mirror of
https://github.com/torvalds/linux.git
synced 2024-12-04 18:13:04 +00:00
d54c5c2487
We need to reserve some commands for device rescans, aborts, and the pass through ioctls, etc. so we cannot give them all to the scsi mid layer. This is in preparation for removing cmd_special_alloc and cmd_special_free so that we can stop queuing commands internally in the driver so that we can remove the locks thta protect the queue that we will no longer have. Reviewed-by: Scott Teel <scott.teel@pmcs.com> Signed-off-by: Don Brace <don.brace@pmcs.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
7632 lines
218 KiB
C
7632 lines
218 KiB
C
/*
|
|
* Disk Array driver for HP Smart Array SAS controllers
|
|
* Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* Questions/Comments/Bugfixes to iss_storagedev@hp.com
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/types.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci-aspm.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/blktrace_api.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/io.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/scsi_device.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <scsi/scsi_tcq.h>
|
|
#include <linux/cciss_ioctl.h>
|
|
#include <linux/string.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/percpu-defs.h>
|
|
#include <linux/percpu.h>
|
|
#include <asm/unaligned.h>
|
|
#include <asm/div64.h>
|
|
#include "hpsa_cmd.h"
|
|
#include "hpsa.h"
|
|
|
|
/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
|
|
#define HPSA_DRIVER_VERSION "3.4.4-1"
|
|
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
|
|
#define HPSA "hpsa"
|
|
|
|
/* How long to wait (in milliseconds) for board to go into simple mode */
|
|
#define MAX_CONFIG_WAIT 30000
|
|
#define MAX_IOCTL_CONFIG_WAIT 1000
|
|
|
|
/*define how many times we will try a command because of bus resets */
|
|
#define MAX_CMD_RETRIES 3
|
|
|
|
/* Embedded module documentation macros - see modules.h */
|
|
MODULE_AUTHOR("Hewlett-Packard Company");
|
|
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
|
|
HPSA_DRIVER_VERSION);
|
|
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
|
|
MODULE_VERSION(HPSA_DRIVER_VERSION);
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static int hpsa_allow_any;
|
|
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
|
|
MODULE_PARM_DESC(hpsa_allow_any,
|
|
"Allow hpsa driver to access unknown HP Smart Array hardware");
|
|
static int hpsa_simple_mode;
|
|
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
|
|
MODULE_PARM_DESC(hpsa_simple_mode,
|
|
"Use 'simple mode' rather than 'performant mode'");
|
|
|
|
/* define the PCI info for the cards we can control */
|
|
static const struct pci_device_id hpsa_pci_device_id[] = {
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
|
|
{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
|
|
{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
|
|
{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
|
|
{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
|
|
{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
|
|
{PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
|
|
PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
|
|
{0,}
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
|
|
|
|
/* board_id = Subsystem Device ID & Vendor ID
|
|
* product = Marketing Name for the board
|
|
* access = Address of the struct of function pointers
|
|
*/
|
|
static struct board_type products[] = {
|
|
{0x3241103C, "Smart Array P212", &SA5_access},
|
|
{0x3243103C, "Smart Array P410", &SA5_access},
|
|
{0x3245103C, "Smart Array P410i", &SA5_access},
|
|
{0x3247103C, "Smart Array P411", &SA5_access},
|
|
{0x3249103C, "Smart Array P812", &SA5_access},
|
|
{0x324A103C, "Smart Array P712m", &SA5_access},
|
|
{0x324B103C, "Smart Array P711m", &SA5_access},
|
|
{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
|
|
{0x3350103C, "Smart Array P222", &SA5_access},
|
|
{0x3351103C, "Smart Array P420", &SA5_access},
|
|
{0x3352103C, "Smart Array P421", &SA5_access},
|
|
{0x3353103C, "Smart Array P822", &SA5_access},
|
|
{0x3354103C, "Smart Array P420i", &SA5_access},
|
|
{0x3355103C, "Smart Array P220i", &SA5_access},
|
|
{0x3356103C, "Smart Array P721m", &SA5_access},
|
|
{0x1921103C, "Smart Array P830i", &SA5_access},
|
|
{0x1922103C, "Smart Array P430", &SA5_access},
|
|
{0x1923103C, "Smart Array P431", &SA5_access},
|
|
{0x1924103C, "Smart Array P830", &SA5_access},
|
|
{0x1926103C, "Smart Array P731m", &SA5_access},
|
|
{0x1928103C, "Smart Array P230i", &SA5_access},
|
|
{0x1929103C, "Smart Array P530", &SA5_access},
|
|
{0x21BD103C, "Smart Array", &SA5_access},
|
|
{0x21BE103C, "Smart Array", &SA5_access},
|
|
{0x21BF103C, "Smart Array", &SA5_access},
|
|
{0x21C0103C, "Smart Array", &SA5_access},
|
|
{0x21C1103C, "Smart Array", &SA5_access},
|
|
{0x21C2103C, "Smart Array", &SA5_access},
|
|
{0x21C3103C, "Smart Array", &SA5_access},
|
|
{0x21C4103C, "Smart Array", &SA5_access},
|
|
{0x21C5103C, "Smart Array", &SA5_access},
|
|
{0x21C6103C, "Smart Array", &SA5_access},
|
|
{0x21C7103C, "Smart Array", &SA5_access},
|
|
{0x21C8103C, "Smart Array", &SA5_access},
|
|
{0x21C9103C, "Smart Array", &SA5_access},
|
|
{0x21CA103C, "Smart Array", &SA5_access},
|
|
{0x21CB103C, "Smart Array", &SA5_access},
|
|
{0x21CC103C, "Smart Array", &SA5_access},
|
|
{0x21CD103C, "Smart Array", &SA5_access},
|
|
{0x21CE103C, "Smart Array", &SA5_access},
|
|
{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
|
|
{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
|
|
{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
|
|
{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
|
|
{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
|
|
{0xFFFF103C, "Unknown Smart Array", &SA5_access},
|
|
};
|
|
|
|
static int number_of_controllers;
|
|
|
|
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
|
|
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
|
|
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
|
|
static void lock_and_start_io(struct ctlr_info *h);
|
|
static void start_io(struct ctlr_info *h, unsigned long *flags);
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
|
|
void __user *arg);
|
|
#endif
|
|
|
|
static void cmd_free(struct ctlr_info *h, struct CommandList *c);
|
|
static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
|
|
static struct CommandList *cmd_alloc(struct ctlr_info *h);
|
|
static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
|
|
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
|
|
void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
|
|
int cmd_type);
|
|
static void hpsa_free_cmd_pool(struct ctlr_info *h);
|
|
#define VPD_PAGE (1 << 8)
|
|
|
|
static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
|
|
static void hpsa_scan_start(struct Scsi_Host *);
|
|
static int hpsa_scan_finished(struct Scsi_Host *sh,
|
|
unsigned long elapsed_time);
|
|
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
|
|
|
|
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
|
|
static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
|
|
static int hpsa_slave_alloc(struct scsi_device *sdev);
|
|
static void hpsa_slave_destroy(struct scsi_device *sdev);
|
|
|
|
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
|
|
static int check_for_unit_attention(struct ctlr_info *h,
|
|
struct CommandList *c);
|
|
static void check_ioctl_unit_attention(struct ctlr_info *h,
|
|
struct CommandList *c);
|
|
/* performant mode helper functions */
|
|
static void calc_bucket_map(int *bucket, int num_buckets,
|
|
int nsgs, int min_blocks, u32 *bucket_map);
|
|
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
|
|
static inline u32 next_command(struct ctlr_info *h, u8 q);
|
|
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
|
|
u32 *cfg_base_addr, u64 *cfg_base_addr_index,
|
|
u64 *cfg_offset);
|
|
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
|
|
unsigned long *memory_bar);
|
|
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
|
|
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
|
|
int wait_for_ready);
|
|
static inline void finish_cmd(struct CommandList *c);
|
|
static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
|
|
#define BOARD_NOT_READY 0
|
|
#define BOARD_READY 1
|
|
static void hpsa_drain_accel_commands(struct ctlr_info *h);
|
|
static void hpsa_flush_cache(struct ctlr_info *h);
|
|
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
|
|
struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
|
|
u8 *scsi3addr);
|
|
|
|
static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
|
|
{
|
|
unsigned long *priv = shost_priv(sdev->host);
|
|
return (struct ctlr_info *) *priv;
|
|
}
|
|
|
|
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
|
|
{
|
|
unsigned long *priv = shost_priv(sh);
|
|
return (struct ctlr_info *) *priv;
|
|
}
|
|
|
|
static int check_for_unit_attention(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
|
|
return 0;
|
|
|
|
switch (c->err_info->SenseInfo[12]) {
|
|
case STATE_CHANGED:
|
|
dev_warn(&h->pdev->dev, HPSA "%d: a state change "
|
|
"detected, command retried\n", h->ctlr);
|
|
break;
|
|
case LUN_FAILED:
|
|
dev_warn(&h->pdev->dev,
|
|
HPSA "%d: LUN failure detected\n", h->ctlr);
|
|
break;
|
|
case REPORT_LUNS_CHANGED:
|
|
dev_warn(&h->pdev->dev,
|
|
HPSA "%d: report LUN data changed\n", h->ctlr);
|
|
/*
|
|
* Note: this REPORT_LUNS_CHANGED condition only occurs on the external
|
|
* target (array) devices.
|
|
*/
|
|
break;
|
|
case POWER_OR_RESET:
|
|
dev_warn(&h->pdev->dev, HPSA "%d: a power on "
|
|
"or device reset detected\n", h->ctlr);
|
|
break;
|
|
case UNIT_ATTENTION_CLEARED:
|
|
dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
|
|
"cleared by another initiator\n", h->ctlr);
|
|
break;
|
|
default:
|
|
dev_warn(&h->pdev->dev, HPSA "%d: unknown "
|
|
"unit attention detected\n", h->ctlr);
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
|
|
{
|
|
if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
|
|
(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
|
|
c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
|
|
return 0;
|
|
dev_warn(&h->pdev->dev, HPSA "device busy");
|
|
return 1;
|
|
}
|
|
|
|
static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int status, len;
|
|
struct ctlr_info *h;
|
|
struct Scsi_Host *shost = class_to_shost(dev);
|
|
char tmpbuf[10];
|
|
|
|
if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
|
|
return -EACCES;
|
|
len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
|
|
strncpy(tmpbuf, buf, len);
|
|
tmpbuf[len] = '\0';
|
|
if (sscanf(tmpbuf, "%d", &status) != 1)
|
|
return -EINVAL;
|
|
h = shost_to_hba(shost);
|
|
h->acciopath_status = !!status;
|
|
dev_warn(&h->pdev->dev,
|
|
"hpsa: HP SSD Smart Path %s via sysfs update.\n",
|
|
h->acciopath_status ? "enabled" : "disabled");
|
|
return count;
|
|
}
|
|
|
|
static ssize_t host_store_raid_offload_debug(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int debug_level, len;
|
|
struct ctlr_info *h;
|
|
struct Scsi_Host *shost = class_to_shost(dev);
|
|
char tmpbuf[10];
|
|
|
|
if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
|
|
return -EACCES;
|
|
len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
|
|
strncpy(tmpbuf, buf, len);
|
|
tmpbuf[len] = '\0';
|
|
if (sscanf(tmpbuf, "%d", &debug_level) != 1)
|
|
return -EINVAL;
|
|
if (debug_level < 0)
|
|
debug_level = 0;
|
|
h = shost_to_hba(shost);
|
|
h->raid_offload_debug = debug_level;
|
|
dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
|
|
h->raid_offload_debug);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t host_store_rescan(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct ctlr_info *h;
|
|
struct Scsi_Host *shost = class_to_shost(dev);
|
|
h = shost_to_hba(shost);
|
|
hpsa_scan_start(h->scsi_host);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t host_show_firmware_revision(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct ctlr_info *h;
|
|
struct Scsi_Host *shost = class_to_shost(dev);
|
|
unsigned char *fwrev;
|
|
|
|
h = shost_to_hba(shost);
|
|
if (!h->hba_inquiry_data)
|
|
return 0;
|
|
fwrev = &h->hba_inquiry_data[32];
|
|
return snprintf(buf, 20, "%c%c%c%c\n",
|
|
fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
|
|
}
|
|
|
|
static ssize_t host_show_commands_outstanding(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct Scsi_Host *shost = class_to_shost(dev);
|
|
struct ctlr_info *h = shost_to_hba(shost);
|
|
|
|
return snprintf(buf, 20, "%d\n",
|
|
atomic_read(&h->commands_outstanding));
|
|
}
|
|
|
|
static ssize_t host_show_transport_mode(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct ctlr_info *h;
|
|
struct Scsi_Host *shost = class_to_shost(dev);
|
|
|
|
h = shost_to_hba(shost);
|
|
return snprintf(buf, 20, "%s\n",
|
|
h->transMethod & CFGTBL_Trans_Performant ?
|
|
"performant" : "simple");
|
|
}
|
|
|
|
static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct ctlr_info *h;
|
|
struct Scsi_Host *shost = class_to_shost(dev);
|
|
|
|
h = shost_to_hba(shost);
|
|
return snprintf(buf, 30, "HP SSD Smart Path %s\n",
|
|
(h->acciopath_status == 1) ? "enabled" : "disabled");
|
|
}
|
|
|
|
/* List of controllers which cannot be hard reset on kexec with reset_devices */
|
|
static u32 unresettable_controller[] = {
|
|
0x324a103C, /* Smart Array P712m */
|
|
0x324b103C, /* SmartArray P711m */
|
|
0x3223103C, /* Smart Array P800 */
|
|
0x3234103C, /* Smart Array P400 */
|
|
0x3235103C, /* Smart Array P400i */
|
|
0x3211103C, /* Smart Array E200i */
|
|
0x3212103C, /* Smart Array E200 */
|
|
0x3213103C, /* Smart Array E200i */
|
|
0x3214103C, /* Smart Array E200i */
|
|
0x3215103C, /* Smart Array E200i */
|
|
0x3237103C, /* Smart Array E500 */
|
|
0x323D103C, /* Smart Array P700m */
|
|
0x40800E11, /* Smart Array 5i */
|
|
0x409C0E11, /* Smart Array 6400 */
|
|
0x409D0E11, /* Smart Array 6400 EM */
|
|
0x40700E11, /* Smart Array 5300 */
|
|
0x40820E11, /* Smart Array 532 */
|
|
0x40830E11, /* Smart Array 5312 */
|
|
0x409A0E11, /* Smart Array 641 */
|
|
0x409B0E11, /* Smart Array 642 */
|
|
0x40910E11, /* Smart Array 6i */
|
|
};
|
|
|
|
/* List of controllers which cannot even be soft reset */
|
|
static u32 soft_unresettable_controller[] = {
|
|
0x40800E11, /* Smart Array 5i */
|
|
0x40700E11, /* Smart Array 5300 */
|
|
0x40820E11, /* Smart Array 532 */
|
|
0x40830E11, /* Smart Array 5312 */
|
|
0x409A0E11, /* Smart Array 641 */
|
|
0x409B0E11, /* Smart Array 642 */
|
|
0x40910E11, /* Smart Array 6i */
|
|
/* Exclude 640x boards. These are two pci devices in one slot
|
|
* which share a battery backed cache module. One controls the
|
|
* cache, the other accesses the cache through the one that controls
|
|
* it. If we reset the one controlling the cache, the other will
|
|
* likely not be happy. Just forbid resetting this conjoined mess.
|
|
* The 640x isn't really supported by hpsa anyway.
|
|
*/
|
|
0x409C0E11, /* Smart Array 6400 */
|
|
0x409D0E11, /* Smart Array 6400 EM */
|
|
};
|
|
|
|
static int ctlr_is_hard_resettable(u32 board_id)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
|
|
if (unresettable_controller[i] == board_id)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int ctlr_is_soft_resettable(u32 board_id)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
|
|
if (soft_unresettable_controller[i] == board_id)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int ctlr_is_resettable(u32 board_id)
|
|
{
|
|
return ctlr_is_hard_resettable(board_id) ||
|
|
ctlr_is_soft_resettable(board_id);
|
|
}
|
|
|
|
static ssize_t host_show_resettable(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct ctlr_info *h;
|
|
struct Scsi_Host *shost = class_to_shost(dev);
|
|
|
|
h = shost_to_hba(shost);
|
|
return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
|
|
}
|
|
|
|
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
|
|
{
|
|
return (scsi3addr[3] & 0xC0) == 0x40;
|
|
}
|
|
|
|
static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
|
|
"1(+0)ADM", "UNKNOWN"
|
|
};
|
|
#define HPSA_RAID_0 0
|
|
#define HPSA_RAID_4 1
|
|
#define HPSA_RAID_1 2 /* also used for RAID 10 */
|
|
#define HPSA_RAID_5 3 /* also used for RAID 50 */
|
|
#define HPSA_RAID_51 4
|
|
#define HPSA_RAID_6 5 /* also used for RAID 60 */
|
|
#define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
|
|
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
|
|
|
|
static ssize_t raid_level_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
ssize_t l = 0;
|
|
unsigned char rlevel;
|
|
struct ctlr_info *h;
|
|
struct scsi_device *sdev;
|
|
struct hpsa_scsi_dev_t *hdev;
|
|
unsigned long flags;
|
|
|
|
sdev = to_scsi_device(dev);
|
|
h = sdev_to_hba(sdev);
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
hdev = sdev->hostdata;
|
|
if (!hdev) {
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Is this even a logical drive? */
|
|
if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
l = snprintf(buf, PAGE_SIZE, "N/A\n");
|
|
return l;
|
|
}
|
|
|
|
rlevel = hdev->raid_level;
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
if (rlevel > RAID_UNKNOWN)
|
|
rlevel = RAID_UNKNOWN;
|
|
l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
|
|
return l;
|
|
}
|
|
|
|
static ssize_t lunid_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct ctlr_info *h;
|
|
struct scsi_device *sdev;
|
|
struct hpsa_scsi_dev_t *hdev;
|
|
unsigned long flags;
|
|
unsigned char lunid[8];
|
|
|
|
sdev = to_scsi_device(dev);
|
|
h = sdev_to_hba(sdev);
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
hdev = sdev->hostdata;
|
|
if (!hdev) {
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return -ENODEV;
|
|
}
|
|
memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
|
|
lunid[0], lunid[1], lunid[2], lunid[3],
|
|
lunid[4], lunid[5], lunid[6], lunid[7]);
|
|
}
|
|
|
|
static ssize_t unique_id_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct ctlr_info *h;
|
|
struct scsi_device *sdev;
|
|
struct hpsa_scsi_dev_t *hdev;
|
|
unsigned long flags;
|
|
unsigned char sn[16];
|
|
|
|
sdev = to_scsi_device(dev);
|
|
h = sdev_to_hba(sdev);
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
hdev = sdev->hostdata;
|
|
if (!hdev) {
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return -ENODEV;
|
|
}
|
|
memcpy(sn, hdev->device_id, sizeof(sn));
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return snprintf(buf, 16 * 2 + 2,
|
|
"%02X%02X%02X%02X%02X%02X%02X%02X"
|
|
"%02X%02X%02X%02X%02X%02X%02X%02X\n",
|
|
sn[0], sn[1], sn[2], sn[3],
|
|
sn[4], sn[5], sn[6], sn[7],
|
|
sn[8], sn[9], sn[10], sn[11],
|
|
sn[12], sn[13], sn[14], sn[15]);
|
|
}
|
|
|
|
static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct ctlr_info *h;
|
|
struct scsi_device *sdev;
|
|
struct hpsa_scsi_dev_t *hdev;
|
|
unsigned long flags;
|
|
int offload_enabled;
|
|
|
|
sdev = to_scsi_device(dev);
|
|
h = sdev_to_hba(sdev);
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
hdev = sdev->hostdata;
|
|
if (!hdev) {
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return -ENODEV;
|
|
}
|
|
offload_enabled = hdev->offload_enabled;
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return snprintf(buf, 20, "%d\n", offload_enabled);
|
|
}
|
|
|
|
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
|
|
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
|
|
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
|
|
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
|
|
static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
|
|
host_show_hp_ssd_smart_path_enabled, NULL);
|
|
static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
|
|
host_show_hp_ssd_smart_path_status,
|
|
host_store_hp_ssd_smart_path_status);
|
|
static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
|
|
host_store_raid_offload_debug);
|
|
static DEVICE_ATTR(firmware_revision, S_IRUGO,
|
|
host_show_firmware_revision, NULL);
|
|
static DEVICE_ATTR(commands_outstanding, S_IRUGO,
|
|
host_show_commands_outstanding, NULL);
|
|
static DEVICE_ATTR(transport_mode, S_IRUGO,
|
|
host_show_transport_mode, NULL);
|
|
static DEVICE_ATTR(resettable, S_IRUGO,
|
|
host_show_resettable, NULL);
|
|
|
|
static struct device_attribute *hpsa_sdev_attrs[] = {
|
|
&dev_attr_raid_level,
|
|
&dev_attr_lunid,
|
|
&dev_attr_unique_id,
|
|
&dev_attr_hp_ssd_smart_path_enabled,
|
|
NULL,
|
|
};
|
|
|
|
static struct device_attribute *hpsa_shost_attrs[] = {
|
|
&dev_attr_rescan,
|
|
&dev_attr_firmware_revision,
|
|
&dev_attr_commands_outstanding,
|
|
&dev_attr_transport_mode,
|
|
&dev_attr_resettable,
|
|
&dev_attr_hp_ssd_smart_path_status,
|
|
&dev_attr_raid_offload_debug,
|
|
NULL,
|
|
};
|
|
|
|
static struct scsi_host_template hpsa_driver_template = {
|
|
.module = THIS_MODULE,
|
|
.name = HPSA,
|
|
.proc_name = HPSA,
|
|
.queuecommand = hpsa_scsi_queue_command,
|
|
.scan_start = hpsa_scan_start,
|
|
.scan_finished = hpsa_scan_finished,
|
|
.change_queue_depth = hpsa_change_queue_depth,
|
|
.this_id = -1,
|
|
.use_clustering = ENABLE_CLUSTERING,
|
|
.eh_abort_handler = hpsa_eh_abort_handler,
|
|
.eh_device_reset_handler = hpsa_eh_device_reset_handler,
|
|
.ioctl = hpsa_ioctl,
|
|
.slave_alloc = hpsa_slave_alloc,
|
|
.slave_destroy = hpsa_slave_destroy,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = hpsa_compat_ioctl,
|
|
#endif
|
|
.sdev_attrs = hpsa_sdev_attrs,
|
|
.shost_attrs = hpsa_shost_attrs,
|
|
.max_sectors = 8192,
|
|
.no_write_same = 1,
|
|
};
|
|
|
|
|
|
/* Enqueuing and dequeuing functions for cmdlists. */
|
|
static inline void addQ(struct list_head *list, struct CommandList *c)
|
|
{
|
|
list_add_tail(&c->list, list);
|
|
}
|
|
|
|
static inline u32 next_command(struct ctlr_info *h, u8 q)
|
|
{
|
|
u32 a;
|
|
struct reply_queue_buffer *rq = &h->reply_queue[q];
|
|
|
|
if (h->transMethod & CFGTBL_Trans_io_accel1)
|
|
return h->access.command_completed(h, q);
|
|
|
|
if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
|
|
return h->access.command_completed(h, q);
|
|
|
|
if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
|
|
a = rq->head[rq->current_entry];
|
|
rq->current_entry++;
|
|
atomic_dec(&h->commands_outstanding);
|
|
} else {
|
|
a = FIFO_EMPTY;
|
|
}
|
|
/* Check for wraparound */
|
|
if (rq->current_entry == h->max_commands) {
|
|
rq->current_entry = 0;
|
|
rq->wraparound ^= 1;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* There are some special bits in the bus address of the
|
|
* command that we have to set for the controller to know
|
|
* how to process the command:
|
|
*
|
|
* Normal performant mode:
|
|
* bit 0: 1 means performant mode, 0 means simple mode.
|
|
* bits 1-3 = block fetch table entry
|
|
* bits 4-6 = command type (== 0)
|
|
*
|
|
* ioaccel1 mode:
|
|
* bit 0 = "performant mode" bit.
|
|
* bits 1-3 = block fetch table entry
|
|
* bits 4-6 = command type (== 110)
|
|
* (command type is needed because ioaccel1 mode
|
|
* commands are submitted through the same register as normal
|
|
* mode commands, so this is how the controller knows whether
|
|
* the command is normal mode or ioaccel1 mode.)
|
|
*
|
|
* ioaccel2 mode:
|
|
* bit 0 = "performant mode" bit.
|
|
* bits 1-4 = block fetch table entry (note extra bit)
|
|
* bits 4-6 = not needed, because ioaccel2 mode has
|
|
* a separate special register for submitting commands.
|
|
*/
|
|
|
|
/* set_performant_mode: Modify the tag for cciss performant
|
|
* set bit 0 for pull model, bits 3-1 for block fetch
|
|
* register number
|
|
*/
|
|
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
|
|
{
|
|
if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
|
|
c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
|
|
if (likely(h->msix_vector > 0))
|
|
c->Header.ReplyQueue =
|
|
raw_smp_processor_id() % h->nreply_queues;
|
|
}
|
|
}
|
|
|
|
static void set_ioaccel1_performant_mode(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
|
|
|
|
/* Tell the controller to post the reply to the queue for this
|
|
* processor. This seems to give the best I/O throughput.
|
|
*/
|
|
cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
|
|
/* Set the bits in the address sent down to include:
|
|
* - performant mode bit (bit 0)
|
|
* - pull count (bits 1-3)
|
|
* - command type (bits 4-6)
|
|
*/
|
|
c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
|
|
IOACCEL1_BUSADDR_CMDTYPE;
|
|
}
|
|
|
|
static void set_ioaccel2_performant_mode(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
|
|
|
|
/* Tell the controller to post the reply to the queue for this
|
|
* processor. This seems to give the best I/O throughput.
|
|
*/
|
|
cp->reply_queue = smp_processor_id() % h->nreply_queues;
|
|
/* Set the bits in the address sent down to include:
|
|
* - performant mode bit not used in ioaccel mode 2
|
|
* - pull count (bits 0-3)
|
|
* - command type isn't needed for ioaccel2
|
|
*/
|
|
c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
|
|
}
|
|
|
|
static int is_firmware_flash_cmd(u8 *cdb)
|
|
{
|
|
return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
|
|
}
|
|
|
|
/*
|
|
* During firmware flash, the heartbeat register may not update as frequently
|
|
* as it should. So we dial down lockup detection during firmware flash. and
|
|
* dial it back up when firmware flash completes.
|
|
*/
|
|
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
|
|
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
|
|
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
if (!is_firmware_flash_cmd(c->Request.CDB))
|
|
return;
|
|
atomic_inc(&h->firmware_flash_in_progress);
|
|
h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
|
|
}
|
|
|
|
static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
if (is_firmware_flash_cmd(c->Request.CDB) &&
|
|
atomic_dec_and_test(&h->firmware_flash_in_progress))
|
|
h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
|
|
}
|
|
|
|
static void enqueue_cmd_and_start_io(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
unsigned long flags;
|
|
|
|
switch (c->cmd_type) {
|
|
case CMD_IOACCEL1:
|
|
set_ioaccel1_performant_mode(h, c);
|
|
break;
|
|
case CMD_IOACCEL2:
|
|
set_ioaccel2_performant_mode(h, c);
|
|
break;
|
|
default:
|
|
set_performant_mode(h, c);
|
|
}
|
|
dial_down_lockup_detection_during_fw_flash(h, c);
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
addQ(&h->reqQ, c);
|
|
h->Qdepth++;
|
|
start_io(h, &flags);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
}
|
|
|
|
static inline void removeQ(struct CommandList *c)
|
|
{
|
|
if (WARN_ON(list_empty(&c->list)))
|
|
return;
|
|
list_del_init(&c->list);
|
|
}
|
|
|
|
static inline int is_hba_lunid(unsigned char scsi3addr[])
|
|
{
|
|
return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
|
|
}
|
|
|
|
static inline int is_scsi_rev_5(struct ctlr_info *h)
|
|
{
|
|
if (!h->hba_inquiry_data)
|
|
return 0;
|
|
if ((h->hba_inquiry_data[2] & 0x07) == 5)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int hpsa_find_target_lun(struct ctlr_info *h,
|
|
unsigned char scsi3addr[], int bus, int *target, int *lun)
|
|
{
|
|
/* finds an unused bus, target, lun for a new physical device
|
|
* assumes h->devlock is held
|
|
*/
|
|
int i, found = 0;
|
|
DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
|
|
|
|
bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
|
|
|
|
for (i = 0; i < h->ndevices; i++) {
|
|
if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
|
|
__set_bit(h->dev[i]->target, lun_taken);
|
|
}
|
|
|
|
i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
|
|
if (i < HPSA_MAX_DEVICES) {
|
|
/* *bus = 1; */
|
|
*target = i;
|
|
*lun = 0;
|
|
found = 1;
|
|
}
|
|
return !found;
|
|
}
|
|
|
|
/* Add an entry into h->dev[] array. */
|
|
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
|
|
struct hpsa_scsi_dev_t *device,
|
|
struct hpsa_scsi_dev_t *added[], int *nadded)
|
|
{
|
|
/* assumes h->devlock is held */
|
|
int n = h->ndevices;
|
|
int i;
|
|
unsigned char addr1[8], addr2[8];
|
|
struct hpsa_scsi_dev_t *sd;
|
|
|
|
if (n >= HPSA_MAX_DEVICES) {
|
|
dev_err(&h->pdev->dev, "too many devices, some will be "
|
|
"inaccessible.\n");
|
|
return -1;
|
|
}
|
|
|
|
/* physical devices do not have lun or target assigned until now. */
|
|
if (device->lun != -1)
|
|
/* Logical device, lun is already assigned. */
|
|
goto lun_assigned;
|
|
|
|
/* If this device a non-zero lun of a multi-lun device
|
|
* byte 4 of the 8-byte LUN addr will contain the logical
|
|
* unit no, zero otherwise.
|
|
*/
|
|
if (device->scsi3addr[4] == 0) {
|
|
/* This is not a non-zero lun of a multi-lun device */
|
|
if (hpsa_find_target_lun(h, device->scsi3addr,
|
|
device->bus, &device->target, &device->lun) != 0)
|
|
return -1;
|
|
goto lun_assigned;
|
|
}
|
|
|
|
/* This is a non-zero lun of a multi-lun device.
|
|
* Search through our list and find the device which
|
|
* has the same 8 byte LUN address, excepting byte 4.
|
|
* Assign the same bus and target for this new LUN.
|
|
* Use the logical unit number from the firmware.
|
|
*/
|
|
memcpy(addr1, device->scsi3addr, 8);
|
|
addr1[4] = 0;
|
|
for (i = 0; i < n; i++) {
|
|
sd = h->dev[i];
|
|
memcpy(addr2, sd->scsi3addr, 8);
|
|
addr2[4] = 0;
|
|
/* differ only in byte 4? */
|
|
if (memcmp(addr1, addr2, 8) == 0) {
|
|
device->bus = sd->bus;
|
|
device->target = sd->target;
|
|
device->lun = device->scsi3addr[4];
|
|
break;
|
|
}
|
|
}
|
|
if (device->lun == -1) {
|
|
dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
|
|
" suspect firmware bug or unsupported hardware "
|
|
"configuration.\n");
|
|
return -1;
|
|
}
|
|
|
|
lun_assigned:
|
|
|
|
h->dev[n] = device;
|
|
h->ndevices++;
|
|
added[*nadded] = device;
|
|
(*nadded)++;
|
|
|
|
/* initially, (before registering with scsi layer) we don't
|
|
* know our hostno and we don't want to print anything first
|
|
* time anyway (the scsi layer's inquiries will show that info)
|
|
*/
|
|
/* if (hostno != -1) */
|
|
dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
|
|
scsi_device_type(device->devtype), hostno,
|
|
device->bus, device->target, device->lun);
|
|
return 0;
|
|
}
|
|
|
|
/* Update an entry in h->dev[] array. */
|
|
static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
|
|
int entry, struct hpsa_scsi_dev_t *new_entry)
|
|
{
|
|
/* assumes h->devlock is held */
|
|
BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
|
|
|
|
/* Raid level changed. */
|
|
h->dev[entry]->raid_level = new_entry->raid_level;
|
|
|
|
/* Raid offload parameters changed. */
|
|
h->dev[entry]->offload_config = new_entry->offload_config;
|
|
h->dev[entry]->offload_enabled = new_entry->offload_enabled;
|
|
h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
|
|
h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
|
|
h->dev[entry]->raid_map = new_entry->raid_map;
|
|
|
|
dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
|
|
scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
|
|
new_entry->target, new_entry->lun);
|
|
}
|
|
|
|
/* Replace an entry from h->dev[] array. */
|
|
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
|
|
int entry, struct hpsa_scsi_dev_t *new_entry,
|
|
struct hpsa_scsi_dev_t *added[], int *nadded,
|
|
struct hpsa_scsi_dev_t *removed[], int *nremoved)
|
|
{
|
|
/* assumes h->devlock is held */
|
|
BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
|
|
removed[*nremoved] = h->dev[entry];
|
|
(*nremoved)++;
|
|
|
|
/*
|
|
* New physical devices won't have target/lun assigned yet
|
|
* so we need to preserve the values in the slot we are replacing.
