|
|
has_capability_noaudit(current, CAP_SYS_ADMIN);
|
|
head->fmh_entries = 0;
|
|
|
|
/* Set up our device handlers. */
|
|
memset(handlers, 0, sizeof(handlers));
|
|
handlers[0].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
|
|
handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev);
|
|
if (use_rmap)
|
|
handlers[0].fn = xfs_getfsmap_datadev_rmapbt;
|
|
else
|
|
handlers[0].fn = xfs_getfsmap_datadev_bnobt;
|
|
if (mp->m_logdev_targp != mp->m_ddev_targp) {
|
|
handlers[1].nr_sectors = XFS_FSB_TO_BB(mp,
|
|
mp->m_sb.sb_logblocks);
|
|
handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev);
|
|
handlers[1].fn = xfs_getfsmap_logdev;
|
|
}
|
|
#ifdef CONFIG_XFS_RT
|
|
if (mp->m_rtdev_targp) {
|
|
handlers[2].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
|
|
handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev);
|
|
handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap;
|
|
}
|
|
#endif /* CONFIG_XFS_RT */
|
|
|
|
xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev),
|
|
xfs_getfsmap_dev_compare);
|
|
|
|
/*
|
|
* To continue where we left off, we allow userspace to use the
|
|
* last mapping from a previous call as the low key of the next.
|
|
* This is identified by a non-zero length in the low key. We
|
|
* have to increment the low key in this scenario to ensure we
|
|
* don't return the same mapping again, and instead return the
|
|
* very next mapping.
|
|
*
|
|
* If the low key mapping refers to file data, the same physical
|
|
* blocks could be mapped to several other files/offsets.
|
|
* According to rmapbt record ordering, the minimal next
|
|
* possible record for the block range is the next starting
|
|
* offset in the same inode. Therefore, each fsmap backend bumps
|
|
* the file offset to continue the search appropriately. For
|
|
* all other low key mapping types (attr blocks, metadata), each
|
|
* fsmap backend bumps the physical offset as there can be no
|
|
* other mapping for the same physical block range.
|
|
*/
|
|
dkeys[0] = head->fmh_keys[0];
|
|
memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap));
|
|
|
|
info.next_daddr = head->fmh_keys[0].fmr_physical +
|
|
head->fmh_keys[0].fmr_length;
|
|
info.end_daddr = XFS_BUF_DADDR_NULL;
|
|
info.fsmap_recs = fsmap_recs;
|
|
info.head = head;
|
|
|
|
/* For each device we support... */
|
|
for (i = 0; i < XFS_GETFSMAP_DEVS; i++) {
|
|
/* Is this device within the range the user asked for? */
|
|
if (!handlers[i].fn)
|
|
continue;
|
|
if (head->fmh_keys[0].fmr_device > handlers[i].dev)
|
|
continue;
|
|
if (head->fmh_keys[1].fmr_device < handlers[i].dev)
|
|
break;
|
|
|
|
/*
|
|
* If this device number matches the high key, we have
|
|
* to pass the high key to the handler to limit the
|
|
* query results. If the device number exceeds the
|
|
* low key, zero out the low key so that we get
|
|
* everything from the beginning.
|
|
*/
|
|
if (handlers[i].dev == head->fmh_keys[1].fmr_device) {
|
|
dkeys[1] = head->fmh_keys[1];
|
|
info.end_daddr = min(handlers[i].nr_sectors - 1,
|
|
dkeys[1].fmr_physical);
|
|
}
|
|
if (handlers[i].dev > head->fmh_keys[0].fmr_device)
|
|
memset(&dkeys[0], 0, sizeof(struct xfs_fsmap));
|
|
|
|
/*
|
|
* Grab an empty transaction so that we can use its recursive
|
|
* buffer locking abilities to detect cycles in the rmapbt
|
|
* without deadlocking.
|
|
*/
|
|
error = xfs_trans_alloc_empty(mp, &tp);
|
|
if (error)
|
|
break;
|
|
|
|
info.dev = handlers[i].dev;
|
|
info.last = false;
|
|
info.group = NULL;
|
|
info.low_daddr = XFS_BUF_DADDR_NULL;
|
|
info.low.rm_blockcount = 0;
|
|
error = handlers[i].fn(tp, dkeys, &info);
|
|
if (error)
|
|
break;
|
|
xfs_trans_cancel(tp);
|
|
tp = NULL;
|
|
info.next_daddr = 0;
|
|
}
|
|
|
|
if (tp)
|
|
xfs_trans_cancel(tp);
|
|
head->fmh_oflags = FMH_OF_DEV_T;
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_ioc_getfsmap(
|
|
struct xfs_inode *ip,
|
|
struct fsmap_head __user *arg)
|
|
{
|
|
struct xfs_fsmap_head xhead = {0};
|
|
struct fsmap_head head;
|
|
struct fsmap *recs;
|
|
unsigned int count;
|
|
__u32 last_flags = 0;
|
|
bool done = false;
|
|
int error;
|
|
|
|
if (copy_from_user(&head, arg, sizeof(struct fsmap_head)))
|
|
return -EFAULT;
|
|
if (memchr_inv(head.fmh_reserved, 0, sizeof(head.fmh_reserved)) ||
|
|
memchr_inv(head.fmh_keys[0].fmr_reserved, 0,
|
|
sizeof(head.fmh_keys[0].fmr_reserved)) ||
|
|
memchr_inv(head.fmh_keys[1].fmr_reserved, 0,
|
|
sizeof(head.fmh_keys[1].fmr_reserved)))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Use an internal memory buffer so that we don't have to copy fsmap
|
|
* data to userspace while holding locks. Start by trying to allocate
|
|
* up to 128k for the buffer, but fall back to a single page if needed.
