mirror of
https://github.com/torvalds/linux.git
synced 2024-12-02 17:11:33 +00:00
ce0b15d11a
The INVLPG instruction is used to invalidate TLB entries for a specified virtual address. When PCIDs are enabled, INVLPG is supposed to invalidate TLB entries for the specified address for both the current PCID *and* Global entries. (Note: Only kernel mappings set Global=1.) Unfortunately, some INVLPG implementations can leave Global translations unflushed when PCIDs are enabled. As a workaround, never enable PCIDs on affected processors. I expect there to eventually be microcode mitigations to replace this software workaround. However, the exact version numbers where that will happen are not known today. Once the version numbers are set in stone, the processor list can be tweaked to only disable PCIDs on affected processors with affected microcode. Note: if anyone wants a quick fix that doesn't require patching, just stick 'nopcid' on your kernel command-line. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org
1112 lines
32 KiB
C
1112 lines
32 KiB
C
#include <linux/gfp.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/swapfile.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/sched/task.h>
|
|
|
|
#include <asm/set_memory.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/e820/api.h>
|
|
#include <asm/init.h>
|
|
#include <asm/page.h>
|
|
#include <asm/page_types.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/dma.h> /* for MAX_DMA_PFN */
|
|
#include <asm/microcode.h>
|
|
#include <asm/kaslr.h>
|
|
#include <asm/hypervisor.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/pti.h>
|
|
#include <asm/text-patching.h>
|
|
#include <asm/memtype.h>
|
|
#include <asm/paravirt.h>
|
|
|
|
/*
|
|
* We need to define the tracepoints somewhere, and tlb.c
|
|
* is only compiled when SMP=y.
|
|
*/
|
|
#include <trace/events/tlb.h>
|
|
|
|
#include "mm_internal.h"
|
|
|
|
/*
|
|
* Tables translating between page_cache_type_t and pte encoding.
|
|
*
|
|
* The default values are defined statically as minimal supported mode;
|
|
* WC and WT fall back to UC-. pat_init() updates these values to support
|
|
* more cache modes, WC and WT, when it is safe to do so. See pat_init()
|
|
* for the details. Note, __early_ioremap() used during early boot-time
|
|
* takes pgprot_t (pte encoding) and does not use these tables.
|
|
*
|
|
* Index into __cachemode2pte_tbl[] is the cachemode.
|
|
*
|
|
* Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
|
|
* (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
|
|
*/
|
|
static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
|
|
[_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
|
|
[_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
|
|
[_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
|
|
[_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
|
|
[_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
|
|
[_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
|
|
};
|
|
|
|
unsigned long cachemode2protval(enum page_cache_mode pcm)
|
|
{
|
|
if (likely(pcm == 0))
|
|
return 0;
|
|
return __cachemode2pte_tbl[pcm];
|
|
}
|
|
EXPORT_SYMBOL(cachemode2protval);
|
|
|
|
static uint8_t __pte2cachemode_tbl[8] = {
|
|
[__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
|
|
[__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
|
|
[__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
|
|
[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
|
|
[__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
|
|
[__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
|
|
[__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
|
|
[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
|
|
};
|
|
|
|
/*
|
|
* Check that the write-protect PAT entry is set for write-protect.
|
|
* To do this without making assumptions how PAT has been set up (Xen has
|
|
* another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
|
|
* mode via the __cachemode2pte_tbl[] into protection bits (those protection
|
|
* bits will select a cache mode of WP or better), and then translate the
|
|
* protection bits back into the cache mode using __pte2cm_idx() and the
|
|
* __pte2cachemode_tbl[] array. This will return the really used cache mode.
|
|
*/
|
|
bool x86_has_pat_wp(void)
|
|
{
|
|
uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
|
|
|
|
return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
|
|
}
|
|
|
|
enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
|
|
{
|
|
unsigned long masked;
|
|
|
|
masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
|
|
if (likely(masked == 0))
|
|
return 0;
|
|
return __pte2cachemode_tbl[__pte2cm_idx(masked)];
|
|
}
|
|
|
|
static unsigned long __initdata pgt_buf_start;
|
|
static unsigned long __initdata pgt_buf_end;
|
|
static unsigned long __initdata pgt_buf_top;
|
|
|
|
static unsigned long min_pfn_mapped;
|
|
|
|
static bool __initdata can_use_brk_pgt = true;
|
|
|
|
/*
|
|
* Pages returned are already directly mapped.
|
|
*
|
|
* Changing that is likely to break Xen, see commit:
|
|
*
|
|
* 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
|
|
*
|
|
* for detailed information.
