linux/arch/arm64/include/asm/pgtable.h
Linus Torvalds 42b00f122c * ARM: selftests improvements, large PUD support for HugeTLB,
single-stepping fixes, improved tracing, various timer and vGIC
 fixes
 
 * x86: Processor Tracing virtualization, STIBP support, some correctness fixes,
 refactorings and splitting of vmx.c, use the Hyper-V range TLB flush hypercall,
 reduce order of vcpu struct, WBNOINVD support, do not use -ftrace for __noclone
 functions, nested guest support for PAUSE filtering on AMD, more Hyper-V
 enlightenments (direct mode for synthetic timers)
 
 * PPC: nested VFIO
 
 * s390: bugfixes only this time
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJcH0vFAAoJEL/70l94x66Dw/wH/2FZp1YOM5OgiJzgqnXyDbyf
 dNEfWo472MtNiLsuf+ZAfJojVIu9cv7wtBfXNzW+75XZDfh/J88geHWNSiZDm3Fe
 aM4MOnGG0yF3hQrRQyEHe4IFhGFNERax8Ccv+OL44md9CjYrIrsGkRD08qwb+gNh
 P8T/3wJEKwUcVHA/1VHEIM8MlirxNENc78p6JKd/C7zb0emjGavdIpWFUMr3SNfs
 CemabhJUuwOYtwjRInyx1y34FzYwW3Ejuc9a9UoZ+COahUfkuxHE8u+EQS7vLVF6
 2VGVu5SA0PqgmLlGhHthxLqVgQYo+dB22cRnsLtXlUChtVAq8q9uu5sKzvqEzuE=
 =b4Jx
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:
   - selftests improvements
   - large PUD support for HugeTLB
   - single-stepping fixes
   - improved tracing
   - various timer and vGIC fixes

  x86:
   - Processor Tracing virtualization
   - STIBP support
   - some correctness fixes
   - refactorings and splitting of vmx.c
   - use the Hyper-V range TLB flush hypercall
   - reduce order of vcpu struct
   - WBNOINVD support
   - do not use -ftrace for __noclone functions
   - nested guest support for PAUSE filtering on AMD
   - more Hyper-V enlightenments (direct mode for synthetic timers)

  PPC:
   -  nested VFIO

  s390:
   - bugfixes only this time"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
  KVM: x86: Add CPUID support for new instruction WBNOINVD
  kvm: selftests: ucall: fix exit mmio address guessing
  Revert "compiler-gcc: disable -ftracer for __noclone functions"
  KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines
  KVM: VMX: Explicitly reference RCX as the vmx_vcpu pointer in asm blobs
  KVM: x86: Use jmp to invoke kvm_spurious_fault() from .fixup
  MAINTAINERS: Add arch/x86/kvm sub-directories to existing KVM/x86 entry
  KVM/x86: Use SVM assembly instruction mnemonics instead of .byte streams
  KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()
  KVM/MMU: Flush tlb directly in kvm_set_pte_rmapp()
  KVM/MMU: Move tlb flush in kvm_set_pte_rmapp() to kvm_mmu_notifier_change_pte()
  KVM: Make kvm_set_spte_hva() return int
  KVM: Replace old tlb flush function with new one to flush a specified range.
  KVM/MMU: Add tlb flush with range helper function
  KVM/VMX: Add hv tlb range flush support
  x86/hyper-v: Add HvFlushGuestAddressList hypercall support
  KVM: Add tlb_remote_flush_with_range callback in kvm_x86_ops
  KVM: x86: Disable Intel PT when VMXON in L1 guest
  KVM: x86: Set intercept for Intel PT MSRs read/write
  KVM: x86: Implement Intel PT MSRs read/write emulation
  ...
2018-12-26 11:46:28 -08:00

846 lines
25 KiB
C

/*
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ASM_PGTABLE_H
#define __ASM_PGTABLE_H
#include <asm/bug.h>
#include <asm/proc-fns.h>
#include <asm/memory.h>
#include <asm/pgtable-hwdef.h>
#include <asm/pgtable-prot.h>
#include <asm/tlbflush.h>
/*
* VMALLOC range.
