linux/fs/bcachefs/alloc_foreground.c
Kent Overstreet a0d11feefb bcachefs: Don't use commit_do() unnecessarily
Using commit_do() to call alloc_sectors_start_trans() breaks when we're
randomly injecting transaction restarts - the restart in the commit
causes us to leak the lock that alloc_sectorS_start_trans() takes.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2024-10-18 00:49:48 -04:00

1806 lines
47 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2012 Google, Inc.
*
* Foreground allocator code: allocate buckets from freelist, and allocate in
* sector granularity from writepoints.
*
* bch2_bucket_alloc() allocates a single bucket from a specific device.
*
* bch2_bucket_alloc_set() allocates one or more buckets from different devices
* in a given filesystem.
*/
#include "bcachefs.h"
#include "alloc_background.h"
#include "alloc_foreground.h"
#include "backpointers.h"
#include "btree_iter.h"
#include "btree_update.h"
#include "btree_gc.h"
#include "buckets.h"
#include "buckets_waiting_for_journal.h"
#include "clock.h"
#include "debug.h"
#include "disk_groups.h"
#include "ec.h"
#include "error.h"
#include "io_write.h"
#include "journal.h"
#include "movinggc.h"
#include "nocow_locking.h"
#include "trace.h"
#include <linux/math64.h>
#include <linux/rculist.h>
#include <linux/rcupdate.h>
static void bch2_trans_mutex_lock_norelock(struct btree_trans *trans,
struct mutex *lock)
{
if (!mutex_trylock(lock)) {
bch2_trans_unlock(trans);
mutex_lock(lock);
}
}
const char * const bch2_watermarks[] = {
#define x(t) #t,
BCH_WATERMARKS()
#undef x
NULL
};
/*
* Open buckets represent a bucket that's currently being allocated from. They
* serve two purposes:
*
* - They track buckets that have been partially allocated, allowing for
* sub-bucket sized allocations - they're used by the sector allocator below
*
* - They provide a reference to the buckets they own that mark and sweep GC
* can find, until the new allocation has a pointer to it inserted into the
* btree
*
* When allocating some space with the sector allocator, the allocation comes
* with a reference to an open bucket - the caller is required to put that
* reference _after_ doing the index update that makes its allocation reachable.
*/
void bch2_reset_alloc_cursors(struct bch_fs *c)
{
rcu_read_lock();
for_each_member_device_rcu(c, ca, NULL)
memset(ca->alloc_cursor, 0, sizeof(ca->alloc_cursor));
rcu_read_unlock();
}
static void bch2_open_bucket_hash_add(struct bch_fs *c, struct open_bucket *ob)
{
open_bucket_idx_t idx = ob - c->open_buckets;
open_bucket_idx_t *slot = open_bucket_hashslot(c, ob->dev, ob->bucket);
ob->hash = *slot;
*slot = idx;
}
static void bch2_open_bucket_hash_remove(struct bch_fs *c, struct open_bucket *ob)
{
open_bucket_idx_t idx = ob - c->open_buckets;
open_bucket_idx_t *slot = open_bucket_hashslot(c, ob->dev, ob->bucket);
while (*slot != idx) {
BUG_ON(!*slot);
slot = &c->open_buckets[*slot].hash;
}
*slot = ob->hash;
ob->hash = 0;
}
void __bch2_open_bucket_put(struct bch_fs *c, struct open_bucket *ob)
{
struct bch_dev *ca = ob_dev(c, ob);
if (ob->ec) {
ec_stripe_new_put(c, ob->ec, STRIPE_REF_io);
return;
}
percpu_down_read(&c->mark_lock);
spin_lock(&ob->lock);
ob->valid = false;
ob->data_type = 0;
spin_unlock(&ob->lock);
percpu_up_read(&c->mark_lock);
spin_lock(&c->freelist_lock);
bch2_open_bucket_hash_remove(c, ob);
ob->freelist = c->open_buckets_freelist;
c->open_buckets_freelist = ob - c->open_buckets;
c->open_buckets_nr_free++;
ca->nr_open_buckets--;
spin_unlock(&c->freelist_lock);
closure_wake_up(&c->open_buckets_wait);
}
void bch2_open_bucket_write_error(struct bch_fs *c,
struct open_buckets *obs,
unsigned dev)
{
struct open_bucket *ob;
unsigned i;
open_bucket_for_each(c, obs, ob, i)
if (ob->dev == dev && ob->ec)
bch2_ec_bucket_cancel(c, ob);
}
static struct open_bucket *bch2_open_bucket_alloc(struct bch_fs *c)
{
struct open_bucket *ob;
BUG_ON(!c->open_buckets_freelist || !c->open_buckets_nr_free);
ob = c->open_buckets + c->open_buckets_freelist;
c->open_buckets_freelist = ob->freelist;
atomic_set(&ob->pin, 1);
ob->data_type = 0;
c->open_buckets_nr_free--;
return ob;
}
static void open_bucket_free_unused(struct bch_fs *c, struct open_bucket *ob)
{
BUG_ON(c->open_buckets_partial_nr >=
ARRAY_SIZE(c->open_buckets_partial));
spin_lock(&c->freelist_lock);
ob->on_partial_list = true;
c->open_buckets_partial[c->open_buckets_partial_nr++] =
ob - c->open_buckets;
spin_unlock(&c->freelist_lock);
closure_wake_up(&c->open_buckets_wait);
closure_wake_up(&c->freelist_wait);
}
/* _only_ for allocating the journal on a new device: */
long bch2_bucket_alloc_new_fs(struct bch_dev *ca)
{
while (ca->new_fs_bucket_idx < ca->mi.nbuckets) {
u64 b = ca->new_fs_bucket_idx++;
if (!is_superblock_bucket(ca, b) &&
(!ca->buckets_nouse || !test_bit(b, ca->buckets_nouse)))
return b;
}
return -1;
}
static inline unsigned open_buckets_reserved(enum bch_watermark watermark)
{
switch (watermark) {
case BCH_WATERMARK_interior_updates:
return 0;
case BCH_WATERMARK_reclaim:
return OPEN_BUCKETS_COUNT / 6;
case BCH_WATERMARK_btree:
case BCH_WATERMARK_btree_copygc:
return OPEN_BUCKETS_COUNT / 4;
case BCH_WATERMARK_copygc:
return OPEN_BUCKETS_COUNT / 3;
default:
return OPEN_BUCKETS_COUNT / 2;
}
}