|
|
*/
|
|
if (new_entry->target == -1) {
|
|
new_entry->target = h->dev[entry]->target;
|
|
new_entry->lun = h->dev[entry]->lun;
|
|
}
|
|
|
|
h->dev[entry] = new_entry;
|
|
added[*nadded] = new_entry;
|
|
(*nadded)++;
|
|
dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
|
|
scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
|
|
new_entry->target, new_entry->lun);
|
|
}
|
|
|
|
/* Remove an entry from h->dev[] array. */
|
|
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
|
|
struct hpsa_scsi_dev_t *removed[], int *nremoved)
|
|
{
|
|
/* assumes h->devlock is held */
|
|
int i;
|
|
struct hpsa_scsi_dev_t *sd;
|
|
|
|
BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
|
|
|
|
sd = h->dev[entry];
|
|
removed[*nremoved] = h->dev[entry];
|
|
(*nremoved)++;
|
|
|
|
for (i = entry; i < h->ndevices-1; i++)
|
|
h->dev[i] = h->dev[i+1];
|
|
h->ndevices--;
|
|
dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
|
|
scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
|
|
sd->lun);
|
|
}
|
|
|
|
#define SCSI3ADDR_EQ(a, b) ( \
|
|
(a)[7] == (b)[7] && \
|
|
(a)[6] == (b)[6] && \
|
|
(a)[5] == (b)[5] && \
|
|
(a)[4] == (b)[4] && \
|
|
(a)[3] == (b)[3] && \
|
|
(a)[2] == (b)[2] && \
|
|
(a)[1] == (b)[1] && \
|
|
(a)[0] == (b)[0])
|
|
|
|
static void fixup_botched_add(struct ctlr_info *h,
|
|
struct hpsa_scsi_dev_t *added)
|
|
{
|
|
/* called when scsi_add_device fails in order to re-adjust
|
|
* h->dev[] to match the mid layer's view.
|
|
*/
|
|
unsigned long flags;
|
|
int i, j;
|
|
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
for (i = 0; i < h->ndevices; i++) {
|
|
if (h->dev[i] == added) {
|
|
for (j = i; j < h->ndevices-1; j++)
|
|
h->dev[j] = h->dev[j+1];
|
|
h->ndevices--;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
kfree(added);
|
|
}
|
|
|
|
static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
|
|
struct hpsa_scsi_dev_t *dev2)
|
|
{
|
|
/* we compare everything except lun and target as these
|
|
* are not yet assigned. Compare parts likely
|
|
* to differ first
|
|
*/
|
|
if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
|
|
sizeof(dev1->scsi3addr)) != 0)
|
|
return 0;
|
|
if (memcmp(dev1->device_id, dev2->device_id,
|
|
sizeof(dev1->device_id)) != 0)
|
|
return 0;
|
|
if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
|
|
return 0;
|
|
if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
|
|
return 0;
|
|
if (dev1->devtype != dev2->devtype)
|
|
return 0;
|
|
if (dev1->bus != dev2->bus)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
|
|
struct hpsa_scsi_dev_t *dev2)
|
|
{
|
|
/* Device attributes that can change, but don't mean
|
|
* that the device is a different device, nor that the OS
|
|
* needs to be told anything about the change.
|
|
*/
|
|
if (dev1->raid_level != dev2->raid_level)
|
|
return 1;
|
|
if (dev1->offload_config != dev2->offload_config)
|
|
return 1;
|
|
if (dev1->offload_enabled != dev2->offload_enabled)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Find needle in haystack. If exact match found, return DEVICE_SAME,
|
|
* and return needle location in *index. If scsi3addr matches, but not
|
|
* vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
|
|
* location in *index.
|
|
* In the case of a minor device attribute change, such as RAID level, just
|
|
* return DEVICE_UPDATED, along with the updated device's location in index.
|
|
* If needle not found, return DEVICE_NOT_FOUND.
|
|
*/
|
|
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
|
|
struct hpsa_scsi_dev_t *haystack[], int haystack_size,
|
|
int *index)
|
|
{
|
|
int i;
|
|
#define DEVICE_NOT_FOUND 0
|
|
#define DEVICE_CHANGED 1
|
|
#define DEVICE_SAME 2
|
|
#define DEVICE_UPDATED 3
|
|
for (i = 0; i < haystack_size; i++) {
|
|
if (haystack[i] == NULL) /* previously removed. */
|
|
continue;
|
|
if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
|
|
*index = i;
|
|
if (device_is_the_same(needle, haystack[i])) {
|
|
if (device_updated(needle, haystack[i]))
|
|
return DEVICE_UPDATED;
|
|
return DEVICE_SAME;
|
|
} else {
|
|
/* Keep offline devices offline */
|
|
if (needle->volume_offline)
|
|
return DEVICE_NOT_FOUND;
|
|
return DEVICE_CHANGED;
|
|
}
|
|
}
|
|
}
|
|
*index = -1;
|
|
return DEVICE_NOT_FOUND;
|
|
}
|
|
|
|
static void hpsa_monitor_offline_device(struct ctlr_info *h,
|
|
unsigned char scsi3addr[])
|
|
{
|
|
struct offline_device_entry *device;
|
|
unsigned long flags;
|
|
|
|
/* Check to see if device is already on the list */
|
|
spin_lock_irqsave(&h->offline_device_lock, flags);
|
|
list_for_each_entry(device, &h->offline_device_list, offline_list) {
|
|
if (memcmp(device->scsi3addr, scsi3addr,
|
|
sizeof(device->scsi3addr)) == 0) {
|
|
spin_unlock_irqrestore(&h->offline_device_lock, flags);
|
|
return;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&h->offline_device_lock, flags);
|
|
|
|
/* Device is not on the list, add it. */
|
|
device = kmalloc(sizeof(*device), GFP_KERNEL);
|
|
if (!device) {
|
|
dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
|
|
return;
|
|
}
|
|
memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
|
|
spin_lock_irqsave(&h->offline_device_lock, flags);
|
|
list_add_tail(&device->offline_list, &h->offline_device_list);
|
|
spin_unlock_irqrestore(&h->offline_device_lock, flags);
|
|
}
|
|
|
|
/* Print a message explaining various offline volume states */
|
|
static void hpsa_show_volume_status(struct ctlr_info *h,
|
|
struct hpsa_scsi_dev_t *sd)
|
|
{
|
|
if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
|
|
dev_info(&h->pdev->dev,
|
|
"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
|
|
h->scsi_host->host_no,
|
|
sd->bus, sd->target, sd->lun);
|
|
switch (sd->volume_offline) {
|
|
case HPSA_LV_OK:
|
|
break;
|
|
case HPSA_LV_UNDERGOING_ERASE:
|
|
dev_info(&h->pdev->dev,
|
|
"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
|
|
h->scsi_host->host_no,
|
|
sd->bus, sd->target, sd->lun);
|
|
break;
|
|
case HPSA_LV_UNDERGOING_RPI:
|
|
dev_info(&h->pdev->dev,
|
|
"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
|
|
h->scsi_host->host_no,
|
|
sd->bus, sd->target, sd->lun);
|
|
break;
|
|
case HPSA_LV_PENDING_RPI:
|
|
dev_info(&h->pdev->dev,
|
|
"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
|
|
h->scsi_host->host_no,
|
|
sd->bus, sd->target, sd->lun);
|
|
break;
|
|
case HPSA_LV_ENCRYPTED_NO_KEY:
|
|
dev_info(&h->pdev->dev,
|
|
"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
|
|
h->scsi_host->host_no,
|
|
sd->bus, sd->target, sd->lun);
|
|
break;
|
|
case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
|
|
dev_info(&h->pdev->dev,
|
|
"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
|
|
h->scsi_host->host_no,
|
|
sd->bus, sd->target, sd->lun);
|
|
break;
|
|
case HPSA_LV_UNDERGOING_ENCRYPTION:
|
|
dev_info(&h->pdev->dev,
|
|
"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
|
|
h->scsi_host->host_no,
|
|
sd->bus, sd->target, sd->lun);
|
|
break;
|
|
case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
|
|
dev_info(&h->pdev->dev,
|
|
"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
|
|
h->scsi_host->host_no,
|
|
sd->bus, sd->target, sd->lun);
|
|
break;
|
|
case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
|
|
dev_info(&h->pdev->dev,
|
|
"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
|
|
h->scsi_host->host_no,
|
|
sd->bus, sd->target, sd->lun);
|
|
break;
|
|
case HPSA_LV_PENDING_ENCRYPTION:
|
|
dev_info(&h->pdev->dev,
|
|
"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
|
|
h->scsi_host->host_no,
|
|
sd->bus, sd->target, sd->lun);
|
|
break;
|
|
case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
|
|
dev_info(&h->pdev->dev,
|
|
"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
|
|
h->scsi_host->host_no,
|
|
sd->bus, sd->target, sd->lun);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
|
|
struct hpsa_scsi_dev_t *sd[], int nsds)
|
|
{
|
|
/* sd contains scsi3 addresses and devtypes, and inquiry
|
|
* data. This function takes what's in sd to be the current
|
|
* reality and updates h->dev[] to reflect that reality.
|
|
*/
|
|
int i, entry, device_change, changes = 0;
|
|
struct hpsa_scsi_dev_t *csd;
|
|
unsigned long flags;
|
|
struct hpsa_scsi_dev_t **added, **removed;
|
|
int nadded, nremoved;
|
|
struct Scsi_Host *sh = NULL;
|
|
|
|
added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
|
|
removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
|
|
|
|
if (!added || !removed) {
|
|
dev_warn(&h->pdev->dev, "out of memory in "
|
|
"adjust_hpsa_scsi_table\n");
|
|
goto free_and_out;
|
|
}
|
|
|
|
spin_lock_irqsave(&h->devlock, flags);
|
|
|
|
/* find any devices in h->dev[] that are not in
|
|
* sd[] and remove them from h->dev[], and for any
|
|
* devices which have changed, remove the old device
|
|
* info and add the new device info.
|
|
* If minor device attributes change, just update
|
|
* the existing device structure.
|
|
*/
|
|
i = 0;
|
|
nremoved = 0;
|
|
nadded = 0;
|
|
while (i < h->ndevices) {
|
|
csd = h->dev[i];
|
|
device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
|
|
if (device_change == DEVICE_NOT_FOUND) {
|
|
changes++;
|
|
hpsa_scsi_remove_entry(h, hostno, i,
|
|
removed, &nremoved);
|
|
continue; /* remove ^^^, hence i not incremented */
|
|
} else if (device_change == DEVICE_CHANGED) {
|
|
changes++;
|
|
hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
|
|
added, &nadded, removed, &nremoved);
|
|
/* Set it to NULL to prevent it from being freed
|
|
* at the bottom of hpsa_update_scsi_devices()
|
|
*/
|
|
sd[entry] = NULL;
|
|
} else if (device_change == DEVICE_UPDATED) {
|
|
hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
|
|
}
|
|
i++;
|
|
}
|
|
|
|
/* Now, make sure every device listed in sd[] is also
|
|
* listed in h->dev[], adding them if they aren't found
|
|
*/
|
|
|
|
for (i = 0; i < nsds; i++) {
|
|
if (!sd[i]) /* if already added above. */
|
|
continue;
|
|
|
|
/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
|
|
* as the SCSI mid-layer does not handle such devices well.
|
|
* It relentlessly loops sending TUR at 3Hz, then READ(10)
|
|
* at 160Hz, and prevents the system from coming up.
|
|
*/
|
|
if (sd[i]->volume_offline) {
|
|
hpsa_show_volume_status(h, sd[i]);
|
|
dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
|
|
h->scsi_host->host_no,
|
|
sd[i]->bus, sd[i]->target, sd[i]->lun);
|
|
continue;
|
|
}
|
|
|
|
device_change = hpsa_scsi_find_entry(sd[i], h->dev,
|
|
h->ndevices, &entry);
|
|
if (device_change == DEVICE_NOT_FOUND) {
|
|
changes++;
|
|
if (hpsa_scsi_add_entry(h, hostno, sd[i],
|
|
added, &nadded) != 0)
|
|
break;
|
|
sd[i] = NULL; /* prevent from being freed later. */
|
|
} else if (device_change == DEVICE_CHANGED) {
|
|
/* should never happen... */
|
|
changes++;
|
|
dev_warn(&h->pdev->dev,
|
|
"device unexpectedly changed.\n");
|
|
/* but if it does happen, we just ignore that device */
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&h->devlock, flags);
|
|
|
|
/* Monitor devices which are in one of several NOT READY states to be
|
|
* brought online later. This must be done without holding h->devlock,
|
|
* so don't touch h->dev[]
|
|
*/
|
|
for (i = 0; i < nsds; i++) {
|
|
if (!sd[i]) /* if already added above. */
|
|
continue;
|
|
if (sd[i]->volume_offline)
|
|
hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
|
|
}
|
|
|
|
/* Don't notify scsi mid layer of any changes the first time through
|
|
* (or if there are no changes) scsi_scan_host will do it later the
|
|
* first time through.
|
|
*/
|
|
if (hostno == -1 || !changes)
|
|
goto free_and_out;
|
|
|
|
sh = h->scsi_host;
|
|
/* Notify scsi mid layer of any removed devices */
|
|
for (i = 0; i < nremoved; i++) {
|
|
struct scsi_device *sdev =
|
|
scsi_device_lookup(sh, removed[i]->bus,
|
|
removed[i]->target, removed[i]->lun);
|
|
if (sdev != NULL) {
|
|
scsi_remove_device(sdev);
|
|
scsi_device_put(sdev);
|
|
} else {
|
|
/* We don't expect to get here.
|
|
* future cmds to this device will get selection
|
|
* timeout as if the device was gone.
|
|
*/
|
|
dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
|
|
" for removal.", hostno, removed[i]->bus,
|
|
removed[i]->target, removed[i]->lun);
|
|
}
|
|
kfree(removed[i]);
|
|
removed[i] = NULL;
|
|
}
|
|
|
|
/* Notify scsi mid layer of any added devices */
|
|
for (i = 0; i < nadded; i++) {
|
|
if (scsi_add_device(sh, added[i]->bus,
|
|
added[i]->target, added[i]->lun) == 0)
|
|
continue;
|
|
dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
|
|
"device not added.\n", hostno, added[i]->bus,
|
|
added[i]->target, added[i]->lun);
|
|
/* now we have to remove it from h->dev,
|
|
* since it didn't get added to scsi mid layer
|
|
*/
|
|
fixup_botched_add(h, added[i]);
|
|
}
|
|
|
|
free_and_out:
|
|
kfree(added);
|
|
kfree(removed);
|
|
}
|
|
|
|
/*
|
|
* Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
|
|
* Assume's h->devlock is held.
|
|
*/
|
|
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
|
|
int bus, int target, int lun)
|
|
{
|
|
int i;
|
|
struct hpsa_scsi_dev_t *sd;
|
|
|
|
for (i = 0; i < h->ndevices; i++) {
|
|
sd = h->dev[i];
|
|
if (sd->bus == bus && sd->target == target && sd->lun == lun)
|
|
return sd;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* link sdev->hostdata to our per-device structure. */
|
|
static int hpsa_slave_alloc(struct scsi_device *sdev)
|
|
{
|
|
struct hpsa_scsi_dev_t *sd;
|
|
unsigned long flags;
|
|
struct ctlr_info *h;
|
|
|
|
h = sdev_to_hba(sdev);
|
|
spin_lock_irqsave(&h->devlock, flags);
|
|
sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
|
|
sdev_id(sdev), sdev->lun);
|
|
if (sd != NULL)
|
|
sdev->hostdata = sd;
|
|
spin_unlock_irqrestore(&h->devlock, flags);
|
|
return 0;
|
|
}
|
|
|
|
static void hpsa_slave_destroy(struct scsi_device *sdev)
|
|
{
|
|
/* nothing to do. */
|
|
}
|
|
|
|
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
|
|
{
|
|
int i;
|
|
|
|
if (!h->cmd_sg_list)
|
|
return;
|
|
for (i = 0; i < h->nr_cmds; i++) {
|
|
kfree(h->cmd_sg_list[i]);
|
|
h->cmd_sg_list[i] = NULL;
|
|
}
|
|
kfree(h->cmd_sg_list);
|
|
h->cmd_sg_list = NULL;
|
|
}
|
|
|
|
static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
|
|
{
|
|
int i;
|
|
|
|
if (h->chainsize <= 0)
|
|
return 0;
|
|
|
|
h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
|
|
GFP_KERNEL);
|
|
if (!h->cmd_sg_list) {
|
|
dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
|
|
return -ENOMEM;
|
|
}
|
|
for (i = 0; i < h->nr_cmds; i++) {
|
|
h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
|
|
h->chainsize, GFP_KERNEL);
|
|
if (!h->cmd_sg_list[i]) {
|
|
dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
|
|
goto clean;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
clean:
|
|
hpsa_free_sg_chain_blocks(h);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int hpsa_map_sg_chain_block(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
struct SGDescriptor *chain_sg, *chain_block;
|
|
u64 temp64;
|
|
u32 chain_len;
|
|
|
|
chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
|
|
chain_block = h->cmd_sg_list[c->cmdindex];
|
|
chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
|
|
chain_len = sizeof(*chain_sg) *
|
|
(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
|
|
chain_sg->Len = cpu_to_le32(chain_len);
|
|
temp64 = pci_map_single(h->pdev, chain_block, chain_len,
|
|
PCI_DMA_TODEVICE);
|
|
if (dma_mapping_error(&h->pdev->dev, temp64)) {
|
|
/* prevent subsequent unmapping */
|
|
chain_sg->Addr = cpu_to_le64(0);
|
|
return -1;
|
|
}
|
|
chain_sg->Addr = cpu_to_le64(temp64);
|
|
return 0;
|
|
}
|
|
|
|
static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
struct SGDescriptor *chain_sg;
|
|
|
|
if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
|
|
return;
|
|
|
|
chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
|
|
pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
|
|
le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
|
|
}
|
|
|
|
|
|
/* Decode the various types of errors on ioaccel2 path.
|
|
* Return 1 for any error that should generate a RAID path retry.
|
|
* Return 0 for errors that don't require a RAID path retry.
|
|
*/
|
|
static int handle_ioaccel_mode2_error(struct ctlr_info *h,
|
|
struct CommandList *c,
|
|
struct scsi_cmnd *cmd,
|
|
struct io_accel2_cmd *c2)
|
|
{
|
|
int data_len;
|
|
int retry = 0;
|
|
|
|
switch (c2->error_data.serv_response) {
|
|
case IOACCEL2_SERV_RESPONSE_COMPLETE:
|
|
switch (c2->error_data.status) {
|
|
case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
|
|
break;
|
|
case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
|
|
dev_warn(&h->pdev->dev,
|
|
"%s: task complete with check condition.\n",
|
|
"HP SSD Smart Path");
|
|
cmd->result |= SAM_STAT_CHECK_CONDITION;
|
|
if (c2->error_data.data_present !=
|
|
IOACCEL2_SENSE_DATA_PRESENT) {
|
|
memset(cmd->sense_buffer, 0,
|
|
SCSI_SENSE_BUFFERSIZE);
|
|
break;
|
|
}
|
|
/* copy the sense data */
|
|
data_len = c2->error_data.sense_data_len;
|
|
if (data_len > SCSI_SENSE_BUFFERSIZE)
|
|
data_len = SCSI_SENSE_BUFFERSIZE;
|
|
if (data_len > sizeof(c2->error_data.sense_data_buff))
|
|
data_len =
|
|
sizeof(c2->error_data.sense_data_buff);
|
|
memcpy(cmd->sense_buffer,
|
|
c2->error_data.sense_data_buff, data_len);
|
|
retry = 1;
|
|
break;
|
|
case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
|
|
dev_warn(&h->pdev->dev,
|
|
"%s: task complete with BUSY status.\n",
|
|
"HP SSD Smart Path");
|
|
retry = 1;
|
|
break;
|
|
case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
|
|
dev_warn(&h->pdev->dev,
|
|
"%s: task complete with reservation conflict.\n",
|
|
"HP SSD Smart Path");
|
|
retry = 1;
|
|
break;
|
|
case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
|
|
/* Make scsi midlayer do unlimited retries */
|
|
cmd->result = DID_IMM_RETRY << 16;
|
|
break;
|
|
case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
|
|
dev_warn(&h->pdev->dev,
|
|
"%s: task complete with aborted status.\n",
|
|
"HP SSD Smart Path");
|
|
retry = 1;
|
|
break;
|
|
default:
|
|
dev_warn(&h->pdev->dev,
|
|
"%s: task complete with unrecognized status: 0x%02x\n",
|
|
"HP SSD Smart Path", c2->error_data.status);
|
|
retry = 1;
|
|
break;
|
|
}
|
|
break;
|
|
case IOACCEL2_SERV_RESPONSE_FAILURE:
|
|
/* don't expect to get here. */
|
|
dev_warn(&h->pdev->dev,
|
|
"unexpected delivery or target failure, status = 0x%02x\n",
|
|
c2->error_data.status);
|
|
retry = 1;
|
|
break;
|
|
case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
|
|
break;
|
|
case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
|
|
break;
|
|
case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
|
|
dev_warn(&h->pdev->dev, "task management function rejected.\n");
|
|
retry = 1;
|
|
break;
|
|
case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
|
|
dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
|
|
break;
|
|
default:
|
|
dev_warn(&h->pdev->dev,
|
|
"%s: Unrecognized server response: 0x%02x\n",
|
|
"HP SSD Smart Path",
|
|
c2->error_data.serv_response);
|
|
retry = 1;
|
|
break;
|
|
}
|
|
|
|
return retry; /* retry on raid path? */
|
|
}
|
|
|
|
static void process_ioaccel2_completion(struct ctlr_info *h,
|
|
struct CommandList *c, struct scsi_cmnd *cmd,
|
|
struct hpsa_scsi_dev_t *dev)
|
|
{
|
|
struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
|
|
int raid_retry = 0;
|
|
|
|
/* check for good status */
|
|
if (likely(c2->error_data.serv_response == 0 &&
|
|
c2->error_data.status == 0)) {
|
|
cmd_free(h, c);
|
|
cmd->scsi_done(cmd);
|
|
return;
|
|
}
|
|
|
|
/* Any RAID offload error results in retry which will use
|
|
* the normal I/O path so the controller can handle whatever's
|
|
* wrong.
|
|
*/
|
|
if (is_logical_dev_addr_mode(dev->scsi3addr) &&
|
|
c2->error_data.serv_response ==
|
|
IOACCEL2_SERV_RESPONSE_FAILURE) {
|
|
dev->offload_enabled = 0;
|
|
h->drv_req_rescan = 1; /* schedule controller for a rescan */
|
|
cmd->result = DID_SOFT_ERROR << 16;
|
|
cmd_free(h, c);
|
|
cmd->scsi_done(cmd);
|
|
return;
|
|
}
|
|
raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
|
|
/* If error found, disable Smart Path, schedule a rescan,
|
|
* and force a retry on the standard path.
|
|
*/
|
|
if (raid_retry) {
|
|
dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
|
|
"HP SSD Smart Path");
|
|
dev->offload_enabled = 0; /* Disable Smart Path */
|
|
h->drv_req_rescan = 1; /* schedule controller rescan */
|
|
cmd->result = DID_SOFT_ERROR << 16;
|
|
}
|
|
cmd_free(h, c);
|
|
cmd->scsi_done(cmd);
|
|
}
|
|
|
|
static void complete_scsi_command(struct CommandList *cp)
|
|
{
|
|
struct scsi_cmnd *cmd;
|
|
struct ctlr_info *h;
|
|
struct ErrorInfo *ei;
|
|
struct hpsa_scsi_dev_t *dev;
|
|
|
|
unsigned char sense_key;
|
|
unsigned char asc; /* additional sense code */
|
|
unsigned char ascq; /* additional sense code qualifier */
|
|
unsigned long sense_data_size;
|
|
|
|
ei = cp->err_info;
|
|
cmd = (struct scsi_cmnd *) cp->scsi_cmd;
|
|
h = cp->h;
|
|
dev = cmd->device->hostdata;
|
|
|
|
scsi_dma_unmap(cmd); /* undo the DMA mappings */
|
|
if ((cp->cmd_type == CMD_SCSI) &&
|
|
(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
|
|
hpsa_unmap_sg_chain_block(h, cp);
|
|
|
|
cmd->result = (DID_OK << 16); /* host byte */
|
|
cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
|
|
|
|
if (cp->cmd_type == CMD_IOACCEL2)
|
|
return process_ioaccel2_completion(h, cp, cmd, dev);
|
|
|
|
cmd->result |= ei->ScsiStatus;
|
|
|
|
scsi_set_resid(cmd, ei->ResidualCnt);
|
|
if (ei->CommandStatus == 0) {
|
|
cmd_free(h, cp);
|
|
cmd->scsi_done(cmd);
|
|
return;
|
|
}
|
|
|
|
/* copy the sense data */
|
|
if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
|
|
sense_data_size = SCSI_SENSE_BUFFERSIZE;
|
|
else
|
|
sense_data_size = sizeof(ei->SenseInfo);
|
|
if (ei->SenseLen < sense_data_size)
|
|
sense_data_size = ei->SenseLen;
|
|
|
|
memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
|
|
|
|
/* For I/O accelerator commands, copy over some fields to the normal
|
|
* CISS header used below for error handling.
|
|
*/
|
|
if (cp->cmd_type == CMD_IOACCEL1) {
|
|
struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
|
|
cp->Header.SGList = scsi_sg_count(cmd);
|
|
cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
|
|
cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
|
|
IOACCEL1_IOFLAGS_CDBLEN_MASK;
|
|
cp->Header.tag = c->tag;
|
|
memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
|
|
memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
|
|
|
|
/* Any RAID offload error results in retry which will use
|
|
* the normal I/O path so the controller can handle whatever's
|
|
* wrong.
|
|
*/
|
|
if (is_logical_dev_addr_mode(dev->scsi3addr)) {
|
|
if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
|
|
dev->offload_enabled = 0;
|
|
cmd->result = DID_SOFT_ERROR << 16;
|
|
cmd_free(h, cp);
|
|
cmd->scsi_done(cmd);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* an error has occurred */
|
|
switch (ei->CommandStatus) {
|
|
|
|
case CMD_TARGET_STATUS:
|
|
if (ei->ScsiStatus) {
|
|
/* Get sense key */
|
|
sense_key = 0xf & ei->SenseInfo[2];
|
|
/* Get additional sense code */
|
|
asc = ei->SenseInfo[12];
|
|
/* Get addition sense code qualifier */
|
|
ascq = ei->SenseInfo[13];
|
|
}
|
|
if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
|
|
if (sense_key == ABORTED_COMMAND) {
|
|
cmd->result |= DID_SOFT_ERROR << 16;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
/* Problem was not a check condition
|
|
* Pass it up to the upper layers...
|
|
*/
|
|
if (ei->ScsiStatus) {
|
|
dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
|
|
"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
|
|
"Returning result: 0x%x\n",
|
|
cp, ei->ScsiStatus,
|
|
sense_key, asc, ascq,
|
|
cmd->result);
|
|
} else { /* scsi status is zero??? How??? */
|
|
dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
|
|
"Returning no connection.\n", cp),
|
|
|
|
/* Ordinarily, this case should never happen,
|
|
* but there is a bug in some released firmware
|
|
* revisions that allows it to happen if, for
|
|
* example, a 4100 backplane loses power and
|
|
* the tape drive is in it. We assume that
|
|
* it's a fatal error of some kind because we
|
|
* can't show that it wasn't. We will make it
|
|
* look like selection timeout since that is
|
|
* the most common reason for this to occur,
|
|
* and it's severe enough.
|
|
*/
|
|
|
|
cmd->result = DID_NO_CONNECT << 16;
|
|
}
|
|
break;
|
|
|
|
case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
|
|
break;
|
|
case CMD_DATA_OVERRUN:
|
|
dev_warn(&h->pdev->dev, "cp %p has"
|
|
" completed with data overrun "
|
|
"reported\n", cp);
|
|
break;
|
|
case CMD_INVALID: {
|
|
/* print_bytes(cp, sizeof(*cp), 1, 0);
|
|
print_cmd(cp); */
|
|
/* We get CMD_INVALID if you address a non-existent device
|
|
* instead of a selection timeout (no response). You will
|
|
* see this if you yank out a drive, then try to access it.
|
|
* This is kind of a shame because it means that any other
|
|
* CMD_INVALID (e.g. driver bug) will get interpreted as a
|
|
* missing target. */
|
|
cmd->result = DID_NO_CONNECT << 16;
|
|
}
|
|
break;
|
|
case CMD_PROTOCOL_ERR:
|
|
cmd->result = DID_ERROR << 16;
|
|
dev_warn(&h->pdev->dev, "cp %p has "
|
|
"protocol error\n", cp);
|
|
break;
|
|
case CMD_HARDWARE_ERR:
|
|
cmd->result = DID_ERROR << 16;
|
|
dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
|
|
break;
|
|
case CMD_CONNECTION_LOST:
|
|
cmd->result = DID_ERROR << 16;
|
|
dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
|
|
break;
|
|
case CMD_ABORTED:
|
|
cmd->result = DID_ABORT << 16;
|
|
dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
|
|
cp, ei->ScsiStatus);
|
|
break;
|
|
case CMD_ABORT_FAILED:
|
|
cmd->result = DID_ERROR << 16;
|
|
dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
|
|
break;
|
|
case CMD_UNSOLICITED_ABORT:
|
|
cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
|
|
dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
|
|
"abort\n", cp);
|
|
break;
|
|
case CMD_TIMEOUT:
|
|
cmd->result = DID_TIME_OUT << 16;
|
|
dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
|
|
break;
|
|
case CMD_UNABORTABLE:
|
|
cmd->result = DID_ERROR << 16;
|
|
dev_warn(&h->pdev->dev, "Command unabortable\n");
|
|
break;
|
|
case CMD_IOACCEL_DISABLED:
|
|
/* This only handles the direct pass-through case since RAID
|
|
* offload is handled above. Just attempt a retry.
|
|
*/
|
|
cmd->result = DID_SOFT_ERROR << 16;
|
|
dev_warn(&h->pdev->dev,
|
|
"cp %p had HP SSD Smart Path error\n", cp);
|
|
break;
|
|
default:
|
|
cmd->result = DID_ERROR << 16;
|
|
dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
|
|
cp, ei->CommandStatus);
|
|
}
|
|
cmd_free(h, cp);
|
|
cmd->scsi_done(cmd);
|
|
}
|
|
|
|
static void hpsa_pci_unmap(struct pci_dev *pdev,
|
|
struct CommandList *c, int sg_used, int data_direction)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < sg_used; i++)
|
|
pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
|
|
le32_to_cpu(c->SG[i].Len),
|
|
data_direction);
|
|
}
|
|
|
|
static int hpsa_map_one(struct pci_dev *pdev,
|
|
struct CommandList *cp,
|
|
unsigned char *buf,
|
|
size_t buflen,
|
|
int data_direction)
|
|
{
|
|
u64 addr64;
|
|
|
|
if (buflen == 0 || data_direction == PCI_DMA_NONE) {
|
|
cp->Header.SGList = 0;
|
|
cp->Header.SGTotal = cpu_to_le16(0);
|
|
return 0;
|
|
}
|
|
|
|
addr64 = pci_map_single(pdev, buf, buflen, data_direction);
|
|
if (dma_mapping_error(&pdev->dev, addr64)) {
|
|
/* Prevent subsequent unmap of something never mapped */
|
|
cp->Header.SGList = 0;
|
|
cp->Header.SGTotal = cpu_to_le16(0);
|
|
return -1;
|
|
}
|
|
cp->SG[0].Addr = cpu_to_le64(addr64);
|
|
cp->SG[0].Len = cpu_to_le32(buflen);
|
|
cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
|
|
cp->Header.SGList = 1; /* no. SGs contig in this cmd */
|
|
cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
|
|
return 0;
|
|
}
|
|
|
|
static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
DECLARE_COMPLETION_ONSTACK(wait);
|
|
|
|
c->waiting = &wait;
|
|
enqueue_cmd_and_start_io(h, c);
|
|
wait_for_completion(&wait);
|
|
}
|
|
|
|
static u32 lockup_detected(struct ctlr_info *h)
|
|
{
|
|
int cpu;
|
|
u32 rc, *lockup_detected;
|
|
|
|
cpu = get_cpu();
|
|
lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
|
|
rc = *lockup_detected;
|
|
put_cpu();
|
|
return rc;
|
|
}
|
|
|
|
static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
/* If controller lockup detected, fake a hardware error. */
|
|
if (unlikely(lockup_detected(h)))
|
|
c->err_info->CommandStatus = CMD_HARDWARE_ERR;
|
|
else
|
|
hpsa_scsi_do_simple_cmd_core(h, c);
|
|
}
|
|
|
|
#define MAX_DRIVER_CMD_RETRIES 25
|
|
static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
|
|
struct CommandList *c, int data_direction)
|
|
{
|
|
int backoff_time = 10, retry_count = 0;
|
|
|
|
do {
|
|
memset(c->err_info, 0, sizeof(*c->err_info));
|
|
hpsa_scsi_do_simple_cmd_core(h, c);
|
|
retry_count++;
|
|
if (retry_count > 3) {
|
|
msleep(backoff_time);
|
|
if (backoff_time < 1000)
|
|
backoff_time *= 2;
|
|
}
|
|
} while ((check_for_unit_attention(h, c) ||
|
|
check_for_busy(h, c)) &&
|
|
retry_count <= MAX_DRIVER_CMD_RETRIES);
|
|
hpsa_pci_unmap(h->pdev, c, 1, data_direction);
|
|
}
|
|
|
|
static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
|
|
struct CommandList *c)
|
|
{
|
|
const u8 *cdb = c->Request.CDB;
|
|
const u8 *lun = c->Header.LUN.LunAddrBytes;
|
|
|
|
dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
|
|
" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
|
|
txt, lun[0], lun[1], lun[2], lun[3],
|
|
lun[4], lun[5], lun[6], lun[7],
|
|
cdb[0], cdb[1], cdb[2], cdb[3],
|
|
cdb[4], cdb[5], cdb[6], cdb[7],
|
|
cdb[8], cdb[9], cdb[10], cdb[11],
|
|
cdb[12], cdb[13], cdb[14], cdb[15]);
|
|
}
|
|
|
|
static void hpsa_scsi_interpret_error(struct ctlr_info *h,
|
|
struct CommandList *cp)
|
|
{
|
|
const struct ErrorInfo *ei = cp->err_info;
|
|
struct device *d = &cp->h->pdev->dev;
|
|
const u8 *sd = ei->SenseInfo;
|
|
|
|
switch (ei->CommandStatus) {
|
|
case CMD_TARGET_STATUS:
|
|
hpsa_print_cmd(h, "SCSI status", cp);
|
|
if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
|
|
dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
|
|
sd[2] & 0x0f, sd[12], sd[13]);
|
|
else
|
|
dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
|
|
if (ei->ScsiStatus == 0)
|
|
dev_warn(d, "SCSI status is abnormally zero. "
|
|
"(probably indicates selection timeout "
|
|
"reported incorrectly due to a known "
|
|
"firmware bug, circa July, 2001.)\n");
|
|
break;
|
|
case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
|
|
break;
|
|
case CMD_DATA_OVERRUN:
|
|
hpsa_print_cmd(h, "overrun condition", cp);
|
|
break;
|
|
case CMD_INVALID: {
|
|
/* controller unfortunately reports SCSI passthru's
|
|
* to non-existent targets as invalid commands.