*
* VMALLOC_START: beginning of the kernel vmalloc space
* VMALLOC_END: extends to the available space below vmmemmap, PCI I/O space
* and fixed mappings
*/
#define VMALLOC_START (MODULES_END)
#define VMALLOC_END (PAGE_OFFSET - PUD_SIZE - VMEMMAP_SIZE - SZ_64K)
#define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
#define FIRST_USER_ADDRESS 0UL
#ifndef __ASSEMBLY__
#include <asm/cmpxchg.h>
#include <asm/fixmap.h>
#include <linux/mmdebug.h>
#include <linux/mm_types.h>
#include <linux/sched.h>
extern void __pte_error(const char *file, int line, unsigned long val);
extern void __pmd_error(const char *file, int line, unsigned long val);
extern void __pud_error(const char *file, int line, unsigned long val);
extern void __pgd_error(const char *file, int line, unsigned long val);
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
#define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
/*
* Macros to convert between a physical address and its placement in a
* page table entry, taking care of 52-bit addresses.
*/
#ifdef CONFIG_ARM64_PA_BITS_52
#define __pte_to_phys(pte) \
((pte_val(pte) & PTE_ADDR_LOW) | ((pte_val(pte) & PTE_ADDR_HIGH) << 36))
#define __phys_to_pte_val(phys) (((phys) | ((phys) >> 36)) & PTE_ADDR_MASK)
#else
#define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK)
#define __phys_to_pte_val(phys) (phys)
#endif
#define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
#define pfn_pte(pfn,prot) \
__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
#define pte_none(pte) (!pte_val(pte))
#define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0))
#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
/*
* The following only work if pte_present(). Undefined behaviour otherwise.
*/
#define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
#define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
#define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
#define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
#define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
#define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
#define pte_cont_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
(__boundary - 1 < (end) - 1) ? __boundary : (end); \
})
#define pmd_cont_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
(__boundary - 1 < (end) - 1) ? __boundary : (end); \
})
#define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
#define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
#define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
#define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
/*
* Execute-only user mappings do not have the PTE_USER bit set. All valid
* kernel mappings have the PTE_UXN bit set.
*/
#define pte_valid_not_user(pte) \
((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
#define pte_valid_young(pte) \
((pte_val(pte) & (PTE_VALID | PTE_AF)) == (PTE_VALID | PTE_AF))
#define pte_valid_user(pte) \
((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER))
/*
* Could the pte be present in the TLB? We must check mm_tlb_flush_pending
* so that we don't erroneously return false for pages that have been
* remapped as PROT_NONE but are yet to be flushed from the TLB.
*/
#define pte_accessible(mm, pte) \
(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid_young(pte))
/*
* p??_access_permitted() is true for valid user mappings (subject to the
* write permission check) other than user execute-only which do not have the
* PTE_USER bit set. PROT_NONE mappings do not have the PTE_VALID bit set.
*/
#define pte_access_permitted(pte, write) \
(pte_valid_user(pte) && (!(write) || pte_write(pte)))
#define pmd_access_permitted(pmd, write) \
(pte_access_permitted(pmd_pte(pmd), (write)))
#define pud_access_permitted(pud, write) \
(pte_access_permitted(pud_pte(pud), (write)))
static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
{
pte_val(pte) &= ~pgprot_val(prot);
return pte;
}
static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
{
pte_val(pte) |= pgprot_val(prot);
return pte;
}
static inline pte_t pte_wrprotect(pte_t pte)
{
pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
return pte;
}
static inline pte_t pte_mkwrite(pte_t pte)
{
pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
return pte;
}
static inline pte_t pte_mkclean(pte_t pte)
{
pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
return pte;
}
static inline pte_t pte_mkdirty(pte_t pte)
{
pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
if (pte_write(pte))
pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
return pte;
}
static inline pte_t pte_mkold(pte_t pte)
{
return clear_pte_bit(pte, __pgprot(PTE_AF));
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return set_pte_bit(pte, __pgprot(PTE_AF));
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
}
static inline pte_t pte_mkcont(pte_t pte)
{
pte = set_pte_bit(pte, __pgprot(PTE_CONT));
return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
}
static inline pte_t pte_mknoncont(pte_t pte)
{
return clear_pte_bit(pte, __pgprot(PTE_CONT));
}
static inline pte_t pte_mkpresent(pte_t pte)
{
return set_pte_bit(pte, __pgprot(PTE_VALID));
}
static inline pmd_t pmd_mkcont(pmd_t pmd)
{
return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
}
static inline void set_pte(pte_t *ptep, pte_t pte)
{
WRITE_ONCE(*ptep, pte);
/*
* Only if the new pte is valid and kernel, otherwise TLB maintenance
* or update_mmu_cache() have the necessary barriers.
