mirror of
https://github.com/torvalds/linux.git
synced 2024-11-30 08:01:59 +00:00
b312d8ca3a
For a lot of use cases we need 64bit sequence numbers. Currently drivers overload the dma_fence structure to store the additional bits. Stop doing that and make the sequence number in the dma_fence always 64bit. For compatibility with hardware which can do only 32bit sequences the comparisons in __dma_fence_is_later only takes the lower 32bits as significant when the upper 32bits are all zero. v2: change the logic in __dma_fence_is_later Signed-off-by: Christian König <christian.koenig@amd.com> Reviewed-by: Chunming Zhou <david1.zhou@amd.com> Link: https://patchwork.freedesktop.org/patch/266927/
669 lines
19 KiB
C
669 lines
19 KiB
C
/*
|
|
* Fence mechanism for dma-buf and to allow for asynchronous dma access
|
|
*
|
|
* Copyright (C) 2012 Canonical Ltd
|
|
* Copyright (C) 2012 Texas Instruments
|
|
*
|
|
* Authors:
|
|
* Rob Clark <robdclark@gmail.com>
|
|
* Maarten Lankhorst <maarten.lankhorst@canonical.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published by
|
|
* the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/dma-fence.h>
|
|
#include <linux/sched/signal.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/dma_fence.h>
|
|
|
|
EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
|
|
EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
|
|
|
|
static DEFINE_SPINLOCK(dma_fence_stub_lock);
|
|
static struct dma_fence dma_fence_stub;
|
|
|
|
/*
|
|
* fence context counter: each execution context should have its own
|
|
* fence context, this allows checking if fences belong to the same
|
|
* context or not. One device can have multiple separate contexts,
|
|
* and they're used if some engine can run independently of another.
|
|
*/
|
|
static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
|
|
|
|
/**
|
|
* DOC: DMA fences overview
|
|
*
|
|
* DMA fences, represented by &struct dma_fence, are the kernel internal
|
|
* synchronization primitive for DMA operations like GPU rendering, video
|
|
* encoding/decoding, or displaying buffers on a screen.
|
|
*
|
|
* A fence is initialized using dma_fence_init() and completed using
|
|
* dma_fence_signal(). Fences are associated with a context, allocated through
|
|
* dma_fence_context_alloc(), and all fences on the same context are
|
|
* fully ordered.
|
|
*
|
|
* Since the purposes of fences is to facilitate cross-device and
|
|
* cross-application synchronization, there's multiple ways to use one:
|
|
*
|
|
* - Individual fences can be exposed as a &sync_file, accessed as a file
|
|
* descriptor from userspace, created by calling sync_file_create(). This is
|
|
* called explicit fencing, since userspace passes around explicit
|
|
* synchronization points.
|
|
*
|
|
* - Some subsystems also have their own explicit fencing primitives, like
|
|
* &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
|
|
* fence to be updated.
|
|
*
|
|
* - Then there's also implicit fencing, where the synchronization points are
|
|
* implicitly passed around as part of shared &dma_buf instances. Such
|
|
* implicit fences are stored in &struct reservation_object through the
|
|
* &dma_buf.resv pointer.
|
|
*/
|
|
|
|
static const char *dma_fence_stub_get_name(struct dma_fence *fence)
|
|
{
|
|
return "stub";
|
|
}
|
|
|
|
static const struct dma_fence_ops dma_fence_stub_ops = {
|
|
.get_driver_name = dma_fence_stub_get_name,
|
|
.get_timeline_name = dma_fence_stub_get_name,
|
|
};
|
|
|
|
/**
|
|
* dma_fence_get_stub - return a signaled fence
|
|
*
|
|
* Return a stub fence which is already signaled.
|
|
*/
|
|
struct dma_fence *dma_fence_get_stub(void)
|
|
{
|
|
spin_lock(&dma_fence_stub_lock);
|
|
if (!dma_fence_stub.ops) {
|
|
dma_fence_init(&dma_fence_stub,
|
|
&dma_fence_stub_ops,
|
|
&dma_fence_stub_lock,
|
|
0, 0);
|
|
dma_fence_signal_locked(&dma_fence_stub);
|
|
}
|
|
spin_unlock(&dma_fence_stub_lock);
|
|
|
|
return dma_fence_get(&dma_fence_stub);
|
|
}
|
|
EXPORT_SYMBOL(dma_fence_get_stub);
|
|
|
|
/**
|
|
* dma_fence_context_alloc - allocate an array of fence contexts
|
|
* @num: amount of contexts to allocate
|
|
*
|
|
* This function will return the first index of the number of fence contexts
|
|
* allocated. The fence context is used for setting &dma_fence.context to a
|
|
* unique number by passing the context to dma_fence_init().
