mirror of
https://github.com/torvalds/linux.git
synced 2024-12-15 07:33:56 +00:00
ed1523a895
The huge_ptep_set_access_flags() can not make the huge pte old according
to the discussion [1], that means we will always mornitor the young state
of the hugetlb though we stopped accessing the hugetlb, as a result DAMON
will get inaccurate accessing statistics.
So changing to use set_huge_pte_at() to make the huge pte old to fix this
issue.
[1] https://lore.kernel.org/all/Yqy97gXI4Nqb7dYo@arm.com/
Link: https://lkml.kernel.org/r/1655692482-28797-1-git-send-email-baolin.wang@linux.alibaba.com
Fixes: 49f4203aae
("mm/damon: add access checking for hugetlb pages")
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
702 lines
17 KiB
C
702 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* DAMON Primitives for Virtual Address Spaces
|
|
*
|
|
* Author: SeongJae Park <sjpark@amazon.de>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "damon-va: " fmt
|
|
|
|
#include <asm-generic/mman-common.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/page_idle.h>
|
|
#include <linux/pagewalk.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
#include "ops-common.h"
|
|
|
|
#ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
|
|
#undef DAMON_MIN_REGION
|
|
#define DAMON_MIN_REGION 1
|
|
#endif
|
|
|
|
/*
|
|
* 't->pid' should be the pointer to the relevant 'struct pid' having reference
|
|
* count. Caller must put the returned task, unless it is NULL.
|
|
*/
|
|
static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
|
|
{
|
|
return get_pid_task(t->pid, PIDTYPE_PID);
|
|
}
|
|
|
|
/*
|
|
* Get the mm_struct of the given target
|
|
*
|
|
* Caller _must_ put the mm_struct after use, unless it is NULL.
|
|
*
|
|
* Returns the mm_struct of the target on success, NULL on failure
|
|
*/
|
|
static struct mm_struct *damon_get_mm(struct damon_target *t)
|
|
{
|
|
struct task_struct *task;
|
|
struct mm_struct *mm;
|
|
|
|
task = damon_get_task_struct(t);
|
|
if (!task)
|
|
return NULL;
|
|
|
|
mm = get_task_mm(task);
|
|
put_task_struct(task);
|
|
return mm;
|
|
}
|
|
|
|
/*
|
|
* Functions for the initial monitoring target regions construction
|
|
*/
|
|
|
|
/*
|
|
* Size-evenly split a region into 'nr_pieces' small regions
|
|
*
|
|
* Returns 0 on success, or negative error code otherwise.
|
|
*/
|
|
static int damon_va_evenly_split_region(struct damon_target *t,
|
|
struct damon_region *r, unsigned int nr_pieces)
|
|
{
|
|
unsigned long sz_orig, sz_piece, orig_end;
|
|
struct damon_region *n = NULL, *next;
|
|
unsigned long start;
|
|
|
|
if (!r || !nr_pieces)
|
|
return -EINVAL;
|
|
|
|
orig_end = r->ar.end;
|
|
sz_orig = r->ar.end - r->ar.start;
|
|
sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
|
|
|
|
if (!sz_piece)
|
|
return -EINVAL;
|
|
|
|
r->ar.end = r->ar.start + sz_piece;
|
|
next = damon_next_region(r);
|
|
for (start = r->ar.end; start + sz_piece <= orig_end;
|
|
start += sz_piece) {
|
|
n = damon_new_region(start, start + sz_piece);
|
|
if (!n)
|
|
return -ENOMEM;
|
|
damon_insert_region(n, r, next, t);
|
|
r = n;
|
|
}
|
|
/* complement last region for possible rounding error */
|
|
if (n)
|
|
n->ar.end = orig_end;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long sz_range(struct damon_addr_range *r)
|
|
{
|
|
return r->end - r->start;
|
|
}
|
|
|
|
/*
|
|
* Find three regions separated by two biggest unmapped regions
|
|
*
|
|
* vma the head vma of the target address space
|
|
* regions an array of three address ranges that results will be saved
|
|
*
|
|
* This function receives an address space and finds three regions in it which
|
|
* separated by the two biggest unmapped regions in the space. Please refer to
|
|
* below comments of '__damon_va_init_regions()' function to know why this is
|
|
* necessary.
