linux/drivers/acpi/acpi_processor.c
Petr Pavlu 691a637123 ACPI: cpufreq: Use platform devices to load ACPI PPC and PCC drivers
The acpi-cpufreq and pcc-cpufreq drivers are loaded through per-CPU
module aliases. This can result in many unnecessary load requests during
boot if another frequency module, such as intel_pstate, is already
active. For instance, on a typical Intel system, one can observe that
udev makes 2x#CPUs attempts to insert acpi_cpufreq and 1x#CPUs attempts
for pcc_cpufreq. All these tries then fail if another frequency module
is already registered.

In the worst case, without the recent fix in commit 0254127ab9
("module: Don't wait for GOING modules"), these module loads occupied
all udev workers and had their initialization attempts ran sequentially.
Resolving all these loads then on some larger machines took too long,
prevented other hardware from getting its drivers initialized and
resulted in a failed boot. Discussion over these duplicate module
requests ended up with a conclusion that only one load attempt should be
ideally made.

Both acpi-cpufreq and pcc-cpufreq drivers use platform firmware controls
which are defined by ACPI. It is possible to treat these interfaces as
platform devices.

The patch extends the ACPI parsing logic to check the ACPI namespace if
the PPC or PCC interface is present and creates a virtual platform
device for each if it is available. The acpi-cpufreq and pcc-cpufreq
drivers are then updated to map to these devices.

This allows to try loading acpi-cpufreq and pcc-cpufreq only once during
boot and only if a given interface is available in the firmware.

Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
[ rjw: whitespace and error message log level adjustments, subject edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2023-03-20 18:54:13 +01:00

932 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* acpi_processor.c - ACPI processor enumeration support
*
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
* Copyright (C) 2004 Dominik Brodowski <linux@brodo.de>
* Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
* Copyright (C) 2013, Intel Corporation
* Rafael J. Wysocki <rafael.j.wysocki@intel.com>
*/
#include <linux/acpi.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <acpi/processor.h>
#include <asm/cpu.h>
#include "internal.h"
DEFINE_PER_CPU(struct acpi_processor *, processors);
EXPORT_PER_CPU_SYMBOL(processors);
/* Errata Handling */
struct acpi_processor_errata errata __read_mostly;
EXPORT_SYMBOL_GPL(errata);
static int acpi_processor_errata_piix4(struct pci_dev *dev)
{
u8 value1 = 0;
u8 value2 = 0;
if (!dev)
return -EINVAL;
/*
* Note that 'dev' references the PIIX4 ACPI Controller.
*/
switch (dev->revision) {
case 0:
dev_dbg(&dev->dev, "Found PIIX4 A-step\n");
break;
case 1:
dev_dbg(&dev->dev, "Found PIIX4 B-step\n");
break;
case 2:
dev_dbg(&dev->dev, "Found PIIX4E\n");
break;
case 3:
dev_dbg(&dev->dev, "Found PIIX4M\n");
break;
default:
dev_dbg(&dev->dev, "Found unknown PIIX4\n");
break;
}
switch (dev->revision) {
case 0: /* PIIX4 A-step */
case 1: /* PIIX4 B-step */
/*
* See specification changes #13 ("Manual Throttle Duty Cycle")
* and #14 ("Enabling and Disabling Manual Throttle"), plus
* erratum #5 ("STPCLK# Deassertion Time") from the January
* 2002 PIIX4 specification update. Applies to only older
* PIIX4 models.
*/
errata.piix4.throttle = 1;
fallthrough;
case 2: /* PIIX4E */
case 3: /* PIIX4M */
/*
* See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
* Livelock") from the January 2002 PIIX4 specification update.
* Applies to all PIIX4 models.
*/
/*
* BM-IDE
* ------
* Find the PIIX4 IDE Controller and get the Bus Master IDE
* Status register address. We'll use this later to read
* each IDE controller's DMA status to make sure we catch all
* DMA activity.