|
|
*/
|
|
u64 dma_fence_context_alloc(unsigned num)
|
|
{
|
|
WARN_ON(!num);
|
|
return atomic64_add_return(num, &dma_fence_context_counter) - num;
|
|
}
|
|
EXPORT_SYMBOL(dma_fence_context_alloc);
|
|
|
|
/**
|
|
* dma_fence_signal_locked - signal completion of a fence
|
|
* @fence: the fence to signal
|
|
*
|
|
* Signal completion for software callbacks on a fence, this will unblock
|
|
* dma_fence_wait() calls and run all the callbacks added with
|
|
* dma_fence_add_callback(). Can be called multiple times, but since a fence
|
|
* can only go from the unsignaled to the signaled state and not back, it will
|
|
* only be effective the first time.
|
|
*
|
|
* Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
|
|
* held.
|
|
*
|
|
* Returns 0 on success and a negative error value when @fence has been
|
|
* signalled already.
|
|
*/
|
|
int dma_fence_signal_locked(struct dma_fence *fence)
|
|
{
|
|
struct dma_fence_cb *cur, *tmp;
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(fence->lock);
|
|
|
|
if (WARN_ON(!fence))
|
|
return -EINVAL;
|
|
|
|
if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
|
|
ret = -EINVAL;
|
|
|
|
/*
|
|
* we might have raced with the unlocked dma_fence_signal,
|
|
* still run through all callbacks
|
|
*/
|
|
} else {
|
|
fence->timestamp = ktime_get();
|
|
set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
|
|
trace_dma_fence_signaled(fence);
|
|
}
|
|
|
|
list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
|
|
list_del_init(&cur->node);
|
|
cur->func(fence, cur);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(dma_fence_signal_locked);
|
|
|
|
/**
|
|
* dma_fence_signal - signal completion of a fence
|
|
* @fence: the fence to signal
|
|
*
|
|
* Signal completion for software callbacks on a fence, this will unblock
|
|
* dma_fence_wait() calls and run all the callbacks added with
|
|
* dma_fence_add_callback(). Can be called multiple times, but since a fence
|
|
* can only go from the unsignaled to the signaled state and not back, it will
|
|
* only be effective the first time.
|
|
*
|
|
* Returns 0 on success and a negative error value when @fence has been
|
|
* signalled already.
|
|
*/
|
|
int dma_fence_signal(struct dma_fence *fence)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!fence)
|
|
return -EINVAL;
|
|
|
|
if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
|
|
return -EINVAL;
|
|
|
|
fence->timestamp = ktime_get();
|
|
set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
|
|
trace_dma_fence_signaled(fence);
|
|
|
|
if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
|
|
struct dma_fence_cb *cur, *tmp;
|
|
|
|
spin_lock_irqsave(fence->lock, flags);
|
|
list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
|
|
list_del_init(&cur->node);
|
|
cur->func(fence, cur);
|
|
}
|
|
spin_unlock_irqrestore(fence->lock, flags);
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dma_fence_signal);
|
|
|
|
/**
|
|
* dma_fence_wait_timeout - sleep until the fence gets signaled
|
|
* or until timeout elapses
|
|
* @fence: the fence to wait on
|
|
* @intr: if true, do an interruptible wait
|
|
* @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
|
|
*
|
|
* Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
|
|
* remaining timeout in jiffies on success. Other error values may be
|
|
* returned on custom implementations.
|
|
*
|
|
* Performs a synchronous wait on this fence. It is assumed the caller
|
|
* directly or indirectly (buf-mgr between reservation and committing)
|
|
* holds a reference to the fence, otherwise the fence might be
|
|
* freed before return, resulting in undefined behavior.
|
|
*
|
|
* See also dma_fence_wait() and dma_fence_wait_any_timeout().
|
|
*/
|
|
signed long
|
|
dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
|
|
{
|
|
signed long ret;
|
|
|
|
if (WARN_ON(timeout < 0))
|
|
return -EINVAL;
|
|
|
|
trace_dma_fence_wait_start(fence);
|
|
if (fence->ops->wait)
|
|
ret = fence->ops->wait(fence, intr, timeout);
|
|
else
|
|
ret = dma_fence_default_wait(fence, intr, timeout);
|
|
trace_dma_fence_wait_end(fence);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(dma_fence_wait_timeout);
|
|
|
|
/**
|
|
* dma_fence_release - default relese function for fences
|
|
* @kref: &dma_fence.recfount
|
|
*
|
|
* This is the default release functions for &dma_fence. Drivers shouldn't call
|
|
* this directly, but instead call dma_fence_put().