*/
if (pte_valid_not_user(pte))
dsb(ishst);
}
extern void __sync_icache_dcache(pte_t pteval);
/*
* PTE bits configuration in the presence of hardware Dirty Bit Management
* (PTE_WRITE == PTE_DBM):
*
* Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
* 0 0 | 1 0 0
* 0 1 | 1 1 0
* 1 0 | 1 0 1
* 1 1 | 0 1 x
*
* When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
* the page fault mechanism. Checking the dirty status of a pte becomes:
*
* PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
*/
static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte)
{
pte_t old_pte;
if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
__sync_icache_dcache(pte);
/*
* If the existing pte is valid, check for potential race with
* hardware updates of the pte (ptep_set_access_flags safely changes
* valid ptes without going through an invalid entry).
*/
old_pte = READ_ONCE(*ptep);
if (IS_ENABLED(CONFIG_DEBUG_VM) && pte_valid(old_pte) && pte_valid(pte) &&
(mm == current->active_mm || atomic_read(&mm->mm_users) > 1)) {
VM_WARN_ONCE(!pte_young(pte),
"%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
__func__, pte_val(old_pte), pte_val(pte));
VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
"%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
__func__, pte_val(old_pte), pte_val(pte));
}
set_pte(ptep, pte);
}
#define __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t pte_a, pte_t pte_b)
{
pteval_t lhs, rhs;
lhs = pte_val(pte_a);
rhs = pte_val(pte_b);
if (pte_present(pte_a))
lhs &= ~PTE_RDONLY;
if (pte_present(pte_b))
rhs &= ~PTE_RDONLY;
return (lhs == rhs);
}
/*
* Huge pte definitions.
*/
#define pte_huge(pte) (!(pte_val(pte) & PTE_TABLE_BIT))
#define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
/*
* Hugetlb definitions.
*/
#define HUGE_MAX_HSTATE 4
#define HPAGE_SHIFT PMD_SHIFT
#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
#define HPAGE_MASK (~(HPAGE_SIZE - 1))
#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
static inline pte_t pgd_pte(pgd_t pgd)
{
return __pte(pgd_val(pgd));
}
static inline pte_t pud_pte(pud_t pud)
{
return __pte(pud_val(pud));
}
static inline pud_t pte_pud(pte_t pte)
{
return __pud(pte_val(pte));
}
static inline pmd_t pud_pmd(pud_t pud)
{
return __pmd(pud_val(pud));
}
static inline pte_t pmd_pte(pmd_t pmd)
{
return __pte(pmd_val(pmd));
}
static inline pmd_t pte_pmd(pte_t pte)
{
return __pmd(pte_val(pte));
}
static inline pgprot_t mk_sect_prot(pgprot_t prot)
{
return __pgprot(pgprot_val(prot) & ~PTE_TABLE_BIT);
}
#ifdef CONFIG_NUMA_BALANCING
/*
* See the comment in include/asm-generic/pgtable.h
*/
static inline int pte_protnone(pte_t pte)
{
return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
}
static inline int pmd_protnone(pmd_t pmd)
{
return pte_protnone(pmd_pte(pmd));
}
#endif
/*
* THP definitions.
*/
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define pmd_trans_huge(pmd) (pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT))
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#define pmd_present(pmd) pte_present(pmd_pte(pmd))
#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
#define pmd_young(pmd) pte_young(pmd_pte(pmd))
#define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
#define pmd_mknotpresent(pmd) (__pmd(pmd_val(pmd) & ~PMD_SECT_VALID))
#define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
#define pmd_write(pmd) pte_write(pmd_pte(pmd))
#define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
#define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
#define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
#define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
#define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
#define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
#define pud_young(pud) pte_young(pud_pte(pud))
#define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
#define pud_write(pud) pte_write(pud_pte(pud))
#define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT))
#define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
#define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
#define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
#define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
#define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd))
#define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
#define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
#define __pgprot_modify(prot,mask,bits) \
__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
/*
* Mark the prot value as uncacheable and unbufferable.