*/
dev = pci_get_subsys(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_82371AB,
PCI_ANY_ID, PCI_ANY_ID, NULL);
if (dev) {
errata.piix4.bmisx = pci_resource_start(dev, 4);
pci_dev_put(dev);
}
/*
* Type-F DMA
* ----------
* Find the PIIX4 ISA Controller and read the Motherboard
* DMA controller's status to see if Type-F (Fast) DMA mode
* is enabled (bit 7) on either channel. Note that we'll
* disable C3 support if this is enabled, as some legacy
* devices won't operate well if fast DMA is disabled.
*/
dev = pci_get_subsys(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_82371AB_0,
PCI_ANY_ID, PCI_ANY_ID, NULL);
if (dev) {
pci_read_config_byte(dev, 0x76, &value1);
pci_read_config_byte(dev, 0x77, &value2);
if ((value1 & 0x80) || (value2 & 0x80))
errata.piix4.fdma = 1;
pci_dev_put(dev);
}
break;
}
if (errata.piix4.bmisx)
dev_dbg(&dev->dev, "Bus master activity detection (BM-IDE) erratum enabled\n");
if (errata.piix4.fdma)
dev_dbg(&dev->dev, "Type-F DMA livelock erratum (C3 disabled)\n");
return 0;
}
static int acpi_processor_errata(void)
{
int result = 0;
struct pci_dev *dev = NULL;
/*
* PIIX4
*/
dev = pci_get_subsys(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_82371AB_3, PCI_ANY_ID,
PCI_ANY_ID, NULL);
if (dev) {
result = acpi_processor_errata_piix4(dev);
pci_dev_put(dev);
}
return result;
}
/* Create a platform device to represent a CPU frequency control mechanism. */
static void cpufreq_add_device(const char *name)
{
struct platform_device *pdev;
pdev = platform_device_register_simple(name, PLATFORM_DEVID_NONE, NULL, 0);
if (IS_ERR(pdev))
pr_info("%s device creation failed: %ld\n", name, PTR_ERR(pdev));
}
#ifdef CONFIG_X86
/* Check presence of Processor Clocking Control by searching for \_SB.PCCH. */
static void __init acpi_pcc_cpufreq_init(void)
{
acpi_status status;
acpi_handle handle;
status = acpi_get_handle(NULL, "\\_SB", &handle);
if (ACPI_FAILURE(status))
return;
if (acpi_has_method(handle, "PCCH"))
cpufreq_add_device("pcc-cpufreq");
}
#else
static void __init acpi_pcc_cpufreq_init(void) {}
#endif /* CONFIG_X86 */
/* Initialization */
#ifdef CONFIG_ACPI_HOTPLUG_CPU
int __weak acpi_map_cpu(acpi_handle handle,
phys_cpuid_t physid, u32 acpi_id, int *pcpu)
{
return -ENODEV;
}
int __weak acpi_unmap_cpu(int cpu)
{
return -ENODEV;
}
int __weak arch_register_cpu(int cpu)
{
return -ENODEV;
}
void __weak arch_unregister_cpu(int cpu) {}
static int acpi_processor_hotadd_init(struct acpi_processor *pr)
{
unsigned long long sta;
acpi_status status;
int ret;
if (invalid_phys_cpuid(pr->phys_id))
return -ENODEV;
status = acpi_evaluate_integer(pr->handle, "_STA", NULL, &sta);
if (ACPI_FAILURE(status) || !(sta & ACPI_STA_DEVICE_PRESENT))
return -ENODEV;
cpu_maps_update_begin();
cpus_write_lock();
ret = acpi_map_cpu(pr->handle, pr->phys_id, pr->acpi_id, &pr->id);
if (ret)
goto out;
ret = arch_register_cpu(pr->id);
if (ret) {
acpi_unmap_cpu(pr->id);
goto out;
}
/*
* CPU got hot-added, but cpu_data is not initialized yet. Set a flag
* to delay cpu_idle/throttling initialization and do it when the CPU
* gets online for the first time.