|
|
*/
|
|
count = min_t(unsigned int, head.fmh_count,
|
|
131072 / sizeof(struct fsmap));
|
|
recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
|
|
if (!recs) {
|
|
count = min_t(unsigned int, head.fmh_count,
|
|
PAGE_SIZE / sizeof(struct fsmap));
|
|
recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
|
|
if (!recs)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
xhead.fmh_iflags = head.fmh_iflags;
|
|
xfs_fsmap_to_internal(&xhead.fmh_keys[0], &head.fmh_keys[0]);
|
|
xfs_fsmap_to_internal(&xhead.fmh_keys[1], &head.fmh_keys[1]);
|
|
|
|
trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
|
|
trace_xfs_getfsmap_high_key(ip->i_mount, &xhead.fmh_keys[1]);
|
|
|
|
head.fmh_entries = 0;
|
|
do {
|
|
struct fsmap __user *user_recs;
|
|
struct fsmap *last_rec;
|
|
|
|
user_recs = &arg->fmh_recs[head.fmh_entries];
|
|
xhead.fmh_entries = 0;
|
|
xhead.fmh_count = min_t(unsigned int, count,
|
|
head.fmh_count - head.fmh_entries);
|
|
|
|
/* Run query, record how many entries we got. */
|
|
error = xfs_getfsmap(ip->i_mount, &xhead, recs);
|
|
switch (error) {
|
|
case 0:
|
|
/*
|
|
* There are no more records in the result set. Copy
|
|
* whatever we got to userspace and break out.
|
|
*/
|
|
done = true;
|
|
break;
|
|
case -ECANCELED:
|
|
/*
|
|
* The internal memory buffer is full. Copy whatever
|
|
* records we got to userspace and go again if we have
|
|
* not yet filled the userspace buffer.
|
|
*/
|
|
error = 0;
|
|
break;
|
|
default:
|
|
goto out_free;
|
|
}
|
|
head.fmh_entries += xhead.fmh_entries;
|
|
head.fmh_oflags = xhead.fmh_oflags;
|
|
|
|
/*
|
|
* If the caller wanted a record count or there aren't any
|
|
* new records to return, we're done.
|
|
*/
|
|
if (head.fmh_count == 0 || xhead.fmh_entries == 0)
|
|
break;
|
|
|
|
/* Copy all the records we got out to userspace. */
|
|
if (copy_to_user(user_recs, recs,
|
|
xhead.fmh_entries * sizeof(struct fsmap))) {
|
|
error = -EFAULT;
|
|
goto out_free;
|
|
}
|
|
|
|
/* Remember the last record flags we copied to userspace. */
|
|
last_rec = &recs[xhead.fmh_entries - 1];
|
|
last_flags = last_rec->fmr_flags;
|
|
|
|
/* Set up the low key for the next iteration. */
|
|
xfs_fsmap_to_internal(&xhead.fmh_keys[0], last_rec);
|
|
trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
|
|
} while (!done && head.fmh_entries < head.fmh_count);
|
|
|
|
/*
|
|
* If there are no more records in the query result set and we're not
|
|
* in counting mode, mark the last record returned with the LAST flag.
|
|
*/
|
|
if (done && head.fmh_count > 0 && head.fmh_entries > 0) {
|
|
struct fsmap __user *user_rec;
|
|
|
|
last_flags |= FMR_OF_LAST;
|
|
user_rec = &arg->fmh_recs[head.fmh_entries - 1];
|
|
|
|
if (copy_to_user(&user_rec->fmr_flags, &last_flags,
|
|
sizeof(last_flags))) {
|
|
error = -EFAULT;
|
|
goto out_free;
|
|
}
|
|
}
|
|
|
|
/* copy back header */
|
|
if (copy_to_user(arg, &head, sizeof(struct fsmap_head))) {
|
|
error = -EFAULT;
|
|
goto out_free;
|
|
}
|
|
|
|
out_free:
|
|
kvfree(recs);
|
|
return error;
|
|
}
|