|
|
*/
|
|
void dma_fence_release(struct kref *kref)
|
|
{
|
|
struct dma_fence *fence =
|
|
container_of(kref, struct dma_fence, refcount);
|
|
|
|
trace_dma_fence_destroy(fence);
|
|
|
|
/* Failed to signal before release, could be a refcounting issue */
|
|
WARN_ON(!list_empty(&fence->cb_list));
|
|
|
|
if (fence->ops->release)
|
|
fence->ops->release(fence);
|
|
else
|
|
dma_fence_free(fence);
|
|
}
|
|
EXPORT_SYMBOL(dma_fence_release);
|
|
|
|
/**
|
|
* dma_fence_free - default release function for &dma_fence.
|
|
* @fence: fence to release
|
|
*
|
|
* This is the default implementation for &dma_fence_ops.release. It calls
|
|
* kfree_rcu() on @fence.
|
|
*/
|
|
void dma_fence_free(struct dma_fence *fence)
|
|
{
|
|
kfree_rcu(fence, rcu);
|
|
}
|
|
EXPORT_SYMBOL(dma_fence_free);
|
|
|
|
/**
|
|
* dma_fence_enable_sw_signaling - enable signaling on fence
|
|
* @fence: the fence to enable
|
|
*
|
|
* This will request for sw signaling to be enabled, to make the fence
|
|
* complete as soon as possible. This calls &dma_fence_ops.enable_signaling
|
|
* internally.
|
|
*/
|
|
void dma_fence_enable_sw_signaling(struct dma_fence *fence)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
|
|
&fence->flags) &&
|
|
!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) &&
|
|
fence->ops->enable_signaling) {
|
|
trace_dma_fence_enable_signal(fence);
|
|
|
|
spin_lock_irqsave(fence->lock, flags);
|
|
|
|
if (!fence->ops->enable_signaling(fence))
|
|
dma_fence_signal_locked(fence);
|
|
|
|
spin_unlock_irqrestore(fence->lock, flags);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
|
|
|
|
/**
|
|
* dma_fence_add_callback - add a callback to be called when the fence
|
|
* is signaled
|
|
* @fence: the fence to wait on
|
|
* @cb: the callback to register
|
|
* @func: the function to call
|
|
*
|
|
* @cb will be initialized by dma_fence_add_callback(), no initialization
|
|
* by the caller is required. Any number of callbacks can be registered
|
|
* to a fence, but a callback can only be registered to one fence at a time.
|
|
*
|
|
* Note that the callback can be called from an atomic context. If
|
|
* fence is already signaled, this function will return -ENOENT (and
|
|
* *not* call the callback).
|
|
*
|
|
* Add a software callback to the fence. Same restrictions apply to
|
|
* refcount as it does to dma_fence_wait(), however the caller doesn't need to
|
|
* keep a refcount to fence afterward dma_fence_add_callback() has returned:
|
|
* when software access is enabled, the creator of the fence is required to keep
|
|
* the fence alive until after it signals with dma_fence_signal(). The callback
|
|
* itself can be called from irq context.
|
|
*
|
|
* Returns 0 in case of success, -ENOENT if the fence is already signaled
|
|
* and -EINVAL in case of error.
|
|
*/
|
|
int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
|
|
dma_fence_func_t func)
|
|
{
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
bool was_set;
|
|
|
|
if (WARN_ON(!fence || !func))
|
|
return -EINVAL;
|
|
|
|
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
|
|
INIT_LIST_HEAD(&cb->node);
|
|
return -ENOENT;
|
|
}
|
|
|
|
spin_lock_irqsave(fence->lock, flags);
|
|
|
|
was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
|
|
&fence->flags);
|
|
|
|
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
|
|
ret = -ENOENT;
|
|
else if (!was_set && fence->ops->enable_signaling) {
|
|
trace_dma_fence_enable_signal(fence);
|
|
|
|
if (!fence->ops->enable_signaling(fence)) {
|
|
dma_fence_signal_locked(fence);
|
|
ret = -ENOENT;
|
|
}
|
|
}
|
|
|
|
if (!ret) {
|
|
cb->func = func;
|
|
list_add_tail(&cb->node, &fence->cb_list);
|
|
} else
|
|
INIT_LIST_HEAD(&cb->node);
|
|
spin_unlock_irqrestore(fence->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(dma_fence_add_callback);
|
|
|
|
/**
|
|
* dma_fence_get_status - returns the status upon completion
|
|
* @fence: the dma_fence to query
|
|
*
|
|
* This wraps dma_fence_get_status_locked() to return the error status
|
|
* condition on a signaled fence. See dma_fence_get_status_locked() for more
|
|
* details.