|
|
*/
|
|
hpsa_print_cmd(h, "invalid command", cp);
|
|
dev_warn(d, "probably means device no longer present\n");
|
|
}
|
|
break;
|
|
case CMD_PROTOCOL_ERR:
|
|
hpsa_print_cmd(h, "protocol error", cp);
|
|
break;
|
|
case CMD_HARDWARE_ERR:
|
|
hpsa_print_cmd(h, "hardware error", cp);
|
|
break;
|
|
case CMD_CONNECTION_LOST:
|
|
hpsa_print_cmd(h, "connection lost", cp);
|
|
break;
|
|
case CMD_ABORTED:
|
|
hpsa_print_cmd(h, "aborted", cp);
|
|
break;
|
|
case CMD_ABORT_FAILED:
|
|
hpsa_print_cmd(h, "abort failed", cp);
|
|
break;
|
|
case CMD_UNSOLICITED_ABORT:
|
|
hpsa_print_cmd(h, "unsolicited abort", cp);
|
|
break;
|
|
case CMD_TIMEOUT:
|
|
hpsa_print_cmd(h, "timed out", cp);
|
|
break;
|
|
case CMD_UNABORTABLE:
|
|
hpsa_print_cmd(h, "unabortable", cp);
|
|
break;
|
|
default:
|
|
hpsa_print_cmd(h, "unknown status", cp);
|
|
dev_warn(d, "Unknown command status %x\n",
|
|
ei->CommandStatus);
|
|
}
|
|
}
|
|
|
|
static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
|
|
u16 page, unsigned char *buf,
|
|
unsigned char bufsize)
|
|
{
|
|
int rc = IO_OK;
|
|
struct CommandList *c;
|
|
struct ErrorInfo *ei;
|
|
|
|
c = cmd_special_alloc(h);
|
|
|
|
if (c == NULL) { /* trouble... */
|
|
dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
|
|
page, scsi3addr, TYPE_CMD)) {
|
|
rc = -1;
|
|
goto out;
|
|
}
|
|
hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
|
|
ei = c->err_info;
|
|
if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
|
|
hpsa_scsi_interpret_error(h, c);
|
|
rc = -1;
|
|
}
|
|
out:
|
|
cmd_special_free(h, c);
|
|
return rc;
|
|
}
|
|
|
|
static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
|
|
unsigned char *scsi3addr, unsigned char page,
|
|
struct bmic_controller_parameters *buf, size_t bufsize)
|
|
{
|
|
int rc = IO_OK;
|
|
struct CommandList *c;
|
|
struct ErrorInfo *ei;
|
|
|
|
c = cmd_special_alloc(h);
|
|
|
|
if (c == NULL) { /* trouble... */
|
|
dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
|
|
page, scsi3addr, TYPE_CMD)) {
|
|
rc = -1;
|
|
goto out;
|
|
}
|
|
hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
|
|
ei = c->err_info;
|
|
if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
|
|
hpsa_scsi_interpret_error(h, c);
|
|
rc = -1;
|
|
}
|
|
out:
|
|
cmd_special_free(h, c);
|
|
return rc;
|
|
}
|
|
|
|
static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
|
|
u8 reset_type)
|
|
{
|
|
int rc = IO_OK;
|
|
struct CommandList *c;
|
|
struct ErrorInfo *ei;
|
|
|
|
c = cmd_special_alloc(h);
|
|
|
|
if (c == NULL) { /* trouble... */
|
|
dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* fill_cmd can't fail here, no data buffer to map. */
|
|
(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
|
|
scsi3addr, TYPE_MSG);
|
|
c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
|
|
hpsa_scsi_do_simple_cmd_core(h, c);
|
|
/* no unmap needed here because no data xfer. */
|
|
|
|
ei = c->err_info;
|
|
if (ei->CommandStatus != 0) {
|
|
hpsa_scsi_interpret_error(h, c);
|
|
rc = -1;
|
|
}
|
|
cmd_special_free(h, c);
|
|
return rc;
|
|
}
|
|
|
|
static void hpsa_get_raid_level(struct ctlr_info *h,
|
|
unsigned char *scsi3addr, unsigned char *raid_level)
|
|
{
|
|
int rc;
|
|
unsigned char *buf;
|
|
|
|
*raid_level = RAID_UNKNOWN;
|
|
buf = kzalloc(64, GFP_KERNEL);
|
|
if (!buf)
|
|
return;
|
|
rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
|
|
if (rc == 0)
|
|
*raid_level = buf[8];
|
|
if (*raid_level > RAID_UNKNOWN)
|
|
*raid_level = RAID_UNKNOWN;
|
|
kfree(buf);
|
|
return;
|
|
}
|
|
|
|
#define HPSA_MAP_DEBUG
|
|
#ifdef HPSA_MAP_DEBUG
|
|
static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
|
|
struct raid_map_data *map_buff)
|
|
{
|
|
struct raid_map_disk_data *dd = &map_buff->data[0];
|
|
int map, row, col;
|
|
u16 map_cnt, row_cnt, disks_per_row;
|
|
|
|
if (rc != 0)
|
|
return;
|
|
|
|
/* Show details only if debugging has been activated. */
|
|
if (h->raid_offload_debug < 2)
|
|
return;
|
|
|
|
dev_info(&h->pdev->dev, "structure_size = %u\n",
|
|
le32_to_cpu(map_buff->structure_size));
|
|
dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
|
|
le32_to_cpu(map_buff->volume_blk_size));
|
|
dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
|
|
le64_to_cpu(map_buff->volume_blk_cnt));
|
|
dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
|
|
map_buff->phys_blk_shift);
|
|
dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
|
|
map_buff->parity_rotation_shift);
|
|
dev_info(&h->pdev->dev, "strip_size = %u\n",
|
|
le16_to_cpu(map_buff->strip_size));
|
|
dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
|
|
le64_to_cpu(map_buff->disk_starting_blk));
|
|
dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
|
|
le64_to_cpu(map_buff->disk_blk_cnt));
|
|
dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
|
|
le16_to_cpu(map_buff->data_disks_per_row));
|
|
dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
|
|
le16_to_cpu(map_buff->metadata_disks_per_row));
|
|
dev_info(&h->pdev->dev, "row_cnt = %u\n",
|
|
le16_to_cpu(map_buff->row_cnt));
|
|
dev_info(&h->pdev->dev, "layout_map_count = %u\n",
|
|
le16_to_cpu(map_buff->layout_map_count));
|
|
dev_info(&h->pdev->dev, "flags = 0x%x\n",
|
|
le16_to_cpu(map_buff->flags));
|
|
dev_info(&h->pdev->dev, "encrypytion = %s\n",
|
|
le16_to_cpu(map_buff->flags) &
|
|
RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
|
|
dev_info(&h->pdev->dev, "dekindex = %u\n",
|
|
le16_to_cpu(map_buff->dekindex));
|
|
map_cnt = le16_to_cpu(map_buff->layout_map_count);
|
|
for (map = 0; map < map_cnt; map++) {
|
|
dev_info(&h->pdev->dev, "Map%u:\n", map);
|
|
row_cnt = le16_to_cpu(map_buff->row_cnt);
|
|
for (row = 0; row < row_cnt; row++) {
|
|
dev_info(&h->pdev->dev, " Row%u:\n", row);
|
|
disks_per_row =
|
|
le16_to_cpu(map_buff->data_disks_per_row);
|
|
for (col = 0; col < disks_per_row; col++, dd++)
|
|
dev_info(&h->pdev->dev,
|
|
" D%02u: h=0x%04x xor=%u,%u\n",
|
|
col, dd->ioaccel_handle,
|
|
dd->xor_mult[0], dd->xor_mult[1]);
|
|
disks_per_row =
|
|
le16_to_cpu(map_buff->metadata_disks_per_row);
|
|
for (col = 0; col < disks_per_row; col++, dd++)
|
|
dev_info(&h->pdev->dev,
|
|
" M%02u: h=0x%04x xor=%u,%u\n",
|
|
col, dd->ioaccel_handle,
|
|
dd->xor_mult[0], dd->xor_mult[1]);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
|
|
__attribute__((unused)) int rc,
|
|
__attribute__((unused)) struct raid_map_data *map_buff)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static int hpsa_get_raid_map(struct ctlr_info *h,
|
|
unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
|
|
{
|
|
int rc = 0;
|
|
struct CommandList *c;
|
|
struct ErrorInfo *ei;
|
|
|
|
c = cmd_special_alloc(h);
|
|
if (c == NULL) {
|
|
dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
|
|
return -ENOMEM;
|
|
}
|
|
if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
|
|
sizeof(this_device->raid_map), 0,
|
|
scsi3addr, TYPE_CMD)) {
|
|
dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
|
|
cmd_special_free(h, c);
|
|
return -ENOMEM;
|
|
}
|
|
hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
|
|
ei = c->err_info;
|
|
if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
|
|
hpsa_scsi_interpret_error(h, c);
|
|
cmd_special_free(h, c);
|
|
return -1;
|
|
}
|
|
cmd_special_free(h, c);
|
|
|
|
/* @todo in the future, dynamically allocate RAID map memory */
|
|
if (le32_to_cpu(this_device->raid_map.structure_size) >
|
|
sizeof(this_device->raid_map)) {
|
|
dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
|
|
rc = -1;
|
|
}
|
|
hpsa_debug_map_buff(h, rc, &this_device->raid_map);
|
|
return rc;
|
|
}
|
|
|
|
static int hpsa_vpd_page_supported(struct ctlr_info *h,
|
|
unsigned char scsi3addr[], u8 page)
|
|
{
|
|
int rc;
|
|
int i;
|
|
int pages;
|
|
unsigned char *buf, bufsize;
|
|
|
|
buf = kzalloc(256, GFP_KERNEL);
|
|
if (!buf)
|
|
return 0;
|
|
|
|
/* Get the size of the page list first */
|
|
rc = hpsa_scsi_do_inquiry(h, scsi3addr,
|
|
VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
|
|
buf, HPSA_VPD_HEADER_SZ);
|
|
if (rc != 0)
|
|
goto exit_unsupported;
|
|
pages = buf[3];
|
|
if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
|
|
bufsize = pages + HPSA_VPD_HEADER_SZ;
|
|
else
|
|
bufsize = 255;
|
|
|
|
/* Get the whole VPD page list */
|
|
rc = hpsa_scsi_do_inquiry(h, scsi3addr,
|
|
VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
|
|
buf, bufsize);
|
|
if (rc != 0)
|
|
goto exit_unsupported;
|
|
|
|
pages = buf[3];
|
|
for (i = 1; i <= pages; i++)
|
|
if (buf[3 + i] == page)
|
|
goto exit_supported;
|
|
exit_unsupported:
|
|
kfree(buf);
|
|
return 0;
|
|
exit_supported:
|
|
kfree(buf);
|
|
return 1;
|
|
}
|
|
|
|
static void hpsa_get_ioaccel_status(struct ctlr_info *h,
|
|
unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
|
|
{
|
|
int rc;
|
|
unsigned char *buf;
|
|
u8 ioaccel_status;
|
|
|
|
this_device->offload_config = 0;
|
|
this_device->offload_enabled = 0;
|
|
|
|
buf = kzalloc(64, GFP_KERNEL);
|
|
if (!buf)
|
|
return;
|
|
if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
|
|
goto out;
|
|
rc = hpsa_scsi_do_inquiry(h, scsi3addr,
|
|
VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
|
|
if (rc != 0)
|
|
goto out;
|
|
|
|
#define IOACCEL_STATUS_BYTE 4
|
|
#define OFFLOAD_CONFIGURED_BIT 0x01
|
|
#define OFFLOAD_ENABLED_BIT 0x02
|
|
ioaccel_status = buf[IOACCEL_STATUS_BYTE];
|
|
this_device->offload_config =
|
|
!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
|
|
if (this_device->offload_config) {
|
|
this_device->offload_enabled =
|
|
!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
|
|
if (hpsa_get_raid_map(h, scsi3addr, this_device))
|
|
this_device->offload_enabled = 0;
|
|
}
|
|
out:
|
|
kfree(buf);
|
|
return;
|
|
}
|
|
|
|
/* Get the device id from inquiry page 0x83 */
|
|
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
|
|
unsigned char *device_id, int buflen)
|
|
{
|
|
int rc;
|
|
unsigned char *buf;
|
|
|
|
if (buflen > 16)
|
|
buflen = 16;
|
|
buf = kzalloc(64, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
|
|
if (rc == 0)
|
|
memcpy(device_id, &buf[8], buflen);
|
|
kfree(buf);
|
|
return rc != 0;
|
|
}
|
|
|
|
static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
|
|
struct ReportLUNdata *buf, int bufsize,
|
|
int extended_response)
|
|
{
|
|
int rc = IO_OK;
|
|
struct CommandList *c;
|
|
unsigned char scsi3addr[8];
|
|
struct ErrorInfo *ei;
|
|
|
|
c = cmd_special_alloc(h);
|
|
if (c == NULL) { /* trouble... */
|
|
dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
|
|
return -1;
|
|
}
|
|
/* address the controller */
|
|
memset(scsi3addr, 0, sizeof(scsi3addr));
|
|
if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
|
|
buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
|
|
rc = -1;
|
|
goto out;
|
|
}
|
|
if (extended_response)
|
|
c->Request.CDB[1] = extended_response;
|
|
hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
|
|
ei = c->err_info;
|
|
if (ei->CommandStatus != 0 &&
|
|
ei->CommandStatus != CMD_DATA_UNDERRUN) {
|
|
hpsa_scsi_interpret_error(h, c);
|
|
rc = -1;
|
|
} else {
|
|
if (buf->extended_response_flag != extended_response) {
|
|
dev_err(&h->pdev->dev,
|
|
"report luns requested format %u, got %u\n",
|
|
extended_response,
|
|
buf->extended_response_flag);
|
|
rc = -1;
|
|
}
|
|
}
|
|
out:
|
|
cmd_special_free(h, c);
|
|
return rc;
|
|
}
|
|
|
|
static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
|
|
struct ReportLUNdata *buf,
|
|
int bufsize, int extended_response)
|
|
{
|
|
return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
|
|
}
|
|
|
|
static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
|
|
struct ReportLUNdata *buf, int bufsize)
|
|
{
|
|
return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
|
|
}
|
|
|
|
static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
|
|
int bus, int target, int lun)
|
|
{
|
|
device->bus = bus;
|
|
device->target = target;
|
|
device->lun = lun;
|
|
}
|
|
|
|
/* Use VPD inquiry to get details of volume status */
|
|
static int hpsa_get_volume_status(struct ctlr_info *h,
|
|
unsigned char scsi3addr[])
|
|
{
|
|
int rc;
|
|
int status;
|
|
int size;
|
|
unsigned char *buf;
|
|
|
|
buf = kzalloc(64, GFP_KERNEL);
|
|
if (!buf)
|
|
return HPSA_VPD_LV_STATUS_UNSUPPORTED;
|
|
|
|
/* Does controller have VPD for logical volume status? */
|
|
if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
|
|
goto exit_failed;
|
|
|
|
/* Get the size of the VPD return buffer */
|
|
rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
|
|
buf, HPSA_VPD_HEADER_SZ);
|
|
if (rc != 0)
|
|
goto exit_failed;
|
|
size = buf[3];
|
|
|
|
/* Now get the whole VPD buffer */
|
|
rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
|
|
buf, size + HPSA_VPD_HEADER_SZ);
|
|
if (rc != 0)
|
|
goto exit_failed;
|
|
status = buf[4]; /* status byte */
|
|
|
|
kfree(buf);
|
|
return status;
|
|
exit_failed:
|
|
kfree(buf);
|
|
return HPSA_VPD_LV_STATUS_UNSUPPORTED;
|
|
}
|
|
|
|
/* Determine offline status of a volume.
|
|
* Return either:
|
|
* 0 (not offline)
|
|
* 0xff (offline for unknown reasons)
|
|
* # (integer code indicating one of several NOT READY states
|
|
* describing why a volume is to be kept offline)
|
|
*/
|
|
static int hpsa_volume_offline(struct ctlr_info *h,
|
|
unsigned char scsi3addr[])
|
|
{
|
|
struct CommandList *c;
|
|
unsigned char *sense, sense_key, asc, ascq;
|
|
int ldstat = 0;
|
|
u16 cmd_status;
|
|
u8 scsi_status;
|
|
#define ASC_LUN_NOT_READY 0x04
|
|
#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
|
|
#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
|
|
|
|
c = cmd_alloc(h);
|
|
if (!c)
|
|
return 0;
|
|
(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
|
|
hpsa_scsi_do_simple_cmd_core(h, c);
|
|
sense = c->err_info->SenseInfo;
|
|
sense_key = sense[2];
|
|
asc = sense[12];
|
|
ascq = sense[13];
|
|
cmd_status = c->err_info->CommandStatus;
|
|
scsi_status = c->err_info->ScsiStatus;
|
|
cmd_free(h, c);
|
|
/* Is the volume 'not ready'? */
|
|
if (cmd_status != CMD_TARGET_STATUS ||
|
|
scsi_status != SAM_STAT_CHECK_CONDITION ||
|
|
sense_key != NOT_READY ||
|
|
asc != ASC_LUN_NOT_READY) {
|
|
return 0;
|
|
}
|
|
|
|
/* Determine the reason for not ready state */
|
|
ldstat = hpsa_get_volume_status(h, scsi3addr);
|
|
|
|
/* Keep volume offline in certain cases: */
|
|
switch (ldstat) {
|
|
case HPSA_LV_UNDERGOING_ERASE:
|
|
case HPSA_LV_UNDERGOING_RPI:
|
|
case HPSA_LV_PENDING_RPI:
|
|
case HPSA_LV_ENCRYPTED_NO_KEY:
|
|
case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
|
|
case HPSA_LV_UNDERGOING_ENCRYPTION:
|
|
case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
|
|
case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
|
|
return ldstat;
|
|
case HPSA_VPD_LV_STATUS_UNSUPPORTED:
|
|
/* If VPD status page isn't available,
|
|
* use ASC/ASCQ to determine state
|
|
*/
|
|
if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
|
|
(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
|
|
return ldstat;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int hpsa_update_device_info(struct ctlr_info *h,
|
|
unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
|
|
unsigned char *is_OBDR_device)
|
|
{
|
|
|
|
#define OBDR_SIG_OFFSET 43
|
|
#define OBDR_TAPE_SIG "$DR-10"
|
|
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
|
|
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
|
|
|
|
unsigned char *inq_buff;
|
|
unsigned char *obdr_sig;
|
|
|
|
inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
|
|
if (!inq_buff)
|
|
goto bail_out;
|
|
|
|
/* Do an inquiry to the device to see what it is. */
|
|
if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
|
|
(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
|
|
/* Inquiry failed (msg printed already) */
|
|
dev_err(&h->pdev->dev,
|
|
"hpsa_update_device_info: inquiry failed\n");
|
|
goto bail_out;
|
|
}
|
|
|
|
this_device->devtype = (inq_buff[0] & 0x1f);
|
|
memcpy(this_device->scsi3addr, scsi3addr, 8);
|
|
memcpy(this_device->vendor, &inq_buff[8],
|
|
sizeof(this_device->vendor));
|
|
memcpy(this_device->model, &inq_buff[16],
|
|
sizeof(this_device->model));
|
|
memset(this_device->device_id, 0,
|
|
sizeof(this_device->device_id));
|
|
hpsa_get_device_id(h, scsi3addr, this_device->device_id,
|
|
sizeof(this_device->device_id));
|
|
|
|
if (this_device->devtype == TYPE_DISK &&
|
|
is_logical_dev_addr_mode(scsi3addr)) {
|
|
int volume_offline;
|
|
|
|
hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
|
|
if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
|
|
hpsa_get_ioaccel_status(h, scsi3addr, this_device);
|
|
volume_offline = hpsa_volume_offline(h, scsi3addr);
|
|
if (volume_offline < 0 || volume_offline > 0xff)
|
|
volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
|
|
this_device->volume_offline = volume_offline & 0xff;
|
|
} else {
|
|
this_device->raid_level = RAID_UNKNOWN;
|
|
this_device->offload_config = 0;
|
|
this_device->offload_enabled = 0;
|
|
this_device->volume_offline = 0;
|
|
}
|
|
|
|
if (is_OBDR_device) {
|
|
/* See if this is a One-Button-Disaster-Recovery device
|
|
* by looking for "$DR-10" at offset 43 in inquiry data.
|
|
*/
|
|
obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
|
|
*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
|
|
strncmp(obdr_sig, OBDR_TAPE_SIG,
|
|
OBDR_SIG_LEN) == 0);
|
|
}
|
|
|
|
kfree(inq_buff);
|
|
return 0;
|
|
|
|
bail_out:
|
|
kfree(inq_buff);
|
|
return 1;
|
|
}
|
|
|
|
static unsigned char *ext_target_model[] = {
|
|
"MSA2012",
|
|
"MSA2024",
|
|
"MSA2312",
|
|
"MSA2324",
|
|
"P2000 G3 SAS",
|
|
"MSA 2040 SAS",
|
|
NULL,
|
|
};
|
|
|
|
static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; ext_target_model[i]; i++)
|
|
if (strncmp(device->model, ext_target_model[i],
|
|
strlen(ext_target_model[i])) == 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Helper function to assign bus, target, lun mapping of devices.
|
|
* Puts non-external target logical volumes on bus 0, external target logical
|
|
* volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
|
|
* Logical drive target and lun are assigned at this time, but
|
|
* physical device lun and target assignment are deferred (assigned
|
|
* in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
|
|
*/
|
|
static void figure_bus_target_lun(struct ctlr_info *h,
|
|
u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
|
|
{
|
|
u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
|
|
|
|
if (!is_logical_dev_addr_mode(lunaddrbytes)) {
|
|
/* physical device, target and lun filled in later */
|
|
if (is_hba_lunid(lunaddrbytes))
|
|
hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
|
|
else
|
|
/* defer target, lun assignment for physical devices */
|
|
hpsa_set_bus_target_lun(device, 2, -1, -1);
|
|
return;
|
|
}
|
|
/* It's a logical device */
|
|
if (is_ext_target(h, device)) {
|
|
/* external target way, put logicals on bus 1
|
|
* and match target/lun numbers box
|
|
* reports, other smart array, bus 0, target 0, match lunid
|
|
*/
|
|
hpsa_set_bus_target_lun(device,
|
|
1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
|
|
return;
|
|
}
|
|
hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
|
|
}
|
|
|
|
/*
|
|
* If there is no lun 0 on a target, linux won't find any devices.
|
|
* For the external targets (arrays), we have to manually detect the enclosure
|
|
* which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
|
|
* it for some reason. *tmpdevice is the target we're adding,
|
|
* this_device is a pointer into the current element of currentsd[]
|
|
* that we're building up in update_scsi_devices(), below.
|
|
* lunzerobits is a bitmap that tracks which targets already have a
|
|
* lun 0 assigned.
|
|
* Returns 1 if an enclosure was added, 0 if not.
|
|
*/
|
|
static int add_ext_target_dev(struct ctlr_info *h,
|
|
struct hpsa_scsi_dev_t *tmpdevice,
|
|
struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
|
|
unsigned long lunzerobits[], int *n_ext_target_devs)
|
|
{
|
|
unsigned char scsi3addr[8];
|
|
|
|
if (test_bit(tmpdevice->target, lunzerobits))
|
|
return 0; /* There is already a lun 0 on this target. */
|
|
|
|
if (!is_logical_dev_addr_mode(lunaddrbytes))
|
|
return 0; /* It's the logical targets that may lack lun 0. */
|
|
|
|
if (!is_ext_target(h, tmpdevice))
|
|
return 0; /* Only external target devices have this problem. */
|
|
|
|
if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
|
|
return 0;
|
|
|
|
memset(scsi3addr, 0, 8);
|
|
scsi3addr[3] = tmpdevice->target;
|
|
if (is_hba_lunid(scsi3addr))
|
|
return 0; /* Don't add the RAID controller here. */
|
|
|
|
if (is_scsi_rev_5(h))
|
|
return 0; /* p1210m doesn't need to do this. */
|
|
|
|
if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
|
|
dev_warn(&h->pdev->dev, "Maximum number of external "
|
|
"target devices exceeded. Check your hardware "
|
|
"configuration.");
|
|
return 0;
|
|
}
|
|
|
|
if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
|
|
return 0;
|
|
(*n_ext_target_devs)++;
|
|
hpsa_set_bus_target_lun(this_device,
|
|
tmpdevice->bus, tmpdevice->target, 0);
|
|
set_bit(tmpdevice->target, lunzerobits);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Get address of physical disk used for an ioaccel2 mode command:
|
|
* 1. Extract ioaccel2 handle from the command.
|
|
* 2. Find a matching ioaccel2 handle from list of physical disks.
|
|
* 3. Return:
|
|
* 1 and set scsi3addr to address of matching physical
|
|
* 0 if no matching physical disk was found.
|
|
*/
|
|
static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
|
|
struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
|
|
{
|
|
struct ReportExtendedLUNdata *physicals = NULL;
|
|
int responsesize = 24; /* size of physical extended response */
|
|
int extended = 2; /* flag forces reporting 'other dev info'. */
|
|
int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
|
|
u32 nphysicals = 0; /* number of reported physical devs */
|
|
int found = 0; /* found match (1) or not (0) */
|
|
u32 find; /* handle we need to match */
|
|
int i;
|
|
struct scsi_cmnd *scmd; /* scsi command within request being aborted */
|
|
struct hpsa_scsi_dev_t *d; /* device of request being aborted */
|
|
struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
|
|
__le32 it_nexus; /* 4 byte device handle for the ioaccel2 cmd */
|
|
__le32 scsi_nexus; /* 4 byte device handle for the ioaccel2 cmd */
|
|
|
|
if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
|
|
return 0; /* no match */
|
|
|
|
/* point to the ioaccel2 device handle */
|
|
c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
|
|
if (c2a == NULL)
|
|
return 0; /* no match */
|
|
|
|
scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
|
|
if (scmd == NULL)
|
|
return 0; /* no match */
|
|
|
|
d = scmd->device->hostdata;
|
|
if (d == NULL)
|
|
return 0; /* no match */
|
|
|
|
it_nexus = cpu_to_le32(d->ioaccel_handle);
|
|
scsi_nexus = c2a->scsi_nexus;
|
|
find = le32_to_cpu(c2a->scsi_nexus);
|
|
|
|
if (h->raid_offload_debug > 0)
|
|
dev_info(&h->pdev->dev,
|
|
"%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
|
|
__func__, scsi_nexus,
|
|
d->device_id[0], d->device_id[1], d->device_id[2],
|
|
d->device_id[3], d->device_id[4], d->device_id[5],
|
|
d->device_id[6], d->device_id[7], d->device_id[8],
|
|
d->device_id[9], d->device_id[10], d->device_id[11],
|
|
d->device_id[12], d->device_id[13], d->device_id[14],
|
|
d->device_id[15]);
|
|
|
|
/* Get the list of physical devices */
|
|
physicals = kzalloc(reportsize, GFP_KERNEL);
|
|
if (physicals == NULL)
|
|
return 0;
|
|
if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
|
|
reportsize, extended)) {
|
|
dev_err(&h->pdev->dev,
|
|
"Can't lookup %s device handle: report physical LUNs failed.\n",
|
|
"HP SSD Smart Path");
|
|
kfree(physicals);
|
|
return 0;
|
|
}
|
|
nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
|
|
responsesize;
|
|
|
|
/* find ioaccel2 handle in list of physicals: */
|
|
for (i = 0; i < nphysicals; i++) {
|
|
struct ext_report_lun_entry *entry = &physicals->LUN[i];
|
|
|
|
/* handle is in bytes 28-31 of each lun */
|
|
if (entry->ioaccel_handle != find)
|
|
continue; /* didn't match */
|
|
found = 1;
|
|
memcpy(scsi3addr, entry->lunid, 8);
|
|
if (h->raid_offload_debug > 0)
|
|
dev_info(&h->pdev->dev,
|
|
"%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
|
|
__func__, find,
|
|
entry->ioaccel_handle, scsi3addr);
|
|
break; /* found it */
|
|
}
|
|
|
|
kfree(physicals);
|
|
if (found)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
|
|
}
|
|
/*
|
|
* Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
|
|
* logdev. The number of luns in physdev and logdev are returned in
|
|
* *nphysicals and *nlogicals, respectively.
|
|
* Returns 0 on success, -1 otherwise.
|
|
*/
|
|
static int hpsa_gather_lun_info(struct ctlr_info *h,
|
|
int reportphyslunsize, int reportloglunsize,
|
|
struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
|
|
struct ReportLUNdata *logdev, u32 *nlogicals)
|
|
{
|
|
int physical_entry_size = 8;
|
|
|
|
*physical_mode = 0;
|
|
|
|
/* For I/O accelerator mode we need to read physical device handles */
|
|
if (h->transMethod & CFGTBL_Trans_io_accel1 ||
|
|
h->transMethod & CFGTBL_Trans_io_accel2) {
|
|
*physical_mode = HPSA_REPORT_PHYS_EXTENDED;
|
|
physical_entry_size = 24;
|
|
}
|
|
if (hpsa_scsi_do_report_phys_luns(h, physdev, reportphyslunsize,
|
|
*physical_mode)) {
|
|
dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
|
|
return -1;
|
|
}
|
|
*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
|
|
physical_entry_size;
|
|
if (*nphysicals > HPSA_MAX_PHYS_LUN) {
|
|
dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
|
|
" %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
|
|
*nphysicals - HPSA_MAX_PHYS_LUN);
|
|
*nphysicals = HPSA_MAX_PHYS_LUN;
|
|
}
|
|
if (hpsa_scsi_do_report_log_luns(h, logdev, reportloglunsize)) {
|
|
dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
|
|
return -1;
|
|
}
|
|
*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
|
|
/* Reject Logicals in excess of our max capability. */
|
|
if (*nlogicals > HPSA_MAX_LUN) {
|
|
dev_warn(&h->pdev->dev,
|
|
"maximum logical LUNs (%d) exceeded. "
|
|
"%d LUNs ignored.\n", HPSA_MAX_LUN,
|
|
*nlogicals - HPSA_MAX_LUN);
|
|
*nlogicals = HPSA_MAX_LUN;
|
|
}
|
|
if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
|
|
dev_warn(&h->pdev->dev,
|
|
"maximum logical + physical LUNs (%d) exceeded. "
|
|
"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
|
|
*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
|
|
*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
|
|
int i, int nphysicals, int nlogicals,
|
|
struct ReportExtendedLUNdata *physdev_list,
|
|
struct ReportLUNdata *logdev_list)
|
|
{
|
|
/* Helper function, figure out where the LUN ID info is coming from
|
|
* given index i, lists of physical and logical devices, where in
|
|
* the list the raid controller is supposed to appear (first or last)
|
|
*/
|
|
|
|
int logicals_start = nphysicals + (raid_ctlr_position == 0);
|
|
int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
|
|
|
|
if (i == raid_ctlr_position)
|
|
return RAID_CTLR_LUNID;
|
|
|
|
if (i < logicals_start)
|
|
return &physdev_list->LUN[i -
|
|
(raid_ctlr_position == 0)].lunid[0];
|
|
|
|
if (i < last_device)
|
|
return &logdev_list->LUN[i - nphysicals -
|
|
(raid_ctlr_position == 0)][0];
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
static int hpsa_hba_mode_enabled(struct ctlr_info *h)
|
|
{
|
|
int rc;
|
|
int hba_mode_enabled;
|
|
struct bmic_controller_parameters *ctlr_params;
|
|
ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
|
|
GFP_KERNEL);
|
|
|
|
if (!ctlr_params)
|
|
return -ENOMEM;
|
|
rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
|
|
sizeof(struct bmic_controller_parameters));
|
|
if (rc) {
|
|
kfree(ctlr_params);
|
|
return rc;
|
|
}
|
|
|
|
hba_mode_enabled =
|
|
((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
|
|
kfree(ctlr_params);
|
|
return hba_mode_enabled;
|
|
}
|
|
|
|
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
|
|
{
|
|
/* the idea here is we could get notified
|
|
* that some devices have changed, so we do a report
|
|
* physical luns and report logical luns cmd, and adjust
|
|
* our list of devices accordingly.