|
|
*/
|
|
__ref void *alloc_low_pages(unsigned int num)
|
|
{
|
|
unsigned long pfn;
|
|
int i;
|
|
|
|
if (after_bootmem) {
|
|
unsigned int order;
|
|
|
|
order = get_order((unsigned long)num << PAGE_SHIFT);
|
|
return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
|
|
}
|
|
|
|
if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
|
|
unsigned long ret = 0;
|
|
|
|
if (min_pfn_mapped < max_pfn_mapped) {
|
|
ret = memblock_phys_alloc_range(
|
|
PAGE_SIZE * num, PAGE_SIZE,
|
|
min_pfn_mapped << PAGE_SHIFT,
|
|
max_pfn_mapped << PAGE_SHIFT);
|
|
}
|
|
if (!ret && can_use_brk_pgt)
|
|
ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
|
|
|
|
if (!ret)
|
|
panic("alloc_low_pages: can not alloc memory");
|
|
|
|
pfn = ret >> PAGE_SHIFT;
|
|
} else {
|
|
pfn = pgt_buf_end;
|
|
pgt_buf_end += num;
|
|
}
|
|
|
|
for (i = 0; i < num; i++) {
|
|
void *adr;
|
|
|
|
adr = __va((pfn + i) << PAGE_SHIFT);
|
|
clear_page(adr);
|
|
}
|
|
|
|
return __va(pfn << PAGE_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* By default need to be able to allocate page tables below PGD firstly for
|
|
* the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
|
|
* With KASLR memory randomization, depending on the machine e820 memory and the
|
|
* PUD alignment, twice that many pages may be needed when KASLR memory
|
|
* randomization is enabled.
|
|
*/
|
|
|
|
#ifndef CONFIG_X86_5LEVEL
|
|
#define INIT_PGD_PAGE_TABLES 3
|
|
#else
|
|
#define INIT_PGD_PAGE_TABLES 4
|
|
#endif
|
|
|
|
#ifndef CONFIG_RANDOMIZE_MEMORY
|
|
#define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
|
|
#else
|
|
#define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
|
|
#endif
|
|
|
|
#define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
|
|
RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
|
|
void __init early_alloc_pgt_buf(void)
|
|
{
|
|
unsigned long tables = INIT_PGT_BUF_SIZE;
|
|
phys_addr_t base;
|
|
|
|
base = __pa(extend_brk(tables, PAGE_SIZE));
|
|
|
|
pgt_buf_start = base >> PAGE_SHIFT;
|
|
pgt_buf_end = pgt_buf_start;
|
|
pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
|
|
}
|
|
|
|
int after_bootmem;
|
|
|
|
early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
|
|
|
|
struct map_range {
|
|
unsigned long start;
|
|
unsigned long end;
|
|
unsigned page_size_mask;
|
|
};
|
|
|
|
static int page_size_mask;
|
|
|
|
/*
|
|
* Save some of cr4 feature set we're using (e.g. Pentium 4MB
|
|
* enable and PPro Global page enable), so that any CPU's that boot
|
|
* up after us can get the correct flags. Invoked on the boot CPU.
|
|
*/
|
|
static inline void cr4_set_bits_and_update_boot(unsigned long mask)
|
|
{
|
|
mmu_cr4_features |= mask;
|
|
if (trampoline_cr4_features)
|
|
*trampoline_cr4_features = mmu_cr4_features;
|
|
cr4_set_bits(mask);
|
|
}
|
|
|
|
static void __init probe_page_size_mask(void)
|
|
{
|
|
/*
|
|
* For pagealloc debugging, identity mapping will use small pages.
|
|
* This will simplify cpa(), which otherwise needs to support splitting
|
|
* large pages into small in interrupt context, etc.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
|
|
page_size_mask |= 1 << PG_LEVEL_2M;
|
|
else
|
|
direct_gbpages = 0;
|
|
|
|
/* Enable PSE if available */
|
|
if (boot_cpu_has(X86_FEATURE_PSE))
|
|
cr4_set_bits_and_update_boot(X86_CR4_PSE);
|
|
|
|
/* Enable PGE if available */
|
|
__supported_pte_mask &= ~_PAGE_GLOBAL;
|
|
if (boot_cpu_has(X86_FEATURE_PGE)) {
|
|
cr4_set_bits_and_update_boot(X86_CR4_PGE);
|
|
__supported_pte_mask |= _PAGE_GLOBAL;
|
|
}
|
|
|
|
/* By the default is everything supported: */
|
|
__default_kernel_pte_mask = __supported_pte_mask;
|
|
/* Except when with PTI where the kernel is mostly non-Global: */
|
|
if (cpu_feature_enabled(X86_FEATURE_PTI))
|
|
__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
|
|
|
|
/* Enable 1 GB linear kernel mappings if available: */
|
|
if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
|
|
printk(KERN_INFO "Using GB pages for direct mapping\n");
|
|
page_size_mask |= 1 << PG_LEVEL_1G;
|
|
} else {
|
|
direct_gbpages = 0;
|
|
}
|
|
}
|
|
|
|
#define INTEL_MATCH(_model) { .vendor = X86_VENDOR_INTEL, \
|
|
.family = 6, \
|
|
.model = _model, \
|
|
}
|
|
/*
|
|
* INVLPG may not properly flush Global entries
|
|
* on these CPUs when PCIDs are enabled.