|
|
*
|
|
* Returns 0 if success, or negative error code otherwise.
|
|
*/
|
|
static int __damon_va_three_regions(struct vm_area_struct *vma,
|
|
struct damon_addr_range regions[3])
|
|
{
|
|
struct damon_addr_range gap = {0}, first_gap = {0}, second_gap = {0};
|
|
struct vm_area_struct *last_vma = NULL;
|
|
unsigned long start = 0;
|
|
struct rb_root rbroot;
|
|
|
|
/* Find two biggest gaps so that first_gap > second_gap > others */
|
|
for (; vma; vma = vma->vm_next) {
|
|
if (!last_vma) {
|
|
start = vma->vm_start;
|
|
goto next;
|
|
}
|
|
|
|
if (vma->rb_subtree_gap <= sz_range(&second_gap)) {
|
|
rbroot.rb_node = &vma->vm_rb;
|
|
vma = rb_entry(rb_last(&rbroot),
|
|
struct vm_area_struct, vm_rb);
|
|
goto next;
|
|
}
|
|
|
|
gap.start = last_vma->vm_end;
|
|
gap.end = vma->vm_start;
|
|
if (sz_range(&gap) > sz_range(&second_gap)) {
|
|
swap(gap, second_gap);
|
|
if (sz_range(&second_gap) > sz_range(&first_gap))
|
|
swap(second_gap, first_gap);
|
|
}
|
|
next:
|
|
last_vma = vma;
|
|
}
|
|
|
|
if (!sz_range(&second_gap) || !sz_range(&first_gap))
|
|
return -EINVAL;
|
|
|
|
/* Sort the two biggest gaps by address */
|
|
if (first_gap.start > second_gap.start)
|
|
swap(first_gap, second_gap);
|
|
|
|
/* Store the result */
|
|
regions[0].start = ALIGN(start, DAMON_MIN_REGION);
|
|
regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
|
|
regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
|
|
regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
|
|
regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
|
|
regions[2].end = ALIGN(last_vma->vm_end, DAMON_MIN_REGION);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get the three regions in the given target (task)
|
|
*
|
|
* Returns 0 on success, negative error code otherwise.
|
|
*/
|
|
static int damon_va_three_regions(struct damon_target *t,
|
|
struct damon_addr_range regions[3])
|
|
{
|
|
struct mm_struct *mm;
|
|
int rc;
|
|
|
|
mm = damon_get_mm(t);
|
|
if (!mm)
|
|
return -EINVAL;
|
|
|
|
mmap_read_lock(mm);
|
|
rc = __damon_va_three_regions(mm->mmap, regions);
|
|
mmap_read_unlock(mm);
|
|
|
|
mmput(mm);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Initialize the monitoring target regions for the given target (task)
|
|
*
|
|
* t the given target
|
|
*
|
|
* Because only a number of small portions of the entire address space
|
|
* is actually mapped to the memory and accessed, monitoring the unmapped
|
|
* regions is wasteful. That said, because we can deal with small noises,
|
|
* tracking every mapping is not strictly required but could even incur a high
|
|
* overhead if the mapping frequently changes or the number of mappings is
|
|
* high. The adaptive regions adjustment mechanism will further help to deal
|
|
* with the noise by simply identifying the unmapped areas as a region that
|
|
* has no access. Moreover, applying the real mappings that would have many
|
|
* unmapped areas inside will make the adaptive mechanism quite complex. That
|
|
* said, too huge unmapped areas inside the monitoring target should be removed
|
|
* to not take the time for the adaptive mechanism.