static struct open_bucket *__try_alloc_bucket(struct bch_fs *c, struct bch_dev *ca,
u64 bucket,
enum bch_watermark watermark,
const struct bch_alloc_v4 *a,
struct bucket_alloc_state *s,
struct closure *cl)
{
struct open_bucket *ob;
if (unlikely(ca->buckets_nouse && test_bit(bucket, ca->buckets_nouse))) {
s->skipped_nouse++;
return NULL;
}
if (bch2_bucket_is_open(c, ca->dev_idx, bucket)) {
s->skipped_open++;
return NULL;
}
if (bch2_bucket_needs_journal_commit(&c->buckets_waiting_for_journal,
c->journal.flushed_seq_ondisk, ca->dev_idx, bucket)) {
s->skipped_need_journal_commit++;
return NULL;
}
if (bch2_bucket_nocow_is_locked(&c->nocow_locks, POS(ca->dev_idx, bucket))) {
s->skipped_nocow++;
return NULL;
}
spin_lock(&c->freelist_lock);
if (unlikely(c->open_buckets_nr_free <= open_buckets_reserved(watermark))) {
if (cl)
closure_wait(&c->open_buckets_wait, cl);
track_event_change(&c->times[BCH_TIME_blocked_allocate_open_bucket], true);
spin_unlock(&c->freelist_lock);
return ERR_PTR(-BCH_ERR_open_buckets_empty);
}
/* Recheck under lock: */
if (bch2_bucket_is_open(c, ca->dev_idx, bucket)) {
spin_unlock(&c->freelist_lock);
s->skipped_open++;
return NULL;
}
ob = bch2_open_bucket_alloc(c);
spin_lock(&ob->lock);
ob->valid = true;
ob->sectors_free = ca->mi.bucket_size;
ob->dev = ca->dev_idx;
ob->gen = a->gen;
ob->bucket = bucket;
spin_unlock(&ob->lock);
ca->nr_open_buckets++;
bch2_open_bucket_hash_add(c, ob);
track_event_change(&c->times[BCH_TIME_blocked_allocate_open_bucket], false);
track_event_change(&c->times[BCH_TIME_blocked_allocate], false);
spin_unlock(&c->freelist_lock);
return ob;
}
static struct open_bucket *try_alloc_bucket(struct btree_trans *trans, struct bch_dev *ca,
enum bch_watermark watermark, u64 free_entry,
struct bucket_alloc_state *s,
struct bkey_s_c freespace_k,
struct closure *cl)
{
struct bch_fs *c = trans->c;
struct btree_iter iter = { NULL };
struct bkey_s_c k;
struct open_bucket *ob;
struct bch_alloc_v4 a_convert;
const struct bch_alloc_v4 *a;
u64 b = free_entry & ~(~0ULL << 56);
unsigned genbits = free_entry >> 56;
struct printbuf buf = PRINTBUF;
int ret;
if (b < ca->mi.first_bucket || b >= ca->mi.nbuckets) {
prt_printf(&buf, "freespace btree has bucket outside allowed range %u-%llu\n"
" freespace key ",
ca->mi.first_bucket, ca->mi.nbuckets);
bch2_bkey_val_to_text(&buf, c, freespace_k);
bch2_trans_inconsistent(trans, "%s", buf.buf);
ob = ERR_PTR(-EIO);
goto err;
}
k = bch2_bkey_get_iter(trans, &iter,
BTREE_ID_alloc, POS(ca->dev_idx, b),
BTREE_ITER_cached);
ret = bkey_err(k);
if (ret) {
ob = ERR_PTR(ret);
goto err;
}
a = bch2_alloc_to_v4(k, &a_convert);
if (a->data_type != BCH_DATA_free) {
if (c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_alloc_info) {
ob = NULL;
goto err;
}
prt_printf(&buf, "non free bucket in freespace btree\n"
" freespace key ");
bch2_bkey_val_to_text(&buf, c, freespace_k);
prt_printf(&buf, "\n ");
bch2_bkey_val_to_text(&buf, c, k);
bch2_trans_inconsistent(trans, "%s", buf.buf);
ob = ERR_PTR(-EIO);
goto err;
}
if (genbits != (alloc_freespace_genbits(*a) >> 56) &&
c->curr_recovery_pass > BCH_RECOVERY_PASS_check_alloc_info) {
prt_printf(&buf, "bucket in freespace btree with wrong genbits (got %u should be %llu)\n"
" freespace key ",
genbits, alloc_freespace_genbits(*a) >> 56);
bch2_bkey_val_to_text(&buf, c, freespace_k);
prt_printf(&buf, "\n ");
bch2_bkey_val_to_text(&buf, c, k);
bch2_trans_inconsistent(trans, "%s", buf.buf);
ob = ERR_PTR(-EIO);
goto err;
}
if (c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_extents_to_backpointers) {
struct bch_backpointer bp;
struct bpos bp_pos = POS_MIN;
ret = bch2_get_next_backpointer(trans, ca, POS(ca->dev_idx, b), -1,
&bp_pos, &bp,
BTREE_ITER_nopreserve);
if (ret) {
ob = ERR_PTR(ret);
goto err;
}
if (!bkey_eq(bp_pos, POS_MAX)) {
/*
* Bucket may have data in it - we don't call
* bc2h_trans_inconnsistent() because fsck hasn't
* finished yet
*/
ob = NULL;
goto err;
}
}
ob = __try_alloc_bucket(c, ca, b, watermark, a, s, cl);
if (!ob)
bch2_set_btree_iter_dontneed(&iter);
err:
if (iter.path)
bch2_set_btree_iter_dontneed(&iter);
bch2_trans_iter_exit(trans, &iter);
printbuf_exit(&buf);
return ob;
}
/*
* This path is for before the freespace btree is initialized:
*
* If ca->new_fs_bucket_idx is nonzero, we haven't yet marked superblock &
* journal buckets - journal buckets will be < ca->new_fs_bucket_idx
*/
static noinline struct open_bucket *
bch2_bucket_alloc_early(struct btree_trans *trans,
struct bch_dev *ca,
enum bch_watermark watermark,
struct bucket_alloc_state *s,
struct closure *cl)
{
struct btree_iter iter, citer;
struct bkey_s_c k, ck;
struct open_bucket *ob = NULL;
u64 first_bucket = max_t(u64, ca->mi.first_bucket, ca->new_fs_bucket_idx);
u64 *dev_alloc_cursor = &ca->alloc_cursor[s->btree_bitmap];
u64 alloc_start = max(first_bucket, *dev_alloc_cursor);
u64 alloc_cursor = alloc_start;
int ret;
/*
* Scan with an uncached iterator to avoid polluting the key cache. An
* uncached iter will return a cached key if one exists, but if not
* there is no other underlying protection for the associated key cache
* slot. To avoid racing bucket allocations, look up the cached key slot
* of any likely allocation candidate before attempting to proceed with
* the allocation. This provides proper exclusion on the associated
* bucket.