|
|
*/
|
|
static const struct x86_cpu_id invlpg_miss_ids[] = {
|
|
INTEL_MATCH(INTEL_FAM6_ALDERLAKE ),
|
|
INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
|
|
INTEL_MATCH(INTEL_FAM6_ALDERLAKE_N ),
|
|
INTEL_MATCH(INTEL_FAM6_RAPTORLAKE ),
|
|
INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
|
|
INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
|
|
{}
|
|
};
|
|
|
|
static void setup_pcid(void)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_X86_64))
|
|
return;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_PCID))
|
|
return;
|
|
|
|
if (x86_match_cpu(invlpg_miss_ids)) {
|
|
pr_info("Incomplete global flushes, disabling PCID");
|
|
setup_clear_cpu_cap(X86_FEATURE_PCID);
|
|
return;
|
|
}
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PGE)) {
|
|
/*
|
|
* This can't be cr4_set_bits_and_update_boot() -- the
|
|
* trampoline code can't handle CR4.PCIDE and it wouldn't
|
|
* do any good anyway. Despite the name,
|
|
* cr4_set_bits_and_update_boot() doesn't actually cause
|
|
* the bits in question to remain set all the way through
|
|
* the secondary boot asm.
|
|
*
|
|
* Instead, we brute-force it and set CR4.PCIDE manually in
|
|
* start_secondary().
|
|
*/
|
|
cr4_set_bits(X86_CR4_PCIDE);
|
|
|
|
/*
|
|
* INVPCID's single-context modes (2/3) only work if we set
|
|
* X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
|
|
* on systems that have X86_CR4_PCIDE clear, or that have
|
|
* no INVPCID support at all.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_INVPCID))
|
|
setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
|
|
} else {
|
|
/*
|
|
* flush_tlb_all(), as currently implemented, won't work if
|
|
* PCID is on but PGE is not. Since that combination
|
|
* doesn't exist on real hardware, there's no reason to try
|
|
* to fully support it, but it's polite to avoid corrupting
|
|
* data if we're on an improperly configured VM.
|
|
*/
|
|
setup_clear_cpu_cap(X86_FEATURE_PCID);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
#define NR_RANGE_MR 3
|
|
#else /* CONFIG_X86_64 */
|
|
#define NR_RANGE_MR 5
|
|
#endif
|
|
|
|
static int __meminit save_mr(struct map_range *mr, int nr_range,
|
|
unsigned long start_pfn, unsigned long end_pfn,
|
|
unsigned long page_size_mask)
|
|
{
|
|
if (start_pfn < end_pfn) {
|
|
if (nr_range >= NR_RANGE_MR)
|
|
panic("run out of range for init_memory_mapping\n");
|
|
mr[nr_range].start = start_pfn<<PAGE_SHIFT;
|
|
mr[nr_range].end = end_pfn<<PAGE_SHIFT;
|
|
mr[nr_range].page_size_mask = page_size_mask;
|
|
nr_range++;
|
|
}
|
|
|
|
return nr_range;
|
|
}
|
|
|
|
/*
|
|
* adjust the page_size_mask for small range to go with
|
|
* big page size instead small one if nearby are ram too.
|
|
*/
|
|
static void __ref adjust_range_page_size_mask(struct map_range *mr,
|
|
int nr_range)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_range; i++) {
|
|
if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
|
|
!(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
|
|
unsigned long start = round_down(mr[i].start, PMD_SIZE);
|
|
unsigned long end = round_up(mr[i].end, PMD_SIZE);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
if ((end >> PAGE_SHIFT) > max_low_pfn)
|
|
continue;
|
|
#endif
|
|
|
|
if (memblock_is_region_memory(start, end - start))
|
|
mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
|
|
}
|
|
if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
|
|
!(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
|
|
unsigned long start = round_down(mr[i].start, PUD_SIZE);
|
|
unsigned long end = round_up(mr[i].end, PUD_SIZE);
|
|
|
|
if (memblock_is_region_memory(start, end - start))
|
|
mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
|
|
}
|
|
}
|
|
}
|
|
|
|
static const char *page_size_string(struct map_range *mr)
|
|
{
|
|
static const char str_1g[] = "1G";
|
|
static const char str_2m[] = "2M";
|
|
static const char str_4m[] = "4M";
|
|
static const char str_4k[] = "4k";
|
|
|
|
if (mr->page_size_mask & (1<<PG_LEVEL_1G))
|
|
return str_1g;
|
|
/*
|
|
* 32-bit without PAE has a 4M large page size.