|
|
*
|
|
* The scsi3addr's of devices won't change so long as the
|
|
* adapter is not reset. That means we can rescan and
|
|
* tell which devices we already know about, vs. new
|
|
* devices, vs. disappearing devices.
|
|
*/
|
|
struct ReportExtendedLUNdata *physdev_list = NULL;
|
|
struct ReportLUNdata *logdev_list = NULL;
|
|
u32 nphysicals = 0;
|
|
u32 nlogicals = 0;
|
|
int physical_mode = 0;
|
|
u32 ndev_allocated = 0;
|
|
struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
|
|
int ncurrent = 0;
|
|
int i, n_ext_target_devs, ndevs_to_allocate;
|
|
int raid_ctlr_position;
|
|
int rescan_hba_mode;
|
|
DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
|
|
|
|
currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
|
|
physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
|
|
logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
|
|
tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
|
|
|
|
if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
|
|
dev_err(&h->pdev->dev, "out of memory\n");
|
|
goto out;
|
|
}
|
|
memset(lunzerobits, 0, sizeof(lunzerobits));
|
|
|
|
rescan_hba_mode = hpsa_hba_mode_enabled(h);
|
|
if (rescan_hba_mode < 0)
|
|
goto out;
|
|
|
|
if (!h->hba_mode_enabled && rescan_hba_mode)
|
|
dev_warn(&h->pdev->dev, "HBA mode enabled\n");
|
|
else if (h->hba_mode_enabled && !rescan_hba_mode)
|
|
dev_warn(&h->pdev->dev, "HBA mode disabled\n");
|
|
|
|
h->hba_mode_enabled = rescan_hba_mode;
|
|
|
|
if (hpsa_gather_lun_info(h,
|
|
sizeof(*physdev_list), sizeof(*logdev_list),
|
|
(struct ReportLUNdata *) physdev_list, &nphysicals,
|
|
&physical_mode, logdev_list, &nlogicals))
|
|
goto out;
|
|
|
|
/* We might see up to the maximum number of logical and physical disks
|
|
* plus external target devices, and a device for the local RAID
|
|
* controller.
|
|
*/
|
|
ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
|
|
|
|
/* Allocate the per device structures */
|
|
for (i = 0; i < ndevs_to_allocate; i++) {
|
|
if (i >= HPSA_MAX_DEVICES) {
|
|
dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
|
|
" %d devices ignored.\n", HPSA_MAX_DEVICES,
|
|
ndevs_to_allocate - HPSA_MAX_DEVICES);
|
|
break;
|
|
}
|
|
|
|
currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
|
|
if (!currentsd[i]) {
|
|
dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
|
|
__FILE__, __LINE__);
|
|
goto out;
|
|
}
|
|
ndev_allocated++;
|
|
}
|
|
|
|
if (is_scsi_rev_5(h))
|
|
raid_ctlr_position = 0;
|
|
else
|
|
raid_ctlr_position = nphysicals + nlogicals;
|
|
|
|
/* adjust our table of devices */
|
|
n_ext_target_devs = 0;
|
|
for (i = 0; i < nphysicals + nlogicals + 1; i++) {
|
|
u8 *lunaddrbytes, is_OBDR = 0;
|
|
|
|
/* Figure out where the LUN ID info is coming from */
|
|
lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
|
|
i, nphysicals, nlogicals, physdev_list, logdev_list);
|
|
/* skip masked physical devices. */
|
|
if (lunaddrbytes[3] & 0xC0 &&
|
|
i < nphysicals + (raid_ctlr_position == 0))
|
|
continue;
|
|
|
|
/* Get device type, vendor, model, device id */
|
|
if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
|
|
&is_OBDR))
|
|
continue; /* skip it if we can't talk to it. */
|
|
figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
|
|
this_device = currentsd[ncurrent];
|
|
|
|
/*
|
|
* For external target devices, we have to insert a LUN 0 which
|
|
* doesn't show up in CCISS_REPORT_PHYSICAL data, but there
|
|
* is nonetheless an enclosure device there. We have to
|
|
* present that otherwise linux won't find anything if
|
|
* there is no lun 0.
|
|
*/
|
|
if (add_ext_target_dev(h, tmpdevice, this_device,
|
|
lunaddrbytes, lunzerobits,
|
|
&n_ext_target_devs)) {
|
|
ncurrent++;
|
|
this_device = currentsd[ncurrent];
|
|
}
|
|
|
|
*this_device = *tmpdevice;
|
|
|
|
switch (this_device->devtype) {
|
|
case TYPE_ROM:
|
|
/* We don't *really* support actual CD-ROM devices,
|
|
* just "One Button Disaster Recovery" tape drive
|
|
* which temporarily pretends to be a CD-ROM drive.
|
|
* So we check that the device is really an OBDR tape
|
|
* device by checking for "$DR-10" in bytes 43-48 of
|
|
* the inquiry data.
|
|
*/
|
|
if (is_OBDR)
|
|
ncurrent++;
|
|
break;
|
|
case TYPE_DISK:
|
|
if (h->hba_mode_enabled) {
|
|
/* never use raid mapper in HBA mode */
|
|
this_device->offload_enabled = 0;
|
|
ncurrent++;
|
|
break;
|
|
} else if (h->acciopath_status) {
|
|
if (i >= nphysicals) {
|
|
ncurrent++;
|
|
break;
|
|
}
|
|
} else {
|
|
if (i < nphysicals)
|
|
break;
|
|
ncurrent++;
|
|
break;
|
|
}
|
|
if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
|
|
memcpy(&this_device->ioaccel_handle,
|
|
&lunaddrbytes[20],
|
|
sizeof(this_device->ioaccel_handle));
|
|
ncurrent++;
|
|
}
|
|
break;
|
|
case TYPE_TAPE:
|
|
case TYPE_MEDIUM_CHANGER:
|
|
ncurrent++;
|
|
break;
|
|
case TYPE_RAID:
|
|
/* Only present the Smartarray HBA as a RAID controller.
|
|
* If it's a RAID controller other than the HBA itself
|
|
* (an external RAID controller, MSA500 or similar)
|
|
* don't present it.
|
|
*/
|
|
if (!is_hba_lunid(lunaddrbytes))
|
|
break;
|
|
ncurrent++;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (ncurrent >= HPSA_MAX_DEVICES)
|
|
break;
|
|
}
|
|
adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
|
|
out:
|
|
kfree(tmpdevice);
|
|
for (i = 0; i < ndev_allocated; i++)
|
|
kfree(currentsd[i]);
|
|
kfree(currentsd);
|
|
kfree(physdev_list);
|
|
kfree(logdev_list);
|
|
}
|
|
|
|
/*
|
|
* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
|
|
* dma mapping and fills in the scatter gather entries of the
|
|
* hpsa command, cp.
|
|
*/
|
|
static int hpsa_scatter_gather(struct ctlr_info *h,
|
|
struct CommandList *cp,
|
|
struct scsi_cmnd *cmd)
|
|
{
|
|
unsigned int len;
|
|
struct scatterlist *sg;
|
|
u64 addr64;
|
|
int use_sg, i, sg_index, chained;
|
|
struct SGDescriptor *curr_sg;
|
|
|
|
BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
|
|
|
|
use_sg = scsi_dma_map(cmd);
|
|
if (use_sg < 0)
|
|
return use_sg;
|
|
|
|
if (!use_sg)
|
|
goto sglist_finished;
|
|
|
|
curr_sg = cp->SG;
|
|
chained = 0;
|
|
sg_index = 0;
|
|
scsi_for_each_sg(cmd, sg, use_sg, i) {
|
|
if (i == h->max_cmd_sg_entries - 1 &&
|
|
use_sg > h->max_cmd_sg_entries) {
|
|
chained = 1;
|
|
curr_sg = h->cmd_sg_list[cp->cmdindex];
|
|
sg_index = 0;
|
|
}
|
|
addr64 = (u64) sg_dma_address(sg);
|
|
len = sg_dma_len(sg);
|
|
curr_sg->Addr = cpu_to_le64(addr64);
|
|
curr_sg->Len = cpu_to_le32(len);
|
|
curr_sg->Ext = cpu_to_le32(0);
|
|
curr_sg++;
|
|
}
|
|
(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
|
|
|
|
if (use_sg + chained > h->maxSG)
|
|
h->maxSG = use_sg + chained;
|
|
|
|
if (chained) {
|
|
cp->Header.SGList = h->max_cmd_sg_entries;
|
|
cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
|
|
if (hpsa_map_sg_chain_block(h, cp)) {
|
|
scsi_dma_unmap(cmd);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
sglist_finished:
|
|
|
|
cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
|
|
cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
|
|
return 0;
|
|
}
|
|
|
|
#define IO_ACCEL_INELIGIBLE (1)
|
|
static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
|
|
{
|
|
int is_write = 0;
|
|
u32 block;
|
|
u32 block_cnt;
|
|
|
|
/* Perform some CDB fixups if needed using 10 byte reads/writes only */
|
|
switch (cdb[0]) {
|
|
case WRITE_6:
|
|
case WRITE_12:
|
|
is_write = 1;
|
|
case READ_6:
|
|
case READ_12:
|
|
if (*cdb_len == 6) {
|
|
block = (((u32) cdb[2]) << 8) | cdb[3];
|
|
block_cnt = cdb[4];
|
|
} else {
|
|
BUG_ON(*cdb_len != 12);
|
|
block = (((u32) cdb[2]) << 24) |
|
|
(((u32) cdb[3]) << 16) |
|
|
(((u32) cdb[4]) << 8) |
|
|
cdb[5];
|
|
block_cnt =
|
|
(((u32) cdb[6]) << 24) |
|
|
(((u32) cdb[7]) << 16) |
|
|
(((u32) cdb[8]) << 8) |
|
|
cdb[9];
|
|
}
|
|
if (block_cnt > 0xffff)
|
|
return IO_ACCEL_INELIGIBLE;
|
|
|
|
cdb[0] = is_write ? WRITE_10 : READ_10;
|
|
cdb[1] = 0;
|
|
cdb[2] = (u8) (block >> 24);
|
|
cdb[3] = (u8) (block >> 16);
|
|
cdb[4] = (u8) (block >> 8);
|
|
cdb[5] = (u8) (block);
|
|
cdb[6] = 0;
|
|
cdb[7] = (u8) (block_cnt >> 8);
|
|
cdb[8] = (u8) (block_cnt);
|
|
cdb[9] = 0;
|
|
*cdb_len = 10;
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
|
|
struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
|
|
u8 *scsi3addr)
|
|
{
|
|
struct scsi_cmnd *cmd = c->scsi_cmd;
|
|
struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
|
|
unsigned int len;
|
|
unsigned int total_len = 0;
|
|
struct scatterlist *sg;
|
|
u64 addr64;
|
|
int use_sg, i;
|
|
struct SGDescriptor *curr_sg;
|
|
u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
|
|
|
|
/* TODO: implement chaining support */
|
|
if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
|
|
return IO_ACCEL_INELIGIBLE;
|
|
|
|
BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
|
|
|
|
if (fixup_ioaccel_cdb(cdb, &cdb_len))
|
|
return IO_ACCEL_INELIGIBLE;
|
|
|
|
c->cmd_type = CMD_IOACCEL1;
|
|
|
|
/* Adjust the DMA address to point to the accelerated command buffer */
|
|
c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
|
|
(c->cmdindex * sizeof(*cp));
|
|
BUG_ON(c->busaddr & 0x0000007F);
|
|
|
|
use_sg = scsi_dma_map(cmd);
|
|
if (use_sg < 0)
|
|
return use_sg;
|
|
|
|
if (use_sg) {
|
|
curr_sg = cp->SG;
|
|
scsi_for_each_sg(cmd, sg, use_sg, i) {
|
|
addr64 = (u64) sg_dma_address(sg);
|
|
len = sg_dma_len(sg);
|
|
total_len += len;
|
|
curr_sg->Addr = cpu_to_le64(addr64);
|
|
curr_sg->Len = cpu_to_le32(len);
|
|
curr_sg->Ext = cpu_to_le32(0);
|
|
curr_sg++;
|
|
}
|
|
(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
|
|
|
|
switch (cmd->sc_data_direction) {
|
|
case DMA_TO_DEVICE:
|
|
control |= IOACCEL1_CONTROL_DATA_OUT;
|
|
break;
|
|
case DMA_FROM_DEVICE:
|
|
control |= IOACCEL1_CONTROL_DATA_IN;
|
|
break;
|
|
case DMA_NONE:
|
|
control |= IOACCEL1_CONTROL_NODATAXFER;
|
|
break;
|
|
default:
|
|
dev_err(&h->pdev->dev, "unknown data direction: %d\n",
|
|
cmd->sc_data_direction);
|
|
BUG();
|
|
break;
|
|
}
|
|
} else {
|
|
control |= IOACCEL1_CONTROL_NODATAXFER;
|
|
}
|
|
|
|
c->Header.SGList = use_sg;
|
|
/* Fill out the command structure to submit */
|
|
cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
|
|
cp->transfer_len = cpu_to_le32(total_len);
|
|
cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
|
|
(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
|
|
cp->control = cpu_to_le32(control);
|
|
memcpy(cp->CDB, cdb, cdb_len);
|
|
memcpy(cp->CISS_LUN, scsi3addr, 8);
|
|
/* Tag was already set at init time. */
|
|
enqueue_cmd_and_start_io(h, c);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Queue a command directly to a device behind the controller using the
|
|
* I/O accelerator path.
|
|
*/
|
|
static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
struct scsi_cmnd *cmd = c->scsi_cmd;
|
|
struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
|
|
|
|
return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
|
|
cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
|
|
}
|
|
|
|
/*
|
|
* Set encryption parameters for the ioaccel2 request
|
|
*/
|
|
static void set_encrypt_ioaccel2(struct ctlr_info *h,
|
|
struct CommandList *c, struct io_accel2_cmd *cp)
|
|
{
|
|
struct scsi_cmnd *cmd = c->scsi_cmd;
|
|
struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
|
|
struct raid_map_data *map = &dev->raid_map;
|
|
u64 first_block;
|
|
|
|
BUG_ON(!(dev->offload_config && dev->offload_enabled));
|
|
|
|
/* Are we doing encryption on this device */
|
|
if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
|
|
return;
|
|
/* Set the data encryption key index. */
|
|
cp->dekindex = map->dekindex;
|
|
|
|
/* Set the encryption enable flag, encoded into direction field. */
|
|
cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
|
|
|
|
/* Set encryption tweak values based on logical block address
|
|
* If block size is 512, tweak value is LBA.
|
|
* For other block sizes, tweak is (LBA * block size)/ 512)
|
|
*/
|
|
switch (cmd->cmnd[0]) {
|
|
/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
|
|
case WRITE_6:
|
|
case READ_6:
|
|
first_block = get_unaligned_be16(&cmd->cmnd[2]);
|
|
break;
|
|
case WRITE_10:
|
|
case READ_10:
|
|
/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
|
|
case WRITE_12:
|
|
case READ_12:
|
|
first_block = get_unaligned_be32(&cmd->cmnd[2]);
|
|
break;
|
|
case WRITE_16:
|
|
case READ_16:
|
|
first_block = get_unaligned_be64(&cmd->cmnd[2]);
|
|
break;
|
|
default:
|
|
dev_err(&h->pdev->dev,
|
|
"ERROR: %s: size (0x%x) not supported for encryption\n",
|
|
__func__, cmd->cmnd[0]);
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
if (le32_to_cpu(map->volume_blk_size) != 512)
|
|
first_block = first_block *
|
|
le32_to_cpu(map->volume_blk_size)/512;
|
|
|
|
cp->tweak_lower = cpu_to_le32(first_block);
|
|
cp->tweak_upper = cpu_to_le32(first_block >> 32);
|
|
}
|
|
|
|
static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
|
|
struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
|
|
u8 *scsi3addr)
|
|
{
|
|
struct scsi_cmnd *cmd = c->scsi_cmd;
|
|
struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
|
|
struct ioaccel2_sg_element *curr_sg;
|
|
int use_sg, i;
|
|
struct scatterlist *sg;
|
|
u64 addr64;
|
|
u32 len;
|
|
u32 total_len = 0;
|
|
|
|
if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
|
|
return IO_ACCEL_INELIGIBLE;
|
|
|
|
if (fixup_ioaccel_cdb(cdb, &cdb_len))
|
|
return IO_ACCEL_INELIGIBLE;
|
|
c->cmd_type = CMD_IOACCEL2;
|
|
/* Adjust the DMA address to point to the accelerated command buffer */
|
|
c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
|
|
(c->cmdindex * sizeof(*cp));
|
|
BUG_ON(c->busaddr & 0x0000007F);
|
|
|
|
memset(cp, 0, sizeof(*cp));
|
|
cp->IU_type = IOACCEL2_IU_TYPE;
|
|
|
|
use_sg = scsi_dma_map(cmd);
|
|
if (use_sg < 0)
|
|
return use_sg;
|
|
|
|
if (use_sg) {
|
|
BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
|
|
curr_sg = cp->sg;
|
|
scsi_for_each_sg(cmd, sg, use_sg, i) {
|
|
addr64 = (u64) sg_dma_address(sg);
|
|
len = sg_dma_len(sg);
|
|
total_len += len;
|
|
curr_sg->address = cpu_to_le64(addr64);
|
|
curr_sg->length = cpu_to_le32(len);
|
|
curr_sg->reserved[0] = 0;
|
|
curr_sg->reserved[1] = 0;
|
|
curr_sg->reserved[2] = 0;
|
|
curr_sg->chain_indicator = 0;
|
|
curr_sg++;
|
|
}
|
|
|
|
switch (cmd->sc_data_direction) {
|
|
case DMA_TO_DEVICE:
|
|
cp->direction &= ~IOACCEL2_DIRECTION_MASK;
|
|
cp->direction |= IOACCEL2_DIR_DATA_OUT;
|
|
break;
|
|
case DMA_FROM_DEVICE:
|
|
cp->direction &= ~IOACCEL2_DIRECTION_MASK;
|
|
cp->direction |= IOACCEL2_DIR_DATA_IN;
|
|
break;
|
|
case DMA_NONE:
|
|
cp->direction &= ~IOACCEL2_DIRECTION_MASK;
|
|
cp->direction |= IOACCEL2_DIR_NO_DATA;
|
|
break;
|
|
default:
|
|
dev_err(&h->pdev->dev, "unknown data direction: %d\n",
|
|
cmd->sc_data_direction);
|
|
BUG();
|
|
break;
|
|
}
|
|
} else {
|
|
cp->direction &= ~IOACCEL2_DIRECTION_MASK;
|
|
cp->direction |= IOACCEL2_DIR_NO_DATA;
|
|
}
|
|
|
|
/* Set encryption parameters, if necessary */
|
|
set_encrypt_ioaccel2(h, c, cp);
|
|
|
|
cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
|
|
cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT |
|
|
DIRECT_LOOKUP_BIT);
|
|
memcpy(cp->cdb, cdb, sizeof(cp->cdb));
|
|
|
|
/* fill in sg elements */
|
|
cp->sg_count = (u8) use_sg;
|
|
|
|
cp->data_len = cpu_to_le32(total_len);
|
|
cp->err_ptr = cpu_to_le64(c->busaddr +
|
|
offsetof(struct io_accel2_cmd, error_data));
|
|
cp->err_len = cpu_to_le32(sizeof(cp->error_data));
|
|
|
|
enqueue_cmd_and_start_io(h, c);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Queue a command to the correct I/O accelerator path.
|
|
*/
|
|
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
|
|
struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
|
|
u8 *scsi3addr)
|
|
{
|
|
if (h->transMethod & CFGTBL_Trans_io_accel1)
|
|
return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
|
|
cdb, cdb_len, scsi3addr);
|
|
else
|
|
return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
|
|
cdb, cdb_len, scsi3addr);
|
|
}
|
|
|
|
static void raid_map_helper(struct raid_map_data *map,
|
|
int offload_to_mirror, u32 *map_index, u32 *current_group)
|
|
{
|
|
if (offload_to_mirror == 0) {
|
|
/* use physical disk in the first mirrored group. */
|
|
*map_index %= le16_to_cpu(map->data_disks_per_row);
|
|
return;
|
|
}
|
|
do {
|
|
/* determine mirror group that *map_index indicates */
|
|
*current_group = *map_index /
|
|
le16_to_cpu(map->data_disks_per_row);
|
|
if (offload_to_mirror == *current_group)
|
|
continue;
|
|
if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
|
|
/* select map index from next group */
|
|
*map_index += le16_to_cpu(map->data_disks_per_row);
|
|
(*current_group)++;
|
|
} else {
|
|
/* select map index from first group */
|
|
*map_index %= le16_to_cpu(map->data_disks_per_row);
|
|
*current_group = 0;
|
|
}
|
|
} while (offload_to_mirror != *current_group);
|
|
}
|
|
|
|
/*
|
|
* Attempt to perform offload RAID mapping for a logical volume I/O.
|
|
*/
|
|
static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
struct scsi_cmnd *cmd = c->scsi_cmd;
|
|
struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
|
|
struct raid_map_data *map = &dev->raid_map;
|
|
struct raid_map_disk_data *dd = &map->data[0];
|
|
int is_write = 0;
|
|
u32 map_index;
|
|
u64 first_block, last_block;
|
|
u32 block_cnt;
|
|
u32 blocks_per_row;
|
|
u64 first_row, last_row;
|
|
u32 first_row_offset, last_row_offset;
|
|
u32 first_column, last_column;
|
|
u64 r0_first_row, r0_last_row;
|
|
u32 r5or6_blocks_per_row;
|
|
u64 r5or6_first_row, r5or6_last_row;
|
|
u32 r5or6_first_row_offset, r5or6_last_row_offset;
|
|
u32 r5or6_first_column, r5or6_last_column;
|
|
u32 total_disks_per_row;
|
|
u32 stripesize;
|
|
u32 first_group, last_group, current_group;
|
|
u32 map_row;
|
|
u32 disk_handle;
|
|
u64 disk_block;
|
|
u32 disk_block_cnt;
|
|
u8 cdb[16];
|
|
u8 cdb_len;
|
|
u16 strip_size;
|
|
#if BITS_PER_LONG == 32
|
|
u64 tmpdiv;
|
|
#endif
|
|
int offload_to_mirror;
|
|
|
|
BUG_ON(!(dev->offload_config && dev->offload_enabled));
|
|
|
|
/* check for valid opcode, get LBA and block count */
|
|
switch (cmd->cmnd[0]) {
|
|
case WRITE_6:
|
|
is_write = 1;
|
|
case READ_6:
|
|
first_block =
|
|
(((u64) cmd->cmnd[2]) << 8) |
|
|
cmd->cmnd[3];
|
|
block_cnt = cmd->cmnd[4];
|
|
if (block_cnt == 0)
|
|
block_cnt = 256;
|
|
break;
|
|
case WRITE_10:
|
|
is_write = 1;
|
|
case READ_10:
|
|
first_block =
|
|
(((u64) cmd->cmnd[2]) << 24) |
|
|
(((u64) cmd->cmnd[3]) << 16) |
|
|
(((u64) cmd->cmnd[4]) << 8) |
|
|
cmd->cmnd[5];
|
|
block_cnt =
|
|
(((u32) cmd->cmnd[7]) << 8) |
|
|
cmd->cmnd[8];
|
|
break;
|
|
case WRITE_12:
|
|
is_write = 1;
|
|
case READ_12:
|
|
first_block =
|
|
(((u64) cmd->cmnd[2]) << 24) |
|
|
(((u64) cmd->cmnd[3]) << 16) |
|
|
(((u64) cmd->cmnd[4]) << 8) |
|
|
cmd->cmnd[5];
|
|
block_cnt =
|
|
(((u32) cmd->cmnd[6]) << 24) |
|
|
(((u32) cmd->cmnd[7]) << 16) |
|
|
(((u32) cmd->cmnd[8]) << 8) |
|
|
cmd->cmnd[9];
|
|
break;
|
|
case WRITE_16:
|
|
is_write = 1;
|
|
case READ_16:
|
|
first_block =
|
|
(((u64) cmd->cmnd[2]) << 56) |
|
|
(((u64) cmd->cmnd[3]) << 48) |
|
|
(((u64) cmd->cmnd[4]) << 40) |
|
|
(((u64) cmd->cmnd[5]) << 32) |
|
|
(((u64) cmd->cmnd[6]) << 24) |
|
|
(((u64) cmd->cmnd[7]) << 16) |
|
|
(((u64) cmd->cmnd[8]) << 8) |
|
|
cmd->cmnd[9];
|
|
block_cnt =
|
|
(((u32) cmd->cmnd[10]) << 24) |
|
|
(((u32) cmd->cmnd[11]) << 16) |
|
|
(((u32) cmd->cmnd[12]) << 8) |
|
|
cmd->cmnd[13];
|
|
break;
|
|
default:
|
|
return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
|
|
}
|
|
last_block = first_block + block_cnt - 1;
|
|
|
|
/* check for write to non-RAID-0 */
|
|
if (is_write && dev->raid_level != 0)
|
|
return IO_ACCEL_INELIGIBLE;
|
|
|
|
/* check for invalid block or wraparound */
|
|
if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
|
|
last_block < first_block)
|
|
return IO_ACCEL_INELIGIBLE;
|
|
|
|
/* calculate stripe information for the request */
|
|
blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
|
|
le16_to_cpu(map->strip_size);
|
|
strip_size = le16_to_cpu(map->strip_size);
|
|
#if BITS_PER_LONG == 32
|
|
tmpdiv = first_block;
|
|
(void) do_div(tmpdiv, blocks_per_row);
|
|
first_row = tmpdiv;
|
|
tmpdiv = last_block;
|
|
(void) do_div(tmpdiv, blocks_per_row);
|
|
last_row = tmpdiv;
|
|
first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
|
|
last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
|
|
tmpdiv = first_row_offset;
|
|
(void) do_div(tmpdiv, strip_size);
|
|
first_column = tmpdiv;
|
|
tmpdiv = last_row_offset;
|
|
(void) do_div(tmpdiv, strip_size);
|
|
last_column = tmpdiv;
|
|
#else
|
|
first_row = first_block / blocks_per_row;
|
|
last_row = last_block / blocks_per_row;
|
|
first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
|
|
last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
|
|
first_column = first_row_offset / strip_size;
|
|
last_column = last_row_offset / strip_size;
|
|
#endif
|
|
|
|
/* if this isn't a single row/column then give to the controller */
|
|
if ((first_row != last_row) || (first_column != last_column))
|
|
return IO_ACCEL_INELIGIBLE;
|
|
|
|
/* proceeding with driver mapping */
|
|
total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
|
|
le16_to_cpu(map->metadata_disks_per_row);
|
|
map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
|
|
le16_to_cpu(map->row_cnt);
|
|
map_index = (map_row * total_disks_per_row) + first_column;
|
|
|
|
switch (dev->raid_level) {
|
|
case HPSA_RAID_0:
|
|
break; /* nothing special to do */
|
|
case HPSA_RAID_1:
|
|
/* Handles load balance across RAID 1 members.
|
|
* (2-drive R1 and R10 with even # of drives.)
|
|
* Appropriate for SSDs, not optimal for HDDs
|
|
*/
|
|
BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
|
|
if (dev->offload_to_mirror)
|
|
map_index += le16_to_cpu(map->data_disks_per_row);
|
|
dev->offload_to_mirror = !dev->offload_to_mirror;
|
|
break;
|
|
case HPSA_RAID_ADM:
|
|
/* Handles N-way mirrors (R1-ADM)
|
|
* and R10 with # of drives divisible by 3.)
|
|
*/
|
|
BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
|
|
|
|
offload_to_mirror = dev->offload_to_mirror;
|
|
raid_map_helper(map, offload_to_mirror,
|
|
&map_index, ¤t_group);
|
|
/* set mirror group to use next time */
|
|
offload_to_mirror =
|
|
(offload_to_mirror >=
|
|
le16_to_cpu(map->layout_map_count) - 1)
|
|
? 0 : offload_to_mirror + 1;
|
|
dev->offload_to_mirror = offload_to_mirror;
|
|
/* Avoid direct use of dev->offload_to_mirror within this
|
|
* function since multiple threads might simultaneously
|
|
* increment it beyond the range of dev->layout_map_count -1.
|
|
*/
|
|
break;
|
|
case HPSA_RAID_5:
|
|
case HPSA_RAID_6:
|
|
if (le16_to_cpu(map->layout_map_count) <= 1)
|
|
break;
|
|
|
|
/* Verify first and last block are in same RAID group */
|
|
r5or6_blocks_per_row =
|
|
le16_to_cpu(map->strip_size) *
|
|
le16_to_cpu(map->data_disks_per_row);
|
|
BUG_ON(r5or6_blocks_per_row == 0);
|
|
stripesize = r5or6_blocks_per_row *
|
|
le16_to_cpu(map->layout_map_count);
|
|
#if BITS_PER_LONG == 32
|
|
tmpdiv = first_block;
|
|
first_group = do_div(tmpdiv, stripesize);
|
|
tmpdiv = first_group;
|
|
(void) do_div(tmpdiv, r5or6_blocks_per_row);
|
|
first_group = tmpdiv;
|
|
tmpdiv = last_block;
|
|
last_group = do_div(tmpdiv, stripesize);
|
|
tmpdiv = last_group;
|
|
(void) do_div(tmpdiv, r5or6_blocks_per_row);
|
|
last_group = tmpdiv;
|
|
#else
|
|
first_group = (first_block % stripesize) / r5or6_blocks_per_row;
|
|
last_group = (last_block % stripesize) / r5or6_blocks_per_row;
|
|
#endif
|
|
if (first_group != last_group)
|
|
return IO_ACCEL_INELIGIBLE;
|
|
|
|
/* Verify request is in a single row of RAID 5/6 */
|
|
#if BITS_PER_LONG == 32
|
|
tmpdiv = first_block;
|
|
(void) do_div(tmpdiv, stripesize);
|
|
first_row = r5or6_first_row = r0_first_row = tmpdiv;
|
|
tmpdiv = last_block;
|
|
(void) do_div(tmpdiv, stripesize);
|
|
r5or6_last_row = r0_last_row = tmpdiv;
|
|
#else
|
|
first_row = r5or6_first_row = r0_first_row =
|
|
first_block / stripesize;
|
|
r5or6_last_row = r0_last_row = last_block / stripesize;
|
|
#endif
|
|
if (r5or6_first_row != r5or6_last_row)
|
|
return IO_ACCEL_INELIGIBLE;
|
|
|
|
|
|
/* Verify request is in a single column */
|
|
#if BITS_PER_LONG == 32
|
|
tmpdiv = first_block;
|
|
first_row_offset = do_div(tmpdiv, stripesize);
|
|
tmpdiv = first_row_offset;
|
|
first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
|
|
r5or6_first_row_offset = first_row_offset;
|
|
tmpdiv = last_block;
|
|
r5or6_last_row_offset = do_div(tmpdiv, stripesize);
|
|
tmpdiv = r5or6_last_row_offset;
|
|
r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
|
|
tmpdiv = r5or6_first_row_offset;
|
|
(void) do_div(tmpdiv, map->strip_size);
|
|
first_column = r5or6_first_column = tmpdiv;
|
|
tmpdiv = r5or6_last_row_offset;
|
|
(void) do_div(tmpdiv, map->strip_size);
|
|
r5or6_last_column = tmpdiv;
|
|
#else
|
|
first_row_offset = r5or6_first_row_offset =
|
|
(u32)((first_block % stripesize) %
|
|
r5or6_blocks_per_row);
|
|
|
|
r5or6_last_row_offset =
|
|
(u32)((last_block % stripesize) %
|
|
r5or6_blocks_per_row);
|
|
|
|
first_column = r5or6_first_column =
|
|
r5or6_first_row_offset / le16_to_cpu(map->strip_size);
|
|
r5or6_last_column =
|
|
r5or6_last_row_offset / le16_to_cpu(map->strip_size);
|
|
#endif
|
|
if (r5or6_first_column != r5or6_last_column)
|
|
return IO_ACCEL_INELIGIBLE;
|
|
|
|
/* Request is eligible */
|
|
map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
|
|
le16_to_cpu(map->row_cnt);
|
|
|
|
map_index = (first_group *
|
|
(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
|
|
(map_row * total_disks_per_row) + first_column;
|
|
break;
|
|
default:
|
|
return IO_ACCEL_INELIGIBLE;
|
|
}
|
|
|
|
disk_handle = dd[map_index].ioaccel_handle;
|
|
disk_block = le64_to_cpu(map->disk_starting_blk) +
|
|
first_row * le16_to_cpu(map->strip_size) +
|
|
(first_row_offset - first_column *
|
|
le16_to_cpu(map->strip_size));
|
|
disk_block_cnt = block_cnt;
|
|
|
|
/* handle differing logical/physical block sizes */
|
|
if (map->phys_blk_shift) {
|
|
disk_block <<= map->phys_blk_shift;
|
|
disk_block_cnt <<= map->phys_blk_shift;
|
|
}
|
|
BUG_ON(disk_block_cnt > 0xffff);
|
|
|
|
/* build the new CDB for the physical disk I/O */
|
|
if (disk_block > 0xffffffff) {
|
|
cdb[0] = is_write ? WRITE_16 : READ_16;
|
|
cdb[1] = 0;
|
|
cdb[2] = (u8) (disk_block >> 56);
|
|
cdb[3] = (u8) (disk_block >> 48);
|
|
cdb[4] = (u8) (disk_block >> 40);
|
|
cdb[5] = (u8) (disk_block >> 32);
|
|
cdb[6] = (u8) (disk_block >> 24);
|
|
cdb[7] = (u8) (disk_block >> 16);
|
|
cdb[8] = (u8) (disk_block >> 8);
|
|
cdb[9] = (u8) (disk_block);
|
|
cdb[10] = (u8) (disk_block_cnt >> 24);
|
|
cdb[11] = (u8) (disk_block_cnt >> 16);
|
|
cdb[12] = (u8) (disk_block_cnt >> 8);
|
|
cdb[13] = (u8) (disk_block_cnt);
|
|
cdb[14] = 0;
|
|
cdb[15] = 0;
|
|
cdb_len = 16;
|
|
} else {
|
|
cdb[0] = is_write ? WRITE_10 : READ_10;
|
|
cdb[1] = 0;
|
|
cdb[2] = (u8) (disk_block >> 24);
|
|
cdb[3] = (u8) (disk_block >> 16);
|
|
cdb[4] = (u8) (disk_block >> 8);
|
|
cdb[5] = (u8) (disk_block);
|
|
cdb[6] = 0;
|
|
cdb[7] = (u8) (disk_block_cnt >> 8);
|
|
cdb[8] = (u8) (disk_block_cnt);
|
|
cdb[9] = 0;
|
|
cdb_len = 10;
|
|
}
|
|
return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
|
|
dev->scsi3addr);
|
|
}
|
|
|
|
/*
|
|
* Running in struct Scsi_Host->host_lock less mode using LLD internal
|
|
* struct ctlr_info *h->lock w/ spin_lock_irqsave() protection.