*/
again:
for_each_btree_key_norestart(trans, iter, BTREE_ID_alloc, POS(ca->dev_idx, alloc_cursor),
BTREE_ITER_slots, k, ret) {
u64 bucket = k.k->p.offset;
if (bkey_ge(k.k->p, POS(ca->dev_idx, ca->mi.nbuckets)))
break;
if (ca->new_fs_bucket_idx &&
is_superblock_bucket(ca, k.k->p.offset))
continue;
if (s->btree_bitmap != BTREE_BITMAP_ANY &&
s->btree_bitmap != bch2_dev_btree_bitmap_marked_sectors(ca,
bucket_to_sector(ca, bucket), ca->mi.bucket_size)) {
if (s->btree_bitmap == BTREE_BITMAP_YES &&
bucket_to_sector(ca, bucket) > 64ULL << ca->mi.btree_bitmap_shift)
break;
bucket = sector_to_bucket(ca,
round_up(bucket_to_sector(ca, bucket) + 1,
1ULL << ca->mi.btree_bitmap_shift));
bch2_btree_iter_set_pos(&iter, POS(ca->dev_idx, bucket));
s->buckets_seen++;
s->skipped_mi_btree_bitmap++;
continue;
}
struct bch_alloc_v4 a_convert;
const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &a_convert);
if (a->data_type != BCH_DATA_free)
continue;
/* now check the cached key to serialize concurrent allocs of the bucket */
ck = bch2_bkey_get_iter(trans, &citer, BTREE_ID_alloc, k.k->p, BTREE_ITER_cached);
ret = bkey_err(ck);
if (ret)
break;
a = bch2_alloc_to_v4(ck, &a_convert);
if (a->data_type != BCH_DATA_free)
goto next;
s->buckets_seen++;
ob = __try_alloc_bucket(trans->c, ca, k.k->p.offset, watermark, a, s, cl);
next:
bch2_set_btree_iter_dontneed(&citer);
bch2_trans_iter_exit(trans, &citer);
if (ob)
break;
}
bch2_trans_iter_exit(trans, &iter);
alloc_cursor = iter.pos.offset;
if (!ob && ret)
ob = ERR_PTR(ret);
if (!ob && alloc_start > first_bucket) {
alloc_cursor = alloc_start = first_bucket;
goto again;
}
*dev_alloc_cursor = alloc_cursor;
return ob;
}
static struct open_bucket *bch2_bucket_alloc_freelist(struct btree_trans *trans,
struct bch_dev *ca,
enum bch_watermark watermark,
struct bucket_alloc_state *s,
struct closure *cl)
{
struct btree_iter iter;
struct bkey_s_c k;
struct open_bucket *ob = NULL;
u64 *dev_alloc_cursor = &ca->alloc_cursor[s->btree_bitmap];
u64 alloc_start = max_t(u64, ca->mi.first_bucket, READ_ONCE(*dev_alloc_cursor));
u64 alloc_cursor = alloc_start;
int ret;
BUG_ON(ca->new_fs_bucket_idx);
again:
for_each_btree_key_norestart(trans, iter, BTREE_ID_freespace,
POS(ca->dev_idx, alloc_cursor), 0, k, ret) {
if (k.k->p.inode != ca->dev_idx)
break;
for (alloc_cursor = max(alloc_cursor, bkey_start_offset(k.k));
alloc_cursor < k.k->p.offset;
alloc_cursor++) {
s->buckets_seen++;
u64 bucket = alloc_cursor & ~(~0ULL << 56);
if (s->btree_bitmap != BTREE_BITMAP_ANY &&
s->btree_bitmap != bch2_dev_btree_bitmap_marked_sectors(ca,
bucket_to_sector(ca, bucket), ca->mi.bucket_size)) {
if (s->btree_bitmap == BTREE_BITMAP_YES &&
bucket_to_sector(ca, bucket) > 64ULL << ca->mi.btree_bitmap_shift)
goto fail;
bucket = sector_to_bucket(ca,
round_up(bucket_to_sector(ca, bucket) + 1,
1ULL << ca->mi.btree_bitmap_shift));
u64 genbits = alloc_cursor >> 56;
alloc_cursor = bucket | (genbits << 56);
if (alloc_cursor > k.k->p.offset)
bch2_btree_iter_set_pos(&iter, POS(ca->dev_idx, alloc_cursor));
s->skipped_mi_btree_bitmap++;
continue;
}
ob = try_alloc_bucket(trans, ca, watermark,
alloc_cursor, s, k, cl);
if (ob) {
bch2_set_btree_iter_dontneed(&iter);
break;
}
}
if (ob || ret)
break;
}
fail:
bch2_trans_iter_exit(trans, &iter);
if (!ob && ret)
ob = ERR_PTR(ret);
if (!ob && alloc_start > ca->mi.first_bucket) {
alloc_cursor = alloc_start = ca->mi.first_bucket;
goto again;
}
*dev_alloc_cursor = alloc_cursor;
return ob;
}
static noinline void trace_bucket_alloc2(struct bch_fs *c, struct bch_dev *ca,
enum bch_watermark watermark,
enum bch_data_type data_type,
struct closure *cl,
struct bch_dev_usage *usage,
struct bucket_alloc_state *s,
struct open_bucket *ob)
{
struct printbuf buf = PRINTBUF;
printbuf_tabstop_push(&buf, 24);
prt_printf(&buf, "dev\t%s (%u)\n", ca->name, ca->dev_idx);
prt_printf(&buf, "watermark\t%s\n", bch2_watermarks[watermark]);
prt_printf(&buf, "data type\t%s\n", __bch2_data_types[data_type]);
prt_printf(&buf, "blocking\t%u\n", cl != NULL);
prt_printf(&buf, "free\t%llu\n", usage->d[BCH_DATA_free].buckets);
prt_printf(&buf, "avail\t%llu\n", dev_buckets_free(ca, *usage, watermark));
prt_printf(&buf, "copygc_wait\t%lu/%lli\n",
bch2_copygc_wait_amount(c),
c->copygc_wait - atomic64_read(&c->io_clock[WRITE].now));
prt_printf(&buf, "seen\t%llu\n", s->buckets_seen);
prt_printf(&buf, "open\t%llu\n", s->skipped_open);
prt_printf(&buf, "need journal commit\t%llu\n", s->skipped_need_journal_commit);
prt_printf(&buf, "nocow\t%llu\n", s->skipped_nocow);
prt_printf(&buf, "nouse\t%llu\n", s->skipped_nouse);
prt_printf(&buf, "mi_btree_bitmap\t%llu\n", s->skipped_mi_btree_bitmap);
if (!IS_ERR(ob)) {
prt_printf(&buf, "allocated\t%llu\n", ob->bucket);
trace_bucket_alloc(c, buf.buf);
} else {
prt_printf(&buf, "err\t%s\n", bch2_err_str(PTR_ERR(ob)));
trace_bucket_alloc_fail(c, buf.buf);
}
printbuf_exit(&buf);
}
/**
* bch2_bucket_alloc_trans - allocate a single bucket from a specific device
* @trans: transaction object
* @ca: device to allocate from
* @watermark: how important is this allocation?
* @data_type: BCH_DATA_journal, btree, user...
* @cl: if not NULL, closure to be used to wait if buckets not available
* @usage: for secondarily also returning the current device usage
*
* Returns: an open_bucket on success, or an ERR_PTR() on failure.