|
|
*
|
|
* For the reason, we convert the complex mappings to three distinct regions
|
|
* that cover every mapped area of the address space. Also the two gaps
|
|
* between the three regions are the two biggest unmapped areas in the given
|
|
* address space. In detail, this function first identifies the start and the
|
|
* end of the mappings and the two biggest unmapped areas of the address space.
|
|
* Then, it constructs the three regions as below:
|
|
*
|
|
* [mappings[0]->start, big_two_unmapped_areas[0]->start)
|
|
* [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
|
|
* [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
|
|
*
|
|
* As usual memory map of processes is as below, the gap between the heap and
|
|
* the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
|
|
* region and the stack will be two biggest unmapped regions. Because these
|
|
* gaps are exceptionally huge areas in usual address space, excluding these
|
|
* two biggest unmapped regions will be sufficient to make a trade-off.
|
|
*
|
|
* <heap>
|
|
* <BIG UNMAPPED REGION 1>
|
|
* <uppermost mmap()-ed region>
|
|
* (other mmap()-ed regions and small unmapped regions)
|
|
* <lowermost mmap()-ed region>
|
|
* <BIG UNMAPPED REGION 2>
|
|
* <stack>
|
|
*/
|
|
static void __damon_va_init_regions(struct damon_ctx *ctx,
|
|
struct damon_target *t)
|
|
{
|
|
struct damon_target *ti;
|
|
struct damon_region *r;
|
|
struct damon_addr_range regions[3];
|
|
unsigned long sz = 0, nr_pieces;
|
|
int i, tidx = 0;
|
|
|
|
if (damon_va_three_regions(t, regions)) {
|
|
damon_for_each_target(ti, ctx) {
|
|
if (ti == t)
|
|
break;
|
|
tidx++;
|
|
}
|
|
pr_debug("Failed to get three regions of %dth target\n", tidx);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < 3; i++)
|
|
sz += regions[i].end - regions[i].start;
|
|
if (ctx->min_nr_regions)
|
|
sz /= ctx->min_nr_regions;
|
|
if (sz < DAMON_MIN_REGION)
|
|
sz = DAMON_MIN_REGION;
|
|
|
|
/* Set the initial three regions of the target */
|
|
for (i = 0; i < 3; i++) {
|
|
r = damon_new_region(regions[i].start, regions[i].end);
|
|
if (!r) {
|
|
pr_err("%d'th init region creation failed\n", i);
|
|
return;
|
|
}
|
|
damon_add_region(r, t);
|
|
|
|
nr_pieces = (regions[i].end - regions[i].start) / sz;
|
|
damon_va_evenly_split_region(t, r, nr_pieces);
|
|
}
|
|
}
|
|
|
|
/* Initialize '->regions_list' of every target (task) */
|
|
static void damon_va_init(struct damon_ctx *ctx)
|
|
{
|
|
struct damon_target *t;
|
|
|
|
damon_for_each_target(t, ctx) {
|
|
/* the user may set the target regions as they want */
|
|
if (!damon_nr_regions(t))
|
|
__damon_va_init_regions(ctx, t);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update regions for current memory mappings
|
|
*/
|
|
static void damon_va_update(struct damon_ctx *ctx)
|
|
{
|
|
struct damon_addr_range three_regions[3];
|
|
struct damon_target *t;
|
|
|
|
damon_for_each_target(t, ctx) {
|
|
if (damon_va_three_regions(t, three_regions))
|
|
continue;
|
|
damon_set_regions(t, three_regions, 3);
|
|
}
|
|
}
|
|
|
|
static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
|
|
unsigned long next, struct mm_walk *walk)
|
|
{
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