|
|
*/
|
|
static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
|
|
{
|
|
struct ctlr_info *h;
|
|
struct hpsa_scsi_dev_t *dev;
|
|
unsigned char scsi3addr[8];
|
|
struct CommandList *c;
|
|
int rc = 0;
|
|
|
|
/* Get the ptr to our adapter structure out of cmd->host. */
|
|
h = sdev_to_hba(cmd->device);
|
|
dev = cmd->device->hostdata;
|
|
if (!dev) {
|
|
cmd->result = DID_NO_CONNECT << 16;
|
|
cmd->scsi_done(cmd);
|
|
return 0;
|
|
}
|
|
memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
|
|
|
|
if (unlikely(lockup_detected(h))) {
|
|
cmd->result = DID_ERROR << 16;
|
|
cmd->scsi_done(cmd);
|
|
return 0;
|
|
}
|
|
c = cmd_alloc(h);
|
|
if (c == NULL) { /* trouble... */
|
|
dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
|
|
return SCSI_MLQUEUE_HOST_BUSY;
|
|
}
|
|
|
|
/* Fill in the command list header */
|
|
/* save c in case we have to abort it */
|
|
cmd->host_scribble = (unsigned char *) c;
|
|
|
|
c->cmd_type = CMD_SCSI;
|
|
c->scsi_cmd = cmd;
|
|
|
|
/* Call alternate submit routine for I/O accelerated commands.
|
|
* Retries always go down the normal I/O path.
|
|
*/
|
|
if (likely(cmd->retries == 0 &&
|
|
cmd->request->cmd_type == REQ_TYPE_FS &&
|
|
h->acciopath_status)) {
|
|
if (dev->offload_enabled) {
|
|
rc = hpsa_scsi_ioaccel_raid_map(h, c);
|
|
if (rc == 0)
|
|
return 0; /* Sent on ioaccel path */
|
|
if (rc < 0) { /* scsi_dma_map failed. */
|
|
cmd_free(h, c);
|
|
return SCSI_MLQUEUE_HOST_BUSY;
|
|
}
|
|
} else if (dev->ioaccel_handle) {
|
|
rc = hpsa_scsi_ioaccel_direct_map(h, c);
|
|
if (rc == 0)
|
|
return 0; /* Sent on direct map path */
|
|
if (rc < 0) { /* scsi_dma_map failed. */
|
|
cmd_free(h, c);
|
|
return SCSI_MLQUEUE_HOST_BUSY;
|
|
}
|
|
}
|
|
}
|
|
|
|
c->Header.ReplyQueue = 0; /* unused in simple mode */
|
|
memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
|
|
c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT) |
|
|
DIRECT_LOOKUP_BIT);
|
|
|
|
/* Fill in the request block... */
|
|
|
|
c->Request.Timeout = 0;
|
|
memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
|
|
BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
|
|
c->Request.CDBLen = cmd->cmd_len;
|
|
memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
|
|
switch (cmd->sc_data_direction) {
|
|
case DMA_TO_DEVICE:
|
|
c->Request.type_attr_dir =
|
|
TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
|
|
break;
|
|
case DMA_FROM_DEVICE:
|
|
c->Request.type_attr_dir =
|
|
TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
|
|
break;
|
|
case DMA_NONE:
|
|
c->Request.type_attr_dir =
|
|
TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
|
|
break;
|
|
case DMA_BIDIRECTIONAL:
|
|
/* This can happen if a buggy application does a scsi passthru
|
|
* and sets both inlen and outlen to non-zero. ( see
|
|
* ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
|
|
*/
|
|
|
|
c->Request.type_attr_dir =
|
|
TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
|
|
/* This is technically wrong, and hpsa controllers should
|
|
* reject it with CMD_INVALID, which is the most correct
|
|
* response, but non-fibre backends appear to let it
|
|
* slide by, and give the same results as if this field
|
|
* were set correctly. Either way is acceptable for
|
|
* our purposes here.
|
|
*/
|
|
|
|
break;
|
|
|
|
default:
|
|
dev_err(&h->pdev->dev, "unknown data direction: %d\n",
|
|
cmd->sc_data_direction);
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
|
|
cmd_free(h, c);
|
|
return SCSI_MLQUEUE_HOST_BUSY;
|
|
}
|
|
enqueue_cmd_and_start_io(h, c);
|
|
/* the cmd'll come back via intr handler in complete_scsi_command() */
|
|
return 0;
|
|
}
|
|
|
|
static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Don't let rescans be initiated on a controller known
|
|
* to be locked up. If the controller locks up *during*
|
|
* a rescan, that thread is probably hosed, but at least
|
|
* we can prevent new rescan threads from piling up on a
|
|
* locked up controller.
|
|
*/
|
|
if (unlikely(lockup_detected(h))) {
|
|
spin_lock_irqsave(&h->scan_lock, flags);
|
|
h->scan_finished = 1;
|
|
wake_up_all(&h->scan_wait_queue);
|
|
spin_unlock_irqrestore(&h->scan_lock, flags);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void hpsa_scan_start(struct Scsi_Host *sh)
|
|
{
|
|
struct ctlr_info *h = shost_to_hba(sh);
|
|
unsigned long flags;
|
|
|
|
if (do_not_scan_if_controller_locked_up(h))
|
|
return;
|
|
|
|
/* wait until any scan already in progress is finished. */
|
|
while (1) {
|
|
spin_lock_irqsave(&h->scan_lock, flags);
|
|
if (h->scan_finished)
|
|
break;
|
|
spin_unlock_irqrestore(&h->scan_lock, flags);
|
|
wait_event(h->scan_wait_queue, h->scan_finished);
|
|
/* Note: We don't need to worry about a race between this
|
|
* thread and driver unload because the midlayer will
|
|
* have incremented the reference count, so unload won't
|
|
* happen if we're in here.
|
|
*/
|
|
}
|
|
h->scan_finished = 0; /* mark scan as in progress */
|
|
spin_unlock_irqrestore(&h->scan_lock, flags);
|
|
|
|
if (do_not_scan_if_controller_locked_up(h))
|
|
return;
|
|
|
|
hpsa_update_scsi_devices(h, h->scsi_host->host_no);
|
|
|
|
spin_lock_irqsave(&h->scan_lock, flags);
|
|
h->scan_finished = 1; /* mark scan as finished. */
|
|
wake_up_all(&h->scan_wait_queue);
|
|
spin_unlock_irqrestore(&h->scan_lock, flags);
|
|
}
|
|
|
|
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
|
|
{
|
|
struct ctlr_info *h = sdev_to_hba(sdev);
|
|
|
|
if (qdepth < 1)
|
|
qdepth = 1;
|
|
else
|
|
if (qdepth > h->nr_cmds)
|
|
qdepth = h->nr_cmds;
|
|
scsi_change_queue_depth(sdev, qdepth);
|
|
return sdev->queue_depth;
|
|
}
|
|
|
|
static int hpsa_scan_finished(struct Scsi_Host *sh,
|
|
unsigned long elapsed_time)
|
|
{
|
|
struct ctlr_info *h = shost_to_hba(sh);
|
|
unsigned long flags;
|
|
int finished;
|
|
|
|
spin_lock_irqsave(&h->scan_lock, flags);
|
|
finished = h->scan_finished;
|
|
spin_unlock_irqrestore(&h->scan_lock, flags);
|
|
return finished;
|
|
}
|
|
|
|
static void hpsa_unregister_scsi(struct ctlr_info *h)
|
|
{
|
|
/* we are being forcibly unloaded, and may not refuse. */
|
|
scsi_remove_host(h->scsi_host);
|
|
scsi_host_put(h->scsi_host);
|
|
h->scsi_host = NULL;
|
|
}
|
|
|
|
static int hpsa_register_scsi(struct ctlr_info *h)
|
|
{
|
|
struct Scsi_Host *sh;
|
|
int error;
|
|
|
|
sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
|
|
if (sh == NULL)
|
|
goto fail;
|
|
|
|
sh->io_port = 0;
|
|
sh->n_io_port = 0;
|
|
sh->this_id = -1;
|
|
sh->max_channel = 3;
|
|
sh->max_cmd_len = MAX_COMMAND_SIZE;
|
|
sh->max_lun = HPSA_MAX_LUN;
|
|
sh->max_id = HPSA_MAX_LUN;
|
|
sh->can_queue = h->nr_cmds -
|
|
HPSA_CMDS_RESERVED_FOR_ABORTS -
|
|
HPSA_CMDS_RESERVED_FOR_DRIVER -
|
|
HPSA_MAX_CONCURRENT_PASSTHRUS;
|
|
if (h->hba_mode_enabled)
|
|
sh->cmd_per_lun = 7;
|
|
else
|
|
sh->cmd_per_lun = sh->can_queue;
|
|
sh->sg_tablesize = h->maxsgentries;
|
|
h->scsi_host = sh;
|
|
sh->hostdata[0] = (unsigned long) h;
|
|
sh->irq = h->intr[h->intr_mode];
|
|
sh->unique_id = sh->irq;
|
|
error = scsi_add_host(sh, &h->pdev->dev);
|
|
if (error)
|
|
goto fail_host_put;
|
|
scsi_scan_host(sh);
|
|
return 0;
|
|
|
|
fail_host_put:
|
|
dev_err(&h->pdev->dev, "%s: scsi_add_host"
|
|
" failed for controller %d\n", __func__, h->ctlr);
|
|
scsi_host_put(sh);
|
|
return error;
|
|
fail:
|
|
dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
|
|
" failed for controller %d\n", __func__, h->ctlr);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int wait_for_device_to_become_ready(struct ctlr_info *h,
|
|
unsigned char lunaddr[])
|
|
{
|
|
int rc;
|
|
int count = 0;
|
|
int waittime = 1; /* seconds */
|
|
struct CommandList *c;
|
|
|
|
c = cmd_special_alloc(h);
|
|
if (!c) {
|
|
dev_warn(&h->pdev->dev, "out of memory in "
|
|
"wait_for_device_to_become_ready.\n");
|
|
return IO_ERROR;
|
|
}
|
|
|
|
/* Send test unit ready until device ready, or give up. */
|
|
while (count < HPSA_TUR_RETRY_LIMIT) {
|
|
|
|
/* Wait for a bit. do this first, because if we send
|
|
* the TUR right away, the reset will just abort it.
|
|
*/
|
|
msleep(1000 * waittime);
|
|
count++;
|
|
rc = 0; /* Device ready. */
|
|
|
|
/* Increase wait time with each try, up to a point. */
|
|
if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
|
|
waittime = waittime * 2;
|
|
|
|
/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
|
|
(void) fill_cmd(c, TEST_UNIT_READY, h,
|
|
NULL, 0, 0, lunaddr, TYPE_CMD);
|
|
hpsa_scsi_do_simple_cmd_core(h, c);
|
|
/* no unmap needed here because no data xfer. */
|
|
|
|
if (c->err_info->CommandStatus == CMD_SUCCESS)
|
|
break;
|
|
|
|
if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
|
|
c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
|
|
(c->err_info->SenseInfo[2] == NO_SENSE ||
|
|
c->err_info->SenseInfo[2] == UNIT_ATTENTION))
|
|
break;
|
|
|
|
dev_warn(&h->pdev->dev, "waiting %d secs "
|
|
"for device to become ready.\n", waittime);
|
|
rc = 1; /* device not ready. */
|
|
}
|
|
|
|
if (rc)
|
|
dev_warn(&h->pdev->dev, "giving up on device.\n");
|
|
else
|
|
dev_warn(&h->pdev->dev, "device is ready.\n");
|
|
|
|
cmd_special_free(h, c);
|
|
return rc;
|
|
}
|
|
|
|
/* Need at least one of these error handlers to keep ../scsi/hosts.c from
|
|
* complaining. Doing a host- or bus-reset can't do anything good here.
|
|
*/
|
|
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
|
|
{
|
|
int rc;
|
|
struct ctlr_info *h;
|
|
struct hpsa_scsi_dev_t *dev;
|
|
|
|
/* find the controller to which the command to be aborted was sent */
|
|
h = sdev_to_hba(scsicmd->device);
|
|
if (h == NULL) /* paranoia */
|
|
return FAILED;
|
|
dev = scsicmd->device->hostdata;
|
|
if (!dev) {
|
|
dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
|
|
"device lookup failed.\n");
|
|
return FAILED;
|
|
}
|
|
dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
|
|
h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
|
|
/* send a reset to the SCSI LUN which the command was sent to */
|
|
rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
|
|
if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
|
|
return SUCCESS;
|
|
|
|
dev_warn(&h->pdev->dev, "resetting device failed.\n");
|
|
return FAILED;
|
|
}
|
|
|
|
static void swizzle_abort_tag(u8 *tag)
|
|
{
|
|
u8 original_tag[8];
|
|
|
|
memcpy(original_tag, tag, 8);
|
|
tag[0] = original_tag[3];
|
|
tag[1] = original_tag[2];
|
|
tag[2] = original_tag[1];
|
|
tag[3] = original_tag[0];
|
|
tag[4] = original_tag[7];
|
|
tag[5] = original_tag[6];
|
|
tag[6] = original_tag[5];
|
|
tag[7] = original_tag[4];
|
|
}
|
|
|
|
static void hpsa_get_tag(struct ctlr_info *h,
|
|
struct CommandList *c, __le32 *taglower, __le32 *tagupper)
|
|
{
|
|
u64 tag;
|
|
if (c->cmd_type == CMD_IOACCEL1) {
|
|
struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
|
|
&h->ioaccel_cmd_pool[c->cmdindex];
|
|
tag = le64_to_cpu(cm1->tag);
|
|
*tagupper = cpu_to_le32(tag >> 32);
|
|
*taglower = cpu_to_le32(tag);
|
|
return;
|
|
}
|
|
if (c->cmd_type == CMD_IOACCEL2) {
|
|
struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
|
|
&h->ioaccel2_cmd_pool[c->cmdindex];
|
|
/* upper tag not used in ioaccel2 mode */
|
|
memset(tagupper, 0, sizeof(*tagupper));
|
|
*taglower = cm2->Tag;
|
|
return;
|
|
}
|
|
tag = le64_to_cpu(c->Header.tag);
|
|
*tagupper = cpu_to_le32(tag >> 32);
|
|
*taglower = cpu_to_le32(tag);
|
|
}
|
|
|
|
static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
|
|
struct CommandList *abort, int swizzle)
|
|
{
|
|
int rc = IO_OK;
|
|
struct CommandList *c;
|
|
struct ErrorInfo *ei;
|
|
__le32 tagupper, taglower;
|
|
|
|
c = cmd_special_alloc(h);
|
|
if (c == NULL) { /* trouble... */
|
|
dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* fill_cmd can't fail here, no buffer to map */
|
|
(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
|
|
0, 0, scsi3addr, TYPE_MSG);
|
|
if (swizzle)
|
|
swizzle_abort_tag(&c->Request.CDB[4]);
|
|
hpsa_scsi_do_simple_cmd_core(h, c);
|
|
hpsa_get_tag(h, abort, &taglower, &tagupper);
|
|
dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
|
|
__func__, tagupper, taglower);
|
|
/* no unmap needed here because no data xfer. */
|
|
|
|
ei = c->err_info;
|
|
switch (ei->CommandStatus) {
|
|
case CMD_SUCCESS:
|
|
break;
|
|
case CMD_UNABORTABLE: /* Very common, don't make noise. */
|
|
rc = -1;
|
|
break;
|
|
default:
|
|
dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
|
|
__func__, tagupper, taglower);
|
|
hpsa_scsi_interpret_error(h, c);
|
|
rc = -1;
|
|
break;
|
|
}
|
|
cmd_special_free(h, c);
|
|
dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
|
|
__func__, tagupper, taglower);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* hpsa_find_cmd_in_queue
|
|
*
|
|
* Used to determine whether a command (find) is still present
|
|
* in queue_head. Optionally excludes the last element of queue_head.
|
|
*
|
|
* This is used to avoid unnecessary aborts. Commands in h->reqQ have
|
|
* not yet been submitted, and so can be aborted by the driver without
|
|
* sending an abort to the hardware.
|
|
*
|
|
* Returns pointer to command if found in queue, NULL otherwise.
|
|
*/
|
|
static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
|
|
struct scsi_cmnd *find, struct list_head *queue_head)
|
|
{
|
|
unsigned long flags;
|
|
struct CommandList *c = NULL; /* ptr into cmpQ */
|
|
|
|
if (!find)
|
|
return NULL;
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
list_for_each_entry(c, queue_head, list) {
|
|
if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
|
|
continue;
|
|
if (c->scsi_cmd == find) {
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return c;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return NULL;
|
|
}
|
|
|
|
static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
|
|
u8 *tag, struct list_head *queue_head)
|
|
{
|
|
unsigned long flags;
|
|
struct CommandList *c;
|
|
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
list_for_each_entry(c, queue_head, list) {
|
|
if (memcmp(&c->Header.tag, tag, 8) != 0)
|
|
continue;
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return c;
|
|
}
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return NULL;
|
|
}
|
|
|
|
/* ioaccel2 path firmware cannot handle abort task requests.
|
|
* Change abort requests to physical target reset, and send to the
|
|
* address of the physical disk used for the ioaccel 2 command.
|
|
* Return 0 on success (IO_OK)
|
|
* -1 on failure
|
|
*/
|
|
|
|
static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
|
|
unsigned char *scsi3addr, struct CommandList *abort)
|
|
{
|
|
int rc = IO_OK;
|
|
struct scsi_cmnd *scmd; /* scsi command within request being aborted */
|
|
struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
|
|
unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
|
|
unsigned char *psa = &phys_scsi3addr[0];
|
|
|
|
/* Get a pointer to the hpsa logical device. */
|
|
scmd = (struct scsi_cmnd *) abort->scsi_cmd;
|
|
dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
|
|
if (dev == NULL) {
|
|
dev_warn(&h->pdev->dev,
|
|
"Cannot abort: no device pointer for command.\n");
|
|
return -1; /* not abortable */
|
|
}
|
|
|
|
if (h->raid_offload_debug > 0)
|
|
dev_info(&h->pdev->dev,
|
|
"Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
|
|
h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
|
|
scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
|
|
scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
|
|
|
|
if (!dev->offload_enabled) {
|
|
dev_warn(&h->pdev->dev,
|
|
"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
|
|
return -1; /* not abortable */
|
|
}
|
|
|
|
/* Incoming scsi3addr is logical addr. We need physical disk addr. */
|
|
if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
|
|
dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
|
|
return -1; /* not abortable */
|
|
}
|
|
|
|
/* send the reset */
|
|
if (h->raid_offload_debug > 0)
|
|
dev_info(&h->pdev->dev,
|
|
"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
|
|
psa[0], psa[1], psa[2], psa[3],
|
|
psa[4], psa[5], psa[6], psa[7]);
|
|
rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
|
|
if (rc != 0) {
|
|
dev_warn(&h->pdev->dev,
|
|
"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
|
|
psa[0], psa[1], psa[2], psa[3],
|
|
psa[4], psa[5], psa[6], psa[7]);
|
|
return rc; /* failed to reset */
|
|
}
|
|
|
|
/* wait for device to recover */
|
|
if (wait_for_device_to_become_ready(h, psa) != 0) {
|
|
dev_warn(&h->pdev->dev,
|
|
"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
|
|
psa[0], psa[1], psa[2], psa[3],
|
|
psa[4], psa[5], psa[6], psa[7]);
|
|
return -1; /* failed to recover */
|
|
}
|
|
|
|
/* device recovered */
|
|
dev_info(&h->pdev->dev,
|
|
"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
|
|
psa[0], psa[1], psa[2], psa[3],
|
|
psa[4], psa[5], psa[6], psa[7]);
|
|
|
|
return rc; /* success */
|
|
}
|
|
|
|
/* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
|
|
* tell which kind we're dealing with, so we send the abort both ways. There
|
|
* shouldn't be any collisions between swizzled and unswizzled tags due to the
|
|
* way we construct our tags but we check anyway in case the assumptions which
|
|
* make this true someday become false.
|
|
*/
|
|
static int hpsa_send_abort_both_ways(struct ctlr_info *h,
|
|
unsigned char *scsi3addr, struct CommandList *abort)
|
|
{
|
|
u8 swizzled_tag[8];
|
|
struct CommandList *c;
|
|
int rc = 0, rc2 = 0;
|
|
|
|
/* ioccelerator mode 2 commands should be aborted via the
|
|
* accelerated path, since RAID path is unaware of these commands,
|
|
* but underlying firmware can't handle abort TMF.
|
|
* Change abort to physical device reset.
|
|
*/
|
|
if (abort->cmd_type == CMD_IOACCEL2)
|
|
return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
|
|
|
|
/* we do not expect to find the swizzled tag in our queue, but
|
|
* check anyway just to be sure the assumptions which make this
|
|
* the case haven't become wrong.
|
|
*/
|
|
memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
|
|
swizzle_abort_tag(swizzled_tag);
|
|
c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
|
|
if (c != NULL) {
|
|
dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
|
|
return hpsa_send_abort(h, scsi3addr, abort, 0);
|
|
}
|
|
rc = hpsa_send_abort(h, scsi3addr, abort, 0);
|
|
|
|
/* if the command is still in our queue, we can't conclude that it was
|
|
* aborted (it might have just completed normally) but in any case
|
|
* we don't need to try to abort it another way.
|
|
*/
|
|
c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
|
|
if (c)
|
|
rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
|
|
return rc && rc2;
|
|
}
|
|
|
|
/* Send an abort for the specified command.
|
|
* If the device and controller support it,
|
|
* send a task abort request.
|
|
*/
|
|
static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
|
|
{
|
|
|
|
int i, rc;
|
|
struct ctlr_info *h;
|
|
struct hpsa_scsi_dev_t *dev;
|
|
struct CommandList *abort; /* pointer to command to be aborted */
|
|
struct CommandList *found;
|
|
struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
|
|
char msg[256]; /* For debug messaging. */
|
|
int ml = 0;
|
|
__le32 tagupper, taglower;
|
|
|
|
/* Find the controller of the command to be aborted */
|
|
h = sdev_to_hba(sc->device);
|
|
if (WARN(h == NULL,
|
|
"ABORT REQUEST FAILED, Controller lookup failed.\n"))
|
|
return FAILED;
|
|
|
|
/* Check that controller supports some kind of task abort */
|
|
if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
|
|
!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
|
|
return FAILED;
|
|
|
|
memset(msg, 0, sizeof(msg));
|
|
ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
|
|
h->scsi_host->host_no, sc->device->channel,
|
|
sc->device->id, sc->device->lun);
|
|
|
|
/* Find the device of the command to be aborted */
|
|
dev = sc->device->hostdata;
|
|
if (!dev) {
|
|
dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
|
|
msg);
|
|
return FAILED;
|
|
}
|
|
|
|
/* Get SCSI command to be aborted */
|
|
abort = (struct CommandList *) sc->host_scribble;
|
|
if (abort == NULL) {
|
|
dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
|
|
msg);
|
|
return FAILED;
|
|
}
|
|
hpsa_get_tag(h, abort, &taglower, &tagupper);
|
|
ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
|
|
as = (struct scsi_cmnd *) abort->scsi_cmd;
|
|
if (as != NULL)
|
|
ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
|
|
as->cmnd[0], as->serial_number);
|
|
dev_dbg(&h->pdev->dev, "%s\n", msg);
|
|
dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
|
|
h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
|
|
|
|
/* Search reqQ to See if command is queued but not submitted,
|
|
* if so, complete the command with aborted status and remove
|
|
* it from the reqQ.
|
|
*/
|
|
found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
|
|
if (found) {
|
|
found->err_info->CommandStatus = CMD_ABORTED;
|
|
finish_cmd(found);
|
|
dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
|
|
msg);
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* not in reqQ, if also not in cmpQ, must have already completed */
|
|
found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
|
|
if (!found) {
|
|
dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
|
|
msg);
|
|
return SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Command is in flight, or possibly already completed
|
|
* by the firmware (but not to the scsi mid layer) but we can't
|
|
* distinguish which. Send the abort down.
|
|
*/
|
|
rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
|
|
if (rc != 0) {
|
|
dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
|
|
dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
|
|
h->scsi_host->host_no,
|
|
dev->bus, dev->target, dev->lun);
|
|
return FAILED;
|
|
}
|
|
dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
|
|
|
|
/* If the abort(s) above completed and actually aborted the
|
|
* command, then the command to be aborted should already be
|
|
* completed. If not, wait around a bit more to see if they
|
|
* manage to complete normally.
|
|
*/
|
|
#define ABORT_COMPLETE_WAIT_SECS 30
|
|
for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
|
|
found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
|
|
if (!found)
|
|
return SUCCESS;
|
|
msleep(100);
|
|
}
|
|
dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
|
|
msg, ABORT_COMPLETE_WAIT_SECS);
|
|
return FAILED;
|
|
}
|
|
|
|
|
|
/*
|
|
* For operations that cannot sleep, a command block is allocated at init,
|
|
* and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
|
|
* which ones are free or in use. Lock must be held when calling this.
|
|
* cmd_free() is the complement.
|
|
*/
|
|
static struct CommandList *cmd_alloc(struct ctlr_info *h)
|
|
{
|
|
struct CommandList *c;
|
|
int i;
|
|
union u64bit temp64;
|
|
dma_addr_t cmd_dma_handle, err_dma_handle;
|
|
int loopcount;
|
|
|
|
/* There is some *extremely* small but non-zero chance that that
|
|
* multiple threads could get in here, and one thread could
|
|
* be scanning through the list of bits looking for a free
|
|
* one, but the free ones are always behind him, and other
|
|
* threads sneak in behind him and eat them before he can
|
|
* get to them, so that while there is always a free one, a
|
|
* very unlucky thread might be starved anyway, never able to
|
|
* beat the other threads. In reality, this happens so
|
|
* infrequently as to be indistinguishable from never.
|
|
*/
|
|
|
|
loopcount = 0;
|
|
do {
|
|
i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
|
|
if (i == h->nr_cmds)
|
|
i = 0;
|
|
loopcount++;
|
|
} while (test_and_set_bit(i & (BITS_PER_LONG - 1),
|
|
h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0 &&
|
|
loopcount < 10);
|
|
|
|
/* Thread got starved? We do not expect this to ever happen. */
|
|
if (loopcount >= 10)
|
|
return NULL;
|
|
|
|
c = h->cmd_pool + i;
|
|
memset(c, 0, sizeof(*c));
|
|
cmd_dma_handle = h->cmd_pool_dhandle
|
|
+ i * sizeof(*c);
|
|
c->err_info = h->errinfo_pool + i;
|
|
memset(c->err_info, 0, sizeof(*c->err_info));
|
|
err_dma_handle = h->errinfo_pool_dhandle
|
|
+ i * sizeof(*c->err_info);
|
|
|
|
c->cmdindex = i;
|
|
|
|
INIT_LIST_HEAD(&c->list);
|
|
c->busaddr = (u32) cmd_dma_handle;
|
|
temp64.val = (u64) err_dma_handle;
|
|
c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
|
|
c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
|
|
|
|
c->h = h;
|
|
return c;
|
|
}
|
|
|
|
/* For operations that can wait for kmalloc to possibly sleep,
|
|
* this routine can be called. Lock need not be held to call
|
|
* cmd_special_alloc. cmd_special_free() is the complement.