*/
#define pgprot_noncached(prot) \
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
#define pgprot_writecombine(prot) \
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
#define pgprot_device(prot) \
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
#define __HAVE_PHYS_MEM_ACCESS_PROT
struct file;
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot);
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (!(pmd_val(pmd) & PMD_TABLE_BIT))
#define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
PMD_TYPE_TABLE)
#define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
PMD_TYPE_SECT)
#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
#define pud_sect(pud) (0)
#define pud_table(pud) (1)
#else
#define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
PUD_TYPE_SECT)
#define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
PUD_TYPE_TABLE)
#endif
extern pgd_t init_pg_dir[PTRS_PER_PGD];
extern pgd_t init_pg_end[];
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
static inline bool in_swapper_pgdir(void *addr)
{
return ((unsigned long)addr & PAGE_MASK) ==
((unsigned long)swapper_pg_dir & PAGE_MASK);
}
static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
{
#ifdef __PAGETABLE_PMD_FOLDED
if (in_swapper_pgdir(pmdp)) {
set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
return;
}
#endif /* __PAGETABLE_PMD_FOLDED */
WRITE_ONCE(*pmdp, pmd);
if (pmd_valid(pmd))
dsb(ishst);
}
static inline void pmd_clear(pmd_t *pmdp)
{
set_pmd(pmdp, __pmd(0));
}
static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
{
return __pmd_to_phys(pmd);
}
/* Find an entry in the third-level page table. */
#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
#define pte_offset_kernel(dir,addr) ((pte_t *)__va(pte_offset_phys((dir), (addr))))
#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
#define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
#define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
#define pte_clear_fixmap() clear_fixmap(FIX_PTE)
#define pmd_page(pmd) pfn_to_page(__phys_to_pfn(__pmd_to_phys(pmd)))
/* use ONLY for statically allocated translation tables */
#define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
#if CONFIG_PGTABLE_LEVELS > 2
#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
#define pud_none(pud) (!pud_val(pud))
#define pud_bad(pud) (!(pud_val(pud) & PUD_TABLE_BIT))
#define pud_present(pud) pte_present(pud_pte(pud))
#define pud_valid(pud) pte_valid(pud_pte(pud))
static inline void set_pud(pud_t *pudp, pud_t pud)
{
#ifdef __PAGETABLE_PUD_FOLDED
if (in_swapper_pgdir(pudp)) {
set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
return;
}
#endif /* __PAGETABLE_PUD_FOLDED */
WRITE_ONCE(*pudp, pud);
if (pud_valid(pud))
dsb(ishst);
}
static inline void pud_clear(pud_t *pudp)
{
set_pud(pudp, __pud(0));
}
static inline phys_addr_t pud_page_paddr(pud_t pud)
{
return __pud_to_phys(pud);
}
/* Find an entry in the second-level page table. */
#define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
#define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
#define pmd_offset(dir, addr) ((pmd_t *)__va(pmd_offset_phys((dir), (addr))))
#define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
#define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
#define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
#define pud_page(pud) pfn_to_page(__phys_to_pfn(__pud_to_phys(pud)))
/* use ONLY for statically allocated translation tables */
#define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
#else
#define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
/* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
#define pmd_set_fixmap(addr) NULL
#define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
#define pmd_clear_fixmap()
#define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
#endif /* CONFIG_PGTABLE_LEVELS > 2 */
#if CONFIG_PGTABLE_LEVELS > 3
#define pud_ERROR(pud) __pud_error(__FILE__, __LINE__, pud_val(pud))
#define pgd_none(pgd) (!pgd_val(pgd))
#define pgd_bad(pgd) (!(pgd_val(pgd) & 2))
#define pgd_present(pgd) (pgd_val(pgd))
static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
{
if (in_swapper_pgdir(pgdp)) {
set_swapper_pgd(pgdp, pgd);
return;
}
WRITE_ONCE(*pgdp, pgd);
dsb(ishst);
}
static inline void pgd_clear(pgd_t *pgdp)
{
set_pgd(pgdp, __pgd(0));
}
static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
{
return __pgd_to_phys(pgd);
}
/* Find an entry in the frst-level page table. */
#define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
#define pud_offset_phys(dir, addr) (pgd_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
#define pud_offset(dir, addr) ((pud_t *)__va(pud_offset_phys((dir), (addr))))
#define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr))
#define pud_set_fixmap_offset(pgd, addr) pud_set_fixmap(pud_offset_phys(pgd, addr))
#define pud_clear_fixmap() clear_fixmap(FIX_PUD)
#define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
/* use ONLY for statically allocated translation tables */
#define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
#else
#define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;})
/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
#define pud_set_fixmap(addr) NULL
#define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
#define pud_clear_fixmap()
#define pud_offset_kimg(dir,addr) ((pud_t *)dir)
#endif /* CONFIG_PGTABLE_LEVELS > 3 */
#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
/* to find an entry in a page-table-directory */
#define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
#define pgd_offset_raw(pgd, addr) ((pgd) + pgd_index(addr))
#define pgd_offset(mm, addr) (pgd_offset_raw((mm)->pgd, (addr)))
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
#define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
#define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
PTE_PROT_NONE | PTE_VALID | PTE_WRITE;
/* preserve the hardware dirty information */
if (pte_hw_dirty(pte))
pte = pte_mkdirty(pte);
pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
return pte;
}
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
}
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
extern int ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep,
pte_t entry, int dirty);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty)
{
return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
}
#endif
/*
* Atomic pte/pmd modifications.
