mirror of
https://github.com/torvalds/linux.git
synced 2024-12-12 22:23:55 +00:00
90c517f435
The Intel SPI controller does not support low level operations, like reading the flag status register (FSR). It only exposes a set of high level operations for software to use. For this reason check the return value of micron_st_nor_read_fsr() and if the operation was not supported, use the status register value only. This allows the chip to work even when attached to Intel SPI controller (there are such systems out there). Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com> Reviewed-by: Michael Walle <michael@walle.cc> Link: https://lore.kernel.org/r/20220506105158.43613-1-mika.westerberg@linux.intel.com
473 lines
14 KiB
C
473 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2005, Intec Automation Inc.
|
|
* Copyright (C) 2014, Freescale Semiconductor, Inc.
|
|
*/
|
|
|
|
#include <linux/mtd/spi-nor.h>
|
|
|
|
#include "core.h"
|
|
|
|
/* flash_info mfr_flag. Used to read proprietary FSR register. */
|
|
#define USE_FSR BIT(0)
|
|
|
|
#define SPINOR_OP_RDFSR 0x70 /* Read flag status register */
|
|
#define SPINOR_OP_CLFSR 0x50 /* Clear flag status register */
|
|
#define SPINOR_OP_MT_DTR_RD 0xfd /* Fast Read opcode in DTR mode */
|
|
#define SPINOR_OP_MT_RD_ANY_REG 0x85 /* Read volatile register */
|
|
#define SPINOR_OP_MT_WR_ANY_REG 0x81 /* Write volatile register */
|
|
#define SPINOR_REG_MT_CFR0V 0x00 /* For setting octal DTR mode */
|
|
#define SPINOR_REG_MT_CFR1V 0x01 /* For setting dummy cycles */
|
|
#define SPINOR_REG_MT_CFR1V_DEF 0x1f /* Default dummy cycles */
|
|
#define SPINOR_MT_OCT_DTR 0xe7 /* Enable Octal DTR. */
|
|
#define SPINOR_MT_EXSPI 0xff /* Enable Extended SPI (default) */
|
|
|
|
/* Flag Status Register bits */
|
|
#define FSR_READY BIT(7) /* Device status, 0 = Busy, 1 = Ready */
|
|
#define FSR_E_ERR BIT(5) /* Erase operation status */
|
|
#define FSR_P_ERR BIT(4) /* Program operation status */
|
|
#define FSR_PT_ERR BIT(1) /* Protection error bit */
|
|
|
|
/* Micron ST SPI NOR flash operations. */
|
|
#define MICRON_ST_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 0), \
|
|
SPI_MEM_OP_ADDR(naddr, addr, 0), \
|
|
SPI_MEM_OP_NO_DUMMY, \
|
|
SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
|
|
|
|
#define MICRON_ST_RDFSR_OP(buf) \
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0), \
|
|
SPI_MEM_OP_NO_ADDR, \
|
|
SPI_MEM_OP_NO_DUMMY, \
|
|
SPI_MEM_OP_DATA_IN(1, buf, 0))
|
|
|
|
#define MICRON_ST_CLFSR_OP \
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0), \
|
|
SPI_MEM_OP_NO_ADDR, \
|
|
SPI_MEM_OP_NO_DUMMY, \
|
|
SPI_MEM_OP_NO_DATA)
|
|
|
|
static int micron_st_nor_octal_dtr_en(struct spi_nor *nor)
|
|
{
|
|
struct spi_mem_op op;
|
|
u8 *buf = nor->bouncebuf;
|
|
int ret;
|
|
|
|
/* Use 20 dummy cycles for memory array reads. */
|
|
*buf = 20;
|
|
op = (struct spi_mem_op)
|
|
MICRON_ST_NOR_WR_ANY_REG_OP(3, SPINOR_REG_MT_CFR1V, 1, buf);
|
|
ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
|
|
if (ret)
|
|
return ret;
|
|
|
|
buf[0] = SPINOR_MT_OCT_DTR;
|
|
op = (struct spi_mem_op)
|
|
MICRON_ST_NOR_WR_ANY_REG_OP(3, SPINOR_REG_MT_CFR0V, 1, buf);
|
|
ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Read flash ID to make sure the switch was successful. */
|
|
ret = spi_nor_read_id(nor, 0, 8, buf, SNOR_PROTO_8_8_8_DTR);
|
|
if (ret) {
|
|
dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (memcmp(buf, nor->info->id, nor->info->id_len))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int micron_st_nor_octal_dtr_dis(struct spi_nor *nor)
|
|
{
|
|
struct spi_mem_op op;
|
|
u8 *buf = nor->bouncebuf;
|
|
int ret;
|
|
|
|
/*
|
|
* The register is 1-byte wide, but 1-byte transactions are not allowed
|
|
* in 8D-8D-8D mode. The next register is the dummy cycle configuration
|
|
* register. Since the transaction needs to be at least 2 bytes wide,
|
|
* set the next register to its default value. This also makes sense
|
|
* because the value was changed when enabling 8D-8D-8D mode, it should
|
|
* be reset when disabling.