|
|
*/
|
|
static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
|
|
{
|
|
struct CommandList *c;
|
|
dma_addr_t cmd_dma_handle, err_dma_handle;
|
|
|
|
c = pci_zalloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
|
|
if (c == NULL)
|
|
return NULL;
|
|
|
|
c->cmd_type = CMD_SCSI;
|
|
c->cmdindex = -1;
|
|
|
|
c->err_info = pci_zalloc_consistent(h->pdev, sizeof(*c->err_info),
|
|
&err_dma_handle);
|
|
|
|
if (c->err_info == NULL) {
|
|
pci_free_consistent(h->pdev,
|
|
sizeof(*c), c, cmd_dma_handle);
|
|
return NULL;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&c->list);
|
|
c->busaddr = (u32) cmd_dma_handle;
|
|
c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
|
|
c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
|
|
|
|
c->h = h;
|
|
return c;
|
|
}
|
|
|
|
static void cmd_free(struct ctlr_info *h, struct CommandList *c)
|
|
{
|
|
int i;
|
|
|
|
i = c - h->cmd_pool;
|
|
clear_bit(i & (BITS_PER_LONG - 1),
|
|
h->cmd_pool_bits + (i / BITS_PER_LONG));
|
|
}
|
|
|
|
static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
|
|
{
|
|
pci_free_consistent(h->pdev, sizeof(*c->err_info),
|
|
c->err_info,
|
|
(dma_addr_t) le64_to_cpu(c->ErrDesc.Addr));
|
|
pci_free_consistent(h->pdev, sizeof(*c),
|
|
c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
|
|
static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
|
|
void __user *arg)
|
|
{
|
|
IOCTL32_Command_struct __user *arg32 =
|
|
(IOCTL32_Command_struct __user *) arg;
|
|
IOCTL_Command_struct arg64;
|
|
IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
|
|
int err;
|
|
u32 cp;
|
|
|
|
memset(&arg64, 0, sizeof(arg64));
|
|
err = 0;
|
|
err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
|
|
sizeof(arg64.LUN_info));
|
|
err |= copy_from_user(&arg64.Request, &arg32->Request,
|
|
sizeof(arg64.Request));
|
|
err |= copy_from_user(&arg64.error_info, &arg32->error_info,
|
|
sizeof(arg64.error_info));
|
|
err |= get_user(arg64.buf_size, &arg32->buf_size);
|
|
err |= get_user(cp, &arg32->buf);
|
|
arg64.buf = compat_ptr(cp);
|
|
err |= copy_to_user(p, &arg64, sizeof(arg64));
|
|
|
|
if (err)
|
|
return -EFAULT;
|
|
|
|
err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
|
|
if (err)
|
|
return err;
|
|
err |= copy_in_user(&arg32->error_info, &p->error_info,
|
|
sizeof(arg32->error_info));
|
|
if (err)
|
|
return -EFAULT;
|
|
return err;
|
|
}
|
|
|
|
static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
|
|
int cmd, void __user *arg)
|
|
{
|
|
BIG_IOCTL32_Command_struct __user *arg32 =
|
|
(BIG_IOCTL32_Command_struct __user *) arg;
|
|
BIG_IOCTL_Command_struct arg64;
|
|
BIG_IOCTL_Command_struct __user *p =
|
|
compat_alloc_user_space(sizeof(arg64));
|
|
int err;
|
|
u32 cp;
|
|
|
|
memset(&arg64, 0, sizeof(arg64));
|
|
err = 0;
|
|
err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
|
|
sizeof(arg64.LUN_info));
|
|
err |= copy_from_user(&arg64.Request, &arg32->Request,
|
|
sizeof(arg64.Request));
|
|
err |= copy_from_user(&arg64.error_info, &arg32->error_info,
|
|
sizeof(arg64.error_info));
|
|
err |= get_user(arg64.buf_size, &arg32->buf_size);
|
|
err |= get_user(arg64.malloc_size, &arg32->malloc_size);
|
|
err |= get_user(cp, &arg32->buf);
|
|
arg64.buf = compat_ptr(cp);
|
|
err |= copy_to_user(p, &arg64, sizeof(arg64));
|
|
|
|
if (err)
|
|
return -EFAULT;
|
|
|
|
err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
|
|
if (err)
|
|
return err;
|
|
err |= copy_in_user(&arg32->error_info, &p->error_info,
|
|
sizeof(arg32->error_info));
|
|
if (err)
|
|
return -EFAULT;
|
|
return err;
|
|
}
|
|
|
|
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
|
|
{
|
|
switch (cmd) {
|
|
case CCISS_GETPCIINFO:
|
|
case CCISS_GETINTINFO:
|
|
case CCISS_SETINTINFO:
|
|
case CCISS_GETNODENAME:
|
|
case CCISS_SETNODENAME:
|
|
case CCISS_GETHEARTBEAT:
|
|
case CCISS_GETBUSTYPES:
|
|
case CCISS_GETFIRMVER:
|
|
case CCISS_GETDRIVVER:
|
|
case CCISS_REVALIDVOLS:
|
|
case CCISS_DEREGDISK:
|
|
case CCISS_REGNEWDISK:
|
|
case CCISS_REGNEWD:
|
|
case CCISS_RESCANDISK:
|
|
case CCISS_GETLUNINFO:
|
|
return hpsa_ioctl(dev, cmd, arg);
|
|
|
|
case CCISS_PASSTHRU32:
|
|
return hpsa_ioctl32_passthru(dev, cmd, arg);
|
|
case CCISS_BIG_PASSTHRU32:
|
|
return hpsa_ioctl32_big_passthru(dev, cmd, arg);
|
|
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
|
|
{
|
|
struct hpsa_pci_info pciinfo;
|
|
|
|
if (!argp)
|
|
return -EINVAL;
|
|
pciinfo.domain = pci_domain_nr(h->pdev->bus);
|
|
pciinfo.bus = h->pdev->bus->number;
|
|
pciinfo.dev_fn = h->pdev->devfn;
|
|
pciinfo.board_id = h->board_id;
|
|
if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
|
|
{
|
|
DriverVer_type DriverVer;
|
|
unsigned char vmaj, vmin, vsubmin;
|
|
int rc;
|
|
|
|
rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
|
|
&vmaj, &vmin, &vsubmin);
|
|
if (rc != 3) {
|
|
dev_info(&h->pdev->dev, "driver version string '%s' "
|
|
"unrecognized.", HPSA_DRIVER_VERSION);
|
|
vmaj = 0;
|
|
vmin = 0;
|
|
vsubmin = 0;
|
|
}
|
|
DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
|
|
if (!argp)
|
|
return -EINVAL;
|
|
if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
|
|
{
|
|
IOCTL_Command_struct iocommand;
|
|
struct CommandList *c;
|
|
char *buff = NULL;
|
|
u64 temp64;
|
|
int rc = 0;
|
|
|
|
if (!argp)
|
|
return -EINVAL;
|
|
if (!capable(CAP_SYS_RAWIO))
|
|
return -EPERM;
|
|
if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
|
|
return -EFAULT;
|
|
if ((iocommand.buf_size < 1) &&
|
|
(iocommand.Request.Type.Direction != XFER_NONE)) {
|
|
return -EINVAL;
|
|
}
|
|
if (iocommand.buf_size > 0) {
|
|
buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
|
|
if (buff == NULL)
|
|
return -EFAULT;
|
|
if (iocommand.Request.Type.Direction & XFER_WRITE) {
|
|
/* Copy the data into the buffer we created */
|
|
if (copy_from_user(buff, iocommand.buf,
|
|
iocommand.buf_size)) {
|
|
rc = -EFAULT;
|
|
goto out_kfree;
|
|
}
|
|
} else {
|
|
memset(buff, 0, iocommand.buf_size);
|
|
}
|
|
}
|
|
c = cmd_special_alloc(h);
|
|
if (c == NULL) {
|
|
rc = -ENOMEM;
|
|
goto out_kfree;
|
|
}
|
|
/* Fill in the command type */
|
|
c->cmd_type = CMD_IOCTL_PEND;
|
|
/* Fill in Command Header */
|
|
c->Header.ReplyQueue = 0; /* unused in simple mode */
|
|
if (iocommand.buf_size > 0) { /* buffer to fill */
|
|
c->Header.SGList = 1;
|
|
c->Header.SGTotal = cpu_to_le16(1);
|
|
} else { /* no buffers to fill */
|
|
c->Header.SGList = 0;
|
|
c->Header.SGTotal = cpu_to_le16(0);
|
|
}
|
|
memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
|
|
/* use the kernel address the cmd block for tag */
|
|
c->Header.tag = cpu_to_le64(c->busaddr);
|
|
|
|
/* Fill in Request block */
|
|
memcpy(&c->Request, &iocommand.Request,
|
|
sizeof(c->Request));
|
|
|
|
/* Fill in the scatter gather information */
|
|
if (iocommand.buf_size > 0) {
|
|
temp64 = pci_map_single(h->pdev, buff,
|
|
iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
|
|
c->SG[0].Addr = cpu_to_le64(0);
|
|
c->SG[0].Len = cpu_to_le32(0);
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
c->SG[0].Addr = cpu_to_le64(temp64);
|
|
c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
|
|
c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
|
|
}
|
|
hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
|
|
if (iocommand.buf_size > 0)
|
|
hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
|
|
check_ioctl_unit_attention(h, c);
|
|
|
|
/* Copy the error information out */
|
|
memcpy(&iocommand.error_info, c->err_info,
|
|
sizeof(iocommand.error_info));
|
|
if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
|
|
rc = -EFAULT;
|
|
goto out;
|
|
}
|
|
if ((iocommand.Request.Type.Direction & XFER_READ) &&
|
|
iocommand.buf_size > 0) {
|
|
/* Copy the data out of the buffer we created */
|
|
if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
|
|
rc = -EFAULT;
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
cmd_special_free(h, c);
|
|
out_kfree:
|
|
kfree(buff);
|
|
return rc;
|
|
}
|
|
|
|
static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
|
|
{
|
|
BIG_IOCTL_Command_struct *ioc;
|
|
struct CommandList *c;
|
|
unsigned char **buff = NULL;
|
|
int *buff_size = NULL;
|
|
u64 temp64;
|
|
BYTE sg_used = 0;
|
|
int status = 0;
|
|
u32 left;
|
|
u32 sz;
|
|
BYTE __user *data_ptr;
|
|
|
|
if (!argp)
|
|
return -EINVAL;
|
|
if (!capable(CAP_SYS_RAWIO))
|
|
return -EPERM;
|
|
ioc = (BIG_IOCTL_Command_struct *)
|
|
kmalloc(sizeof(*ioc), GFP_KERNEL);
|
|
if (!ioc) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
if (copy_from_user(ioc, argp, sizeof(*ioc))) {
|
|
status = -EFAULT;
|
|
goto cleanup1;
|
|
}
|
|
if ((ioc->buf_size < 1) &&
|
|
(ioc->Request.Type.Direction != XFER_NONE)) {
|
|
status = -EINVAL;
|
|
goto cleanup1;
|
|
}
|
|
/* Check kmalloc limits using all SGs */
|
|
if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
|
|
status = -EINVAL;
|
|
goto cleanup1;
|
|
}
|
|
if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
|
|
status = -EINVAL;
|
|
goto cleanup1;
|
|
}
|
|
buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
|
|
if (!buff) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
|
|
if (!buff_size) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
left = ioc->buf_size;
|
|
data_ptr = ioc->buf;
|
|
while (left) {
|
|
sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
|
|
buff_size[sg_used] = sz;
|
|
buff[sg_used] = kmalloc(sz, GFP_KERNEL);
|
|
if (buff[sg_used] == NULL) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
if (ioc->Request.Type.Direction & XFER_WRITE) {
|
|
if (copy_from_user(buff[sg_used], data_ptr, sz)) {
|
|
status = -EFAULT;
|
|
goto cleanup1;
|
|
}
|
|
} else
|
|
memset(buff[sg_used], 0, sz);
|
|
left -= sz;
|
|
data_ptr += sz;
|
|
sg_used++;
|
|
}
|
|
c = cmd_special_alloc(h);
|
|
if (c == NULL) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
c->cmd_type = CMD_IOCTL_PEND;
|
|
c->Header.ReplyQueue = 0;
|
|
c->Header.SGList = (u8) sg_used;
|
|
c->Header.SGTotal = cpu_to_le16(sg_used);
|
|
memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
|
|
c->Header.tag = cpu_to_le64(c->busaddr);
|
|
memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
|
|
if (ioc->buf_size > 0) {
|
|
int i;
|
|
for (i = 0; i < sg_used; i++) {
|
|
temp64 = pci_map_single(h->pdev, buff[i],
|
|
buff_size[i], PCI_DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(&h->pdev->dev,
|
|
(dma_addr_t) temp64)) {
|
|
c->SG[i].Addr = cpu_to_le64(0);
|
|
c->SG[i].Len = cpu_to_le32(0);
|
|
hpsa_pci_unmap(h->pdev, c, i,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
status = -ENOMEM;
|
|
goto cleanup0;
|
|
}
|
|
c->SG[i].Addr = cpu_to_le64(temp64);
|
|
c->SG[i].Len = cpu_to_le32(buff_size[i]);
|
|
c->SG[i].Ext = cpu_to_le32(0);
|
|
}
|
|
c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
|
|
}
|
|
hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
|
|
if (sg_used)
|
|
hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
|
|
check_ioctl_unit_attention(h, c);
|
|
/* Copy the error information out */
|
|
memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
|
|
if (copy_to_user(argp, ioc, sizeof(*ioc))) {
|
|
status = -EFAULT;
|
|
goto cleanup0;
|
|
}
|
|
if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
|
|
int i;
|
|
|
|
/* Copy the data out of the buffer we created */
|
|
BYTE __user *ptr = ioc->buf;
|
|
for (i = 0; i < sg_used; i++) {
|
|
if (copy_to_user(ptr, buff[i], buff_size[i])) {
|
|
status = -EFAULT;
|
|
goto cleanup0;
|
|
}
|
|
ptr += buff_size[i];
|
|
}
|
|
}
|
|
status = 0;
|
|
cleanup0:
|
|
cmd_special_free(h, c);
|
|
cleanup1:
|
|
if (buff) {
|
|
int i;
|
|
|
|
for (i = 0; i < sg_used; i++)
|
|
kfree(buff[i]);
|
|
kfree(buff);
|
|
}
|
|
kfree(buff_size);
|
|
kfree(ioc);
|
|
return status;
|
|
}
|
|
|
|
static void check_ioctl_unit_attention(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
|
|
c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
|
|
(void) check_for_unit_attention(h, c);
|
|
}
|
|
|
|
static int increment_passthru_count(struct ctlr_info *h)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&h->passthru_count_lock, flags);
|
|
if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
|
|
spin_unlock_irqrestore(&h->passthru_count_lock, flags);
|
|
return -1;
|
|
}
|
|
h->passthru_count++;
|
|
spin_unlock_irqrestore(&h->passthru_count_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
static void decrement_passthru_count(struct ctlr_info *h)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&h->passthru_count_lock, flags);
|
|
if (h->passthru_count <= 0) {
|
|
spin_unlock_irqrestore(&h->passthru_count_lock, flags);
|
|
/* not expecting to get here. */
|
|
dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
|
|
return;
|
|
}
|
|
h->passthru_count--;
|
|
spin_unlock_irqrestore(&h->passthru_count_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* ioctl
|
|
*/
|
|
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
|
|
{
|
|
struct ctlr_info *h;
|
|
void __user *argp = (void __user *)arg;
|
|
int rc;
|
|
|
|
h = sdev_to_hba(dev);
|
|
|
|
switch (cmd) {
|
|
case CCISS_DEREGDISK:
|
|
case CCISS_REGNEWDISK:
|
|
case CCISS_REGNEWD:
|
|
hpsa_scan_start(h->scsi_host);
|
|
return 0;
|
|
case CCISS_GETPCIINFO:
|
|
return hpsa_getpciinfo_ioctl(h, argp);
|
|
case CCISS_GETDRIVVER:
|
|
return hpsa_getdrivver_ioctl(h, argp);
|
|
case CCISS_PASSTHRU:
|
|
if (increment_passthru_count(h))
|
|
return -EAGAIN;
|
|
rc = hpsa_passthru_ioctl(h, argp);
|
|
decrement_passthru_count(h);
|
|
return rc;
|
|
case CCISS_BIG_PASSTHRU:
|
|
if (increment_passthru_count(h))
|
|
return -EAGAIN;
|
|
rc = hpsa_big_passthru_ioctl(h, argp);
|
|
decrement_passthru_count(h);
|
|
return rc;
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
|
|
u8 reset_type)
|
|
{
|
|
struct CommandList *c;
|
|
|
|
c = cmd_alloc(h);
|
|
if (!c)
|
|
return -ENOMEM;
|
|
/* fill_cmd can't fail here, no data buffer to map */
|
|
(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
|
|
RAID_CTLR_LUNID, TYPE_MSG);
|
|
c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
|
|
c->waiting = NULL;
|
|
enqueue_cmd_and_start_io(h, c);
|
|
/* Don't wait for completion, the reset won't complete. Don't free
|
|
* the command either. This is the last command we will send before
|
|
* re-initializing everything, so it doesn't matter and won't leak.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
|
|
void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
|
|
int cmd_type)
|
|
{
|
|
int pci_dir = XFER_NONE;
|
|
struct CommandList *a; /* for commands to be aborted */
|
|
|
|
c->cmd_type = CMD_IOCTL_PEND;
|
|
c->Header.ReplyQueue = 0;
|
|
if (buff != NULL && size > 0) {
|
|
c->Header.SGList = 1;
|
|
c->Header.SGTotal = cpu_to_le16(1);
|
|
} else {
|
|
c->Header.SGList = 0;
|
|
c->Header.SGTotal = cpu_to_le16(0);
|
|
}
|
|
c->Header.tag = cpu_to_le64(c->busaddr);
|
|
memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
|
|
|
|
if (cmd_type == TYPE_CMD) {
|
|
switch (cmd) {
|
|
case HPSA_INQUIRY:
|
|
/* are we trying to read a vital product page */
|
|
if (page_code & VPD_PAGE) {
|
|
c->Request.CDB[1] = 0x01;
|
|
c->Request.CDB[2] = (page_code & 0xff);
|
|
}
|
|
c->Request.CDBLen = 6;
|
|
c->Request.type_attr_dir =
|
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = HPSA_INQUIRY;
|
|
c->Request.CDB[4] = size & 0xFF;
|
|
break;
|
|
case HPSA_REPORT_LOG:
|
|
case HPSA_REPORT_PHYS:
|
|
/* Talking to controller so It's a physical command
|
|
mode = 00 target = 0. Nothing to write.
|
|
*/
|
|
c->Request.CDBLen = 12;
|
|
c->Request.type_attr_dir =
|
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = cmd;
|
|
c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
|
|
c->Request.CDB[7] = (size >> 16) & 0xFF;
|
|
c->Request.CDB[8] = (size >> 8) & 0xFF;
|
|
c->Request.CDB[9] = size & 0xFF;
|
|
break;
|
|
case HPSA_CACHE_FLUSH:
|
|
c->Request.CDBLen = 12;
|
|
c->Request.type_attr_dir =
|
|
TYPE_ATTR_DIR(cmd_type,
|
|
ATTR_SIMPLE, XFER_WRITE);
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = BMIC_WRITE;
|
|
c->Request.CDB[6] = BMIC_CACHE_FLUSH;
|
|
c->Request.CDB[7] = (size >> 8) & 0xFF;
|
|
c->Request.CDB[8] = size & 0xFF;
|
|
break;
|
|
case TEST_UNIT_READY:
|
|
c->Request.CDBLen = 6;
|
|
c->Request.type_attr_dir =
|
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
|
|
c->Request.Timeout = 0;
|
|
break;
|
|
case HPSA_GET_RAID_MAP:
|
|
c->Request.CDBLen = 12;
|
|
c->Request.type_attr_dir =
|
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = HPSA_CISS_READ;
|
|
c->Request.CDB[1] = cmd;
|
|
c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
|
|
c->Request.CDB[7] = (size >> 16) & 0xFF;
|
|
c->Request.CDB[8] = (size >> 8) & 0xFF;
|
|
c->Request.CDB[9] = size & 0xFF;
|
|
break;
|
|
case BMIC_SENSE_CONTROLLER_PARAMETERS:
|
|
c->Request.CDBLen = 10;
|
|
c->Request.type_attr_dir =
|
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = BMIC_READ;
|
|
c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
|
|
c->Request.CDB[7] = (size >> 16) & 0xFF;
|
|
c->Request.CDB[8] = (size >> 8) & 0xFF;
|
|
break;
|
|
default:
|
|
dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
|
|
BUG();
|
|
return -1;
|
|
}
|
|
} else if (cmd_type == TYPE_MSG) {
|
|
switch (cmd) {
|
|
|
|
case HPSA_DEVICE_RESET_MSG:
|
|
c->Request.CDBLen = 16;
|
|
c->Request.type_attr_dir =
|
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
|
|
c->Request.Timeout = 0; /* Don't time out */
|
|
memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
|
|
c->Request.CDB[0] = cmd;
|
|
c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
|
|
/* If bytes 4-7 are zero, it means reset the */
|
|
/* LunID device */
|
|
c->Request.CDB[4] = 0x00;
|
|
c->Request.CDB[5] = 0x00;
|
|
c->Request.CDB[6] = 0x00;
|
|
c->Request.CDB[7] = 0x00;
|
|
break;
|
|
case HPSA_ABORT_MSG:
|
|
a = buff; /* point to command to be aborted */
|
|
dev_dbg(&h->pdev->dev,
|
|
"Abort Tag:0x%016llx request Tag:0x%016llx",
|
|
a->Header.tag, c->Header.tag);
|
|
c->Request.CDBLen = 16;
|
|
c->Request.type_attr_dir =
|
|
TYPE_ATTR_DIR(cmd_type,
|
|
ATTR_SIMPLE, XFER_WRITE);
|
|
c->Request.Timeout = 0; /* Don't time out */
|
|
c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
|
|
c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
|
|
c->Request.CDB[2] = 0x00; /* reserved */
|
|
c->Request.CDB[3] = 0x00; /* reserved */
|
|
/* Tag to abort goes in CDB[4]-CDB[11] */
|
|
memcpy(&c->Request.CDB[4], &a->Header.tag,
|
|
sizeof(a->Header.tag));
|
|
c->Request.CDB[12] = 0x00; /* reserved */
|
|
c->Request.CDB[13] = 0x00; /* reserved */
|
|
c->Request.CDB[14] = 0x00; /* reserved */
|
|
c->Request.CDB[15] = 0x00; /* reserved */
|
|
break;
|
|
default:
|
|
dev_warn(&h->pdev->dev, "unknown message type %d\n",
|
|
cmd);
|
|
BUG();
|
|
}
|
|
} else {
|
|
dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
|
|
BUG();
|
|
}
|
|
|
|
switch (GET_DIR(c->Request.type_attr_dir)) {
|
|
case XFER_READ:
|
|
pci_dir = PCI_DMA_FROMDEVICE;
|
|
break;
|
|
case XFER_WRITE:
|
|
pci_dir = PCI_DMA_TODEVICE;
|
|
break;
|
|
case XFER_NONE:
|
|
pci_dir = PCI_DMA_NONE;
|
|
break;
|
|
default:
|
|
pci_dir = PCI_DMA_BIDIRECTIONAL;
|
|
}
|
|
if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Map (physical) PCI mem into (virtual) kernel space
|
|
*/
|
|
static void __iomem *remap_pci_mem(ulong base, ulong size)
|
|
{
|
|
ulong page_base = ((ulong) base) & PAGE_MASK;
|
|
ulong page_offs = ((ulong) base) - page_base;
|
|
void __iomem *page_remapped = ioremap_nocache(page_base,
|
|
page_offs + size);
|
|
|
|
return page_remapped ? (page_remapped + page_offs) : NULL;
|
|
}
|
|
|
|
/* Takes cmds off the submission queue and sends them to the hardware,
|
|
* then puts them on the queue of cmds waiting for completion.
|
|
* Assumes h->lock is held
|
|
*/
|
|
static void start_io(struct ctlr_info *h, unsigned long *flags)
|
|
{
|
|
struct CommandList *c;
|
|
|
|
while (!list_empty(&h->reqQ)) {
|
|
c = list_entry(h->reqQ.next, struct CommandList, list);
|
|
/* can't do anything if fifo is full */
|
|
if ((h->access.fifo_full(h))) {
|
|
h->fifo_recently_full = 1;
|
|
dev_warn(&h->pdev->dev, "fifo full\n");
|
|
break;
|
|
}
|
|
h->fifo_recently_full = 0;
|
|
|
|
/* Get the first entry from the Request Q */
|
|
removeQ(c);
|
|
h->Qdepth--;
|
|
|
|
/* Put job onto the completed Q */
|
|
addQ(&h->cmpQ, c);
|
|
atomic_inc(&h->commands_outstanding);
|
|
spin_unlock_irqrestore(&h->lock, *flags);
|
|
/* Tell the controller execute command */
|
|
h->access.submit_command(h, c);
|
|
spin_lock_irqsave(&h->lock, *flags);
|
|
}
|
|
}
|
|
|
|
static void lock_and_start_io(struct ctlr_info *h)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
start_io(h, &flags);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
}
|
|
|
|
static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
|
|
{
|
|
return h->access.command_completed(h, q);
|
|
}
|
|
|
|
static inline bool interrupt_pending(struct ctlr_info *h)
|
|
{
|
|
return h->access.intr_pending(h);
|
|
}
|
|
|
|
static inline long interrupt_not_for_us(struct ctlr_info *h)
|
|
{
|
|
return (h->access.intr_pending(h) == 0) ||
|
|
(h->interrupts_enabled == 0);
|
|
}
|
|
|
|
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
|
|
u32 raw_tag)
|
|
{
|
|
if (unlikely(tag_index >= h->nr_cmds)) {
|
|
dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline void finish_cmd(struct CommandList *c)
|
|
{
|
|
unsigned long flags;
|
|
int io_may_be_stalled = 0;
|
|
struct ctlr_info *h = c->h;
|
|
int count;
|
|
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
removeQ(c);
|
|
|
|
/*
|
|
* Check for possibly stalled i/o.
|
|
*
|
|
* If a fifo_full condition is encountered, requests will back up
|
|
* in h->reqQ. This queue is only emptied out by start_io which is
|
|
* only called when a new i/o request comes in. If no i/o's are
|
|
* forthcoming, the i/o's in h->reqQ can get stuck. So we call
|
|
* start_io from here if we detect such a danger.
|
|
*
|
|
* Normally, we shouldn't hit this case, but pounding on the
|
|
* CCISS_PASSTHRU ioctl can provoke it. Only call start_io if
|
|
* commands_outstanding is low. We want to avoid calling
|
|
* start_io from in here as much as possible, and esp. don't
|
|
* want to get in a cycle where we call start_io every time
|
|
* through here.
|
|
*/
|
|
count = atomic_read(&h->commands_outstanding);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
if (unlikely(h->fifo_recently_full) && count < 5)
|
|
io_may_be_stalled = 1;
|
|
|
|
dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
|
|
if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
|
|
|| c->cmd_type == CMD_IOACCEL2))
|
|
complete_scsi_command(c);
|
|
else if (c->cmd_type == CMD_IOCTL_PEND)
|
|
complete(c->waiting);
|
|
if (unlikely(io_may_be_stalled))
|
|
lock_and_start_io(h);
|
|
}
|
|
|
|
static inline u32 hpsa_tag_contains_index(u32 tag)
|
|
{
|
|
return tag & DIRECT_LOOKUP_BIT;
|
|
}
|
|
|
|
static inline u32 hpsa_tag_to_index(u32 tag)
|
|
{
|
|
return tag >> DIRECT_LOOKUP_SHIFT;
|
|
}
|
|
|
|
|
|
static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
|
|
{
|
|
#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
|
|
#define HPSA_SIMPLE_ERROR_BITS 0x03
|
|
if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
|
|
return tag & ~HPSA_SIMPLE_ERROR_BITS;
|
|
return tag & ~HPSA_PERF_ERROR_BITS;
|
|
}
|
|
|
|
/* process completion of an indexed ("direct lookup") command */
|
|
static inline void process_indexed_cmd(struct ctlr_info *h,
|
|
u32 raw_tag)
|
|
{
|
|
u32 tag_index;
|
|
struct CommandList *c;
|
|
|
|
tag_index = hpsa_tag_to_index(raw_tag);
|
|
if (!bad_tag(h, tag_index, raw_tag)) {
|
|
c = h->cmd_pool + tag_index;
|
|
finish_cmd(c);
|
|
}
|
|
}
|
|
|
|
/* process completion of a non-indexed command */
|
|
static inline void process_nonindexed_cmd(struct ctlr_info *h,
|
|
u32 raw_tag)
|
|
{
|
|
u32 tag;
|
|
struct CommandList *c = NULL;
|
|
unsigned long flags;
|
|
|
|
tag = hpsa_tag_discard_error_bits(h, raw_tag);
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
list_for_each_entry(c, &h->cmpQ, list) {
|
|
if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
finish_cmd(c);
|
|
return;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
bad_tag(h, h->nr_cmds + 1, raw_tag);
|
|
}
|
|
|
|
/* Some controllers, like p400, will give us one interrupt
|
|
* after a soft reset, even if we turned interrupts off.
|
|
* Only need to check for this in the hpsa_xxx_discard_completions
|
|
* functions.
|
|
*/
|
|
static int ignore_bogus_interrupt(struct ctlr_info *h)
|
|
{
|
|
if (likely(!reset_devices))
|
|
return 0;
|
|
|
|
if (likely(h->interrupts_enabled))
|
|
return 0;
|
|
|
|
dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
|
|
"(known firmware bug.) Ignoring.\n");
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Convert &h->q[x] (passed to interrupt handlers) back to h.
|
|
* Relies on (h-q[x] == x) being true for x such that
|
|
* 0 <= x < MAX_REPLY_QUEUES.
|
|
*/
|
|
static struct ctlr_info *queue_to_hba(u8 *queue)
|
|
{
|
|
return container_of((queue - *queue), struct ctlr_info, q[0]);
|
|
}
|
|
|
|
static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
|
|
{
|
|
struct ctlr_info *h = queue_to_hba(queue);
|
|
u8 q = *(u8 *) queue;
|
|
u32 raw_tag;
|
|
|
|
if (ignore_bogus_interrupt(h))
|
|
return IRQ_NONE;
|
|
|
|
if (interrupt_not_for_us(h))
|
|
return IRQ_NONE;
|
|
h->last_intr_timestamp = get_jiffies_64();
|
|
while (interrupt_pending(h)) {
|
|
raw_tag = get_next_completion(h, q);
|
|
while (raw_tag != FIFO_EMPTY)
|
|
raw_tag = next_command(h, q);
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
|
|
{
|
|
struct ctlr_info *h = queue_to_hba(queue);
|
|
u32 raw_tag;
|
|
u8 q = *(u8 *) queue;
|
|
|
|
if (ignore_bogus_interrupt(h))
|
|
return IRQ_NONE;
|
|
|
|
h->last_intr_timestamp = get_jiffies_64();
|
|
raw_tag = get_next_completion(h, q);
|
|
while (raw_tag != FIFO_EMPTY)
|
|
raw_tag = next_command(h, q);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
|
|
{
|
|
struct ctlr_info *h = queue_to_hba((u8 *) queue);
|
|
u32 raw_tag;
|
|
u8 q = *(u8 *) queue;
|
|
|
|
if (interrupt_not_for_us(h))
|
|
return IRQ_NONE;
|
|
h->last_intr_timestamp = get_jiffies_64();
|
|
while (interrupt_pending(h)) {
|
|
raw_tag = get_next_completion(h, q);
|
|
while (raw_tag != FIFO_EMPTY) {
|
|
if (likely(hpsa_tag_contains_index(raw_tag)))
|
|
process_indexed_cmd(h, raw_tag);
|
|
else
|
|
process_nonindexed_cmd(h, raw_tag);
|
|
raw_tag = next_command(h, q);
|
|
}
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
|
|
{
|
|
struct ctlr_info *h = queue_to_hba(queue);
|
|
u32 raw_tag;
|
|
u8 q = *(u8 *) queue;
|
|
|
|
h->last_intr_timestamp = get_jiffies_64();
|
|
raw_tag = get_next_completion(h, q);
|
|
while (raw_tag != FIFO_EMPTY) {
|
|
if (likely(hpsa_tag_contains_index(raw_tag)))
|
|
process_indexed_cmd(h, raw_tag);
|
|
else
|
|
process_nonindexed_cmd(h, raw_tag);
|
|
raw_tag = next_command(h, q);
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Send a message CDB to the firmware. Careful, this only works
|
|
* in simple mode, not performant mode due to the tag lookup.
|
|
* We only ever use this immediately after a controller reset.
|
|
*/
|
|
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
|
|
unsigned char type)
|
|
{
|
|
struct Command {
|
|
struct CommandListHeader CommandHeader;
|
|
struct RequestBlock Request;
|
|
struct ErrDescriptor ErrorDescriptor;
|
|
};
|
|
struct Command *cmd;
|
|
static const size_t cmd_sz = sizeof(*cmd) +
|
|
sizeof(cmd->ErrorDescriptor);
|
|
dma_addr_t paddr64;
|
|
__le32 paddr32;
|
|
u32 tag;
|
|
void __iomem *vaddr;
|
|
int i, err;
|
|
|
|
vaddr = pci_ioremap_bar(pdev, 0);
|
|
if (vaddr == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* The Inbound Post Queue only accepts 32-bit physical addresses for the
|
|
* CCISS commands, so they must be allocated from the lower 4GiB of
|
|
* memory.
|
|
*/
|
|
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
|
|
if (err) {
|
|
iounmap(vaddr);
|
|
return err;
|
|
}
|
|
|
|
cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
|
|
if (cmd == NULL) {
|
|
iounmap(vaddr);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* This must fit, because of the 32-bit consistent DMA mask. Also,
|
|
* although there's no guarantee, we assume that the address is at
|
|
* least 4-byte aligned (most likely, it's page-aligned).
|
|
*/
|
|
paddr32 = cpu_to_le32(paddr64);
|
|
|
|
cmd->CommandHeader.ReplyQueue = 0;
|
|
cmd->CommandHeader.SGList = 0;
|
|
cmd->CommandHeader.SGTotal = cpu_to_le16(0);
|
|
cmd->CommandHeader.tag = cpu_to_le64(paddr64);
|
|
memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
|
|
|
|
cmd->Request.CDBLen = 16;
|
|
cmd->Request.type_attr_dir =
|
|
TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
|
|
cmd->Request.Timeout = 0; /* Don't time out */
|
|
cmd->Request.CDB[0] = opcode;
|
|
cmd->Request.CDB[1] = type;
|
|
memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
|
|
cmd->ErrorDescriptor.Addr =
|
|
cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
|
|
cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
|
|
|
|
writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
|
|
|
|
for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
|
|
tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
|
|
if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
|
|
break;
|
|
msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
|
|
}
|
|
|
|
iounmap(vaddr);
|
|
|
|
/* we leak the DMA buffer here ... no choice since the controller could
|
|
* still complete the command.
|
|
*/
|
|
if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
|
|
dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
|
|
opcode, type);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
|
|
|
|
if (tag & HPSA_ERROR_BIT) {
|
|
dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
|
|
opcode, type);
|
|
return -EIO;
|
|
}
|
|
|
|
dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
|
|
opcode, type);
|
|
return 0;
|
|
}
|
|
|
|
#define hpsa_noop(p) hpsa_message(p, 3, 0)
|
|
|
|
static int hpsa_controller_hard_reset(struct pci_dev *pdev,
|
|
void __iomem *vaddr, u32 use_doorbell)
|
|
{
|
|
|
|
if (use_doorbell) {
|
|
/* For everything after the P600, the PCI power state method
|
|
* of resetting the controller doesn't work, so we have this
|
|
* other way using the doorbell register.
|
|
*/
|
|
dev_info(&pdev->dev, "using doorbell to reset controller\n");
|
|
writel(use_doorbell, vaddr + SA5_DOORBELL);
|
|
|
|
/* PMC hardware guys tell us we need a 10 second delay after
|
|
* doorbell reset and before any attempt to talk to the board
|
|
* at all to ensure that this actually works and doesn't fall
|
|
* over in some weird corner cases.
|
|
*/
|
|
msleep(10000);
|
|
} else { /* Try to do it the PCI power state way */
|
|
|
|
/* Quoting from the Open CISS Specification: "The Power
|
|
* Management Control/Status Register (CSR) controls the power
|
|
* state of the device. The normal operating state is D0,
|
|
* CSR=00h. The software off state is D3, CSR=03h. To reset
|
|
* the controller, place the interface device in D3 then to D0,
|
|
* this causes a secondary PCI reset which will reset the
|
|
* controller." */
|
|
|
|
int rc = 0;
|
|
|
|
dev_info(&pdev->dev, "using PCI PM to reset controller\n");
|
|
|
|
/* enter the D3hot power management state */
|
|
rc = pci_set_power_state(pdev, PCI_D3hot);
|
|
if (rc)
|
|
return rc;
|
|
|
|
msleep(500);
|
|
|
|
/* enter the D0 power management state */
|
|
rc = pci_set_power_state(pdev, PCI_D0);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/*
|
|
* The P600 requires a small delay when changing states.
|
|
* Otherwise we may think the board did not reset and we bail.
|
|
* This for kdump only and is particular to the P600.