*/
static struct open_bucket *bch2_bucket_alloc_trans(struct btree_trans *trans,
struct bch_dev *ca,
enum bch_watermark watermark,
enum bch_data_type data_type,
struct closure *cl,
bool nowait,
struct bch_dev_usage *usage)
{
struct bch_fs *c = trans->c;
struct open_bucket *ob = NULL;
bool freespace = READ_ONCE(ca->mi.freespace_initialized);
u64 avail;
struct bucket_alloc_state s = {
.btree_bitmap = data_type == BCH_DATA_btree,
};
bool waiting = nowait;
again:
bch2_dev_usage_read_fast(ca, usage);
avail = dev_buckets_free(ca, *usage, watermark);
if (usage->d[BCH_DATA_need_discard].buckets > avail)
bch2_dev_do_discards(ca);
if (usage->d[BCH_DATA_need_gc_gens].buckets > avail)
bch2_gc_gens_async(c);
if (should_invalidate_buckets(ca, *usage))
bch2_dev_do_invalidates(ca);
if (!avail) {
if (cl && !waiting) {
closure_wait(&c->freelist_wait, cl);
waiting = true;
goto again;
}
track_event_change(&c->times[BCH_TIME_blocked_allocate], true);
ob = ERR_PTR(-BCH_ERR_freelist_empty);
goto err;
}
if (waiting)
closure_wake_up(&c->freelist_wait);
alloc:
ob = likely(freespace)
? bch2_bucket_alloc_freelist(trans, ca, watermark, &s, cl)
: bch2_bucket_alloc_early(trans, ca, watermark, &s, cl);
if (s.skipped_need_journal_commit * 2 > avail)
bch2_journal_flush_async(&c->journal, NULL);
if (!ob && s.btree_bitmap != BTREE_BITMAP_ANY) {
s.btree_bitmap = BTREE_BITMAP_ANY;
goto alloc;
}
if (!ob && freespace && c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_alloc_info) {
freespace = false;
goto alloc;
}
err:
if (!ob)
ob = ERR_PTR(-BCH_ERR_no_buckets_found);
if (!IS_ERR(ob))
ob->data_type = data_type;
if (!IS_ERR(ob))
count_event(c, bucket_alloc);
else if (!bch2_err_matches(PTR_ERR(ob), BCH_ERR_transaction_restart))
count_event(c, bucket_alloc_fail);
if (!IS_ERR(ob)
? trace_bucket_alloc_enabled()
: trace_bucket_alloc_fail_enabled())
trace_bucket_alloc2(c, ca, watermark, data_type, cl, usage, &s, ob);
return ob;
}
struct open_bucket *bch2_bucket_alloc(struct bch_fs *c, struct bch_dev *ca,
enum bch_watermark watermark,
enum bch_data_type data_type,
struct closure *cl)
{
struct bch_dev_usage usage;
struct open_bucket *ob;
bch2_trans_do(c,
PTR_ERR_OR_ZERO(ob = bch2_bucket_alloc_trans(trans, ca, watermark,
data_type, cl, false, &usage)));
return ob;
}
static int __dev_stripe_cmp(struct dev_stripe_state *stripe,
unsigned l, unsigned r)
{
return ((stripe->next_alloc[l] > stripe->next_alloc[r]) -
(stripe->next_alloc[l] < stripe->next_alloc[r]));
}
#define dev_stripe_cmp(l, r) __dev_stripe_cmp(stripe, l, r)
struct dev_alloc_list bch2_dev_alloc_list(struct bch_fs *c,
struct dev_stripe_state *stripe,
struct bch_devs_mask *devs)
{
struct dev_alloc_list ret = { .nr = 0 };
unsigned i;
for_each_set_bit(i, devs->d, BCH_SB_MEMBERS_MAX)
ret.devs[ret.nr++] = i;
bubble_sort(ret.devs, ret.nr, dev_stripe_cmp);
return ret;
}
static inline void bch2_dev_stripe_increment_inlined(struct bch_dev *ca,
struct dev_stripe_state *stripe,
struct bch_dev_usage *usage)
{
u64 *v = stripe->next_alloc + ca->dev_idx;
u64 free_space = dev_buckets_available(ca, BCH_WATERMARK_normal);
u64 free_space_inv = free_space
? div64_u64(1ULL << 48, free_space)
: 1ULL << 48;
u64 scale = *v / 4;
if (*v + free_space_inv >= *v)
*v += free_space_inv;
else
*v = U64_MAX;
for (v = stripe->next_alloc;
v < stripe->next_alloc + ARRAY_SIZE(stripe->next_alloc); v++)
*v = *v < scale ? 0 : *v - scale;
}
void bch2_dev_stripe_increment(struct bch_dev *ca,
struct dev_stripe_state *stripe)
{
struct bch_dev_usage usage;
bch2_dev_usage_read_fast(ca, &usage);
bch2_dev_stripe_increment_inlined(ca, stripe, &usage);
}
static int add_new_bucket(struct bch_fs *c,
struct open_buckets *ptrs,
struct bch_devs_mask *devs_may_alloc,
unsigned nr_replicas,
unsigned *nr_effective,
bool *have_cache,
struct open_bucket *ob)
{
unsigned durability = ob_dev(c, ob)->mi.durability;
BUG_ON(*nr_effective >= nr_replicas);
__clear_bit(ob->dev, devs_may_alloc->d);
*nr_effective += durability;
*have_cache |= !durability;
ob_push(c, ptrs, ob);
if (*nr_effective >= nr_replicas)
return 1;
if (ob->ec)
return 1;
return 0;
}
int bch2_bucket_alloc_set_trans(struct btree_trans *trans,
struct open_buckets *ptrs,
struct dev_stripe_state *stripe,
struct bch_devs_mask *devs_may_alloc,
unsigned nr_replicas,
unsigned *nr_effective,
bool *have_cache,
enum bch_write_flags flags,
enum bch_data_type data_type,
enum bch_watermark watermark,
struct closure *cl)
{
struct bch_fs *c = trans->c;
struct dev_alloc_list devs_sorted =
bch2_dev_alloc_list(c, stripe, devs_may_alloc);
int ret = -BCH_ERR_insufficient_devices;
BUG_ON(*nr_effective >= nr_replicas);
for (unsigned i = 0; i < devs_sorted.nr; i++) {
struct bch_dev_usage usage;
struct open_bucket *ob;
unsigned dev = devs_sorted.devs[i];
struct bch_dev *ca = bch2_dev_tryget_noerror(c, dev);
if (!ca)
continue;
if (!ca->mi.durability && *have_cache) {
bch2_dev_put(ca);
continue;
}
ob = bch2_bucket_alloc_trans(trans, ca, watermark, data_type,
cl, flags & BCH_WRITE_ALLOC_NOWAIT, &usage);
if (!IS_ERR(ob))
bch2_dev_stripe_increment_inlined(ca, stripe, &usage);
bch2_dev_put(ca);
if (IS_ERR(ob)) {
ret = PTR_ERR(ob);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart) || cl)
break;
continue;
}
if (add_new_bucket(c, ptrs, devs_may_alloc,
nr_replicas, nr_effective,
have_cache, ob)) {
ret = 0;
break;
}
}
return ret;
}
/* Allocate from stripes: */
/*
* if we can't allocate a new stripe because there are already too many
* partially filled stripes, force allocating from an existing stripe even when
* it's to a device we don't want:
*/
static int bucket_alloc_from_stripe(struct btree_trans *trans,
struct open_buckets *ptrs,
struct write_point *wp,
struct bch_devs_mask *devs_may_alloc,
u16 target,
unsigned nr_replicas,
unsigned *nr_effective,
bool *have_cache,
enum bch_watermark watermark,
enum bch_write_flags flags,
struct closure *cl)