|
|
*/
|
|
buf[0] = SPINOR_MT_EXSPI;
|
|
buf[1] = SPINOR_REG_MT_CFR1V_DEF;
|
|
op = (struct spi_mem_op)
|
|
MICRON_ST_NOR_WR_ANY_REG_OP(4, SPINOR_REG_MT_CFR0V, 2, buf);
|
|
ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Read flash ID to make sure the switch was successful. */
|
|
ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
|
|
if (ret) {
|
|
dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (memcmp(buf, nor->info->id, nor->info->id_len))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int micron_st_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
|
|
{
|
|
return enable ? micron_st_nor_octal_dtr_en(nor) :
|
|
micron_st_nor_octal_dtr_dis(nor);
|
|
}
|
|
|
|
static void mt35xu512aba_default_init(struct spi_nor *nor)
|
|
{
|
|
nor->params->octal_dtr_enable = micron_st_nor_octal_dtr_enable;
|
|
}
|
|
|
|
static void mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor)
|
|
{
|
|
/* Set the Fast Read settings. */
|
|
nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
|
|
spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
|
|
0, 20, SPINOR_OP_MT_DTR_RD,
|
|
SNOR_PROTO_8_8_8_DTR);
|
|
|
|
nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
|
|
nor->params->rdsr_dummy = 8;
|
|
nor->params->rdsr_addr_nbytes = 0;
|
|
|
|
/*
|
|
* The BFPT quad enable field is set to a reserved value so the quad
|
|
* enable function is ignored by spi_nor_parse_bfpt(). Make sure we
|
|
* disable it.
|
|
*/
|
|
nor->params->quad_enable = NULL;
|
|
}
|
|
|
|
static const struct spi_nor_fixups mt35xu512aba_fixups = {
|
|
.default_init = mt35xu512aba_default_init,
|
|
.post_sfdp = mt35xu512aba_post_sfdp_fixup,
|
|
};
|
|
|
|
static const struct flash_info micron_nor_parts[] = {
|
|
{ "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_READ |
|
|
SPI_NOR_OCTAL_DTR_READ | SPI_NOR_OCTAL_DTR_PP)
|
|
FIXUP_FLAGS(SPI_NOR_4B_OPCODES | SPI_NOR_IO_MODE_EN_VOLATILE)
|
|
MFR_FLAGS(USE_FSR)
|
|
.fixups = &mt35xu512aba_fixups
|
|
},
|
|
{ "mt35xu02g", INFO(0x2c5b1c, 0, 128 * 1024, 2048)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_READ)
|
|
FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
|
|
MFR_FLAGS(USE_FSR)
|
|
},
|
|
};
|
|
|
|
static const struct flash_info st_nor_parts[] = {
|
|
{ "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
|
|
{ "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64)
|
|
NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) },
|
|
{ "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64)
|
|
NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) },
|
|
{ "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
|
|
{ "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
|
|
{ "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256)
|
|
FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
|
|
SPI_NOR_BP3_SR_BIT6)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
|
|
MFR_FLAGS(USE_FSR)
|
|
},
|
|
{ "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256)
|
|
FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
|
|
SPI_NOR_BP3_SR_BIT6)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
|
|
MFR_FLAGS(USE_FSR)
|
|
},
|
|
{ "mt25ql256a", INFO6(0x20ba19, 0x104400, 64 * 1024, 512)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
|
|
FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
|
|
MFR_FLAGS(USE_FSR)
|
|
},
|
|
{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
|
|
SPI_NOR_QUAD_READ)
|
|
MFR_FLAGS(USE_FSR)
|
|
},
|
|
{ "mt25qu256a", INFO6(0x20bb19, 0x104400, 64 * 1024, 512)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
|
|
FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
|
|
MFR_FLAGS(USE_FSR)
|
|
},
|
|
{ "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
|
|
MFR_FLAGS(USE_FSR)
|
|
},
|
|
{ "mt25ql512a", INFO6(0x20ba20, 0x104400, 64 * 1024, 1024)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
|
|
FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
|
|
MFR_FLAGS(USE_FSR)
|
|
},
|
|
{ "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024)