|
|
*/
|
|
msleep(500);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void init_driver_version(char *driver_version, int len)
|
|
{
|
|
memset(driver_version, 0, len);
|
|
strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
|
|
}
|
|
|
|
static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
|
|
{
|
|
char *driver_version;
|
|
int i, size = sizeof(cfgtable->driver_version);
|
|
|
|
driver_version = kmalloc(size, GFP_KERNEL);
|
|
if (!driver_version)
|
|
return -ENOMEM;
|
|
|
|
init_driver_version(driver_version, size);
|
|
for (i = 0; i < size; i++)
|
|
writeb(driver_version[i], &cfgtable->driver_version[i]);
|
|
kfree(driver_version);
|
|
return 0;
|
|
}
|
|
|
|
static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
|
|
unsigned char *driver_ver)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < sizeof(cfgtable->driver_version); i++)
|
|
driver_ver[i] = readb(&cfgtable->driver_version[i]);
|
|
}
|
|
|
|
static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
|
|
{
|
|
|
|
char *driver_ver, *old_driver_ver;
|
|
int rc, size = sizeof(cfgtable->driver_version);
|
|
|
|
old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
|
|
if (!old_driver_ver)
|
|
return -ENOMEM;
|
|
driver_ver = old_driver_ver + size;
|
|
|
|
/* After a reset, the 32 bytes of "driver version" in the cfgtable
|
|
* should have been changed, otherwise we know the reset failed.
|
|
*/
|
|
init_driver_version(old_driver_ver, size);
|
|
read_driver_ver_from_cfgtable(cfgtable, driver_ver);
|
|
rc = !memcmp(driver_ver, old_driver_ver, size);
|
|
kfree(old_driver_ver);
|
|
return rc;
|
|
}
|
|
/* This does a hard reset of the controller using PCI power management
|
|
* states or the using the doorbell register.
|
|
*/
|
|
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
|
|
{
|
|
u64 cfg_offset;
|
|
u32 cfg_base_addr;
|
|
u64 cfg_base_addr_index;
|
|
void __iomem *vaddr;
|
|
unsigned long paddr;
|
|
u32 misc_fw_support;
|
|
int rc;
|
|
struct CfgTable __iomem *cfgtable;
|
|
u32 use_doorbell;
|
|
u32 board_id;
|
|
u16 command_register;
|
|
|
|
/* For controllers as old as the P600, this is very nearly
|
|
* the same thing as
|
|
*
|
|
* pci_save_state(pci_dev);
|
|
* pci_set_power_state(pci_dev, PCI_D3hot);
|
|
* pci_set_power_state(pci_dev, PCI_D0);
|
|
* pci_restore_state(pci_dev);
|
|
*
|
|
* For controllers newer than the P600, the pci power state
|
|
* method of resetting doesn't work so we have another way
|
|
* using the doorbell register.
|
|
*/
|
|
|
|
rc = hpsa_lookup_board_id(pdev, &board_id);
|
|
if (rc < 0) {
|
|
dev_warn(&pdev->dev, "Board ID not found\n");
|
|
return rc;
|
|
}
|
|
if (!ctlr_is_resettable(board_id)) {
|
|
dev_warn(&pdev->dev, "Controller not resettable\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* if controller is soft- but not hard resettable... */
|
|
if (!ctlr_is_hard_resettable(board_id))
|
|
return -ENOTSUPP; /* try soft reset later. */
|
|
|
|
/* Save the PCI command register */
|
|
pci_read_config_word(pdev, 4, &command_register);
|
|
pci_save_state(pdev);
|
|
|
|
/* find the first memory BAR, so we can find the cfg table */
|
|
rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
|
|
if (rc)
|
|
return rc;
|
|
vaddr = remap_pci_mem(paddr, 0x250);
|
|
if (!vaddr)
|
|
return -ENOMEM;
|
|
|
|
/* find cfgtable in order to check if reset via doorbell is supported */
|
|
rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
|
|
&cfg_base_addr_index, &cfg_offset);
|
|
if (rc)
|
|
goto unmap_vaddr;
|
|
cfgtable = remap_pci_mem(pci_resource_start(pdev,
|
|
cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
|
|
if (!cfgtable) {
|
|
rc = -ENOMEM;
|
|
goto unmap_vaddr;
|
|
}
|
|
rc = write_driver_ver_to_cfgtable(cfgtable);
|
|
if (rc)
|
|
goto unmap_cfgtable;
|
|
|
|
/* If reset via doorbell register is supported, use that.
|
|
* There are two such methods. Favor the newest method.
|
|
*/
|
|
misc_fw_support = readl(&cfgtable->misc_fw_support);
|
|
use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
|
|
if (use_doorbell) {
|
|
use_doorbell = DOORBELL_CTLR_RESET2;
|
|
} else {
|
|
use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
|
|
if (use_doorbell) {
|
|
dev_warn(&pdev->dev,
|
|
"Soft reset not supported. Firmware update is required.\n");
|
|
rc = -ENOTSUPP; /* try soft reset */
|
|
goto unmap_cfgtable;
|
|
}
|
|
}
|
|
|
|
rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
|
|
if (rc)
|
|
goto unmap_cfgtable;
|
|
|
|
pci_restore_state(pdev);
|
|
pci_write_config_word(pdev, 4, command_register);
|
|
|
|
/* Some devices (notably the HP Smart Array 5i Controller)
|
|
need a little pause here */
|
|
msleep(HPSA_POST_RESET_PAUSE_MSECS);
|
|
|
|
rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
|
|
if (rc) {
|
|
dev_warn(&pdev->dev,
|
|
"Failed waiting for board to become ready after hard reset\n");
|
|
goto unmap_cfgtable;
|
|
}
|
|
|
|
rc = controller_reset_failed(vaddr);
|
|
if (rc < 0)
|
|
goto unmap_cfgtable;
|
|
if (rc) {
|
|
dev_warn(&pdev->dev, "Unable to successfully reset "
|
|
"controller. Will try soft reset.\n");
|
|
rc = -ENOTSUPP;
|
|
} else {
|
|
dev_info(&pdev->dev, "board ready after hard reset.\n");
|
|
}
|
|
|
|
unmap_cfgtable:
|
|
iounmap(cfgtable);
|
|
|
|
unmap_vaddr:
|
|
iounmap(vaddr);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* We cannot read the structure directly, for portability we must use
|
|
* the io functions.
|
|
* This is for debug only.
|
|
*/
|
|
static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
|
|
{
|
|
#ifdef HPSA_DEBUG
|
|
int i;
|
|
char temp_name[17];
|
|
|
|
dev_info(dev, "Controller Configuration information\n");
|
|
dev_info(dev, "------------------------------------\n");
|
|
for (i = 0; i < 4; i++)
|
|
temp_name[i] = readb(&(tb->Signature[i]));
|
|
temp_name[4] = '\0';
|
|
dev_info(dev, " Signature = %s\n", temp_name);
|
|
dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
|
|
dev_info(dev, " Transport methods supported = 0x%x\n",
|
|
readl(&(tb->TransportSupport)));
|
|
dev_info(dev, " Transport methods active = 0x%x\n",
|
|
readl(&(tb->TransportActive)));
|
|
dev_info(dev, " Requested transport Method = 0x%x\n",
|
|
readl(&(tb->HostWrite.TransportRequest)));
|
|
dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
|
|
readl(&(tb->HostWrite.CoalIntDelay)));
|
|
dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
|
|
readl(&(tb->HostWrite.CoalIntCount)));
|
|
dev_info(dev, " Max outstanding commands = %d\n",
|
|
readl(&(tb->CmdsOutMax)));
|
|
dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
|
|
for (i = 0; i < 16; i++)
|
|
temp_name[i] = readb(&(tb->ServerName[i]));
|
|
temp_name[16] = '\0';
|
|
dev_info(dev, " Server Name = %s\n", temp_name);
|
|
dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
|
|
readl(&(tb->HeartBeat)));
|
|
#endif /* HPSA_DEBUG */
|
|
}
|
|
|
|
static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
|
|
{
|
|
int i, offset, mem_type, bar_type;
|
|
|
|
if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
|
|
return 0;
|
|
offset = 0;
|
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
|
|
bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
|
|
if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
|
|
offset += 4;
|
|
else {
|
|
mem_type = pci_resource_flags(pdev, i) &
|
|
PCI_BASE_ADDRESS_MEM_TYPE_MASK;
|
|
switch (mem_type) {
|
|
case PCI_BASE_ADDRESS_MEM_TYPE_32:
|
|
case PCI_BASE_ADDRESS_MEM_TYPE_1M:
|
|
offset += 4; /* 32 bit */
|
|
break;
|
|
case PCI_BASE_ADDRESS_MEM_TYPE_64:
|
|
offset += 8;
|
|
break;
|
|
default: /* reserved in PCI 2.2 */
|
|
dev_warn(&pdev->dev,
|
|
"base address is invalid\n");
|
|
return -1;
|
|
break;
|
|
}
|
|
}
|
|
if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
|
|
return i + 1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* If MSI/MSI-X is supported by the kernel we will try to enable it on
|
|
* controllers that are capable. If not, we use legacy INTx mode.
|
|
*/
|
|
|
|
static void hpsa_interrupt_mode(struct ctlr_info *h)
|
|
{
|
|
#ifdef CONFIG_PCI_MSI
|
|
int err, i;
|
|
struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
|
|
|
|
for (i = 0; i < MAX_REPLY_QUEUES; i++) {
|
|
hpsa_msix_entries[i].vector = 0;
|
|
hpsa_msix_entries[i].entry = i;
|
|
}
|
|
|
|
/* Some boards advertise MSI but don't really support it */
|
|
if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
|
|
(h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
|
|
goto default_int_mode;
|
|
if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
|
|
dev_info(&h->pdev->dev, "MSI-X capable controller\n");
|
|
h->msix_vector = MAX_REPLY_QUEUES;
|
|
if (h->msix_vector > num_online_cpus())
|
|
h->msix_vector = num_online_cpus();
|
|
err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
|
|
1, h->msix_vector);
|
|
if (err < 0) {
|
|
dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
|
|
h->msix_vector = 0;
|
|
goto single_msi_mode;
|
|
} else if (err < h->msix_vector) {
|
|
dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
|
|
"available\n", err);
|
|
}
|
|
h->msix_vector = err;
|
|
for (i = 0; i < h->msix_vector; i++)
|
|
h->intr[i] = hpsa_msix_entries[i].vector;
|
|
return;
|
|
}
|
|
single_msi_mode:
|
|
if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
|
|
dev_info(&h->pdev->dev, "MSI capable controller\n");
|
|
if (!pci_enable_msi(h->pdev))
|
|
h->msi_vector = 1;
|
|
else
|
|
dev_warn(&h->pdev->dev, "MSI init failed\n");
|
|
}
|
|
default_int_mode:
|
|
#endif /* CONFIG_PCI_MSI */
|
|
/* if we get here we're going to use the default interrupt mode */
|
|
h->intr[h->intr_mode] = h->pdev->irq;
|
|
}
|
|
|
|
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
|
|
{
|
|
int i;
|
|
u32 subsystem_vendor_id, subsystem_device_id;
|
|
|
|
subsystem_vendor_id = pdev->subsystem_vendor;
|
|
subsystem_device_id = pdev->subsystem_device;
|
|
*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
|
|
subsystem_vendor_id;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(products); i++)
|
|
if (*board_id == products[i].board_id)
|
|
return i;
|
|
|
|
if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
|
|
subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
|
|
!hpsa_allow_any) {
|
|
dev_warn(&pdev->dev, "unrecognized board ID: "
|
|
"0x%08x, ignoring.\n", *board_id);
|
|
return -ENODEV;
|
|
}
|
|
return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
|
|
}
|
|
|
|
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
|
|
unsigned long *memory_bar)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
|
|
if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
|
|
/* addressing mode bits already removed */
|
|
*memory_bar = pci_resource_start(pdev, i);
|
|
dev_dbg(&pdev->dev, "memory BAR = %lx\n",
|
|
*memory_bar);
|
|
return 0;
|
|
}
|
|
dev_warn(&pdev->dev, "no memory BAR found\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
|
|
int wait_for_ready)
|
|
{
|
|
int i, iterations;
|
|
u32 scratchpad;
|
|
if (wait_for_ready)
|
|
iterations = HPSA_BOARD_READY_ITERATIONS;
|
|
else
|
|
iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
|
|
|
|
for (i = 0; i < iterations; i++) {
|
|
scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
|
|
if (wait_for_ready) {
|
|
if (scratchpad == HPSA_FIRMWARE_READY)
|
|
return 0;
|
|
} else {
|
|
if (scratchpad != HPSA_FIRMWARE_READY)
|
|
return 0;
|
|
}
|
|
msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
|
|
}
|
|
dev_warn(&pdev->dev, "board not ready, timed out.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
|
|
u32 *cfg_base_addr, u64 *cfg_base_addr_index,
|
|
u64 *cfg_offset)
|
|
{
|
|
*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
|
|
*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
|
|
*cfg_base_addr &= (u32) 0x0000ffff;
|
|
*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
|
|
if (*cfg_base_addr_index == -1) {
|
|
dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
|
|
return -ENODEV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int hpsa_find_cfgtables(struct ctlr_info *h)
|
|
{
|
|
u64 cfg_offset;
|
|
u32 cfg_base_addr;
|
|
u64 cfg_base_addr_index;
|
|
u32 trans_offset;
|
|
int rc;
|
|
|
|
rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
|
|
&cfg_base_addr_index, &cfg_offset);
|
|
if (rc)
|
|
return rc;
|
|
h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
|
|
cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
|
|
if (!h->cfgtable) {
|
|
dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
|
|
return -ENOMEM;
|
|
}
|
|
rc = write_driver_ver_to_cfgtable(h->cfgtable);
|
|
if (rc)
|
|
return rc;
|
|
/* Find performant mode table. */
|
|
trans_offset = readl(&h->cfgtable->TransMethodOffset);
|
|
h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
|
|
cfg_base_addr_index)+cfg_offset+trans_offset,
|
|
sizeof(*h->transtable));
|
|
if (!h->transtable)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
|
|
{
|
|
h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
|
|
|
|
/* Limit commands in memory limited kdump scenario. */
|
|
if (reset_devices && h->max_commands > 32)
|
|
h->max_commands = 32;
|
|
|
|
if (h->max_commands < 16) {
|
|
dev_warn(&h->pdev->dev, "Controller reports "
|
|
"max supported commands of %d, an obvious lie. "
|
|
"Using 16. Ensure that firmware is up to date.\n",
|
|
h->max_commands);
|
|
h->max_commands = 16;
|
|
}
|
|
}
|
|
|
|
/* If the controller reports that the total max sg entries is greater than 512,
|
|
* then we know that chained SG blocks work. (Original smart arrays did not
|
|
* support chained SG blocks and would return zero for max sg entries.)
|
|
*/
|
|
static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
|
|
{
|
|
return h->maxsgentries > 512;
|
|
}
|
|
|
|
/* Interrogate the hardware for some limits:
|
|
* max commands, max SG elements without chaining, and with chaining,
|
|
* SG chain block size, etc.
|
|
*/
|
|
static void hpsa_find_board_params(struct ctlr_info *h)
|
|
{
|
|
hpsa_get_max_perf_mode_cmds(h);
|
|
h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
|
|
h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
|
|
h->fw_support = readl(&(h->cfgtable->misc_fw_support));
|
|
if (hpsa_supports_chained_sg_blocks(h)) {
|
|
/* Limit in-command s/g elements to 32 save dma'able memory. */
|
|
h->max_cmd_sg_entries = 32;
|
|
h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
|
|
h->maxsgentries--; /* save one for chain pointer */
|
|
} else {
|
|
/*
|
|
* Original smart arrays supported at most 31 s/g entries
|
|
* embedded inline in the command (trying to use more
|
|
* would lock up the controller)
|
|
*/
|
|
h->max_cmd_sg_entries = 31;
|
|
h->maxsgentries = 31; /* default to traditional values */
|
|
h->chainsize = 0;
|
|
}
|
|
|
|
/* Find out what task management functions are supported and cache */
|
|
h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
|
|
if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
|
|
dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
|
|
if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
|
|
dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
|
|
}
|
|
|
|
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
|
|
{
|
|
if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
|
|
dev_err(&h->pdev->dev, "not a valid CISS config table\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
|
|
{
|
|
u32 driver_support;
|
|
|
|
driver_support = readl(&(h->cfgtable->driver_support));
|
|
/* Need to enable prefetch in the SCSI core for 6400 in x86 */
|
|
#ifdef CONFIG_X86
|
|
driver_support |= ENABLE_SCSI_PREFETCH;
|
|
#endif
|
|
driver_support |= ENABLE_UNIT_ATTN;
|
|
writel(driver_support, &(h->cfgtable->driver_support));
|
|
}
|
|
|
|
/* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
|
|
* in a prefetch beyond physical memory.
|
|
*/
|
|
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
|
|
{
|
|
u32 dma_prefetch;
|
|
|
|
if (h->board_id != 0x3225103C)
|
|
return;
|
|
dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
|
|
dma_prefetch |= 0x8000;
|
|
writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
|
|
}
|
|
|
|
static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
|
|
{
|
|
int i;
|
|
u32 doorbell_value;
|
|
unsigned long flags;
|
|
/* wait until the clear_event_notify bit 6 is cleared by controller. */
|
|
for (i = 0; i < MAX_CONFIG_WAIT; i++) {
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
doorbell_value = readl(h->vaddr + SA5_DOORBELL);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
|
|
break;
|
|
/* delay and try again */
|
|
msleep(20);
|
|
}
|
|
}
|
|
|
|
static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
|
|
{
|
|
int i;
|
|
u32 doorbell_value;
|
|
unsigned long flags;
|
|
|
|
/* under certain very rare conditions, this can take awhile.
|
|
* (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
|
|
* as we enter this code.)
|
|
*/
|
|
for (i = 0; i < MAX_CONFIG_WAIT; i++) {
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
doorbell_value = readl(h->vaddr + SA5_DOORBELL);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
if (!(doorbell_value & CFGTBL_ChangeReq))
|
|
break;
|
|
/* delay and try again */
|
|
usleep_range(10000, 20000);
|
|
}
|
|
}
|
|
|
|
static int hpsa_enter_simple_mode(struct ctlr_info *h)
|
|
{
|
|
u32 trans_support;
|
|
|
|
trans_support = readl(&(h->cfgtable->TransportSupport));
|
|
if (!(trans_support & SIMPLE_MODE))
|
|
return -ENOTSUPP;
|
|
|
|
h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
|
|
|
|
/* Update the field, and then ring the doorbell */
|
|
writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
|
|
writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
|
|
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
|
|
hpsa_wait_for_mode_change_ack(h);
|
|
print_cfg_table(&h->pdev->dev, h->cfgtable);
|
|
if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
|
|
goto error;
|
|
h->transMethod = CFGTBL_Trans_Simple;
|
|
return 0;
|
|
error:
|
|
dev_err(&h->pdev->dev, "failed to enter simple mode\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int hpsa_pci_init(struct ctlr_info *h)
|
|
{
|
|
int prod_index, err;
|
|
|
|
prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
|
|
if (prod_index < 0)
|
|
return prod_index;
|
|
h->product_name = products[prod_index].product_name;
|
|
h->access = *(products[prod_index].access);
|
|
|
|
pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
|
|
PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
|
|
|
|
err = pci_enable_device(h->pdev);
|
|
if (err) {
|
|
dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
|
|
return err;
|
|
}
|
|
|
|
err = pci_request_regions(h->pdev, HPSA);
|
|
if (err) {
|
|
dev_err(&h->pdev->dev,
|
|
"cannot obtain PCI resources, aborting\n");
|
|
return err;
|
|
}
|
|
|
|
pci_set_master(h->pdev);
|
|
|
|
hpsa_interrupt_mode(h);
|
|
err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
|
|
if (err)
|
|
goto err_out_free_res;
|
|
h->vaddr = remap_pci_mem(h->paddr, 0x250);
|
|
if (!h->vaddr) {
|
|
err = -ENOMEM;
|
|
goto err_out_free_res;
|
|
}
|
|
err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
|
|
if (err)
|
|
goto err_out_free_res;
|
|
err = hpsa_find_cfgtables(h);
|
|
if (err)
|
|
goto err_out_free_res;
|
|
hpsa_find_board_params(h);
|
|
|
|
if (!hpsa_CISS_signature_present(h)) {
|
|
err = -ENODEV;
|
|
goto err_out_free_res;
|
|
}
|
|
hpsa_set_driver_support_bits(h);
|
|
hpsa_p600_dma_prefetch_quirk(h);
|
|
err = hpsa_enter_simple_mode(h);
|
|
if (err)
|
|
goto err_out_free_res;
|
|
return 0;
|
|
|
|
err_out_free_res:
|
|
if (h->transtable)
|
|
iounmap(h->transtable);
|
|
if (h->cfgtable)
|
|
iounmap(h->cfgtable);
|
|
if (h->vaddr)
|
|
iounmap(h->vaddr);
|
|
pci_disable_device(h->pdev);
|
|
pci_release_regions(h->pdev);
|
|
return err;
|
|
}
|
|
|
|
static void hpsa_hba_inquiry(struct ctlr_info *h)
|
|
{
|
|
int rc;
|
|
|
|
#define HBA_INQUIRY_BYTE_COUNT 64
|
|
h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
|
|
if (!h->hba_inquiry_data)
|
|
return;
|
|
rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
|
|
h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
|
|
if (rc != 0) {
|
|
kfree(h->hba_inquiry_data);
|
|
h->hba_inquiry_data = NULL;
|
|
}
|
|
}
|
|
|
|
static int hpsa_init_reset_devices(struct pci_dev *pdev)
|
|
{
|
|
int rc, i;
|
|
void __iomem *vaddr;
|
|
|
|
if (!reset_devices)
|
|
return 0;
|
|
|
|
/* kdump kernel is loading, we don't know in which state is
|
|
* the pci interface. The dev->enable_cnt is equal zero
|
|
* so we call enable+disable, wait a while and switch it on.
|
|
*/
|
|
rc = pci_enable_device(pdev);
|
|
if (rc) {
|
|
dev_warn(&pdev->dev, "Failed to enable PCI device\n");
|
|
return -ENODEV;
|
|
}
|
|
pci_disable_device(pdev);
|
|
msleep(260); /* a randomly chosen number */
|
|
rc = pci_enable_device(pdev);
|
|
if (rc) {
|
|
dev_warn(&pdev->dev, "failed to enable device.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
|
|
vaddr = pci_ioremap_bar(pdev, 0);
|
|
if (vaddr == NULL) {
|
|
rc = -ENOMEM;
|
|
goto out_disable;
|
|
}
|
|
writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
|
|
iounmap(vaddr);
|
|
|
|
/* Reset the controller with a PCI power-cycle or via doorbell */
|
|
rc = hpsa_kdump_hard_reset_controller(pdev);
|
|
|
|
/* -ENOTSUPP here means we cannot reset the controller
|
|
* but it's already (and still) up and running in
|
|
* "performant mode". Or, it might be 640x, which can't reset
|
|
* due to concerns about shared bbwc between 6402/6404 pair.
|
|
*/
|
|
if (rc)
|
|
goto out_disable;
|
|
|
|
/* Now try to get the controller to respond to a no-op */
|
|
dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
|
|
for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
|
|
if (hpsa_noop(pdev) == 0)
|
|
break;
|
|
else
|
|
dev_warn(&pdev->dev, "no-op failed%s\n",
|
|
(i < 11 ? "; re-trying" : ""));
|
|
}
|
|
|
|
out_disable:
|
|
|
|
pci_disable_device(pdev);
|
|
return rc;
|
|
}
|
|
|
|
static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
|
|
{
|
|
h->cmd_pool_bits = kzalloc(
|
|
DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
|
|
sizeof(unsigned long), GFP_KERNEL);
|
|
h->cmd_pool = pci_alloc_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(*h->cmd_pool),
|
|
&(h->cmd_pool_dhandle));
|
|
h->errinfo_pool = pci_alloc_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(*h->errinfo_pool),
|
|
&(h->errinfo_pool_dhandle));
|
|
if ((h->cmd_pool_bits == NULL)
|
|
|| (h->cmd_pool == NULL)
|
|
|| (h->errinfo_pool == NULL)) {
|
|
dev_err(&h->pdev->dev, "out of memory in %s", __func__);
|
|
goto clean_up;
|
|
}
|
|
return 0;
|
|
clean_up:
|
|
hpsa_free_cmd_pool(h);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void hpsa_free_cmd_pool(struct ctlr_info *h)
|
|
{
|
|
kfree(h->cmd_pool_bits);
|
|
if (h->cmd_pool)
|
|
pci_free_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(struct CommandList),
|
|
h->cmd_pool, h->cmd_pool_dhandle);
|
|
if (h->ioaccel2_cmd_pool)
|
|
pci_free_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
|
|
h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
|
|
if (h->errinfo_pool)
|
|
pci_free_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(struct ErrorInfo),
|
|
h->errinfo_pool,
|
|
h->errinfo_pool_dhandle);
|
|
if (h->ioaccel_cmd_pool)
|
|
pci_free_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(struct io_accel1_cmd),
|
|
h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
|
|
}
|
|
|
|
static void hpsa_irq_affinity_hints(struct ctlr_info *h)
|
|
{
|
|
int i, cpu;
|
|
|
|
cpu = cpumask_first(cpu_online_mask);
|
|
for (i = 0; i < h->msix_vector; i++) {
|
|
irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
|
|
cpu = cpumask_next(cpu, cpu_online_mask);
|
|
}
|
|
}
|
|
|
|
/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
|
|
static void hpsa_free_irqs(struct ctlr_info *h)
|
|
{
|
|
int i;
|
|
|
|
if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
|
|
/* Single reply queue, only one irq to free */
|
|
i = h->intr_mode;
|
|
irq_set_affinity_hint(h->intr[i], NULL);
|
|
free_irq(h->intr[i], &h->q[i]);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < h->msix_vector; i++) {
|
|
irq_set_affinity_hint(h->intr[i], NULL);
|
|
free_irq(h->intr[i], &h->q[i]);
|
|
}
|
|
for (; i < MAX_REPLY_QUEUES; i++)
|
|
h->q[i] = 0;
|
|
}
|
|
|
|
/* returns 0 on success; cleans up and returns -Enn on error */
|
|
static int hpsa_request_irqs(struct ctlr_info *h,
|
|
irqreturn_t (*msixhandler)(int, void *),
|
|
irqreturn_t (*intxhandler)(int, void *))
|
|
{
|
|
int rc, i;
|
|
|
|
/*
|
|
* initialize h->q[x] = x so that interrupt handlers know which
|
|
* queue to process.
|
|
*/
|
|
for (i = 0; i < MAX_REPLY_QUEUES; i++)
|
|
h->q[i] = (u8) i;
|
|
|
|
if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
|
|
/* If performant mode and MSI-X, use multiple reply queues */
|
|
for (i = 0; i < h->msix_vector; i++) {
|
|
rc = request_irq(h->intr[i], msixhandler,
|
|
0, h->devname,
|
|
&h->q[i]);
|
|
if (rc) {
|
|
int j;
|
|
|
|
dev_err(&h->pdev->dev,
|
|
"failed to get irq %d for %s\n",
|
|
h->intr[i], h->devname);
|
|
for (j = 0; j < i; j++) {
|
|
free_irq(h->intr[j], &h->q[j]);
|
|
h->q[j] = 0;
|
|
}
|
|
for (; j < MAX_REPLY_QUEUES; j++)
|
|
h->q[j] = 0;
|
|
return rc;
|
|
}
|
|
}
|
|
hpsa_irq_affinity_hints(h);
|
|
} else {
|
|
/* Use single reply pool */
|
|
if (h->msix_vector > 0 || h->msi_vector) {
|
|
rc = request_irq(h->intr[h->intr_mode],
|
|
msixhandler, 0, h->devname,
|
|
&h->q[h->intr_mode]);
|
|
} else {
|
|
rc = request_irq(h->intr[h->intr_mode],
|
|
intxhandler, IRQF_SHARED, h->devname,
|
|
&h->q[h->intr_mode]);
|
|
}
|
|
}
|
|
if (rc) {
|
|
dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
|
|
h->intr[h->intr_mode], h->devname);
|
|
return -ENODEV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int hpsa_kdump_soft_reset(struct ctlr_info *h)
|
|
{
|
|
if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
|
|
HPSA_RESET_TYPE_CONTROLLER)) {
|
|
dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
|
|
return -EIO;
|
|
}
|
|
|
|
dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
|
|
if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
|
|
dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
|
|
return -1;
|
|
}
|
|
|
|
dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
|
|
if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
|
|
dev_warn(&h->pdev->dev, "Board failed to become ready "
|
|
"after soft reset.\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
|
|
{
|
|
hpsa_free_irqs(h);
|
|
#ifdef CONFIG_PCI_MSI
|
|
if (h->msix_vector) {
|
|
if (h->pdev->msix_enabled)
|
|
pci_disable_msix(h->pdev);
|
|
} else if (h->msi_vector) {
|
|
if (h->pdev->msi_enabled)
|
|
pci_disable_msi(h->pdev);
|
|
}
|
|
#endif /* CONFIG_PCI_MSI */
|
|
}
|
|
|
|
static void hpsa_free_reply_queues(struct ctlr_info *h)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < h->nreply_queues; i++) {
|
|
if (!h->reply_queue[i].head)
|
|
continue;
|
|
pci_free_consistent(h->pdev, h->reply_queue_size,
|
|
h->reply_queue[i].head, h->reply_queue[i].busaddr);
|
|
h->reply_queue[i].head = NULL;
|
|
h->reply_queue[i].busaddr = 0;
|
|
}
|
|
}
|
|
|
|
static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
|
|
{
|
|
hpsa_free_irqs_and_disable_msix(h);
|
|
hpsa_free_sg_chain_blocks(h);
|
|
hpsa_free_cmd_pool(h);
|
|
kfree(h->ioaccel1_blockFetchTable);
|
|
kfree(h->blockFetchTable);
|
|
hpsa_free_reply_queues(h);
|
|
if (h->vaddr)
|
|
iounmap(h->vaddr);
|
|
if (h->transtable)
|
|
iounmap(h->transtable);
|
|
if (h->cfgtable)
|
|
iounmap(h->cfgtable);
|
|
pci_disable_device(h->pdev);
|
|
pci_release_regions(h->pdev);
|
|
kfree(h);
|
|
}
|
|
|
|
/* Called when controller lockup detected. */
|
|
static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
|
|
{
|
|
struct CommandList *c = NULL;
|
|
|
|
assert_spin_locked(&h->lock);
|
|
/* Mark all outstanding commands as failed and complete them. */
|
|
while (!list_empty(list)) {
|
|
c = list_entry(list->next, struct CommandList, list);
|
|
c->err_info->CommandStatus = CMD_HARDWARE_ERR;
|
|
finish_cmd(c);
|
|
}
|
|
}
|
|
|
|
static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
|
|
{
|
|
int i, cpu;
|
|
|
|
cpu = cpumask_first(cpu_online_mask);
|
|
for (i = 0; i < num_online_cpus(); i++) {
|
|
u32 *lockup_detected;
|
|
lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
|
|
*lockup_detected = value;
|
|
cpu = cpumask_next(cpu, cpu_online_mask);
|
|
}
|
|
wmb(); /* be sure the per-cpu variables are out to memory */
|
|
}
|
|
|
|
static void controller_lockup_detected(struct ctlr_info *h)
|
|
{
|
|
unsigned long flags;
|
|
u32 lockup_detected;
|
|
|
|
h->access.set_intr_mask(h, HPSA_INTR_OFF);
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
|
|
if (!lockup_detected) {
|
|
/* no heartbeat, but controller gave us a zero. */
|
|
dev_warn(&h->pdev->dev,
|
|
"lockup detected but scratchpad register is zero\n");
|
|
lockup_detected = 0xffffffff;
|
|
}
|
|
set_lockup_detected_for_all_cpus(h, lockup_detected);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
|
|
lockup_detected);
|
|
pci_disable_device(h->pdev);
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
fail_all_cmds_on_list(h, &h->cmpQ);
|
|
fail_all_cmds_on_list(h, &h->reqQ);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
}
|
|
|
|
static void detect_controller_lockup(struct ctlr_info *h)
|
|
{
|
|
u64 now;
|
|
u32 heartbeat;
|
|
unsigned long flags;
|
|
|
|
now = get_jiffies_64();
|
|
/* If we've received an interrupt recently, we're ok. */
|
|
if (time_after64(h->last_intr_timestamp +
|
|
(h->heartbeat_sample_interval), now))
|
|
return;
|
|
|
|
/*
|
|
* If we've already checked the heartbeat recently, we're ok.
|
|
* This could happen if someone sends us a signal. We
|
|
* otherwise don't care about signals in this thread.