|
|
if (pmd_huge(*pmd)) {
|
|
ptl = pmd_lock(walk->mm, pmd);
|
|
if (pmd_huge(*pmd)) {
|
|
damon_pmdp_mkold(pmd, walk->mm, addr);
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
spin_unlock(ptl);
|
|
}
|
|
|
|
if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
|
|
return 0;
|
|
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
|
|
if (!pte_present(*pte))
|
|
goto out;
|
|
damon_ptep_mkold(pte, walk->mm, addr);
|
|
out:
|
|
pte_unmap_unlock(pte, ptl);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
bool referenced = false;
|
|
pte_t entry = huge_ptep_get(pte);
|
|
struct page *page = pte_page(entry);
|
|
|
|
get_page(page);
|
|
|
|
if (pte_young(entry)) {
|
|
referenced = true;
|
|
entry = pte_mkold(entry);
|
|
set_huge_pte_at(mm, addr, pte, entry);
|
|
}
|
|
|
|
#ifdef CONFIG_MMU_NOTIFIER
|
|
if (mmu_notifier_clear_young(mm, addr,
|
|
addr + huge_page_size(hstate_vma(vma))))
|
|
referenced = true;
|
|
#endif /* CONFIG_MMU_NOTIFIER */
|
|
|
|
if (referenced)
|
|
set_page_young(page);
|
|
|
|
set_page_idle(page);
|
|
put_page(page);
|
|
}
|
|
|
|
static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
|
|
unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct hstate *h = hstate_vma(walk->vma);
|
|
spinlock_t *ptl;
|
|
pte_t entry;
|
|
|
|
ptl = huge_pte_lock(h, walk->mm, pte);
|
|
entry = huge_ptep_get(pte);
|
|
if (!pte_present(entry))
|
|
goto out;
|
|
|
|
damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
|
|
|
|
out:
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
#else
|
|
#define damon_mkold_hugetlb_entry NULL
|
|
#endif /* CONFIG_HUGETLB_PAGE */
|
|
|
|
static const struct mm_walk_ops damon_mkold_ops = {
|
|
.pmd_entry = damon_mkold_pmd_entry,
|
|
.hugetlb_entry = damon_mkold_hugetlb_entry,
|
|
};
|
|
|
|
static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
mmap_read_lock(mm);
|
|
walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
|
|
mmap_read_unlock(mm);
|
|
}
|
|
|
|
/*
|
|
* Functions for the access checking of the regions
|
|
*/
|
|
|
|
static void __damon_va_prepare_access_check(struct damon_ctx *ctx,
|
|
struct mm_struct *mm, struct damon_region *r)
|
|
{
|
|
r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
|
|
|
|
damon_va_mkold(mm, r->sampling_addr);
|
|
}
|
|
|
|
static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
|
|
{
|
|
struct damon_target *t;
|
|
struct mm_struct *mm;
|
|
struct damon_region *r;
|
|
|
|
damon_for_each_target(t, ctx) {
|
|
mm = damon_get_mm(t);
|
|
if (!mm)
|
|
continue;
|
|
damon_for_each_region(r, t)
|
|
__damon_va_prepare_access_check(ctx, mm, r);
|
|
mmput(mm);
|
|
}
|
|
}
|
|
|
|
struct damon_young_walk_private {
|
|
unsigned long *page_sz;
|
|
bool young;
|
|
};
|
|
|
|
static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
|
|
unsigned long next, struct mm_walk *walk)
|
|
{
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
struct page *page;
|
|
struct damon_young_walk_private *priv = walk->private;
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
if (pmd_huge(*pmd)) {
|
|
ptl = pmd_lock(walk->mm, pmd);
|
|
if (!pmd_huge(*pmd)) {
|
|
spin_unlock(ptl);
|
|
goto regular_page;
|
|
}
|
|
page = damon_get_page(pmd_pfn(*pmd));
|
|