|
|
FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
|
|
SPI_NOR_BP3_SR_BIT6)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
|
|
MFR_FLAGS(USE_FSR)
|
|
},
|
|
{ "mt25qu512a", INFO6(0x20bb20, 0x104400, 64 * 1024, 1024)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
|
|
FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
|
|
MFR_FLAGS(USE_FSR)
|
|
},
|
|
{ "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024)
|
|
FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
|
|
SPI_NOR_BP3_SR_BIT6)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
|
|
MFR_FLAGS(USE_FSR)
|
|
},
|
|
{ "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048)
|
|
FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
|
|
SPI_NOR_BP3_SR_BIT6 | NO_CHIP_ERASE)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
|
|
MFR_FLAGS(USE_FSR)
|
|
},
|
|
{ "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048)
|
|
FLAGS(NO_CHIP_ERASE)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
|
|
MFR_FLAGS(USE_FSR)
|
|
},
|
|
{ "mt25ql02g", INFO(0x20ba22, 0, 64 * 1024, 4096)
|
|
FLAGS(NO_CHIP_ERASE)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
|
|
MFR_FLAGS(USE_FSR)
|
|
},
|
|
{ "mt25qu02g", INFO(0x20bb22, 0, 64 * 1024, 4096)
|
|
FLAGS(NO_CHIP_ERASE)
|
|
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
|
|
SPI_NOR_QUAD_READ)
|
|
MFR_FLAGS(USE_FSR)
|
|
},
|
|
|
|
{ "m25p05", INFO(0x202010, 0, 32 * 1024, 2) },
|
|
{ "m25p10", INFO(0x202011, 0, 32 * 1024, 4) },
|
|
{ "m25p20", INFO(0x202012, 0, 64 * 1024, 4) },
|
|
{ "m25p40", INFO(0x202013, 0, 64 * 1024, 8) },
|
|
{ "m25p80", INFO(0x202014, 0, 64 * 1024, 16) },
|
|
{ "m25p16", INFO(0x202015, 0, 64 * 1024, 32) },
|
|
{ "m25p32", INFO(0x202016, 0, 64 * 1024, 64) },
|
|
{ "m25p64", INFO(0x202017, 0, 64 * 1024, 128) },
|
|
{ "m25p128", INFO(0x202018, 0, 256 * 1024, 64) },
|
|
|
|
{ "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2) },
|
|
{ "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4) },
|
|
{ "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4) },
|
|
{ "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8) },
|
|
{ "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16) },
|
|
{ "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32) },
|
|
{ "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64) },
|
|
{ "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128) },
|
|
{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64) },
|
|
|
|
{ "m45pe10", INFO(0x204011, 0, 64 * 1024, 2) },
|
|
{ "m45pe80", INFO(0x204014, 0, 64 * 1024, 16) },
|
|
{ "m45pe16", INFO(0x204015, 0, 64 * 1024, 32) },
|
|
|
|
{ "m25pe20", INFO(0x208012, 0, 64 * 1024, 4) },
|
|
{ "m25pe80", INFO(0x208014, 0, 64 * 1024, 16) },
|
|
{ "m25pe16", INFO(0x208015, 0, 64 * 1024, 32)
|
|
NO_SFDP_FLAGS(SECT_4K) },
|
|
|
|
{ "m25px16", INFO(0x207115, 0, 64 * 1024, 32)
|
|
NO_SFDP_FLAGS(SECT_4K) },
|
|
{ "m25px32", INFO(0x207116, 0, 64 * 1024, 64)
|
|
NO_SFDP_FLAGS(SECT_4K) },
|
|
{ "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64)
|
|
NO_SFDP_FLAGS(SECT_4K) },
|
|
{ "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64)
|
|
NO_SFDP_FLAGS(SECT_4K) },
|
|
{ "m25px64", INFO(0x207117, 0, 64 * 1024, 128) },
|
|
{ "m25px80", INFO(0x207114, 0, 64 * 1024, 16) },
|
|
};
|
|
|
|
/**
|
|
* micron_st_nor_set_4byte_addr_mode() - Set 4-byte address mode for ST and
|
|
* Micron flashes.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
* @enable: true to enter the 4-byte address mode, false to exit the 4-byte
|
|
* address mode.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int micron_st_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
|
|
{
|
|
int ret;
|
|
|
|
ret = spi_nor_write_enable(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spi_nor_set_4byte_addr_mode(nor, enable);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return spi_nor_write_disable(nor);
|
|
}
|
|
|
|
/**
|
|
* micron_st_nor_read_fsr() - Read the Flag Status Register.