*/
pr_info("CPU%d has been hot-added\n", pr->id);
pr->flags.need_hotplug_init = 1;
out:
cpus_write_unlock();
cpu_maps_update_done();
return ret;
}
#else
static inline int acpi_processor_hotadd_init(struct acpi_processor *pr)
{
return -ENODEV;
}
#endif /* CONFIG_ACPI_HOTPLUG_CPU */
static int acpi_processor_get_info(struct acpi_device *device)
{
union acpi_object object = { 0 };
struct acpi_buffer buffer = { sizeof(union acpi_object), &object };
struct acpi_processor *pr = acpi_driver_data(device);
int device_declaration = 0;
acpi_status status = AE_OK;
static int cpu0_initialized;
unsigned long long value;
acpi_processor_errata();
/*
* Check to see if we have bus mastering arbitration control. This
* is required for proper C3 usage (to maintain cache coherency).
*/
if (acpi_gbl_FADT.pm2_control_block && acpi_gbl_FADT.pm2_control_length) {
pr->flags.bm_control = 1;
dev_dbg(&device->dev, "Bus mastering arbitration control present\n");
} else
dev_dbg(&device->dev, "No bus mastering arbitration control\n");
if (!strcmp(acpi_device_hid(device), ACPI_PROCESSOR_OBJECT_HID)) {
/* Declared with "Processor" statement; match ProcessorID */
status = acpi_evaluate_object(pr->handle, NULL, NULL, &buffer);
if (ACPI_FAILURE(status)) {
dev_err(&device->dev,
"Failed to evaluate processor object (0x%x)\n",
status);
return -ENODEV;
}
pr->acpi_id = object.processor.proc_id;
} else {
/*
* Declared with "Device" statement; match _UID.
*/
status = acpi_evaluate_integer(pr->handle, METHOD_NAME__UID,
NULL, &value);
if (ACPI_FAILURE(status)) {
dev_err(&device->dev,
"Failed to evaluate processor _UID (0x%x)\n",
status);
return -ENODEV;
}
device_declaration = 1;
pr->acpi_id = value;
}
if (acpi_duplicate_processor_id(pr->acpi_id)) {
if (pr->acpi_id == 0xff)
dev_info_once(&device->dev,
"Entry not well-defined, consider updating BIOS\n");
else
dev_err(&device->dev,
"Failed to get unique processor _UID (0x%x)\n",
pr->acpi_id);
return -ENODEV;
}
pr->phys_id = acpi_get_phys_id(pr->handle, device_declaration,
pr->acpi_id);
if (invalid_phys_cpuid(pr->phys_id))
dev_dbg(&device->dev, "Failed to get CPU physical ID.\n");
pr->id = acpi_map_cpuid(pr->phys_id, pr->acpi_id);
if (!cpu0_initialized) {
cpu0_initialized = 1;
/*
* Handle UP system running SMP kernel, with no CPU
* entry in MADT
*/
if (!acpi_has_cpu_in_madt() && invalid_logical_cpuid(pr->id) &&
(num_online_cpus() == 1))
pr->id = 0;
/*
* Check availability of Processor Performance Control by
* looking at the presence of the _PCT object under the first
* processor definition.
*/
if (acpi_has_method(pr->handle, "_PCT"))
cpufreq_add_device("acpi-cpufreq");
}
/*
* Extra Processor objects may be enumerated on MP systems with
* less than the max # of CPUs. They should be ignored _iff
* they are physically not present.
*
* NOTE: Even if the processor has a cpuid, it may not be present
* because cpuid <-> apicid mapping is persistent now.
*/
if (invalid_logical_cpuid(pr->id) || !cpu_present(pr->id)) {
int ret = acpi_processor_hotadd_init(pr);
if (ret)
return ret;
}
/*
* On some boxes several processors use the same processor bus id.
* But they are located in different scope. For example:
* \_SB.SCK0.CPU0
* \_SB.SCK1.CPU0
* Rename the processor device bus id. And the new bus id will be
* generated as the following format:
* CPU+CPU ID.