{
struct bch_fs *c = trans->c;
struct dev_alloc_list devs_sorted;
struct ec_stripe_head *h;
struct open_bucket *ob;
unsigned i, ec_idx;
int ret = 0;
if (nr_replicas < 2)
return 0;
if (ec_open_bucket(c, ptrs))
return 0;
h = bch2_ec_stripe_head_get(trans, target, 0, nr_replicas - 1, watermark, cl);
if (IS_ERR(h))
return PTR_ERR(h);
if (!h)
return 0;
devs_sorted = bch2_dev_alloc_list(c, &wp->stripe, devs_may_alloc);
for (i = 0; i < devs_sorted.nr; i++)
for (ec_idx = 0; ec_idx < h->s->nr_data; ec_idx++) {
if (!h->s->blocks[ec_idx])
continue;
ob = c->open_buckets + h->s->blocks[ec_idx];
if (ob->dev == devs_sorted.devs[i] &&
!test_and_set_bit(ec_idx, h->s->blocks_allocated))
goto got_bucket;
}
goto out_put_head;
got_bucket:
ob->ec_idx = ec_idx;
ob->ec = h->s;
ec_stripe_new_get(h->s, STRIPE_REF_io);
ret = add_new_bucket(c, ptrs, devs_may_alloc,
nr_replicas, nr_effective,
have_cache, ob);
out_put_head:
bch2_ec_stripe_head_put(c, h);
return ret;
}
/* Sector allocator */
static bool want_bucket(struct bch_fs *c,
struct write_point *wp,
struct bch_devs_mask *devs_may_alloc,
bool *have_cache, bool ec,
struct open_bucket *ob)
{
struct bch_dev *ca = ob_dev(c, ob);
if (!test_bit(ob->dev, devs_may_alloc->d))
return false;
if (ob->data_type != wp->data_type)
return false;
if (!ca->mi.durability &&
(wp->data_type == BCH_DATA_btree || ec || *have_cache))
return false;
if (ec != (ob->ec != NULL))
return false;
return true;
}
static int bucket_alloc_set_writepoint(struct bch_fs *c,
struct open_buckets *ptrs,
struct write_point *wp,
struct bch_devs_mask *devs_may_alloc,
unsigned nr_replicas,
unsigned *nr_effective,
bool *have_cache,
bool ec)
{
struct open_buckets ptrs_skip = { .nr = 0 };
struct open_bucket *ob;
unsigned i;
int ret = 0;
open_bucket_for_each(c, &wp->ptrs, ob, i) {
if (!ret && want_bucket(c, wp, devs_may_alloc,
have_cache, ec, ob))
ret = add_new_bucket(c, ptrs, devs_may_alloc,
nr_replicas, nr_effective,
have_cache, ob);
else
ob_push(c, &ptrs_skip, ob);
}
wp->ptrs = ptrs_skip;
return ret;
}
static int bucket_alloc_set_partial(struct bch_fs *c,
struct open_buckets *ptrs,
struct write_point *wp,
struct bch_devs_mask *devs_may_alloc,
unsigned nr_replicas,
unsigned *nr_effective,
bool *have_cache, bool ec,
enum bch_watermark watermark)
{
int i, ret = 0;
if (!c->open_buckets_partial_nr)
return 0;
spin_lock(&c->freelist_lock);
if (!c->open_buckets_partial_nr)
goto unlock;
for (i = c->open_buckets_partial_nr - 1; i >= 0; --i) {
struct open_bucket *ob = c->open_buckets + c->open_buckets_partial[i];
if (want_bucket(c, wp, devs_may_alloc, have_cache, ec, ob)) {
struct bch_dev *ca = ob_dev(c, ob);
struct bch_dev_usage usage;
u64 avail;
bch2_dev_usage_read_fast(ca, &usage);
avail = dev_buckets_free(ca, usage, watermark);
if (!avail)
continue;
array_remove_item(c->open_buckets_partial,
c->open_buckets_partial_nr,
i);
ob->on_partial_list = false;
ret = add_new_bucket(c, ptrs, devs_may_alloc,
nr_replicas, nr_effective,
have_cache, ob);
if (ret)
break;
}
}
unlock:
spin_unlock(&c->freelist_lock);
return ret;
}
static int __open_bucket_add_buckets(struct btree_trans *trans,
struct open_buckets *ptrs,
struct write_point *wp,
struct bch_devs_list *devs_have,
u16 target,
bool erasure_code,
unsigned nr_replicas,
unsigned *nr_effective,
bool *have_cache,
enum bch_watermark watermark,
enum bch_write_flags flags,
struct closure *_cl)
{
struct bch_fs *c = trans->c;
struct bch_devs_mask devs;
struct open_bucket *ob;
struct closure *cl = NULL;
unsigned i;
int ret;
devs = target_rw_devs(c, wp->data_type, target);
/* Don't allocate from devices we already have pointers to: */
darray_for_each(*devs_have, i)
__clear_bit(*i, devs.d);
open_bucket_for_each(c, ptrs, ob, i)
__clear_bit(ob->dev, devs.d);
ret = bucket_alloc_set_writepoint(c, ptrs, wp, &devs,
nr_replicas, nr_effective,
have_cache, erasure_code);
if (ret)
return ret;
ret = bucket_alloc_set_partial(c, ptrs, wp, &devs,
nr_replicas, nr_effective,
have_cache, erasure_code, watermark);
if (ret)
return ret;
if (erasure_code) {
ret = bucket_alloc_from_stripe(trans, ptrs, wp, &devs,
target,
nr_replicas, nr_effective,
have_cache,
watermark, flags, _cl);
} else {
retry_blocking:
/*
* Try nonblocking first, so that if one device is full we'll try from
* other devices:
*/
ret = bch2_bucket_alloc_set_trans(trans, ptrs, &wp->stripe, &devs,
nr_replicas, nr_effective, have_cache,
flags, wp->data_type, watermark, cl);
if (ret &&
!bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
!bch2_err_matches(ret, BCH_ERR_insufficient_devices) &&
!cl && _cl) {
cl = _cl;
goto retry_blocking;
}
}
return ret;
}
static int open_bucket_add_buckets(struct btree_trans *trans,
struct open_buckets *ptrs,
struct write_point *wp,
struct bch_devs_list *devs_have,
u16 target,
unsigned erasure_code,
unsigned nr_replicas,
unsigned *nr_effective,
bool *have_cache,
enum bch_watermark watermark,
enum bch_write_flags flags,
struct closure *cl)
{
int ret;
if (erasure_code && !ec_open_bucket(trans->c, ptrs)) {
ret = __open_bucket_add_buckets(trans, ptrs, wp,
devs_have, target, erasure_code,
nr_replicas, nr_effective, have_cache,
watermark, flags, cl);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart) ||
bch2_err_matches(ret, BCH_ERR_operation_blocked) ||
bch2_err_matches(ret, BCH_ERR_freelist_empty) ||
bch2_err_matches(ret, BCH_ERR_open_buckets_empty))
return ret;
if (*nr_effective >= nr_replicas)
return 0;
}
ret = __open_bucket_add_buckets(trans, ptrs, wp,
devs_have, target, false,
nr_replicas, nr_effective, have_cache,
watermark, flags, cl);
return ret < 0 ? ret : 0;
}
/**
* should_drop_bucket - check if this is open_bucket should go away
* @ob: open_bucket to predicate on
* @c: filesystem handle
* @ca: if set, we're killing buckets for a particular device
* @ec: if true, we're shutting down erasure coding and killing all ec
* open_buckets