|
|
*
|
|
* Returns 0 if the fence has not yet been signaled, 1 if the fence has
|
|
* been signaled without an error condition, or a negative error code
|
|
* if the fence has been completed in err.
|
|
*/
|
|
int dma_fence_get_status(struct dma_fence *fence)
|
|
{
|
|
unsigned long flags;
|
|
int status;
|
|
|
|
spin_lock_irqsave(fence->lock, flags);
|
|
status = dma_fence_get_status_locked(fence);
|
|
spin_unlock_irqrestore(fence->lock, flags);
|
|
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL(dma_fence_get_status);
|
|
|
|
/**
|
|
* dma_fence_remove_callback - remove a callback from the signaling list
|
|
* @fence: the fence to wait on
|
|
* @cb: the callback to remove
|
|
*
|
|
* Remove a previously queued callback from the fence. This function returns
|
|
* true if the callback is successfully removed, or false if the fence has
|
|
* already been signaled.
|
|
*
|
|
* *WARNING*:
|
|
* Cancelling a callback should only be done if you really know what you're
|
|
* doing, since deadlocks and race conditions could occur all too easily. For
|
|
* this reason, it should only ever be done on hardware lockup recovery,
|
|
* with a reference held to the fence.
|
|
*
|
|
* Behaviour is undefined if @cb has not been added to @fence using
|
|
* dma_fence_add_callback() beforehand.
|
|
*/
|
|
bool
|
|
dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
|
|
{
|
|
unsigned long flags;
|
|
bool ret;
|
|
|
|
spin_lock_irqsave(fence->lock, flags);
|
|
|
|
ret = !list_empty(&cb->node);
|
|
if (ret)
|
|
list_del_init(&cb->node);
|
|
|
|
spin_unlock_irqrestore(fence->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(dma_fence_remove_callback);
|
|
|
|
struct default_wait_cb {
|
|
struct dma_fence_cb base;
|
|
struct task_struct *task;
|
|
};
|
|
|
|
static void
|
|
dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
|
|
{
|
|
struct default_wait_cb *wait =
|
|
container_of(cb, struct default_wait_cb, base);
|
|
|
|
wake_up_state(wait->task, TASK_NORMAL);
|
|
}
|
|
|
|
/**
|
|
* dma_fence_default_wait - default sleep until the fence gets signaled
|
|
* or until timeout elapses
|
|
* @fence: the fence to wait on
|
|
* @intr: if true, do an interruptible wait
|
|
* @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
|
|
*
|
|
* Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
|
|
* remaining timeout in jiffies on success. If timeout is zero the value one is
|
|
* returned if the fence is already signaled for consistency with other
|
|
* functions taking a jiffies timeout.
|
|
*/
|
|
signed long
|
|
dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
|
|
{
|
|
struct default_wait_cb cb;
|
|
unsigned long flags;
|
|
signed long ret = timeout ? timeout : 1;
|
|
bool was_set;
|
|
|
|
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
|
|
return ret;
|
|
|
|
spin_lock_irqsave(fence->lock, flags);
|
|
|
|
if (intr && signal_pending(current)) {
|
|
ret = -ERESTARTSYS;
|
|
goto out;
|
|
}
|
|
|
|
was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
|
|
&fence->flags);
|
|
|
|
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
|
|
goto out;
|
|
|
|
if (!was_set && fence->ops->enable_signaling) {
|
|
trace_dma_fence_enable_signal(fence);
|
|
|
|
if (!fence->ops->enable_signaling(fence)) {
|
|
dma_fence_signal_locked(fence);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (!timeout) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
cb.base.func = dma_fence_default_wait_cb;
|
|
cb.task = current;
|
|
list_add(&cb.base.node, &fence->cb_list);
|
|
|
|
while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
|
|
if (intr)
|
|
__set_current_state(TASK_INTERRUPTIBLE);
|
|
else
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
|
spin_unlock_irqrestore(fence->lock, flags);
|
|
|
|
ret = schedule_timeout(ret);
|
|
|
|
spin_lock_irqsave(fence->lock, flags);
|
|
if (ret > 0 && intr && signal_pending(current))
|
|
ret = -ERESTARTSYS;
|
|
}
|
|
|
|
if (!list_empty(&cb.base.node))
|
|
list_del(&cb.base.node);
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
out:
|
|
spin_unlock_irqrestore(fence->lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(dma_fence_default_wait);
|
|
|
|
static bool
|
|
dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
|
|
uint32_t *idx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < count; ++i) {
|
|
struct dma_fence *fence = fences[i];
|
|
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
|
|
if (idx)
|
|
*idx = i;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* dma_fence_wait_any_timeout - sleep until any fence gets signaled
|
|
* or until timeout elapses
|
|
* @fences: array of fences to wait on
|
|
* @count: number of fences to wait on
|
|
* @intr: if true, do an interruptible wait
|
|
* @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
|
|
* @idx: used to store the first signaled fence index, meaningful only on
|
|
* positive return
|
|
*
|
|
* Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
|
|
* interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
|
|
* on success.