*/
sprintf(acpi_device_bid(device), "CPU%X", pr->id);
dev_dbg(&device->dev, "Processor [%d:%d]\n", pr->id, pr->acpi_id);
if (!object.processor.pblk_address)
dev_dbg(&device->dev, "No PBLK (NULL address)\n");
else if (object.processor.pblk_length != 6)
dev_err(&device->dev, "Invalid PBLK length [%d]\n",
object.processor.pblk_length);
else {
pr->throttling.address = object.processor.pblk_address;
pr->throttling.duty_offset = acpi_gbl_FADT.duty_offset;
pr->throttling.duty_width = acpi_gbl_FADT.duty_width;
pr->pblk = object.processor.pblk_address;
}
/*
* If ACPI describes a slot number for this CPU, we can use it to
* ensure we get the right value in the "physical id" field
* of /proc/cpuinfo
*/
status = acpi_evaluate_integer(pr->handle, "_SUN", NULL, &value);
if (ACPI_SUCCESS(status))
arch_fix_phys_package_id(pr->id, value);
return 0;
}
/*
* Do not put anything in here which needs the core to be online.
* For example MSR access or setting up things which check for cpuinfo_x86
* (cpu_data(cpu)) values, like CPU feature flags, family, model, etc.
* Such things have to be put in and set up by the processor driver's .probe().
*/
static DEFINE_PER_CPU(void *, processor_device_array);
static int acpi_processor_add(struct acpi_device *device,
const struct acpi_device_id *id)
{
struct acpi_processor *pr;
struct device *dev;
int result = 0;
pr = kzalloc(sizeof(struct acpi_processor), GFP_KERNEL);
if (!pr)
return -ENOMEM;
if (!zalloc_cpumask_var(&pr->throttling.shared_cpu_map, GFP_KERNEL)) {
result = -ENOMEM;
goto err_free_pr;
}
pr->handle = device->handle;
strcpy(acpi_device_name(device), ACPI_PROCESSOR_DEVICE_NAME);
strcpy(acpi_device_class(device), ACPI_PROCESSOR_CLASS);
device->driver_data = pr;
result = acpi_processor_get_info(device);
if (result) /* Processor is not physically present or unavailable */
return 0;
BUG_ON(pr->id >= nr_cpu_ids);
/*
* Buggy BIOS check.
* ACPI id of processors can be reported wrongly by the BIOS.
* Don't trust it blindly
*/
if (per_cpu(processor_device_array, pr->id) != NULL &&
per_cpu(processor_device_array, pr->id) != device) {
dev_warn(&device->dev,
"BIOS reported wrong ACPI id %d for the processor\n",
pr->id);
/* Give up, but do not abort the namespace scan. */
goto err;
}
/*
* processor_device_array is not cleared on errors to allow buggy BIOS
* checks.
*/
per_cpu(processor_device_array, pr->id) = device;
per_cpu(processors, pr->id) = pr;
dev = get_cpu_device(pr->id);
if (!dev) {
result = -ENODEV;
goto err;
}
result = acpi_bind_one(dev, device);
if (result)
goto err;
pr->dev = dev;
/* Trigger the processor driver's .probe() if present. */
if (device_attach(dev) >= 0)
return 1;
dev_err(dev, "Processor driver could not be attached\n");
acpi_unbind_one(dev);
err:
free_cpumask_var(pr->throttling.shared_cpu_map);
device->driver_data = NULL;
per_cpu(processors, pr->id) = NULL;
err_free_pr:
kfree(pr);
return result;
}
#ifdef CONFIG_ACPI_HOTPLUG_CPU
/* Removal */
static void acpi_processor_remove(struct acpi_device *device)
{
struct acpi_processor *pr;
if (!device || !acpi_driver_data(device))
return;
pr = acpi_driver_data(device);
if (pr->id >= nr_cpu_ids)
goto out;
/*
* The only reason why we ever get here is CPU hot-removal. The CPU is
* already offline and the ACPI device removal locking prevents it from
* being put back online at this point.
*
* Unbind the driver from the processor device and detach it from the
* ACPI companion object.