|
|
* @nor: pointer to 'struct spi_nor'
|
|
* @fsr: pointer to a DMA-able buffer where the value of the
|
|
* Flag Status Register will be written. Should be at least 2
|
|
* bytes.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int micron_st_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
|
|
{
|
|
int ret;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op = MICRON_ST_RDFSR_OP(fsr);
|
|
|
|
if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
|
|
op.addr.nbytes = nor->params->rdsr_addr_nbytes;
|
|
op.dummy.nbytes = nor->params->rdsr_dummy;
|
|
/*
|
|
* We don't want to read only one byte in DTR mode. So,
|
|
* read 2 and then discard the second byte.
|
|
*/
|
|
op.data.nbytes = 2;
|
|
}
|
|
|
|
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, fsr,
|
|
1);
|
|
}
|
|
|
|
if (ret)
|
|
dev_dbg(nor->dev, "error %d reading FSR\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* micron_st_nor_clear_fsr() - Clear the Flag Status Register.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
*/
|
|
static void micron_st_nor_clear_fsr(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op = MICRON_ST_CLFSR_OP;
|
|
|
|
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR,
|
|
NULL, 0);
|
|
}
|
|
|
|
if (ret)
|
|
dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
|
|
}
|
|
|
|
/**
|
|
* micron_st_nor_ready() - Query the Status Register as well as the Flag Status
|
|
* Register to see if the flash is ready for new commands. If there are any
|
|
* errors in the FSR clear them.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
*
|
|
* Return: 1 if ready, 0 if not ready, -errno on errors.
|
|
*/
|
|
static int micron_st_nor_ready(struct spi_nor *nor)
|
|
{
|
|
int sr_ready, ret;
|
|
|
|
sr_ready = spi_nor_sr_ready(nor);
|
|
if (sr_ready < 0)
|
|
return sr_ready;
|
|
|
|
ret = micron_st_nor_read_fsr(nor, nor->bouncebuf);
|
|
if (ret) {
|
|
/*
|
|
* Some controllers, such as Intel SPI, do not support low
|
|
* level operations such as reading the flag status
|
|
* register. They only expose small amount of high level
|
|
* operations to the software. If this is the case we use
|
|
* only the status register value.
|
|
*/
|
|
return ret == -EOPNOTSUPP ? sr_ready : ret;
|
|
}
|
|
|
|
if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
|
|
if (nor->bouncebuf[0] & FSR_E_ERR)
|
|
dev_err(nor->dev, "Erase operation failed.\n");
|
|
else
|
|
dev_err(nor->dev, "Program operation failed.\n");
|
|
|
|
if (nor->bouncebuf[0] & FSR_PT_ERR)
|
|
dev_err(nor->dev,
|
|
"Attempted to modify a protected sector.\n");
|
|
|
|
micron_st_nor_clear_fsr(nor);
|
|
|
|
/*
|
|
* WEL bit remains set to one when an erase or page program
|
|
* error occurs. Issue a Write Disable command to protect
|
|
* against inadvertent writes that can possibly corrupt the
|
|
* contents of the memory.
|
|
*/
|
|
ret = spi_nor_write_disable(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
return sr_ready && !!(nor->bouncebuf[0] & FSR_READY);
|
|
}
|
|
|
|
static void micron_st_nor_default_init(struct spi_nor *nor)
|
|
{
|
|
nor->flags |= SNOR_F_HAS_LOCK;
|
|
nor->flags &= ~SNOR_F_HAS_16BIT_SR;
|
|
nor->params->quad_enable = NULL;
|
|
nor->params->set_4byte_addr_mode = micron_st_nor_set_4byte_addr_mode;
|
|
}
|
|
|
|
static void micron_st_nor_late_init(struct spi_nor *nor)
|
|
{
|
|
if (nor->info->mfr_flags & USE_FSR)
|
|
nor->params->ready = micron_st_nor_ready;
|
|
}
|
|
|
|
static const struct spi_nor_fixups micron_st_nor_fixups = {
|
|
.default_init = micron_st_nor_default_init,
|
|
.late_init = micron_st_nor_late_init,
|
|
};
|
|
|
|
const struct spi_nor_manufacturer spi_nor_micron = {
|
|
.name = "micron",
|
|
.parts = micron_nor_parts,
|
|
.nparts = ARRAY_SIZE(micron_nor_parts),
|
|
.fixups = µn_st_nor_fixups,
|
|
};
|
|
|
|
const struct spi_nor_manufacturer spi_nor_st = {
|
|
.name = "st",
|
|
.parts = st_nor_parts,
|
|
.nparts = ARRAY_SIZE(st_nor_parts),
|
|
.fixups = µn_st_nor_fixups,
|
|
};
|