|
|
* PG_LEVEL_2M is misnamed, but we can at least
|
|
* print out the right size in the string.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_X86_32) &&
|
|
!IS_ENABLED(CONFIG_X86_PAE) &&
|
|
mr->page_size_mask & (1<<PG_LEVEL_2M))
|
|
return str_4m;
|
|
|
|
if (mr->page_size_mask & (1<<PG_LEVEL_2M))
|
|
return str_2m;
|
|
|
|
return str_4k;
|
|
}
|
|
|
|
static int __meminit split_mem_range(struct map_range *mr, int nr_range,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
unsigned long start_pfn, end_pfn, limit_pfn;
|
|
unsigned long pfn;
|
|
int i;
|
|
|
|
limit_pfn = PFN_DOWN(end);
|
|
|
|
/* head if not big page alignment ? */
|
|
pfn = start_pfn = PFN_DOWN(start);
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* Don't use a large page for the first 2/4MB of memory
|
|
* because there are often fixed size MTRRs in there
|
|
* and overlapping MTRRs into large pages can cause
|
|
* slowdowns.
|
|
*/
|
|
if (pfn == 0)
|
|
end_pfn = PFN_DOWN(PMD_SIZE);
|
|
else
|
|
end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
|
|
#else /* CONFIG_X86_64 */
|
|
end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
|
|
#endif
|
|
if (end_pfn > limit_pfn)
|
|
end_pfn = limit_pfn;
|
|
if (start_pfn < end_pfn) {
|
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
|
|
pfn = end_pfn;
|
|
}
|
|
|
|
/* big page (2M) range */
|
|
start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
|
|
#ifdef CONFIG_X86_32
|
|
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
|
|
#else /* CONFIG_X86_64 */
|
|
end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
|
|
if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
|
|
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
|
|
#endif
|
|
|
|
if (start_pfn < end_pfn) {
|
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
|
|
page_size_mask & (1<<PG_LEVEL_2M));
|
|
pfn = end_pfn;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* big page (1G) range */
|
|
start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
|
|
end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
|
|
if (start_pfn < end_pfn) {
|
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
|
|
page_size_mask &
|
|
((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
|
|
pfn = end_pfn;
|
|
}
|
|
|
|
/* tail is not big page (1G) alignment */
|
|
start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
|
|
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
|
|
if (start_pfn < end_pfn) {
|
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
|
|
page_size_mask & (1<<PG_LEVEL_2M));
|
|
pfn = end_pfn;
|
|
}
|
|
#endif
|
|
|
|
/* tail is not big page (2M) alignment */
|
|
start_pfn = pfn;
|
|
end_pfn = limit_pfn;
|
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
|
|
|
|
if (!after_bootmem)
|
|
adjust_range_page_size_mask(mr, nr_range);
|
|
|
|
/* try to merge same page size and continuous */
|
|
for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
|
|
unsigned long old_start;
|
|
if (mr[i].end != mr[i+1].start ||
|
|
mr[i].page_size_mask != mr[i+1].page_size_mask)
|
|
continue;
|
|
/* move it */
|
|
old_start = mr[i].start;
|
|
memmove(&mr[i], &mr[i+1],
|
|
(nr_range - 1 - i) * sizeof(struct map_range));
|
|
mr[i--].start = old_start;
|
|
nr_range--;
|
|
}
|
|
|
|
for (i = 0; i < nr_range; i++)
|
|
pr_debug(" [mem %#010lx-%#010lx] page %s\n",
|
|
mr[i].start, mr[i].end - 1,
|
|
page_size_string(&mr[i]));
|
|
|
|
return nr_range;
|
|
}
|
|
|
|
struct range pfn_mapped[E820_MAX_ENTRIES];
|
|
int nr_pfn_mapped;
|
|
|
|
static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
|
|
nr_pfn_mapped, start_pfn, end_pfn);
|
|
nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
|
|
|
|
max_pfn_mapped = max(max_pfn_mapped, end_pfn);
|
|
|
|
if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
|
|
max_low_pfn_mapped = max(max_low_pfn_mapped,
|
|
min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
|
|
}
|
|
|
|
bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_pfn_mapped; i++)
|
|
if ((start_pfn >= pfn_mapped[i].start) &&
|
|
(end_pfn <= pfn_mapped[i].end))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Setup the direct mapping of the physical memory at PAGE_OFFSET.
|
|
* This runs before bootmem is initialized and gets pages directly from
|
|
* the physical memory. To access them they are temporarily mapped.