if (!page)
|
|
goto huge_out;
|
|
if (pmd_young(*pmd) || !page_is_idle(page) ||
|
|
mmu_notifier_test_young(walk->mm,
|
|
addr)) {
|
|
*priv->page_sz = HPAGE_PMD_SIZE;
|
|
priv->young = true;
|
|
}
|
|
put_page(page);
|
|
huge_out:
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
|
|
regular_page:
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
|
|
return -EINVAL;
|
|
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
|
|
if (!pte_present(*pte))
|
|
goto out;
|
|
page = damon_get_page(pte_pfn(*pte));
|
|
if (!page)
|
|
goto out;
|
|
if (pte_young(*pte) || !page_is_idle(page) ||
|
|
mmu_notifier_test_young(walk->mm, addr)) {
|
|
*priv->page_sz = PAGE_SIZE;
|
|
priv->young = true;
|
|
}
|
|
put_page(page);
|
|
out:
|
|
pte_unmap_unlock(pte, ptl);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
|
|
unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct damon_young_walk_private *priv = walk->private;
|
|
struct hstate *h = hstate_vma(walk->vma);
|
|
struct page *page;
|
|
spinlock_t *ptl;
|
|
pte_t entry;
|
|
|
|
ptl = huge_pte_lock(h, walk->mm, pte);
|
|
entry = huge_ptep_get(pte);
|
|
if (!pte_present(entry))
|
|
goto out;
|
|
|
|
page = pte_page(entry);
|
|
get_page(page);
|
|
|
|
if (pte_young(entry) || !page_is_idle(page) ||
|
|
mmu_notifier_test_young(walk->mm, addr)) {
|
|
*priv->page_sz = huge_page_size(h);
|
|
priv->young = true;
|
|
}
|
|
|
|
put_page(page);
|
|
|
|
out:
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
#else
|
|
#define damon_young_hugetlb_entry NULL
|
|
#endif /* CONFIG_HUGETLB_PAGE */
|
|
|
|
static const struct mm_walk_ops damon_young_ops = {
|
|
.pmd_entry = damon_young_pmd_entry,
|
|
.hugetlb_entry = damon_young_hugetlb_entry,
|
|
};
|
|
|
|
static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
|
|
unsigned long *page_sz)
|
|
{
|
|
struct damon_young_walk_private arg = {
|
|
.page_sz = page_sz,
|
|
.young = false,
|
|
};
|
|
|
|
mmap_read_lock(mm);
|
|
walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
|
|
mmap_read_unlock(mm);
|
|
return arg.young;
|
|
}
|
|
|
|
/*
|
|
* Check whether the region was accessed after the last preparation
|
|
*
|
|
* mm 'mm_struct' for the given virtual address space
|
|
* r the region to be checked
|
|
*/
|
|
static void __damon_va_check_access(struct damon_ctx *ctx,
|
|
struct mm_struct *mm, struct damon_region *r)
|
|
{
|
|
static struct mm_struct *last_mm;
|
|
static unsigned long last_addr;
|
|
static unsigned long last_page_sz = PAGE_SIZE;
|
|
static bool last_accessed;
|
|
|
|
/* If the region is in the last checked page, reuse the result */
|
|
if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) ==
|
|
ALIGN_DOWN(r->sampling_addr, last_page_sz))) {
|
|
if (last_accessed)
|
|
r->nr_accesses++;
|
|
return;
|
|
}
|
|
|
|
last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz);
|
|
if (last_accessed)
|
|
r->nr_accesses++;
|
|
|
|
last_mm = mm;
|
|
last_addr = r->sampling_addr;
|
|
}
|
|
|
|
static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
|
|
{
|
|
struct damon_target *t;
|
|
struct mm_struct *mm;
|
|
struct damon_region *r;
|
|
unsigned int max_nr_accesses = 0;
|
|
|
|
damon_for_each_target(t, ctx) {
|
|
mm = damon_get_mm(t);
|
|