*/
device_release_driver(pr->dev);
acpi_unbind_one(pr->dev);
/* Clean up. */
per_cpu(processor_device_array, pr->id) = NULL;
per_cpu(processors, pr->id) = NULL;
cpu_maps_update_begin();
cpus_write_lock();
/* Remove the CPU. */
arch_unregister_cpu(pr->id);
acpi_unmap_cpu(pr->id);
cpus_write_unlock();
cpu_maps_update_done();
try_offline_node(cpu_to_node(pr->id));
out:
free_cpumask_var(pr->throttling.shared_cpu_map);
kfree(pr);
}
#endif /* CONFIG_ACPI_HOTPLUG_CPU */
#ifdef CONFIG_X86
static bool acpi_hwp_native_thermal_lvt_set;
static acpi_status __init acpi_hwp_native_thermal_lvt_osc(acpi_handle handle,
u32 lvl,
void *context,
void **rv)
{
u8 sb_uuid_str[] = "4077A616-290C-47BE-9EBD-D87058713953";
u32 capbuf[2];
struct acpi_osc_context osc_context = {
.uuid_str = sb_uuid_str,
.rev = 1,
.cap.length = 8,
.cap.pointer = capbuf,
};
if (acpi_hwp_native_thermal_lvt_set)
return AE_CTRL_TERMINATE;
capbuf[0] = 0x0000;
capbuf[1] = 0x1000; /* set bit 12 */
if (ACPI_SUCCESS(acpi_run_osc(handle, &osc_context))) {
if (osc_context.ret.pointer && osc_context.ret.length > 1) {
u32 *capbuf_ret = osc_context.ret.pointer;
if (capbuf_ret[1] & 0x1000) {
acpi_handle_info(handle,
"_OSC native thermal LVT Acked\n");
acpi_hwp_native_thermal_lvt_set = true;
}
}
kfree(osc_context.ret.pointer);
}
return AE_OK;
}
void __init acpi_early_processor_osc(void)
{
if (boot_cpu_has(X86_FEATURE_HWP)) {
acpi_walk_namespace(ACPI_TYPE_PROCESSOR, ACPI_ROOT_OBJECT,
ACPI_UINT32_MAX,
acpi_hwp_native_thermal_lvt_osc,
NULL, NULL, NULL);
acpi_get_devices(ACPI_PROCESSOR_DEVICE_HID,
acpi_hwp_native_thermal_lvt_osc,
NULL, NULL);
}
}
#endif
/*
* The following ACPI IDs are known to be suitable for representing as
* processor devices.
*/
static const struct acpi_device_id processor_device_ids[] = {
{ ACPI_PROCESSOR_OBJECT_HID, },
{ ACPI_PROCESSOR_DEVICE_HID, },
{ }
};
static struct acpi_scan_handler processor_handler = {
.ids = processor_device_ids,
.attach = acpi_processor_add,
#ifdef CONFIG_ACPI_HOTPLUG_CPU
.detach = acpi_processor_remove,
#endif
.hotplug = {
.enabled = true,
},
};
static int acpi_processor_container_attach(struct acpi_device *dev,
const struct acpi_device_id *id)
{
return 1;
}
static const struct acpi_device_id processor_container_ids[] = {
{ ACPI_PROCESSOR_CONTAINER_HID, },
{ }
};
static struct acpi_scan_handler processor_container_handler = {
.ids = processor_container_ids,
.attach = acpi_processor_container_attach,
};
/* The number of the unique processor IDs */
static int nr_unique_ids __initdata;
/* The number of the duplicate processor IDs */
static int nr_duplicate_ids;
/* Used to store the unique processor IDs */
static int unique_processor_ids[] __initdata = {
[0 ... NR_CPUS - 1] = -1,
};
/* Used to store the duplicate processor IDs */
static int duplicate_processor_ids[] = {
[0 ... NR_CPUS - 1] = -1,
};
static void __init processor_validated_ids_update(int proc_id)
{
int i;
if (nr_unique_ids == NR_CPUS||nr_duplicate_ids == NR_CPUS)
return;
/*
* Firstly, compare the proc_id with duplicate IDs, if the proc_id is
* already in the IDs, do nothing.
*/
for (i = 0; i < nr_duplicate_ids; i++) {
if (duplicate_processor_ids[i] == proc_id)
return;
}
/*
* Secondly, compare the proc_id with unique IDs, if the proc_id is in
* the IDs, put it in the duplicate IDs.
*/
for (i = 0; i < nr_unique_ids; i++) {
if (unique_processor_ids[i] == proc_id) {
duplicate_processor_ids[nr_duplicate_ids] = proc_id;
nr_duplicate_ids++;
return;
}
}
/*
* Lastly, the proc_id is a unique ID, put it in the unique IDs.