*/
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int __ptep_test_and_clear_young(pte_t *ptep)
{
pte_t old_pte, pte;
pte = READ_ONCE(*ptep);
do {
old_pte = pte;
pte = pte_mkold(pte);
pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
pte_val(old_pte), pte_val(pte));
} while (pte_val(pte) != pte_val(old_pte));
return pte_young(pte);
}
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pte_t *ptep)
{
return __ptep_test_and_clear_young(ptep);
}
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep)
{
int young = ptep_test_and_clear_young(vma, address, ptep);
if (young) {
/*
* We can elide the trailing DSB here since the worst that can
* happen is that a CPU continues to use the young entry in its
* TLB and we mistakenly reclaim the associated page. The
* window for such an event is bounded by the next
* context-switch, which provides a DSB to complete the TLB
* invalidation.
*/
flush_tlb_page_nosync(vma, address);
}
return young;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp)
{
return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long address, pte_t *ptep)
{
return __pte(xchg_relaxed(&pte_val(*ptep), 0));
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp));
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/*
* ptep_set_wrprotect - mark read-only while trasferring potential hardware
* dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
*/
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
{
pte_t old_pte, pte;
pte = READ_ONCE(*ptep);
do {
old_pte = pte;
/*
* If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
* clear), set the PTE_DIRTY bit.
*/
if (pte_hw_dirty(pte))
pte = pte_mkdirty(pte);
pte = pte_wrprotect(pte);
pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
pte_val(old_pte), pte_val(pte));
} while (pte_val(pte) != pte_val(old_pte));
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
}
#define pmdp_establish pmdp_establish
static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp, pmd_t pmd)
{
return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
}
#endif
/*
* Encode and decode a swap entry:
* bits 0-1: present (must be zero)
* bits 2-7: swap type
* bits 8-57: swap offset
* bit 58: PTE_PROT_NONE (must be zero)
*/
#define __SWP_TYPE_SHIFT 2
#define __SWP_TYPE_BITS 6
#define __SWP_OFFSET_BITS 50
#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
#define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
#define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
/*
* Ensure that there are not more swap files than can be encoded in the kernel
* PTEs.
*/
#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
extern int kern_addr_valid(unsigned long addr);
#include <asm-generic/pgtable.h>
void pgd_cache_init(void);
#define pgtable_cache_init pgd_cache_init
/*
* On AArch64, the cache coherency is handled via the set_pte_at() function.
*/
static inline void update_mmu_cache(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
/*
* We don't do anything here, so there's a very small chance of
* us retaking a user fault which we just fixed up. The alternative
* is doing a dsb(ishst), but that penalises the fastpath.
*/
}
#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
#define kc_vaddr_to_offset(v) ((v) & ~VA_START)
#define kc_offset_to_vaddr(o) ((o) | VA_START)
#ifdef CONFIG_ARM64_PA_BITS_52
#define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
#else
#define phys_to_ttbr(addr) (addr)
#endif
#endif /* !__ASSEMBLY__ */
#endif /* __ASM_PGTABLE_H */