|
|
*
|
|
* Synchronous waits for the first fence in the array to be signaled. The
|
|
* caller needs to hold a reference to all fences in the array, otherwise a
|
|
* fence might be freed before return, resulting in undefined behavior.
|
|
*
|
|
* See also dma_fence_wait() and dma_fence_wait_timeout().
|
|
*/
|
|
signed long
|
|
dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
|
|
bool intr, signed long timeout, uint32_t *idx)
|
|
{
|
|
struct default_wait_cb *cb;
|
|
signed long ret = timeout;
|
|
unsigned i;
|
|
|
|
if (WARN_ON(!fences || !count || timeout < 0))
|
|
return -EINVAL;
|
|
|
|
if (timeout == 0) {
|
|
for (i = 0; i < count; ++i)
|
|
if (dma_fence_is_signaled(fences[i])) {
|
|
if (idx)
|
|
*idx = i;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
|
|
if (cb == NULL) {
|
|
ret = -ENOMEM;
|
|
goto err_free_cb;
|
|
}
|
|
|
|
for (i = 0; i < count; ++i) {
|
|
struct dma_fence *fence = fences[i];
|
|
|
|
cb[i].task = current;
|
|
if (dma_fence_add_callback(fence, &cb[i].base,
|
|
dma_fence_default_wait_cb)) {
|
|
/* This fence is already signaled */
|
|
if (idx)
|
|
*idx = i;
|
|
goto fence_rm_cb;
|
|
}
|
|
}
|
|
|
|
while (ret > 0) {
|
|
if (intr)
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
else
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
|
|
if (dma_fence_test_signaled_any(fences, count, idx))
|
|
break;
|
|
|
|
ret = schedule_timeout(ret);
|
|
|
|
if (ret > 0 && intr && signal_pending(current))
|
|
ret = -ERESTARTSYS;
|
|
}
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
fence_rm_cb:
|
|
while (i-- > 0)
|
|
dma_fence_remove_callback(fences[i], &cb[i].base);
|
|
|
|
err_free_cb:
|
|
kfree(cb);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(dma_fence_wait_any_timeout);
|
|
|
|
/**
|
|
* dma_fence_init - Initialize a custom fence.
|
|
* @fence: the fence to initialize
|
|
* @ops: the dma_fence_ops for operations on this fence
|
|
* @lock: the irqsafe spinlock to use for locking this fence
|
|
* @context: the execution context this fence is run on
|
|
* @seqno: a linear increasing sequence number for this context
|
|
*
|
|
* Initializes an allocated fence, the caller doesn't have to keep its
|
|
* refcount after committing with this fence, but it will need to hold a
|
|
* refcount again if &dma_fence_ops.enable_signaling gets called.
|
|
*
|
|
* context and seqno are used for easy comparison between fences, allowing
|
|
* to check which fence is later by simply using dma_fence_later().
|
|
*/
|
|
void
|
|
dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
|
|
spinlock_t *lock, u64 context, u64 seqno)
|
|
{
|
|
BUG_ON(!lock);
|
|
BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
|
|
|
|
kref_init(&fence->refcount);
|
|
fence->ops = ops;
|
|
INIT_LIST_HEAD(&fence->cb_list);
|
|
fence->lock = lock;
|
|
fence->context = context;
|
|
fence->seqno = seqno;
|
|
fence->flags = 0UL;
|
|
fence->error = 0;
|
|
|
|
trace_dma_fence_init(fence);
|
|
}
|
|
EXPORT_SYMBOL(dma_fence_init);
|