*/
unique_processor_ids[nr_unique_ids] = proc_id;
nr_unique_ids++;
}
static acpi_status __init acpi_processor_ids_walk(acpi_handle handle,
u32 lvl,
void *context,
void **rv)
{
acpi_status status;
acpi_object_type acpi_type;
unsigned long long uid;
union acpi_object object = { 0 };
struct acpi_buffer buffer = { sizeof(union acpi_object), &object };
status = acpi_get_type(handle, &acpi_type);
if (ACPI_FAILURE(status))
return status;
switch (acpi_type) {
case ACPI_TYPE_PROCESSOR:
status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
if (ACPI_FAILURE(status))
goto err;
uid = object.processor.proc_id;
break;
case ACPI_TYPE_DEVICE:
status = acpi_evaluate_integer(handle, "_UID", NULL, &uid);
if (ACPI_FAILURE(status))
goto err;
break;
default:
goto err;
}
processor_validated_ids_update(uid);
return AE_OK;
err:
/* Exit on error, but don't abort the namespace walk */
acpi_handle_info(handle, "Invalid processor object\n");
return AE_OK;
}
static void __init acpi_processor_check_duplicates(void)
{
/* check the correctness for all processors in ACPI namespace */
acpi_walk_namespace(ACPI_TYPE_PROCESSOR, ACPI_ROOT_OBJECT,
ACPI_UINT32_MAX,
acpi_processor_ids_walk,
NULL, NULL, NULL);
acpi_get_devices(ACPI_PROCESSOR_DEVICE_HID, acpi_processor_ids_walk,
NULL, NULL);
}
bool acpi_duplicate_processor_id(int proc_id)
{
int i;
/*
* compare the proc_id with duplicate IDs, if the proc_id is already
* in the duplicate IDs, return true, otherwise, return false.
*/
for (i = 0; i < nr_duplicate_ids; i++) {
if (duplicate_processor_ids[i] == proc_id)
return true;
}
return false;
}
void __init acpi_processor_init(void)
{
acpi_processor_check_duplicates();
acpi_scan_add_handler_with_hotplug(&processor_handler, "processor");
acpi_scan_add_handler(&processor_container_handler);
acpi_pcc_cpufreq_init();
}
#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
/**
* acpi_processor_claim_cst_control - Request _CST control from the platform.
*/
bool acpi_processor_claim_cst_control(void)
{
static bool cst_control_claimed;
acpi_status status;
if (!acpi_gbl_FADT.cst_control || cst_control_claimed)
return true;
status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
acpi_gbl_FADT.cst_control, 8);
if (ACPI_FAILURE(status)) {
pr_warn("ACPI: Failed to claim processor _CST control\n");
return false;
}
cst_control_claimed = true;
return true;
}
EXPORT_SYMBOL_GPL(acpi_processor_claim_cst_control);
/**
* acpi_processor_evaluate_cst - Evaluate the processor _CST control method.
* @handle: ACPI handle of the processor object containing the _CST.
* @cpu: The numeric ID of the target CPU.
* @info: Object write the C-states information into.
*
* Extract the C-state information for the given CPU from the output of the _CST
* control method under the corresponding ACPI processor object (or processor
* device object) and populate @info with it.
*
* If any ACPI_ADR_SPACE_FIXED_HARDWARE C-states are found, invoke
* acpi_processor_ffh_cstate_probe() to verify them and update the
* cpu_cstate_entry data for @cpu.
*/
int acpi_processor_evaluate_cst(acpi_handle handle, u32 cpu,
struct acpi_processor_power *info)
{
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *cst;
acpi_status status;
u64 count;
int last_index = 0;
int i, ret = 0;
status = acpi_evaluate_object(handle, "_CST", NULL, &buffer);
if (ACPI_FAILURE(status)) {
acpi_handle_debug(handle, "No _CST\n");
return -ENODEV;
}
cst = buffer.pointer;
/* There must be at least 2 elements. */
if (!cst || cst->type != ACPI_TYPE_PACKAGE || cst->package.count < 2) {
acpi_handle_warn(handle, "Invalid _CST output\n");
ret = -EFAULT;
goto end;
}
count = cst->package.elements[0].integer.value;
/* Validate the number of C-states. */
if (count < 1 || count != cst->package.count - 1) {
acpi_handle_warn(handle, "Inconsistent _CST data\n");
ret = -EFAULT;
goto end;
}
for (i = 1; i <= count; i++) {
union acpi_object *element;
union acpi_object *obj;
struct acpi_power_register *reg;
struct acpi_processor_cx cx;
/*
* If there is not enough space for all C-states, skip the
* excess ones and log a warning.