if (!mm)
|
|
continue;
|
|
damon_for_each_region(r, t) {
|
|
__damon_va_check_access(ctx, mm, r);
|
|
max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
|
|
}
|
|
mmput(mm);
|
|
}
|
|
|
|
return max_nr_accesses;
|
|
}
|
|
|
|
/*
|
|
* Functions for the target validity check and cleanup
|
|
*/
|
|
|
|
static bool damon_va_target_valid(void *target)
|
|
{
|
|
struct damon_target *t = target;
|
|
struct task_struct *task;
|
|
|
|
task = damon_get_task_struct(t);
|
|
if (task) {
|
|
put_task_struct(task);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
#ifndef CONFIG_ADVISE_SYSCALLS
|
|
static unsigned long damos_madvise(struct damon_target *target,
|
|
struct damon_region *r, int behavior)
|
|
{
|
|
return 0;
|
|
}
|
|
#else
|
|
static unsigned long damos_madvise(struct damon_target *target,
|
|
struct damon_region *r, int behavior)
|
|
{
|
|
struct mm_struct *mm;
|
|
unsigned long start = PAGE_ALIGN(r->ar.start);
|
|
unsigned long len = PAGE_ALIGN(r->ar.end - r->ar.start);
|
|
unsigned long applied;
|
|
|
|
mm = damon_get_mm(target);
|
|
if (!mm)
|
|
return 0;
|
|
|
|
applied = do_madvise(mm, start, len, behavior) ? 0 : len;
|
|
mmput(mm);
|
|
|
|
return applied;
|
|
}
|
|
#endif /* CONFIG_ADVISE_SYSCALLS */
|
|
|
|
static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
|
|
struct damon_target *t, struct damon_region *r,
|
|
struct damos *scheme)
|
|
{
|
|
int madv_action;
|
|
|
|
switch (scheme->action) {
|
|
case DAMOS_WILLNEED:
|
|
madv_action = MADV_WILLNEED;
|
|
break;
|
|
case DAMOS_COLD:
|
|
madv_action = MADV_COLD;
|
|
break;
|
|
case DAMOS_PAGEOUT:
|
|
madv_action = MADV_PAGEOUT;
|
|
break;
|
|
case DAMOS_HUGEPAGE:
|
|
madv_action = MADV_HUGEPAGE;
|
|
break;
|
|
case DAMOS_NOHUGEPAGE:
|
|
madv_action = MADV_NOHUGEPAGE;
|
|
break;
|
|
case DAMOS_STAT:
|
|
return 0;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return damos_madvise(t, r, madv_action);
|
|
}
|
|
|
|
static int damon_va_scheme_score(struct damon_ctx *context,
|
|
struct damon_target *t, struct damon_region *r,
|
|
struct damos *scheme)
|
|
{
|
|
|
|
switch (scheme->action) {
|
|
case DAMOS_PAGEOUT:
|
|
return damon_pageout_score(context, r, scheme);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return DAMOS_MAX_SCORE;
|
|
}
|
|
|
|
static int __init damon_va_initcall(void)
|
|
{
|
|
struct damon_operations ops = {
|
|
.id = DAMON_OPS_VADDR,
|
|
.init = damon_va_init,
|
|
.update = damon_va_update,
|
|
.prepare_access_checks = damon_va_prepare_access_checks,
|
|
.check_accesses = damon_va_check_accesses,
|
|
.reset_aggregated = NULL,
|
|
.target_valid = damon_va_target_valid,
|
|
.cleanup = NULL,
|
|
.apply_scheme = damon_va_apply_scheme,
|
|
.get_scheme_score = damon_va_scheme_score,
|
|
};
|
|
/* ops for fixed virtual address ranges */
|
|
struct damon_operations ops_fvaddr = ops;
|
|
int err;
|
|
|
|
/* Don't set the monitoring target regions for the entire mapping */
|
|
ops_fvaddr.id = DAMON_OPS_FVADDR;
|
|
ops_fvaddr.init = NULL;
|
|
ops_fvaddr.update = NULL;
|
|
|
|
err = damon_register_ops(&ops);
|
|
if (err)
|
|
return err;
|
|
return damon_register_ops(&ops_fvaddr);
|
|
};
|
|
|
|
subsys_initcall(damon_va_initcall);
|
|
|
|
#include "vaddr-test.h"
|