* otherwise, return true
* Returns: true if we should kill this open_bucket
*
* We're killing open_buckets because we're shutting down a device, erasure
* coding, or the entire filesystem - check if this open_bucket matches:
*/
static bool should_drop_bucket(struct open_bucket *ob, struct bch_fs *c,
struct bch_dev *ca, bool ec)
{
if (ec) {
return ob->ec != NULL;
} else if (ca) {
bool drop = ob->dev == ca->dev_idx;
struct open_bucket *ob2;
unsigned i;
if (!drop && ob->ec) {
unsigned nr_blocks;
mutex_lock(&ob->ec->lock);
nr_blocks = bkey_i_to_stripe(&ob->ec->new_stripe.key)->v.nr_blocks;
for (i = 0; i < nr_blocks; i++) {
if (!ob->ec->blocks[i])
continue;
ob2 = c->open_buckets + ob->ec->blocks[i];
drop |= ob2->dev == ca->dev_idx;
}
mutex_unlock(&ob->ec->lock);
}
return drop;
} else {
return true;
}
}
static void bch2_writepoint_stop(struct bch_fs *c, struct bch_dev *ca,
bool ec, struct write_point *wp)
{
struct open_buckets ptrs = { .nr = 0 };
struct open_bucket *ob;
unsigned i;
mutex_lock(&wp->lock);
open_bucket_for_each(c, &wp->ptrs, ob, i)
if (should_drop_bucket(ob, c, ca, ec))
bch2_open_bucket_put(c, ob);
else
ob_push(c, &ptrs, ob);
wp->ptrs = ptrs;
mutex_unlock(&wp->lock);
}
void bch2_open_buckets_stop(struct bch_fs *c, struct bch_dev *ca,
bool ec)
{
unsigned i;
/* Next, close write points that point to this device... */
for (i = 0; i < ARRAY_SIZE(c->write_points); i++)
bch2_writepoint_stop(c, ca, ec, &c->write_points[i]);
bch2_writepoint_stop(c, ca, ec, &c->copygc_write_point);
bch2_writepoint_stop(c, ca, ec, &c->rebalance_write_point);
bch2_writepoint_stop(c, ca, ec, &c->btree_write_point);
mutex_lock(&c->btree_reserve_cache_lock);
while (c->btree_reserve_cache_nr) {
struct btree_alloc *a =
&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
bch2_open_buckets_put(c, &a->ob);
}
mutex_unlock(&c->btree_reserve_cache_lock);
spin_lock(&c->freelist_lock);
i = 0;
while (i < c->open_buckets_partial_nr) {
struct open_bucket *ob =
c->open_buckets + c->open_buckets_partial[i];
if (should_drop_bucket(ob, c, ca, ec)) {
--c->open_buckets_partial_nr;
swap(c->open_buckets_partial[i],
c->open_buckets_partial[c->open_buckets_partial_nr]);
ob->on_partial_list = false;
spin_unlock(&c->freelist_lock);
bch2_open_bucket_put(c, ob);
spin_lock(&c->freelist_lock);
} else {
i++;
}
}
spin_unlock(&c->freelist_lock);
bch2_ec_stop_dev(c, ca);
}
static inline struct hlist_head *writepoint_hash(struct bch_fs *c,
unsigned long write_point)
{
unsigned hash =
hash_long(write_point, ilog2(ARRAY_SIZE(c->write_points_hash)));
return &c->write_points_hash[hash];
}
static struct write_point *__writepoint_find(struct hlist_head *head,
unsigned long write_point)
{
struct write_point *wp;
rcu_read_lock();
hlist_for_each_entry_rcu(wp, head, node)
if (wp->write_point == write_point)
goto out;
wp = NULL;
out:
rcu_read_unlock();
return wp;
}
static inline bool too_many_writepoints(struct bch_fs *c, unsigned factor)
{
u64 stranded = c->write_points_nr * c->bucket_size_max;
u64 free = bch2_fs_usage_read_short(c).free;
return stranded * factor > free;
}
static bool try_increase_writepoints(struct bch_fs *c)
{
struct write_point *wp;
if (c->write_points_nr == ARRAY_SIZE(c->write_points) ||
too_many_writepoints(c, 32))
return false;
wp = c->write_points + c->write_points_nr++;
hlist_add_head_rcu(&wp->node, writepoint_hash(c, wp->write_point));
return true;
}
static bool try_decrease_writepoints(struct btree_trans *trans, unsigned old_nr)
{
struct bch_fs *c = trans->c;
struct write_point *wp;
struct open_bucket *ob;
unsigned i;
mutex_lock(&c->write_points_hash_lock);
if (c->write_points_nr < old_nr) {
mutex_unlock(&c->write_points_hash_lock);
return true;
}
if (c->write_points_nr == 1 ||
!too_many_writepoints(c, 8)) {
mutex_unlock(&c->write_points_hash_lock);
return false;
}
wp = c->write_points + --c->write_points_nr;
hlist_del_rcu(&wp->node);
mutex_unlock(&c->write_points_hash_lock);
bch2_trans_mutex_lock_norelock(trans, &wp->lock);
open_bucket_for_each(c, &wp->ptrs, ob, i)
open_bucket_free_unused(c, ob);
wp->ptrs.nr = 0;
mutex_unlock(&wp->lock);
return true;
}
static struct write_point *writepoint_find(struct btree_trans *trans,
unsigned long write_point)
{
struct bch_fs *c = trans->c;
struct write_point *wp, *oldest;
struct hlist_head *head;
if (!(write_point & 1UL)) {
wp = (struct write_point *) write_point;
bch2_trans_mutex_lock_norelock(trans, &wp->lock);
return wp;
}
head = writepoint_hash(c, write_point);
restart_find:
wp = __writepoint_find(head, write_point);
if (wp) {
lock_wp:
bch2_trans_mutex_lock_norelock(trans, &wp->lock);
if (wp->write_point == write_point)
goto out;
mutex_unlock(&wp->lock);
goto restart_find;
}
restart_find_oldest:
oldest = NULL;
for (wp = c->write_points;
wp < c->write_points + c->write_points_nr; wp++)
if (!oldest || time_before64(wp->last_used, oldest->last_used))
oldest = wp;
bch2_trans_mutex_lock_norelock(trans, &oldest->lock);
bch2_trans_mutex_lock_norelock(trans, &c->write_points_hash_lock);
if (oldest >= c->write_points + c->write_points_nr ||
try_increase_writepoints(c)) {
mutex_unlock(&c->write_points_hash_lock);
mutex_unlock(&oldest->lock);
goto restart_find_oldest;
}
wp = __writepoint_find(head, write_point);
if (wp && wp != oldest) {
mutex_unlock(&c->write_points_hash_lock);
mutex_unlock(&oldest->lock);
goto lock_wp;
}
wp = oldest;
hlist_del_rcu(&wp->node);
wp->write_point = write_point;
hlist_add_head_rcu(&wp->node, head);
mutex_unlock(&c->write_points_hash_lock);
out:
wp->last_used = local_clock();
return wp;
}
static noinline void
deallocate_extra_replicas(struct bch_fs *c,
struct open_buckets *ptrs,
struct open_buckets *ptrs_no_use,
unsigned extra_replicas)
{
struct open_buckets ptrs2 = { 0 };
struct open_bucket *ob;
unsigned i;
open_bucket_for_each(c, ptrs, ob, i) {
unsigned d = ob_dev(c, ob)->mi.durability;