*/
if (last_index >= ACPI_PROCESSOR_MAX_POWER - 1) {
acpi_handle_warn(handle,
"No room for more idle states (limit: %d)\n",
ACPI_PROCESSOR_MAX_POWER - 1);
break;
}
memset(&cx, 0, sizeof(cx));
element = &cst->package.elements[i];
if (element->type != ACPI_TYPE_PACKAGE) {
acpi_handle_info(handle, "_CST C%d type(%x) is not package, skip...\n",
i, element->type);
continue;
}
if (element->package.count != 4) {
acpi_handle_info(handle, "_CST C%d package count(%d) is not 4, skip...\n",
i, element->package.count);
continue;
}
obj = &element->package.elements[0];
if (obj->type != ACPI_TYPE_BUFFER) {
acpi_handle_info(handle, "_CST C%d package element[0] type(%x) is not buffer, skip...\n",
i, obj->type);
continue;
}
reg = (struct acpi_power_register *)obj->buffer.pointer;
obj = &element->package.elements[1];
if (obj->type != ACPI_TYPE_INTEGER) {
acpi_handle_info(handle, "_CST C[%d] package element[1] type(%x) is not integer, skip...\n",
i, obj->type);
continue;
}
cx.type = obj->integer.value;
/*
* There are known cases in which the _CST output does not
* contain C1, so if the type of the first state found is not
* C1, leave an empty slot for C1 to be filled in later.
*/
if (i == 1 && cx.type != ACPI_STATE_C1)
last_index = 1;
cx.address = reg->address;
cx.index = last_index + 1;
if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
if (!acpi_processor_ffh_cstate_probe(cpu, &cx, reg)) {
/*
* In the majority of cases _CST describes C1 as
* a FIXED_HARDWARE C-state, but if the command
* line forbids using MWAIT, use CSTATE_HALT for
* C1 regardless.
*/
if (cx.type == ACPI_STATE_C1 &&
boot_option_idle_override == IDLE_NOMWAIT) {
cx.entry_method = ACPI_CSTATE_HALT;
snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
} else {
cx.entry_method = ACPI_CSTATE_FFH;
}
} else if (cx.type == ACPI_STATE_C1) {
/*
* In the special case of C1, FIXED_HARDWARE can
* be handled by executing the HLT instruction.
*/
cx.entry_method = ACPI_CSTATE_HALT;
snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
} else {
acpi_handle_info(handle, "_CST C%d declares FIXED_HARDWARE C-state but not supported in hardware, skip...\n",
i);
continue;
}
} else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
cx.entry_method = ACPI_CSTATE_SYSTEMIO;
snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
cx.address);
} else {
acpi_handle_info(handle, "_CST C%d space_id(%x) neither FIXED_HARDWARE nor SYSTEM_IO, skip...\n",
i, reg->space_id);
continue;
}
if (cx.type == ACPI_STATE_C1)
cx.valid = 1;
obj = &element->package.elements[2];
if (obj->type != ACPI_TYPE_INTEGER) {
acpi_handle_info(handle, "_CST C%d package element[2] type(%x) not integer, skip...\n",
i, obj->type);
continue;
}
cx.latency = obj->integer.value;
obj = &element->package.elements[3];
if (obj->type != ACPI_TYPE_INTEGER) {
acpi_handle_info(handle, "_CST C%d package element[3] type(%x) not integer, skip...\n",
i, obj->type);
continue;
}
memcpy(&info->states[++last_index], &cx, sizeof(cx));
}
acpi_handle_info(handle, "Found %d idle states\n", last_index);
info->count = last_index;
end:
kfree(buffer.pointer);
return ret;
}
EXPORT_SYMBOL_GPL(acpi_processor_evaluate_cst);
#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */