mirror of
https://github.com/torvalds/linux.git
synced 2024-11-05 11:32:04 +00:00
e42d50baf4
If we don't allocate "arr" then the cleanup path will dereference it and oops. Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Alessandro Rubini <rubini@gnudd.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
267 lines
6.5 KiB
C
267 lines
6.5 KiB
C
/*
|
|
* Copyright (C) 2012 CERN (www.cern.ch)
|
|
* Author: Alessandro Rubini <rubini@gnudd.com>
|
|
*
|
|
* Released according to the GNU GPL, version 2 or any later version.
|
|
*
|
|
* This work is part of the White Rabbit project, a research effort led
|
|
* by CERN, the European Institute for Nuclear Research.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fmc.h>
|
|
#include <linux/sdb.h>
|
|
#include <linux/err.h>
|
|
#include <linux/fmc-sdb.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
static uint32_t __sdb_rd(struct fmc_device *fmc, unsigned long address,
|
|
int convert)
|
|
{
|
|
uint32_t res = fmc_readl(fmc, address);
|
|
if (convert)
|
|
return __be32_to_cpu(res);
|
|
return res;
|
|
}
|
|
|
|
static struct sdb_array *__fmc_scan_sdb_tree(struct fmc_device *fmc,
|
|
unsigned long sdb_addr,
|
|
unsigned long reg_base, int level)
|
|
{
|
|
uint32_t onew;
|
|
int i, j, n, convert = 0;
|
|
struct sdb_array *arr, *sub;
|
|
|
|
onew = fmc_readl(fmc, sdb_addr);
|
|
if (onew == SDB_MAGIC) {
|
|
/* Uh! If we are little-endian, we must convert */
|
|
if (SDB_MAGIC != __be32_to_cpu(SDB_MAGIC))
|
|
convert = 1;
|
|
} else if (onew == __be32_to_cpu(SDB_MAGIC)) {
|
|
/* ok, don't convert */
|
|
} else {
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
/* So, the magic was there: get the count from offset 4*/
|
|
onew = __sdb_rd(fmc, sdb_addr + 4, convert);
|
|
n = __be16_to_cpu(*(uint16_t *)&onew);
|
|
arr = kzalloc(sizeof(*arr), GFP_KERNEL);
|
|
if (!arr)
|
|
return ERR_PTR(-ENOMEM);
|
|
arr->record = kzalloc(sizeof(arr->record[0]) * n, GFP_KERNEL);
|
|
arr->subtree = kzalloc(sizeof(arr->subtree[0]) * n, GFP_KERNEL);
|
|
if (!arr->record || !arr->subtree) {
|
|
kfree(arr->record);
|
|
kfree(arr->subtree);
|
|
kfree(arr);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
arr->len = n;
|
|
arr->level = level;
|
|
arr->fmc = fmc;
|
|
for (i = 0; i < n; i++) {
|
|
union sdb_record *r;
|
|
|
|
for (j = 0; j < sizeof(arr->record[0]); j += 4) {
|
|
*(uint32_t *)((void *)(arr->record + i) + j) =
|
|
__sdb_rd(fmc, sdb_addr + (i * 64) + j, convert);
|
|
}
|
|
r = &arr->record[i];
|
|
arr->subtree[i] = ERR_PTR(-ENODEV);
|
|
if (r->empty.record_type == sdb_type_bridge) {
|
|
struct sdb_component *c = &r->bridge.sdb_component;
|
|
uint64_t subaddr = __be64_to_cpu(r->bridge.sdb_child);
|
|
uint64_t newbase = __be64_to_cpu(c->addr_first);
|
|
|
|
subaddr += reg_base;
|
|
newbase += reg_base;
|
|
sub = __fmc_scan_sdb_tree(fmc, subaddr, newbase,
|
|
level + 1);
|
|
arr->subtree[i] = sub; /* may be error */
|
|
if (IS_ERR(sub))
|
|
continue;
|
|
sub->parent = arr;
|
|
sub->baseaddr = newbase;
|
|
}
|
|
}
|
|
return arr;
|
|
}
|
|
|
|
int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address)
|
|
{
|
|
struct sdb_array *ret;
|
|
if (fmc->sdb)
|
|
return -EBUSY;
|
|
ret = __fmc_scan_sdb_tree(fmc, address, 0 /* regs */, 0);
|
|
if (IS_ERR(ret))
|
|
return PTR_ERR(ret);
|
|
fmc->sdb = ret;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(fmc_scan_sdb_tree);
|
|
|
|
static void __fmc_sdb_free(struct sdb_array *arr)
|
|
{
|
|
int i, n;
|
|
|
|
if (!arr)
|
|
return;
|
|
n = arr->len;
|
|
for (i = 0; i < n; i++) {
|
|
if (IS_ERR(arr->subtree[i]))
|
|
continue;
|
|
__fmc_sdb_free(arr->subtree[i]);
|
|
}
|
|
kfree(arr->record);
|
|
kfree(arr->subtree);
|
|
kfree(arr);
|
|
}
|
|
|
|
int fmc_free_sdb_tree(struct fmc_device *fmc)
|
|
{
|
|
__fmc_sdb_free(fmc->sdb);
|
|
fmc->sdb = NULL;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(fmc_free_sdb_tree);
|
|
|
|
/* This helper calls reprogram and inizialized sdb as well */
|
|
int fmc_reprogram(struct fmc_device *fmc, struct fmc_driver *d, char *gw,
|
|
int sdb_entry)
|
|
{
|
|
int ret;
|
|
|
|
ret = fmc->op->reprogram(fmc, d, gw);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (sdb_entry < 0)
|
|
return ret;
|
|
|
|
/* We are required to find SDB at a given offset */
|
|
ret = fmc_scan_sdb_tree(fmc, sdb_entry);
|
|
if (ret < 0) {
|
|
dev_err(&fmc->dev, "Can't find SDB at address 0x%x\n",
|
|
sdb_entry);
|
|
return -ENODEV;
|
|
}
|
|
fmc_dump_sdb(fmc);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(fmc_reprogram);
|
|
|
|
static void __fmc_show_sdb_tree(const struct fmc_device *fmc,
|
|
const struct sdb_array *arr)
|
|
{
|
|
int i, j, n = arr->len, level = arr->level;
|
|
const struct sdb_array *ap;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
unsigned long base;
|
|
union sdb_record *r;
|
|
struct sdb_product *p;
|
|
struct sdb_component *c;
|
|
r = &arr->record[i];
|
|
c = &r->dev.sdb_component;
|
|
p = &c->product;
|
|
base = 0;
|
|
for (ap = arr; ap; ap = ap->parent)
|
|
base += ap->baseaddr;
|
|
dev_info(&fmc->dev, "SDB: ");
|
|
|
|
for (j = 0; j < level; j++)
|
|
printk(KERN_CONT " ");
|
|
switch (r->empty.record_type) {
|
|
case sdb_type_interconnect:
|
|
printk(KERN_CONT "%08llx:%08x %.19s\n",
|
|
__be64_to_cpu(p->vendor_id),
|
|
__be32_to_cpu(p->device_id),
|
|
p->name);
|
|
break;
|
|
case sdb_type_device:
|
|
printk(KERN_CONT "%08llx:%08x %.19s (%08llx-%08llx)\n",
|
|
__be64_to_cpu(p->vendor_id),
|
|
__be32_to_cpu(p->device_id),
|
|
p->name,
|
|
__be64_to_cpu(c->addr_first) + base,
|
|
__be64_to_cpu(c->addr_last) + base);
|
|
break;
|
|
case sdb_type_bridge:
|
|
printk(KERN_CONT "%08llx:%08x %.19s (bridge: %08llx)\n",
|
|
__be64_to_cpu(p->vendor_id),
|
|
__be32_to_cpu(p->device_id),
|
|
p->name,
|
|
__be64_to_cpu(c->addr_first) + base);
|
|
if (IS_ERR(arr->subtree[i])) {
|
|
printk(KERN_CONT "(bridge error %li)\n",
|
|
PTR_ERR(arr->subtree[i]));
|
|
break;
|
|
}
|
|
__fmc_show_sdb_tree(fmc, arr->subtree[i]);
|
|
break;
|
|
case sdb_type_integration:
|
|
printk(KERN_CONT "integration\n");
|
|
break;
|
|
case sdb_type_repo_url:
|
|
printk(KERN_CONT "repo-url\n");
|
|
break;
|
|
case sdb_type_synthesis:
|
|
printk(KERN_CONT "synthesis-info\n");
|
|
break;
|
|
case sdb_type_empty:
|
|
printk(KERN_CONT "empty\n");
|
|
break;
|
|
default:
|
|
printk(KERN_CONT "UNKNOWN TYPE 0x%02x\n",
|
|
r->empty.record_type);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void fmc_show_sdb_tree(const struct fmc_device *fmc)
|
|
{
|
|
if (!fmc->sdb)
|
|
return;
|
|
__fmc_show_sdb_tree(fmc, fmc->sdb);
|
|
}
|
|
EXPORT_SYMBOL(fmc_show_sdb_tree);
|
|
|
|
signed long fmc_find_sdb_device(struct sdb_array *tree,
|
|
uint64_t vid, uint32_t did, unsigned long *sz)
|
|
{
|
|
signed long res = -ENODEV;
|
|
union sdb_record *r;
|
|
struct sdb_product *p;
|
|
struct sdb_component *c;
|
|
int i, n = tree->len;
|
|
uint64_t last, first;
|
|
|
|
/* FIXME: what if the first interconnect is not at zero? */
|
|
for (i = 0; i < n; i++) {
|
|
r = &tree->record[i];
|
|
c = &r->dev.sdb_component;
|
|
p = &c->product;
|
|
|
|
if (!IS_ERR(tree->subtree[i]))
|
|
res = fmc_find_sdb_device(tree->subtree[i],
|
|
vid, did, sz);
|
|
if (res >= 0)
|
|
return res + tree->baseaddr;
|
|
if (r->empty.record_type != sdb_type_device)
|
|
continue;
|
|
if (__be64_to_cpu(p->vendor_id) != vid)
|
|
continue;
|
|
if (__be32_to_cpu(p->device_id) != did)
|
|
continue;
|
|
/* found */
|
|
last = __be64_to_cpu(c->addr_last);
|
|
first = __be64_to_cpu(c->addr_first);
|
|
if (sz)
|
|
*sz = (typeof(*sz))(last + 1 - first);
|
|
return first + tree->baseaddr;
|
|
}
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(fmc_find_sdb_device);
|