if (d && d <= extra_replicas) {
extra_replicas -= d;
ob_push(c, ptrs_no_use, ob);
} else {
ob_push(c, &ptrs2, ob);
}
}
*ptrs = ptrs2;
}
/*
* Get us an open_bucket we can allocate from, return with it locked:
*/
int bch2_alloc_sectors_start_trans(struct btree_trans *trans,
unsigned target,
unsigned erasure_code,
struct write_point_specifier write_point,
struct bch_devs_list *devs_have,
unsigned nr_replicas,
unsigned nr_replicas_required,
enum bch_watermark watermark,
enum bch_write_flags flags,
struct closure *cl,
struct write_point **wp_ret)
{
struct bch_fs *c = trans->c;
struct write_point *wp;
struct open_bucket *ob;
struct open_buckets ptrs;
unsigned nr_effective, write_points_nr;
bool have_cache;
int ret;
int i;
if (!IS_ENABLED(CONFIG_BCACHEFS_ERASURE_CODING))
erasure_code = false;
BUG_ON(!nr_replicas || !nr_replicas_required);
retry:
ptrs.nr = 0;
nr_effective = 0;
write_points_nr = c->write_points_nr;
have_cache = false;
*wp_ret = wp = writepoint_find(trans, write_point.v);
ret = bch2_trans_relock(trans);
if (ret)
goto err;
/* metadata may not allocate on cache devices: */
if (wp->data_type != BCH_DATA_user)
have_cache = true;
if (target && !(flags & BCH_WRITE_ONLY_SPECIFIED_DEVS)) {
ret = open_bucket_add_buckets(trans, &ptrs, wp, devs_have,
target, erasure_code,
nr_replicas, &nr_effective,
&have_cache, watermark,
flags, NULL);
if (!ret ||
bch2_err_matches(ret, BCH_ERR_transaction_restart))
goto alloc_done;
/* Don't retry from all devices if we're out of open buckets: */
if (bch2_err_matches(ret, BCH_ERR_open_buckets_empty)) {
int ret2 = open_bucket_add_buckets(trans, &ptrs, wp, devs_have,
target, erasure_code,
nr_replicas, &nr_effective,
&have_cache, watermark,
flags, cl);
if (!ret2 ||
bch2_err_matches(ret2, BCH_ERR_transaction_restart) ||
bch2_err_matches(ret2, BCH_ERR_open_buckets_empty)) {
ret = ret2;
goto alloc_done;
}
}
/*
* Only try to allocate cache (durability = 0 devices) from the
* specified target:
*/
have_cache = true;
ret = open_bucket_add_buckets(trans, &ptrs, wp, devs_have,
0, erasure_code,
nr_replicas, &nr_effective,
&have_cache, watermark,
flags, cl);
} else {
ret = open_bucket_add_buckets(trans, &ptrs, wp, devs_have,
target, erasure_code,
nr_replicas, &nr_effective,
&have_cache, watermark,
flags, cl);
}
alloc_done:
BUG_ON(!ret && nr_effective < nr_replicas);
if (erasure_code && !ec_open_bucket(c, &ptrs))
pr_debug("failed to get ec bucket: ret %u", ret);
if (ret == -BCH_ERR_insufficient_devices &&
nr_effective >= nr_replicas_required)
ret = 0;
if (ret)
goto err;
if (nr_effective > nr_replicas)
deallocate_extra_replicas(c, &ptrs, &wp->ptrs, nr_effective - nr_replicas);
/* Free buckets we didn't use: */
open_bucket_for_each(c, &wp->ptrs, ob, i)
open_bucket_free_unused(c, ob);
wp->ptrs = ptrs;
wp->sectors_free = UINT_MAX;
open_bucket_for_each(c, &wp->ptrs, ob, i)
wp->sectors_free = min(wp->sectors_free, ob->sectors_free);
BUG_ON(!wp->sectors_free || wp->sectors_free == UINT_MAX);
return 0;
err:
open_bucket_for_each(c, &wp->ptrs, ob, i)
if (ptrs.nr < ARRAY_SIZE(ptrs.v))
ob_push(c, &ptrs, ob);
else
open_bucket_free_unused(c, ob);
wp->ptrs = ptrs;
mutex_unlock(&wp->lock);
if (bch2_err_matches(ret, BCH_ERR_freelist_empty) &&
try_decrease_writepoints(trans, write_points_nr))
goto retry;
if (cl && bch2_err_matches(ret, BCH_ERR_open_buckets_empty))
ret = -BCH_ERR_bucket_alloc_blocked;
if (cl && !(flags & BCH_WRITE_ALLOC_NOWAIT) &&
bch2_err_matches(ret, BCH_ERR_freelist_empty))
ret = -BCH_ERR_bucket_alloc_blocked;
return ret;
}
struct bch_extent_ptr bch2_ob_ptr(struct bch_fs *c, struct open_bucket *ob)
{
struct bch_dev *ca = ob_dev(c, ob);
return (struct bch_extent_ptr) {
.type = 1 << BCH_EXTENT_ENTRY_ptr,
.gen = ob->gen,
.dev = ob->dev,
.offset = bucket_to_sector(ca, ob->bucket) +
ca->mi.bucket_size -
ob->sectors_free,
};
}
void bch2_alloc_sectors_append_ptrs(struct bch_fs *c, struct write_point *wp,
struct bkey_i *k, unsigned sectors,
bool cached)
{
bch2_alloc_sectors_append_ptrs_inlined(c, wp, k, sectors, cached);
}
/*
* Append pointers to the space we just allocated to @k, and mark @sectors space
* as allocated out of @ob
*/
void bch2_alloc_sectors_done(struct bch_fs *c, struct write_point *wp)
{
bch2_alloc_sectors_done_inlined(c, wp);
}
static inline void writepoint_init(struct write_point *wp,
enum bch_data_type type)
{
mutex_init(&wp->lock);
wp->data_type = type;
INIT_WORK(&wp->index_update_work, bch2_write_point_do_index_updates);
INIT_LIST_HEAD(&wp->writes);
spin_lock_init(&wp->writes_lock);
}
void bch2_fs_allocator_foreground_init(struct bch_fs *c)
{
struct open_bucket *ob;
struct write_point *wp;
mutex_init(&c->write_points_hash_lock);
c->write_points_nr = ARRAY_SIZE(c->write_points);
/* open bucket 0 is a sentinal NULL: */
spin_lock_init(&c->open_buckets[0].lock);
for (ob = c->open_buckets + 1;
ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) {
spin_lock_init(&ob->lock);
c->open_buckets_nr_free++;
ob->freelist = c->open_buckets_freelist;
c->open_buckets_freelist = ob - c->open_buckets;
}
writepoint_init(&c->btree_write_point, BCH_DATA_btree);
writepoint_init(&c->rebalance_write_point, BCH_DATA_user);
writepoint_init(&c->copygc_write_point, BCH_DATA_user);
for (wp = c->write_points;
wp < c->write_points + c->write_points_nr; wp++) {
writepoint_init(wp, BCH_DATA_user);
wp->last_used = local_clock();
wp->write_point = (unsigned long) wp;
hlist_add_head_rcu(&wp->node,
writepoint_hash(c, wp->write_point));
}
}
void bch2_open_bucket_to_text(struct printbuf *out, struct bch_fs *c, struct open_bucket *ob)
{
struct bch_dev *ca = ob_dev(c, ob);
unsigned data_type = ob->data_type;
barrier(); /* READ_ONCE() doesn't work on bitfields */
prt_printf(out, "%zu ref %u ",
ob - c->open_buckets,
atomic_read(&ob->pin));
bch2_prt_data_type(out, data_type);
prt_printf(out, " %u:%llu gen %u allocated %u/%u",