|
|
*/
|
|
if (time_after64(h->last_heartbeat_timestamp +
|
|
(h->heartbeat_sample_interval), now))
|
|
return;
|
|
|
|
/* If heartbeat has not changed since we last looked, we're not ok. */
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
heartbeat = readl(&h->cfgtable->HeartBeat);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
if (h->last_heartbeat == heartbeat) {
|
|
controller_lockup_detected(h);
|
|
return;
|
|
}
|
|
|
|
/* We're ok. */
|
|
h->last_heartbeat = heartbeat;
|
|
h->last_heartbeat_timestamp = now;
|
|
}
|
|
|
|
static void hpsa_ack_ctlr_events(struct ctlr_info *h)
|
|
{
|
|
int i;
|
|
char *event_type;
|
|
|
|
/* Clear the driver-requested rescan flag */
|
|
h->drv_req_rescan = 0;
|
|
|
|
/* Ask the controller to clear the events we're handling. */
|
|
if ((h->transMethod & (CFGTBL_Trans_io_accel1
|
|
| CFGTBL_Trans_io_accel2)) &&
|
|
(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
|
|
h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
|
|
|
|
if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
|
|
event_type = "state change";
|
|
if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
|
|
event_type = "configuration change";
|
|
/* Stop sending new RAID offload reqs via the IO accelerator */
|
|
scsi_block_requests(h->scsi_host);
|
|
for (i = 0; i < h->ndevices; i++)
|
|
h->dev[i]->offload_enabled = 0;
|
|
hpsa_drain_accel_commands(h);
|
|
/* Set 'accelerator path config change' bit */
|
|
dev_warn(&h->pdev->dev,
|
|
"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
|
|
h->events, event_type);
|
|
writel(h->events, &(h->cfgtable->clear_event_notify));
|
|
/* Set the "clear event notify field update" bit 6 */
|
|
writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
|
|
/* Wait until ctlr clears 'clear event notify field', bit 6 */
|
|
hpsa_wait_for_clear_event_notify_ack(h);
|
|
scsi_unblock_requests(h->scsi_host);
|
|
} else {
|
|
/* Acknowledge controller notification events. */
|
|
writel(h->events, &(h->cfgtable->clear_event_notify));
|
|
writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
|
|
hpsa_wait_for_clear_event_notify_ack(h);
|
|
#if 0
|
|
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
|
|
hpsa_wait_for_mode_change_ack(h);
|
|
#endif
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Check a register on the controller to see if there are configuration
|
|
* changes (added/changed/removed logical drives, etc.) which mean that
|
|
* we should rescan the controller for devices.
|
|
* Also check flag for driver-initiated rescan.
|
|
*/
|
|
static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
|
|
{
|
|
if (h->drv_req_rescan)
|
|
return 1;
|
|
|
|
if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
|
|
return 0;
|
|
|
|
h->events = readl(&(h->cfgtable->event_notify));
|
|
return h->events & RESCAN_REQUIRED_EVENT_BITS;
|
|
}
|
|
|
|
/*
|
|
* Check if any of the offline devices have become ready
|
|
*/
|
|
static int hpsa_offline_devices_ready(struct ctlr_info *h)
|
|
{
|
|
unsigned long flags;
|
|
struct offline_device_entry *d;
|
|
struct list_head *this, *tmp;
|
|
|
|
spin_lock_irqsave(&h->offline_device_lock, flags);
|
|
list_for_each_safe(this, tmp, &h->offline_device_list) {
|
|
d = list_entry(this, struct offline_device_entry,
|
|
offline_list);
|
|
spin_unlock_irqrestore(&h->offline_device_lock, flags);
|
|
if (!hpsa_volume_offline(h, d->scsi3addr)) {
|
|
spin_lock_irqsave(&h->offline_device_lock, flags);
|
|
list_del(&d->offline_list);
|
|
spin_unlock_irqrestore(&h->offline_device_lock, flags);
|
|
return 1;
|
|
}
|
|
spin_lock_irqsave(&h->offline_device_lock, flags);
|
|
}
|
|
spin_unlock_irqrestore(&h->offline_device_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void hpsa_monitor_ctlr_worker(struct work_struct *work)
|
|
{
|
|
unsigned long flags;
|
|
struct ctlr_info *h = container_of(to_delayed_work(work),
|
|
struct ctlr_info, monitor_ctlr_work);
|
|
detect_controller_lockup(h);
|
|
if (lockup_detected(h))
|
|
return;
|
|
|
|
if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
|
|
scsi_host_get(h->scsi_host);
|
|
h->drv_req_rescan = 0;
|
|
hpsa_ack_ctlr_events(h);
|
|
hpsa_scan_start(h->scsi_host);
|
|
scsi_host_put(h->scsi_host);
|
|
}
|
|
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
if (h->remove_in_progress) {
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return;
|
|
}
|
|
schedule_delayed_work(&h->monitor_ctlr_work,
|
|
h->heartbeat_sample_interval);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
}
|
|
|
|
static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
int dac, rc;
|
|
struct ctlr_info *h;
|
|
int try_soft_reset = 0;
|
|
unsigned long flags;
|
|
|
|
if (number_of_controllers == 0)
|
|
printk(KERN_INFO DRIVER_NAME "\n");
|
|
|
|
rc = hpsa_init_reset_devices(pdev);
|
|
if (rc) {
|
|
if (rc != -ENOTSUPP)
|
|
return rc;
|
|
/* If the reset fails in a particular way (it has no way to do
|
|
* a proper hard reset, so returns -ENOTSUPP) we can try to do
|
|
* a soft reset once we get the controller configured up to the
|
|
* point that it can accept a command.
|
|
*/
|
|
try_soft_reset = 1;
|
|
rc = 0;
|
|
}
|
|
|
|
reinit_after_soft_reset:
|
|
|
|
/* Command structures must be aligned on a 32-byte boundary because
|
|
* the 5 lower bits of the address are used by the hardware. and by
|
|
* the driver. See comments in hpsa.h for more info.
|
|
*/
|
|
BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
|
|
h = kzalloc(sizeof(*h), GFP_KERNEL);
|
|
if (!h)
|
|
return -ENOMEM;
|
|
|
|
h->pdev = pdev;
|
|
h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
|
|
INIT_LIST_HEAD(&h->cmpQ);
|
|
INIT_LIST_HEAD(&h->reqQ);
|
|
INIT_LIST_HEAD(&h->offline_device_list);
|
|
spin_lock_init(&h->lock);
|
|
spin_lock_init(&h->offline_device_lock);
|
|
spin_lock_init(&h->scan_lock);
|
|
spin_lock_init(&h->passthru_count_lock);
|
|
|
|
/* Allocate and clear per-cpu variable lockup_detected */
|
|
h->lockup_detected = alloc_percpu(u32);
|
|
if (!h->lockup_detected) {
|
|
rc = -ENOMEM;
|
|
goto clean1;
|
|
}
|
|
set_lockup_detected_for_all_cpus(h, 0);
|
|
|
|
rc = hpsa_pci_init(h);
|
|
if (rc != 0)
|
|
goto clean1;
|
|
|
|
sprintf(h->devname, HPSA "%d", number_of_controllers);
|
|
h->ctlr = number_of_controllers;
|
|
number_of_controllers++;
|
|
|
|
/* configure PCI DMA stuff */
|
|
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
|
|
if (rc == 0) {
|
|
dac = 1;
|
|
} else {
|
|
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
|
|
if (rc == 0) {
|
|
dac = 0;
|
|
} else {
|
|
dev_err(&pdev->dev, "no suitable DMA available\n");
|
|
goto clean1;
|
|
}
|
|
}
|
|
|
|
/* make sure the board interrupts are off */
|
|
h->access.set_intr_mask(h, HPSA_INTR_OFF);
|
|
|
|
if (hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
|
|
goto clean2;
|
|
dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
|
|
h->devname, pdev->device,
|
|
h->intr[h->intr_mode], dac ? "" : " not");
|
|
rc = hpsa_allocate_cmd_pool(h);
|
|
if (rc)
|
|
goto clean2_and_free_irqs;
|
|
if (hpsa_allocate_sg_chain_blocks(h))
|
|
goto clean4;
|
|
init_waitqueue_head(&h->scan_wait_queue);
|
|
h->scan_finished = 1; /* no scan currently in progress */
|
|
|
|
pci_set_drvdata(pdev, h);
|
|
h->ndevices = 0;
|
|
h->hba_mode_enabled = 0;
|
|
h->scsi_host = NULL;
|
|
spin_lock_init(&h->devlock);
|
|
hpsa_put_ctlr_into_performant_mode(h);
|
|
|
|
/* At this point, the controller is ready to take commands.
|
|
* Now, if reset_devices and the hard reset didn't work, try
|
|
* the soft reset and see if that works.
|
|
*/
|
|
if (try_soft_reset) {
|
|
|
|
/* This is kind of gross. We may or may not get a completion
|
|
* from the soft reset command, and if we do, then the value
|
|
* from the fifo may or may not be valid. So, we wait 10 secs
|
|
* after the reset throwing away any completions we get during
|
|
* that time. Unregister the interrupt handler and register
|
|
* fake ones to scoop up any residual completions.
|
|
*/
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
h->access.set_intr_mask(h, HPSA_INTR_OFF);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
hpsa_free_irqs(h);
|
|
rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
|
|
hpsa_intx_discard_completions);
|
|
if (rc) {
|
|
dev_warn(&h->pdev->dev,
|
|
"Failed to request_irq after soft reset.\n");
|
|
goto clean4;
|
|
}
|
|
|
|
rc = hpsa_kdump_soft_reset(h);
|
|
if (rc)
|
|
/* Neither hard nor soft reset worked, we're hosed. */
|
|
goto clean4;
|
|
|
|
dev_info(&h->pdev->dev, "Board READY.\n");
|
|
dev_info(&h->pdev->dev,
|
|
"Waiting for stale completions to drain.\n");
|
|
h->access.set_intr_mask(h, HPSA_INTR_ON);
|
|
msleep(10000);
|
|
h->access.set_intr_mask(h, HPSA_INTR_OFF);
|
|
|
|
rc = controller_reset_failed(h->cfgtable);
|
|
if (rc)
|
|
dev_info(&h->pdev->dev,
|
|
"Soft reset appears to have failed.\n");
|
|
|
|
/* since the controller's reset, we have to go back and re-init
|
|
* everything. Easiest to just forget what we've done and do it
|
|
* all over again.
|
|
*/
|
|
hpsa_undo_allocations_after_kdump_soft_reset(h);
|
|
try_soft_reset = 0;
|
|
if (rc)
|
|
/* don't go to clean4, we already unallocated */
|
|
return -ENODEV;
|
|
|
|
goto reinit_after_soft_reset;
|
|
}
|
|
|
|
/* Enable Accelerated IO path at driver layer */
|
|
h->acciopath_status = 1;
|
|
|
|
h->drv_req_rescan = 0;
|
|
|
|
/* Turn the interrupts on so we can service requests */
|
|
h->access.set_intr_mask(h, HPSA_INTR_ON);
|
|
|
|
hpsa_hba_inquiry(h);
|
|
hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
|
|
|
|
/* Monitor the controller for firmware lockups */
|
|
h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
|
|
INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
|
|
schedule_delayed_work(&h->monitor_ctlr_work,
|
|
h->heartbeat_sample_interval);
|
|
return 0;
|
|
|
|
clean4:
|
|
hpsa_free_sg_chain_blocks(h);
|
|
hpsa_free_cmd_pool(h);
|
|
clean2_and_free_irqs:
|
|
hpsa_free_irqs(h);
|
|
clean2:
|
|
clean1:
|
|
if (h->lockup_detected)
|
|
free_percpu(h->lockup_detected);
|
|
kfree(h);
|
|
return rc;
|
|
}
|
|
|
|
static void hpsa_flush_cache(struct ctlr_info *h)
|
|
{
|
|
char *flush_buf;
|
|
struct CommandList *c;
|
|
|
|
/* Don't bother trying to flush the cache if locked up */
|
|
if (unlikely(lockup_detected(h)))
|
|
return;
|
|
flush_buf = kzalloc(4, GFP_KERNEL);
|
|
if (!flush_buf)
|
|
return;
|
|
|
|
c = cmd_special_alloc(h);
|
|
if (!c) {
|
|
dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
|
|
goto out_of_memory;
|
|
}
|
|
if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
|
|
RAID_CTLR_LUNID, TYPE_CMD)) {
|
|
goto out;
|
|
}
|
|
hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
|
|
if (c->err_info->CommandStatus != 0)
|
|
out:
|
|
dev_warn(&h->pdev->dev,
|
|
"error flushing cache on controller\n");
|
|
cmd_special_free(h, c);
|
|
out_of_memory:
|
|
kfree(flush_buf);
|
|
}
|
|
|
|
static void hpsa_shutdown(struct pci_dev *pdev)
|
|
{
|
|
struct ctlr_info *h;
|
|
|
|
h = pci_get_drvdata(pdev);
|
|
/* Turn board interrupts off and send the flush cache command
|
|
* sendcmd will turn off interrupt, and send the flush...
|
|
* To write all data in the battery backed cache to disks
|
|
*/
|
|
hpsa_flush_cache(h);
|
|
h->access.set_intr_mask(h, HPSA_INTR_OFF);
|
|
hpsa_free_irqs_and_disable_msix(h);
|
|
}
|
|
|
|
static void hpsa_free_device_info(struct ctlr_info *h)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < h->ndevices; i++)
|
|
kfree(h->dev[i]);
|
|
}
|
|
|
|
static void hpsa_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct ctlr_info *h;
|
|
unsigned long flags;
|
|
|
|
if (pci_get_drvdata(pdev) == NULL) {
|
|
dev_err(&pdev->dev, "unable to remove device\n");
|
|
return;
|
|
}
|
|
h = pci_get_drvdata(pdev);
|
|
|
|
/* Get rid of any controller monitoring work items */
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
h->remove_in_progress = 1;
|
|
cancel_delayed_work(&h->monitor_ctlr_work);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
|
|
hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
|
|
hpsa_shutdown(pdev);
|
|
iounmap(h->vaddr);
|
|
iounmap(h->transtable);
|
|
iounmap(h->cfgtable);
|
|
hpsa_free_device_info(h);
|
|
hpsa_free_sg_chain_blocks(h);
|
|
pci_free_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(struct CommandList),
|
|
h->cmd_pool, h->cmd_pool_dhandle);
|
|
pci_free_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(struct ErrorInfo),
|
|
h->errinfo_pool, h->errinfo_pool_dhandle);
|
|
hpsa_free_reply_queues(h);
|
|
kfree(h->cmd_pool_bits);
|
|
kfree(h->blockFetchTable);
|
|
kfree(h->ioaccel1_blockFetchTable);
|
|
kfree(h->ioaccel2_blockFetchTable);
|
|
kfree(h->hba_inquiry_data);
|
|
pci_disable_device(pdev);
|
|
pci_release_regions(pdev);
|
|
free_percpu(h->lockup_detected);
|
|
kfree(h);
|
|
}
|
|
|
|
static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
|
|
__attribute__((unused)) pm_message_t state)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static struct pci_driver hpsa_pci_driver = {
|
|
.name = HPSA,
|
|
.probe = hpsa_init_one,
|
|
.remove = hpsa_remove_one,
|
|
.id_table = hpsa_pci_device_id, /* id_table */
|
|
.shutdown = hpsa_shutdown,
|
|
.suspend = hpsa_suspend,
|
|
.resume = hpsa_resume,
|
|
};
|
|
|
|
/* Fill in bucket_map[], given nsgs (the max number of
|
|
* scatter gather elements supported) and bucket[],
|
|
* which is an array of 8 integers. The bucket[] array
|
|
* contains 8 different DMA transfer sizes (in 16
|
|
* byte increments) which the controller uses to fetch
|
|
* commands. This function fills in bucket_map[], which
|
|
* maps a given number of scatter gather elements to one of
|
|
* the 8 DMA transfer sizes. The point of it is to allow the
|
|
* controller to only do as much DMA as needed to fetch the
|
|
* command, with the DMA transfer size encoded in the lower
|
|
* bits of the command address.
|
|
*/
|
|
static void calc_bucket_map(int bucket[], int num_buckets,
|
|
int nsgs, int min_blocks, u32 *bucket_map)
|
|
{
|
|
int i, j, b, size;
|
|
|
|
/* Note, bucket_map must have nsgs+1 entries. */
|
|
for (i = 0; i <= nsgs; i++) {
|
|
/* Compute size of a command with i SG entries */
|
|
size = i + min_blocks;
|
|
b = num_buckets; /* Assume the biggest bucket */
|
|
/* Find the bucket that is just big enough */
|
|
for (j = 0; j < num_buckets; j++) {
|
|
if (bucket[j] >= size) {
|
|
b = j;
|
|
break;
|
|
}
|
|
}
|
|
/* for a command with i SG entries, use bucket b. */
|
|
bucket_map[i] = b;
|
|
}
|
|
}
|
|
|
|
static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
|
|
{
|
|
int i;
|
|
unsigned long register_value;
|
|
unsigned long transMethod = CFGTBL_Trans_Performant |
|
|
(trans_support & CFGTBL_Trans_use_short_tags) |
|
|
CFGTBL_Trans_enable_directed_msix |
|
|
(trans_support & (CFGTBL_Trans_io_accel1 |
|
|
CFGTBL_Trans_io_accel2));
|
|
struct access_method access = SA5_performant_access;
|
|
|
|
/* This is a bit complicated. There are 8 registers on
|
|
* the controller which we write to to tell it 8 different
|
|
* sizes of commands which there may be. It's a way of
|
|
* reducing the DMA done to fetch each command. Encoded into
|
|
* each command's tag are 3 bits which communicate to the controller
|
|
* which of the eight sizes that command fits within. The size of
|
|
* each command depends on how many scatter gather entries there are.
|
|
* Each SG entry requires 16 bytes. The eight registers are programmed
|
|
* with the number of 16-byte blocks a command of that size requires.
|
|
* The smallest command possible requires 5 such 16 byte blocks.
|
|
* the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
|
|
* blocks. Note, this only extends to the SG entries contained
|
|
* within the command block, and does not extend to chained blocks
|
|
* of SG elements. bft[] contains the eight values we write to
|
|
* the registers. They are not evenly distributed, but have more
|
|
* sizes for small commands, and fewer sizes for larger commands.
|
|
*/
|
|
int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
|
|
#define MIN_IOACCEL2_BFT_ENTRY 5
|
|
#define HPSA_IOACCEL2_HEADER_SZ 4
|
|
int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
|
|
13, 14, 15, 16, 17, 18, 19,
|
|
HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
|
|
BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
|
|
BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
|
|
BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
|
|
16 * MIN_IOACCEL2_BFT_ENTRY);
|
|
BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
|
|
BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
|
|
/* 5 = 1 s/g entry or 4k
|
|
* 6 = 2 s/g entry or 8k
|
|
* 8 = 4 s/g entry or 16k
|
|
* 10 = 6 s/g entry or 24k
|
|
*/
|
|
|
|
/* If the controller supports either ioaccel method then
|
|
* we can also use the RAID stack submit path that does not
|
|
* perform the superfluous readl() after each command submission.
|
|
*/
|
|
if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
|
|
access = SA5_performant_access_no_read;
|
|
|
|
/* Controller spec: zero out this buffer. */
|
|
for (i = 0; i < h->nreply_queues; i++)
|
|
memset(h->reply_queue[i].head, 0, h->reply_queue_size);
|
|
|
|
bft[7] = SG_ENTRIES_IN_CMD + 4;
|
|
calc_bucket_map(bft, ARRAY_SIZE(bft),
|
|
SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
|
|
for (i = 0; i < 8; i++)
|
|
writel(bft[i], &h->transtable->BlockFetch[i]);
|
|
|
|
/* size of controller ring buffer */
|
|
writel(h->max_commands, &h->transtable->RepQSize);
|
|
writel(h->nreply_queues, &h->transtable->RepQCount);
|
|
writel(0, &h->transtable->RepQCtrAddrLow32);
|
|
writel(0, &h->transtable->RepQCtrAddrHigh32);
|
|
|
|
for (i = 0; i < h->nreply_queues; i++) {
|
|
writel(0, &h->transtable->RepQAddr[i].upper);
|
|
writel(h->reply_queue[i].busaddr,
|
|
&h->transtable->RepQAddr[i].lower);
|
|
}
|
|
|
|
writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
|
|
writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
|
|
/*
|
|
* enable outbound interrupt coalescing in accelerator mode;
|
|
*/
|
|
if (trans_support & CFGTBL_Trans_io_accel1) {
|
|
access = SA5_ioaccel_mode1_access;
|
|
writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
|
|
writel(4, &h->cfgtable->HostWrite.CoalIntCount);
|
|
} else {
|
|
if (trans_support & CFGTBL_Trans_io_accel2) {
|
|
access = SA5_ioaccel_mode2_access;
|
|
writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
|
|
writel(4, &h->cfgtable->HostWrite.CoalIntCount);
|
|
}
|
|
}
|
|
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
|
|
hpsa_wait_for_mode_change_ack(h);
|
|
register_value = readl(&(h->cfgtable->TransportActive));
|
|
if (!(register_value & CFGTBL_Trans_Performant)) {
|
|
dev_err(&h->pdev->dev,
|
|
"performant mode problem - transport not active\n");
|
|
return;
|
|
}
|
|
/* Change the access methods to the performant access methods */
|
|
h->access = access;
|
|
h->transMethod = transMethod;
|
|
|
|
if (!((trans_support & CFGTBL_Trans_io_accel1) ||
|
|
(trans_support & CFGTBL_Trans_io_accel2)))
|
|
return;
|
|
|
|
if (trans_support & CFGTBL_Trans_io_accel1) {
|
|
/* Set up I/O accelerator mode */
|
|
for (i = 0; i < h->nreply_queues; i++) {
|
|
writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
|
|
h->reply_queue[i].current_entry =
|
|
readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
|
|
}
|
|
bft[7] = h->ioaccel_maxsg + 8;
|
|
calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
|
|
h->ioaccel1_blockFetchTable);
|
|
|
|
/* initialize all reply queue entries to unused */
|
|
for (i = 0; i < h->nreply_queues; i++)
|
|
memset(h->reply_queue[i].head,
|
|
(u8) IOACCEL_MODE1_REPLY_UNUSED,
|
|
h->reply_queue_size);
|
|
|
|
/* set all the constant fields in the accelerator command
|
|
* frames once at init time to save CPU cycles later.
|
|
*/
|
|
for (i = 0; i < h->nr_cmds; i++) {
|
|
struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
|
|
|
|
cp->function = IOACCEL1_FUNCTION_SCSIIO;
|
|
cp->err_info = (u32) (h->errinfo_pool_dhandle +
|
|
(i * sizeof(struct ErrorInfo)));
|
|
cp->err_info_len = sizeof(struct ErrorInfo);
|
|
cp->sgl_offset = IOACCEL1_SGLOFFSET;
|
|
cp->host_context_flags =
|
|
cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
|
|
cp->timeout_sec = 0;
|
|
cp->ReplyQueue = 0;
|
|
cp->tag =
|
|
cpu_to_le64((i << DIRECT_LOOKUP_SHIFT) |
|
|
DIRECT_LOOKUP_BIT);
|
|
cp->host_addr =
|
|
cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
|
|
(i * sizeof(struct io_accel1_cmd)));
|
|
}
|
|
} else if (trans_support & CFGTBL_Trans_io_accel2) {
|
|
u64 cfg_offset, cfg_base_addr_index;
|
|
u32 bft2_offset, cfg_base_addr;
|
|
int rc;
|
|
|
|
rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
|
|
&cfg_base_addr_index, &cfg_offset);
|
|
BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
|
|
bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
|
|
calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
|
|
4, h->ioaccel2_blockFetchTable);
|
|
bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
|
|
BUILD_BUG_ON(offsetof(struct CfgTable,
|
|
io_accel_request_size_offset) != 0xb8);
|
|
h->ioaccel2_bft2_regs =
|
|
remap_pci_mem(pci_resource_start(h->pdev,
|
|
cfg_base_addr_index) +
|
|
cfg_offset + bft2_offset,
|
|
ARRAY_SIZE(bft2) *
|
|
sizeof(*h->ioaccel2_bft2_regs));
|
|
for (i = 0; i < ARRAY_SIZE(bft2); i++)
|
|
writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
|
|
}
|
|
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
|
|
hpsa_wait_for_mode_change_ack(h);
|
|
}
|
|
|
|
static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
|
|
{
|
|
h->ioaccel_maxsg =
|
|
readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
|
|
if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
|
|
h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
|
|
|
|
/* Command structures must be aligned on a 128-byte boundary
|
|
* because the 7 lower bits of the address are used by the
|
|
* hardware.
|
|
*/
|
|
BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
|
|
IOACCEL1_COMMANDLIST_ALIGNMENT);
|
|
h->ioaccel_cmd_pool =
|
|
pci_alloc_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
|
|
&(h->ioaccel_cmd_pool_dhandle));
|
|
|
|
h->ioaccel1_blockFetchTable =
|
|
kmalloc(((h->ioaccel_maxsg + 1) *
|
|
sizeof(u32)), GFP_KERNEL);
|
|
|
|
if ((h->ioaccel_cmd_pool == NULL) ||
|
|
(h->ioaccel1_blockFetchTable == NULL))
|
|
goto clean_up;
|
|
|
|
memset(h->ioaccel_cmd_pool, 0,
|
|
h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
|
|
return 0;
|
|
|
|
clean_up:
|
|
if (h->ioaccel_cmd_pool)
|
|
pci_free_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
|
|
h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
|
|
kfree(h->ioaccel1_blockFetchTable);
|
|
return 1;
|
|
}
|
|
|
|
static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
|
|
{
|
|
/* Allocate ioaccel2 mode command blocks and block fetch table */
|
|
|
|
h->ioaccel_maxsg =
|
|
readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
|
|
if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
|
|
h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
|
|
|
|
BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
|
|
IOACCEL2_COMMANDLIST_ALIGNMENT);
|
|
h->ioaccel2_cmd_pool =
|
|
pci_alloc_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
|
|
&(h->ioaccel2_cmd_pool_dhandle));
|
|
|
|
h->ioaccel2_blockFetchTable =
|
|
kmalloc(((h->ioaccel_maxsg + 1) *
|
|
sizeof(u32)), GFP_KERNEL);
|
|
|
|
if ((h->ioaccel2_cmd_pool == NULL) ||
|
|
(h->ioaccel2_blockFetchTable == NULL))
|
|
goto clean_up;
|
|
|
|
memset(h->ioaccel2_cmd_pool, 0,
|
|
h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
|
|
return 0;
|
|
|
|
clean_up:
|
|
if (h->ioaccel2_cmd_pool)
|
|
pci_free_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
|
|
h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
|
|
kfree(h->ioaccel2_blockFetchTable);
|
|
return 1;
|
|
}
|
|
|
|
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
|
|
{
|
|
u32 trans_support;
|
|
unsigned long transMethod = CFGTBL_Trans_Performant |
|
|
CFGTBL_Trans_use_short_tags;
|
|
int i;
|
|
|
|
if (hpsa_simple_mode)
|
|
return;
|
|
|
|
trans_support = readl(&(h->cfgtable->TransportSupport));
|
|
if (!(trans_support & PERFORMANT_MODE))
|
|
return;
|
|
|
|
/* Check for I/O accelerator mode support */
|
|
if (trans_support & CFGTBL_Trans_io_accel1) {
|
|
transMethod |= CFGTBL_Trans_io_accel1 |
|
|
CFGTBL_Trans_enable_directed_msix;
|
|
if (hpsa_alloc_ioaccel_cmd_and_bft(h))
|
|
goto clean_up;
|
|
} else {
|
|
if (trans_support & CFGTBL_Trans_io_accel2) {
|
|
transMethod |= CFGTBL_Trans_io_accel2 |
|
|
CFGTBL_Trans_enable_directed_msix;
|
|
if (ioaccel2_alloc_cmds_and_bft(h))
|
|
goto clean_up;
|
|
}
|
|
}
|
|
|
|
h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
|
|
hpsa_get_max_perf_mode_cmds(h);
|
|
/* Performant mode ring buffer and supporting data structures */
|
|
h->reply_queue_size = h->max_commands * sizeof(u64);
|
|
|
|
for (i = 0; i < h->nreply_queues; i++) {
|
|
h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
|
|
h->reply_queue_size,
|
|
&(h->reply_queue[i].busaddr));
|
|
if (!h->reply_queue[i].head)
|
|
goto clean_up;
|
|
h->reply_queue[i].size = h->max_commands;
|
|
h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
|
|
h->reply_queue[i].current_entry = 0;
|
|
}
|
|
|
|
/* Need a block fetch table for performant mode */
|
|
h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
|
|
sizeof(u32)), GFP_KERNEL);
|
|
if (!h->blockFetchTable)
|
|
goto clean_up;
|
|
|
|
hpsa_enter_performant_mode(h, trans_support);
|
|
return;
|
|
|
|
clean_up:
|
|
hpsa_free_reply_queues(h);
|
|
kfree(h->blockFetchTable);
|
|
}
|
|
|
|
static int is_accelerated_cmd(struct CommandList *c)
|
|
{
|
|
return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
|
|
}
|
|
|
|
static void hpsa_drain_accel_commands(struct ctlr_info *h)
|
|
{
|
|
struct CommandList *c = NULL;
|
|
unsigned long flags;
|
|
int accel_cmds_out;
|
|
|
|
do { /* wait for all outstanding commands to drain out */
|
|
accel_cmds_out = 0;
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
list_for_each_entry(c, &h->cmpQ, list)
|
|
accel_cmds_out += is_accelerated_cmd(c);
|
|
list_for_each_entry(c, &h->reqQ, list)
|
|
accel_cmds_out += is_accelerated_cmd(c);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
if (accel_cmds_out <= 0)
|
|
break;
|
|
msleep(100);
|
|
} while (1);
|
|
}
|
|
|
|
/*
|
|
* This is it. Register the PCI driver information for the cards we control
|
|
* the OS will call our registered routines when it finds one of our cards.
|
|
*/
|
|
static int __init hpsa_init(void)
|
|
{
|
|
return pci_register_driver(&hpsa_pci_driver);
|
|
}
|
|
|
|
static void __exit hpsa_cleanup(void)
|
|
{
|
|
pci_unregister_driver(&hpsa_pci_driver);
|
|
}
|
|
|
|
static void __attribute__((unused)) verify_offsets(void)
|
|
{
|
|
#define VERIFY_OFFSET(member, offset) \
|
|
BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
|
|
|
|
VERIFY_OFFSET(structure_size, 0);
|
|
VERIFY_OFFSET(volume_blk_size, 4);
|
|
VERIFY_OFFSET(volume_blk_cnt, 8);
|
|
VERIFY_OFFSET(phys_blk_shift, 16);
|
|
VERIFY_OFFSET(parity_rotation_shift, 17);
|
|
VERIFY_OFFSET(strip_size, 18);
|
|
VERIFY_OFFSET(disk_starting_blk, 20);
|
|
VERIFY_OFFSET(disk_blk_cnt, 28);
|
|
VERIFY_OFFSET(data_disks_per_row, 36);
|
|
VERIFY_OFFSET(metadata_disks_per_row, 38);
|
|
VERIFY_OFFSET(row_cnt, 40);
|
|
VERIFY_OFFSET(layout_map_count, 42);
|
|
VERIFY_OFFSET(flags, 44);
|
|
VERIFY_OFFSET(dekindex, 46);
|
|
/* VERIFY_OFFSET(reserved, 48 */
|
|
VERIFY_OFFSET(data, 64);
|
|
|
|
#undef VERIFY_OFFSET
|
|
|
|
#define VERIFY_OFFSET(member, offset) \
|
|
BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
|
|
|
|
VERIFY_OFFSET(IU_type, 0);
|
|
VERIFY_OFFSET(direction, 1);
|
|
VERIFY_OFFSET(reply_queue, 2);
|
|
/* VERIFY_OFFSET(reserved1, 3); */
|
|
VERIFY_OFFSET(scsi_nexus, 4);
|
|
VERIFY_OFFSET(Tag, 8);
|
|
VERIFY_OFFSET(cdb, 16);
|
|
VERIFY_OFFSET(cciss_lun, 32);
|
|
VERIFY_OFFSET(data_len, 40);
|
|
VERIFY_OFFSET(cmd_priority_task_attr, 44);
|
|
VERIFY_OFFSET(sg_count, 45);
|
|
/* VERIFY_OFFSET(reserved3 */
|
|
VERIFY_OFFSET(err_ptr, 48);
|
|
VERIFY_OFFSET(err_len, 56);
|
|
/* VERIFY_OFFSET(reserved4 */
|
|
VERIFY_OFFSET(sg, 64);
|
|
|
|
#undef VERIFY_OFFSET
|
|
|
|
#define VERIFY_OFFSET(member, offset) \
|
|
BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
|
|
|
|
VERIFY_OFFSET(dev_handle, 0x00);
|
|
VERIFY_OFFSET(reserved1, 0x02);
|
|
VERIFY_OFFSET(function, 0x03);
|
|
VERIFY_OFFSET(reserved2, 0x04);
|
|
VERIFY_OFFSET(err_info, 0x0C);
|
|
VERIFY_OFFSET(reserved3, 0x10);
|
|
VERIFY_OFFSET(err_info_len, 0x12);
|
|
VERIFY_OFFSET(reserved4, 0x13);
|
|
VERIFY_OFFSET(sgl_offset, 0x14);
|
|
VERIFY_OFFSET(reserved5, 0x15);
|
|
VERIFY_OFFSET(transfer_len, 0x1C);
|
|
VERIFY_OFFSET(reserved6, 0x20);
|
|
VERIFY_OFFSET(io_flags, 0x24);
|
|
VERIFY_OFFSET(reserved7, 0x26);
|
|
VERIFY_OFFSET(LUN, 0x34);
|
|
VERIFY_OFFSET(control, 0x3C);
|
|
VERIFY_OFFSET(CDB, 0x40);
|
|
VERIFY_OFFSET(reserved8, 0x50);
|
|
VERIFY_OFFSET(host_context_flags, 0x60);
|
|
VERIFY_OFFSET(timeout_sec, 0x62);
|
|
VERIFY_OFFSET(ReplyQueue, 0x64);
|
|
VERIFY_OFFSET(reserved9, 0x65);
|
|
VERIFY_OFFSET(tag, 0x68);
|
|
VERIFY_OFFSET(host_addr, 0x70);
|
|
VERIFY_OFFSET(CISS_LUN, 0x78);
|
|
VERIFY_OFFSET(SG, 0x78 + 8);
|
|
#undef VERIFY_OFFSET
|
|
}
|
|
|
|
module_init(hpsa_init);
|
|
module_exit(hpsa_cleanup);
|