|
|
*/
|
|
unsigned long __ref init_memory_mapping(unsigned long start,
|
|
unsigned long end, pgprot_t prot)
|
|
{
|
|
struct map_range mr[NR_RANGE_MR];
|
|
unsigned long ret = 0;
|
|
int nr_range, i;
|
|
|
|
pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
|
|
start, end - 1);
|
|
|
|
memset(mr, 0, sizeof(mr));
|
|
nr_range = split_mem_range(mr, 0, start, end);
|
|
|
|
for (i = 0; i < nr_range; i++)
|
|
ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
|
|
mr[i].page_size_mask,
|
|
prot);
|
|
|
|
add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
|
|
|
|
return ret >> PAGE_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* We need to iterate through the E820 memory map and create direct mappings
|
|
* for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
|
|
* create direct mappings for all pfns from [0 to max_low_pfn) and
|
|
* [4GB to max_pfn) because of possible memory holes in high addresses
|
|
* that cannot be marked as UC by fixed/variable range MTRRs.
|
|
* Depending on the alignment of E820 ranges, this may possibly result
|
|
* in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
|
|
*
|
|
* init_mem_mapping() calls init_range_memory_mapping() with big range.
|
|
* That range would have hole in the middle or ends, and only ram parts
|
|
* will be mapped in init_range_memory_mapping().
|
|
*/
|
|
static unsigned long __init init_range_memory_mapping(
|
|
unsigned long r_start,
|
|
unsigned long r_end)
|
|
{
|
|
unsigned long start_pfn, end_pfn;
|
|
unsigned long mapped_ram_size = 0;
|
|
int i;
|
|
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
|
|
u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
|
|
u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
|
|
if (start >= end)
|
|
continue;
|
|
|
|
/*
|
|
* if it is overlapping with brk pgt, we need to
|
|
* alloc pgt buf from memblock instead.
|
|
*/
|
|
can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
|
|
min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
|
|
init_memory_mapping(start, end, PAGE_KERNEL);
|
|
mapped_ram_size += end - start;
|
|
can_use_brk_pgt = true;
|
|
}
|
|
|
|
return mapped_ram_size;
|
|
}
|
|
|
|
static unsigned long __init get_new_step_size(unsigned long step_size)
|
|
{
|
|
/*
|
|
* Initial mapped size is PMD_SIZE (2M).
|
|
* We can not set step_size to be PUD_SIZE (1G) yet.
|
|
* In worse case, when we cross the 1G boundary, and
|
|
* PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
|
|
* to map 1G range with PTE. Hence we use one less than the
|
|
* difference of page table level shifts.
|
|
*
|
|
* Don't need to worry about overflow in the top-down case, on 32bit,
|
|
* when step_size is 0, round_down() returns 0 for start, and that
|
|
* turns it into 0x100000000ULL.
|
|
* In the bottom-up case, round_up(x, 0) returns 0 though too, which
|
|
* needs to be taken into consideration by the code below.
|
|
*/
|
|
return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
|
|
}
|
|
|
|
/**
|
|
* memory_map_top_down - Map [map_start, map_end) top down
|
|
* @map_start: start address of the target memory range
|
|
* @map_end: end address of the target memory range
|
|
*
|
|
* This function will setup direct mapping for memory range
|
|
* [map_start, map_end) in top-down. That said, the page tables
|
|
* will be allocated at the end of the memory, and we map the
|
|
* memory in top-down.
|
|
*/
|
|
static void __init memory_map_top_down(unsigned long map_start,
|
|
unsigned long map_end)
|
|
{
|
|
unsigned long real_end, last_start;
|
|
unsigned long step_size;
|
|
unsigned long addr;
|
|
unsigned long mapped_ram_size = 0;
|
|
|
|
/*
|
|
* Systems that have many reserved areas near top of the memory,
|
|
* e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
|
|
* require lots of 4K mappings which may exhaust pgt_buf.
|
|
* Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
|
|
* there is enough mapped memory that can be allocated from
|
|
* memblock.
|
|
*/
|
|
addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
|
|
map_end);
|
|
memblock_phys_free(addr, PMD_SIZE);
|
|
real_end = addr + PMD_SIZE;
|
|
|
|
/* step_size need to be small so pgt_buf from BRK could cover it */
|
|
step_size = PMD_SIZE;
|
|
max_pfn_mapped = 0; /* will get exact value next */
|
|
min_pfn_mapped = real_end >> PAGE_SHIFT;
|
|
last_start = real_end;
|
|
|
|
/*
|
|
* We start from the top (end of memory) and go to the bottom.
|
|
* The memblock_find_in_range() gets us a block of RAM from the
|
|
* end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
|
|
* for page table.
|
|
*/
|
|
while (last_start > map_start) {
|
|
unsigned long start;
|
|
|
|
if (last_start > step_size) {
|
|
start = round_down(last_start - 1, step_size);
|
|
if (start < map_start)
|
|
start = map_start;
|
|
} else
|
|
start = map_start;
|
|
mapped_ram_size += init_range_memory_mapping(start,
|
|
last_start);
|
|
last_start = start;
|
|
min_pfn_mapped = last_start >> PAGE_SHIFT;
|
|
if (mapped_ram_size >= step_size)
|
|
step_size = get_new_step_size(step_size);
|
|
}
|
|
|
|
if (real_end < map_end)
|
|
init_range_memory_mapping(real_end, map_end);
|
|
}
|
|
|
|
/**
|
|
* memory_map_bottom_up - Map [map_start, map_end) bottom up
|
|
* @map_start: start address of the target memory range
|
|
* @map_end: end address of the target memory range
|
|
*
|
|
* This function will setup direct mapping for memory range
|
|
* [map_start, map_end) in bottom-up. Since we have limited the
|
|
* bottom-up allocation above the kernel, the page tables will
|
|
* be allocated just above the kernel and we map the memory
|
|
* in [map_start, map_end) in bottom-up.
|
|
*/
|
|
static void __init memory_map_bottom_up(unsigned long map_start,
|
|
unsigned long map_end)
|
|
{
|
|
unsigned long next, start;
|
|
unsigned long mapped_ram_size = 0;
|
|
/* step_size need to be small so pgt_buf from BRK could cover it */
|
|
unsigned long step_size = PMD_SIZE;
|
|
|
|
start = map_start;
|
|
min_pfn_mapped = start >> PAGE_SHIFT;
|
|
|
|
/*
|
|
* We start from the bottom (@map_start) and go to the top (@map_end).
|
|
* The memblock_find_in_range() gets us a block of RAM from the
|
|
* end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
|
|
* for page table.
|
|
*/
|
|
while (start < map_end) {
|
|
if (step_size && map_end - start > step_size) {
|
|
next = round_up(start + 1, step_size);
|
|
if (next > map_end)
|
|
next = map_end;
|
|
} else {
|
|
next = map_end;
|
|
}
|
|
|
|
mapped_ram_size += init_range_memory_mapping(start, next);
|
|
start = next;
|
|
|
|
if (mapped_ram_size >= step_size)
|
|
step_size = get_new_step_size(step_size);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The real mode trampoline, which is required for bootstrapping CPUs
|
|
* occupies only a small area under the low 1MB. See reserve_real_mode()
|
|
* for details.
|
|
*
|
|
* If KASLR is disabled the first PGD entry of the direct mapping is copied
|
|
* to map the real mode trampoline.
|
|
*
|
|
* If KASLR is enabled, copy only the PUD which covers the low 1MB
|
|
* area. This limits the randomization granularity to 1GB for both 4-level
|
|
* and 5-level paging.
|
|
*/
|
|
static void __init init_trampoline(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* The code below will alias kernel page-tables in the user-range of the
|
|
* address space, including the Global bit. So global TLB entries will
|
|
* be created when using the trampoline page-table.
|
|
*/
|
|
if (!kaslr_memory_enabled())
|
|
trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
|
|
else
|
|
init_trampoline_kaslr();
|
|
#endif
|
|
}
|
|
|
|
void __init init_mem_mapping(void)
|
|
{
|
|
unsigned long end;
|
|
|
|
pti_check_boottime_disable();
|
|
probe_page_size_mask();
|
|
setup_pcid();
|
|
|
|
#ifdef CONFIG_X86_64
|
|
end = max_pfn << PAGE_SHIFT;
|
|
#else
|
|
end = max_low_pfn << PAGE_SHIFT;
|
|
#endif
|
|
|
|
/* the ISA range is always mapped regardless of memory holes */
|
|
init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
|
|
|
|
/* Init the trampoline, possibly with KASLR memory offset */
|
|
init_trampoline();
|
|
|
|
/*
|
|
* If the allocation is in bottom-up direction, we setup direct mapping
|
|
* in bottom-up, otherwise we setup direct mapping in top-down.
|
|
*/
|
|
if (memblock_bottom_up()) {
|
|
unsigned long kernel_end = __pa_symbol(_end);
|
|
|
|
/*
|
|
* we need two separate calls here. This is because we want to
|
|
* allocate page tables above the kernel. So we first map
|
|
* [kernel_end, end) to make memory above the kernel be mapped
|
|
* as soon as possible. And then use page tables allocated above
|
|
* the kernel to map [ISA_END_ADDRESS, kernel_end).
|
|
*/
|
|
memory_map_bottom_up(kernel_end, end);
|
|
memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
|
|
} else {
|
|
memory_map_top_down(ISA_END_ADDRESS, end);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (max_pfn > max_low_pfn) {
|
|
/* can we preserve max_low_pfn ?*/
|
|
max_low_pfn = max_pfn;
|
|
}
|
|
#else
|
|
early_ioremap_page_table_range_init();
|
|
#endif
|
|
|
|
load_cr3(swapper_pg_dir);
|
|
__flush_tlb_all();
|
|
|
|
x86_init.hyper.init_mem_mapping();
|
|
|
|
early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* Initialize an mm_struct to be used during poking and a pointer to be used
|
|
* during patching.
|
|
*/
|
|
void __init poking_init(void)
|
|
{
|
|
spinlock_t *ptl;
|
|
pte_t *ptep;
|
|
|
|
poking_mm = mm_alloc();
|
|
BUG_ON(!poking_mm);
|
|
|
|
/* Xen PV guests need the PGD to be pinned. */
|
|
paravirt_enter_mmap(poking_mm);
|
|
|
|
/*
|
|
* Randomize the poking address, but make sure that the following page
|
|
* will be mapped at the same PMD. We need 2 pages, so find space for 3,
|
|
* and adjust the address if the PMD ends after the first one.
|
|
*/
|
|
poking_addr = TASK_UNMAPPED_BASE;
|
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
|
|
poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
|
|
(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
|
|
|
|
if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
|
|
poking_addr += PAGE_SIZE;
|
|
|
|
/*
|
|
* We need to trigger the allocation of the page-tables that will be
|
|
* needed for poking now. Later, poking may be performed in an atomic
|
|
* section, which might cause allocation to fail.
|
|
*/
|
|
ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
|
|
BUG_ON(!ptep);
|
|
pte_unmap_unlock(ptep, ptl);
|
|
}
|
|
|
|
/*
|
|
* devmem_is_allowed() checks to see if /dev/mem access to a certain address
|
|
* is valid. The argument is a physical page number.
|
|
*
|
|
* On x86, access has to be given to the first megabyte of RAM because that
|
|
* area traditionally contains BIOS code and data regions used by X, dosemu,
|
|
* and similar apps. Since they map the entire memory range, the whole range
|
|
* must be allowed (for mapping), but any areas that would otherwise be
|
|
* disallowed are flagged as being "zero filled" instead of rejected.
|
|
* Access has to be given to non-kernel-ram areas as well, these contain the
|
|
* PCI mmio resources as well as potential bios/acpi data regions.
|
|
*/
|
|
int devmem_is_allowed(unsigned long pagenr)
|
|
{
|
|
if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
|
|
IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
|
|
!= REGION_DISJOINT) {
|
|
/*
|
|
* For disallowed memory regions in the low 1MB range,
|
|
* request that the page be shown as all zeros.
|
|
*/
|
|
if (pagenr < 256)
|
|
return 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This must follow RAM test, since System RAM is considered a
|
|
* restricted resource under CONFIG_STRICT_DEVMEM.
|
|
*/
|
|
if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
|
|
/* Low 1MB bypasses iomem restrictions. */
|
|
if (pagenr < 256)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
void free_init_pages(const char *what, unsigned long begin, unsigned long end)
|
|
{
|
|
unsigned long begin_aligned, end_aligned;
|
|
|
|
/* Make sure boundaries are page aligned */
|
|
begin_aligned = PAGE_ALIGN(begin);
|
|
end_aligned = end & PAGE_MASK;
|
|
|
|
if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
|
|
begin = begin_aligned;
|
|
end = end_aligned;
|
|
}
|
|
|
|
if (begin >= end)
|
|
return;
|
|
|
|
/*
|
|
* If debugging page accesses then do not free this memory but
|
|
* mark them not present - any buggy init-section access will
|
|
* create a kernel page fault:
|
|
*/
|
|
if (debug_pagealloc_enabled()) {
|
|
pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
|
|
begin, end - 1);
|
|
/*
|
|
* Inform kmemleak about the hole in the memory since the
|
|
* corresponding pages will be unmapped.
|
|
*/
|
|
kmemleak_free_part((void *)begin, end - begin);
|
|
set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
|
|
} else {
|
|
/*
|
|
* We just marked the kernel text read only above, now that
|
|
* we are going to free part of that, we need to make that
|
|
* writeable and non-executable first.
|
|
*/
|
|
set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
|
|
set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
|
|
|
|
free_reserved_area((void *)begin, (void *)end,
|
|
POISON_FREE_INITMEM, what);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* begin/end can be in the direct map or the "high kernel mapping"
|
|
* used for the kernel image only. free_init_pages() will do the
|
|
* right thing for either kind of address.
|
|
*/
|
|
void free_kernel_image_pages(const char *what, void *begin, void *end)
|
|
{
|
|
unsigned long begin_ul = (unsigned long)begin;
|
|
unsigned long end_ul = (unsigned long)end;
|
|
unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
|
|
|
|
free_init_pages(what, begin_ul, end_ul);
|
|
|
|
/*
|
|
* PTI maps some of the kernel into userspace. For performance,
|
|
* this includes some kernel areas that do not contain secrets.
|
|
* Those areas might be adjacent to the parts of the kernel image
|
|
* being freed, which may contain secrets. Remove the "high kernel
|
|
* image mapping" for these freed areas, ensuring they are not even
|
|
* potentially vulnerable to Meltdown regardless of the specific
|
|
* optimizations PTI is currently using.
|
|
*
|
|
* The "noalias" prevents unmapping the direct map alias which is
|
|
* needed to access the freed pages.
|
|
*
|
|
* This is only valid for 64bit kernels. 32bit has only one mapping
|
|
* which can't be treated in this way for obvious reasons.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
|
|
set_memory_np_noalias(begin_ul, len_pages);
|
|
}
|
|
|
|
void __ref free_initmem(void)
|
|
{
|
|
e820__reallocate_tables();
|
|
|
|
mem_encrypt_free_decrypted_mem();
|
|
|
|
free_kernel_image_pages("unused kernel image (initmem)",
|
|
&__init_begin, &__init_end);
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
void __init free_initrd_mem(unsigned long start, unsigned long end)
|
|
{
|
|
/*
|
|
* end could be not aligned, and We can not align that,
|
|
* decompressor could be confused by aligned initrd_end
|
|
* We already reserve the end partial page before in
|
|
* - i386_start_kernel()
|
|
* - x86_64_start_kernel()
|
|
* - relocate_initrd()
|
|
* So here We can do PAGE_ALIGN() safely to get partial page to be freed
|
|
*/
|
|
free_init_pages("initrd", start, PAGE_ALIGN(end));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Calculate the precise size of the DMA zone (first 16 MB of RAM),
|
|
* and pass it to the MM layer - to help it set zone watermarks more
|
|
* accurately.
|
|
*
|
|
* Done on 64-bit systems only for the time being, although 32-bit systems
|
|
* might benefit from this as well.
|
|
*/
|
|
void __init memblock_find_dma_reserve(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
u64 nr_pages = 0, nr_free_pages = 0;
|
|
unsigned long start_pfn, end_pfn;
|
|
phys_addr_t start_addr, end_addr;
|
|
int i;
|
|
u64 u;
|
|
|
|
/*
|
|
* Iterate over all memory ranges (free and reserved ones alike),
|
|
* to calculate the total number of pages in the first 16 MB of RAM:
|
|
*/
|
|
nr_pages = 0;
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
|
|
start_pfn = min(start_pfn, MAX_DMA_PFN);
|
|
end_pfn = min(end_pfn, MAX_DMA_PFN);
|
|
|
|
nr_pages += end_pfn - start_pfn;
|
|
}
|
|
|
|
/*
|
|
* Iterate over free memory ranges to calculate the number of free
|
|
* pages in the DMA zone, while not counting potential partial
|
|
* pages at the beginning or the end of the range:
|
|
*/
|
|
nr_free_pages = 0;
|
|
for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
|
|
start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
|
|
end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
|
|
|
|
if (start_pfn < end_pfn)
|
|
nr_free_pages += end_pfn - start_pfn;
|
|
}
|
|
|
|
set_dma_reserve(nr_pages - nr_free_pages);
|
|
#endif
|
|
}
|
|
|
|
void __init zone_sizes_init(void)
|
|
{
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES];
|
|
|
|
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
|
|
#endif
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
|
|
#endif
|
|
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
|
|
#ifdef CONFIG_HIGHMEM
|
|
max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
|
|
#endif
|
|
|
|
free_area_init(max_zone_pfns);
|
|
}
|
|
|
|
__visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
|
|
.loaded_mm = &init_mm,
|
|
.next_asid = 1,
|
|
.cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
|
|
};
|
|
|
|
#ifdef CONFIG_ADDRESS_MASKING
|
|
DEFINE_PER_CPU(u64, tlbstate_untag_mask);
|
|
EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
|
|
#endif
|
|
|
|
void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
|
|
{
|
|
/* entry 0 MUST be WB (hardwired to speed up translations) */
|
|
BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
|
|
|
|
__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
|
|
__pte2cachemode_tbl[entry] = cache;
|
|
}
|
|
|
|
#ifdef CONFIG_SWAP
|
|
unsigned long arch_max_swapfile_size(void)
|
|
{
|
|
unsigned long pages;
|
|
|
|
pages = generic_max_swapfile_size();
|
|
|
|
if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
|
|
/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
|
|
unsigned long long l1tf_limit = l1tf_pfn_limit();
|
|
/*
|
|
* We encode swap offsets also with 3 bits below those for pfn
|
|
* which makes the usable limit higher.
|
|
*/
|
|
#if CONFIG_PGTABLE_LEVELS > 2
|
|
l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
|
|
#endif
|
|
pages = min_t(unsigned long long, l1tf_limit, pages);
|
|
}
|
|
return pages;
|
|
}
|
|
#endif
|