ob->dev, ob->bucket, ob->gen,
ca->mi.bucket_size - ob->sectors_free, ca->mi.bucket_size);
if (ob->ec)
prt_printf(out, " ec idx %llu", ob->ec->idx);
if (ob->on_partial_list)
prt_str(out, " partial");
prt_newline(out);
}
void bch2_open_buckets_to_text(struct printbuf *out, struct bch_fs *c,
struct bch_dev *ca)
{
struct open_bucket *ob;
out->atomic++;
for (ob = c->open_buckets;
ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
ob++) {
spin_lock(&ob->lock);
if (ob->valid && !ob->on_partial_list &&
(!ca || ob->dev == ca->dev_idx))
bch2_open_bucket_to_text(out, c, ob);
spin_unlock(&ob->lock);
}
--out->atomic;
}
void bch2_open_buckets_partial_to_text(struct printbuf *out, struct bch_fs *c)
{
unsigned i;
out->atomic++;
spin_lock(&c->freelist_lock);
for (i = 0; i < c->open_buckets_partial_nr; i++)
bch2_open_bucket_to_text(out, c,
c->open_buckets + c->open_buckets_partial[i]);
spin_unlock(&c->freelist_lock);
--out->atomic;
}
static const char * const bch2_write_point_states[] = {
#define x(n) #n,
WRITE_POINT_STATES()
#undef x
NULL
};
static void bch2_write_point_to_text(struct printbuf *out, struct bch_fs *c,
struct write_point *wp)
{
struct open_bucket *ob;
unsigned i;
prt_printf(out, "%lu: ", wp->write_point);
prt_human_readable_u64(out, wp->sectors_allocated);
prt_printf(out, " last wrote: ");
bch2_pr_time_units(out, sched_clock() - wp->last_used);
for (i = 0; i < WRITE_POINT_STATE_NR; i++) {
prt_printf(out, " %s: ", bch2_write_point_states[i]);
bch2_pr_time_units(out, wp->time[i]);
}
prt_newline(out);
printbuf_indent_add(out, 2);
open_bucket_for_each(c, &wp->ptrs, ob, i)
bch2_open_bucket_to_text(out, c, ob);
printbuf_indent_sub(out, 2);
}
void bch2_write_points_to_text(struct printbuf *out, struct bch_fs *c)
{
struct write_point *wp;
prt_str(out, "Foreground write points\n");
for (wp = c->write_points;
wp < c->write_points + ARRAY_SIZE(c->write_points);
wp++)
bch2_write_point_to_text(out, c, wp);
prt_str(out, "Copygc write point\n");
bch2_write_point_to_text(out, c, &c->copygc_write_point);
prt_str(out, "Rebalance write point\n");
bch2_write_point_to_text(out, c, &c->rebalance_write_point);
prt_str(out, "Btree write point\n");
bch2_write_point_to_text(out, c, &c->btree_write_point);
}
void bch2_fs_alloc_debug_to_text(struct printbuf *out, struct bch_fs *c)
{
unsigned nr[BCH_DATA_NR];
memset(nr, 0, sizeof(nr));
for (unsigned i = 0; i < ARRAY_SIZE(c->open_buckets); i++)
nr[c->open_buckets[i].data_type]++;
printbuf_tabstops_reset(out);
printbuf_tabstop_push(out, 24);
prt_printf(out, "capacity\t%llu\n", c->capacity);
prt_printf(out, "reserved\t%llu\n", c->reserved);
prt_printf(out, "hidden\t%llu\n", percpu_u64_get(&c->usage->hidden));
prt_printf(out, "btree\t%llu\n", percpu_u64_get(&c->usage->btree));
prt_printf(out, "data\t%llu\n", percpu_u64_get(&c->usage->data));
prt_printf(out, "cached\t%llu\n", percpu_u64_get(&c->usage->cached));
prt_printf(out, "reserved\t%llu\n", percpu_u64_get(&c->usage->reserved));
prt_printf(out, "online_reserved\t%llu\n", percpu_u64_get(c->online_reserved));
prt_printf(out, "nr_inodes\t%llu\n", percpu_u64_get(&c->usage->nr_inodes));
prt_newline(out);
prt_printf(out, "freelist_wait\t%s\n", c->freelist_wait.list.first ? "waiting" : "empty");
prt_printf(out, "open buckets allocated\t%i\n", OPEN_BUCKETS_COUNT - c->open_buckets_nr_free);
prt_printf(out, "open buckets total\t%u\n", OPEN_BUCKETS_COUNT);
prt_printf(out, "open_buckets_wait\t%s\n", c->open_buckets_wait.list.first ? "waiting" : "empty");
prt_printf(out, "open_buckets_btree\t%u\n", nr[BCH_DATA_btree]);
prt_printf(out, "open_buckets_user\t%u\n", nr[BCH_DATA_user]);
prt_printf(out, "btree reserve cache\t%u\n", c->btree_reserve_cache_nr);
}
void bch2_dev_alloc_debug_to_text(struct printbuf *out, struct bch_dev *ca)
{
struct bch_fs *c = ca->fs;
struct bch_dev_usage stats = bch2_dev_usage_read(ca);
unsigned nr[BCH_DATA_NR];
memset(nr, 0, sizeof(nr));
for (unsigned i = 0; i < ARRAY_SIZE(c->open_buckets); i++)
nr[c->open_buckets[i].data_type]++;
bch2_dev_usage_to_text(out, ca, &stats);
prt_newline(out);
prt_printf(out, "reserves:\n");
for (unsigned i = 0; i < BCH_WATERMARK_NR; i++)
prt_printf(out, "%s\t%llu\r\n", bch2_watermarks[i], bch2_dev_buckets_reserved(ca, i));
prt_newline(out);
printbuf_tabstops_reset(out);
printbuf_tabstop_push(out, 12);
printbuf_tabstop_push(out, 16);
prt_printf(out, "open buckets\t%i\r\n", ca->nr_open_buckets);
prt_printf(out, "buckets to invalidate\t%llu\r\n", should_invalidate_buckets(ca, stats));
}
static noinline void bch2_print_allocator_stuck(struct bch_fs *c)
{
struct printbuf buf = PRINTBUF;
prt_printf(&buf, "Allocator stuck? Waited for %u seconds\n",
c->opts.allocator_stuck_timeout);
prt_printf(&buf, "Allocator debug:\n");
printbuf_indent_add(&buf, 2);
bch2_fs_alloc_debug_to_text(&buf, c);
printbuf_indent_sub(&buf, 2);
prt_newline(&buf);
for_each_online_member(c, ca) {
prt_printf(&buf, "Dev %u:\n", ca->dev_idx);
printbuf_indent_add(&buf, 2);
bch2_dev_alloc_debug_to_text(&buf, ca);
printbuf_indent_sub(&buf, 2);
prt_newline(&buf);
}
prt_printf(&buf, "Copygc debug:\n");
printbuf_indent_add(&buf, 2);
bch2_copygc_wait_to_text(&buf, c);
printbuf_indent_sub(&buf, 2);
prt_newline(&buf);
prt_printf(&buf, "Journal debug:\n");
printbuf_indent_add(&buf, 2);
bch2_journal_debug_to_text(&buf, &c->journal);
printbuf_indent_sub(&buf, 2);
bch2_print_string_as_lines(KERN_ERR, buf.buf);
printbuf_exit(&buf);
}
static inline unsigned allocator_wait_timeout(struct bch_fs *c)
{
if (c->allocator_last_stuck &&
time_after(c->allocator_last_stuck + HZ * 60 * 2, jiffies))
return 0;
return c->opts.allocator_stuck_timeout * HZ;
}
void __bch2_wait_on_allocator(struct bch_fs *c, struct closure *cl)
{
unsigned t = allocator_wait_timeout(c);
if (t && closure_sync_timeout(cl, t)) {
c->allocator_last_stuck = jiffies;
bch2_print_allocator_stuck(c);
}
closure_sync(cl);
}