mirror of
https://github.com/torvalds/linux.git
synced 2024-12-22 02:52:56 +00:00
acafe7e302
One of the more common cases of allocation size calculations is finding the size of a structure that has a zero-sized array at the end, along with memory for some number of elements for that array. For example: struct foo { int stuff; void *entry[]; }; instance = kmalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL); Instead of leaving these open-coded and prone to type mistakes, we can now use the new struct_size() helper: instance = kmalloc(struct_size(instance, entry, count), GFP_KERNEL); This patch makes the changes for kmalloc()-family (and kvmalloc()-family) uses. It was done via automatic conversion with manual review for the "CHECKME" non-standard cases noted below, using the following Coccinelle script: // pkey_cache = kmalloc(sizeof *pkey_cache + tprops->pkey_tbl_len * // sizeof *pkey_cache->table, GFP_KERNEL); @@ identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc"; expression GFP; identifier VAR, ELEMENT; expression COUNT; @@ - alloc(sizeof(*VAR) + COUNT * sizeof(*VAR->ELEMENT), GFP) + alloc(struct_size(VAR, ELEMENT, COUNT), GFP) // mr = kzalloc(sizeof(*mr) + m * sizeof(mr->map[0]), GFP_KERNEL); @@ identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc"; expression GFP; identifier VAR, ELEMENT; expression COUNT; @@ - alloc(sizeof(*VAR) + COUNT * sizeof(VAR->ELEMENT[0]), GFP) + alloc(struct_size(VAR, ELEMENT, COUNT), GFP) // Same pattern, but can't trivially locate the trailing element name, // or variable name. @@ identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc"; expression GFP; expression SOMETHING, COUNT, ELEMENT; @@ - alloc(sizeof(SOMETHING) + COUNT * sizeof(ELEMENT), GFP) + alloc(CHECKME_struct_size(&SOMETHING, ELEMENT, COUNT), GFP) Signed-off-by: Kees Cook <keescook@chromium.org>
1115 lines
26 KiB
C
1115 lines
26 KiB
C
/*
|
|
* Copyright(c) 2016 Intel Corporation.
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* - Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <rdma/ib_umem.h>
|
|
#include <rdma/rdma_vt.h>
|
|
#include "vt.h"
|
|
#include "mr.h"
|
|
#include "trace.h"
|
|
|
|
/**
|
|
* rvt_driver_mr_init - Init MR resources per driver
|
|
* @rdi: rvt dev struct
|
|
*
|
|
* Do any intilization needed when a driver registers with rdmavt.
|
|
*
|
|
* Return: 0 on success or errno on failure
|
|
*/
|
|
int rvt_driver_mr_init(struct rvt_dev_info *rdi)
|
|
{
|
|
unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
|
|
unsigned lk_tab_size;
|
|
int i;
|
|
|
|
/*
|
|
* The top hfi1_lkey_table_size bits are used to index the
|
|
* table. The lower 8 bits can be owned by the user (copied from
|
|
* the LKEY). The remaining bits act as a generation number or tag.
|
|
*/
|
|
if (!lkey_table_size)
|
|
return -EINVAL;
|
|
|
|
spin_lock_init(&rdi->lkey_table.lock);
|
|
|
|
/* ensure generation is at least 4 bits */
|
|
if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
|
|
rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
|
|
lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
|
|
rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
|
|
lkey_table_size = rdi->dparms.lkey_table_size;
|
|
}
|
|
rdi->lkey_table.max = 1 << lkey_table_size;
|
|
rdi->lkey_table.shift = 32 - lkey_table_size;
|
|
lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
|
|
rdi->lkey_table.table = (struct rvt_mregion __rcu **)
|
|
vmalloc_node(lk_tab_size, rdi->dparms.node);
|
|
if (!rdi->lkey_table.table)
|
|
return -ENOMEM;
|
|
|
|
RCU_INIT_POINTER(rdi->dma_mr, NULL);
|
|
for (i = 0; i < rdi->lkey_table.max; i++)
|
|
RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
*rvt_mr_exit: clean up MR
|
|
*@rdi: rvt dev structure
|
|
*
|
|
* called when drivers have unregistered or perhaps failed to register with us
|
|
*/
|
|
void rvt_mr_exit(struct rvt_dev_info *rdi)
|
|
{
|
|
if (rdi->dma_mr)
|
|
rvt_pr_err(rdi, "DMA MR not null!\n");
|
|
|
|
vfree(rdi->lkey_table.table);
|
|
}
|
|
|
|
static void rvt_deinit_mregion(struct rvt_mregion *mr)
|
|
{
|
|
int i = mr->mapsz;
|
|
|
|
mr->mapsz = 0;
|
|
while (i)
|
|
kfree(mr->map[--i]);
|
|
percpu_ref_exit(&mr->refcount);
|
|
}
|
|
|
|
static void __rvt_mregion_complete(struct percpu_ref *ref)
|
|
{
|
|
struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
|
|
refcount);
|
|
|
|
complete(&mr->comp);
|
|
}
|
|
|
|
static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
|
|
int count, unsigned int percpu_flags)
|
|
{
|
|
int m, i = 0;
|
|
struct rvt_dev_info *dev = ib_to_rvt(pd->device);
|
|
|
|
mr->mapsz = 0;
|
|
m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
|
|
for (; i < m; i++) {
|
|
mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
|
|
dev->dparms.node);
|
|
if (!mr->map[i])
|
|
goto bail;
|
|
mr->mapsz++;
|
|
}
|
|
init_completion(&mr->comp);
|
|
/* count returning the ptr to user */
|
|
if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
|
|
percpu_flags, GFP_KERNEL))
|
|
goto bail;
|
|
|
|
atomic_set(&mr->lkey_invalid, 0);
|
|
mr->pd = pd;
|
|
mr->max_segs = count;
|
|
return 0;
|
|
bail:
|
|
rvt_deinit_mregion(mr);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* rvt_alloc_lkey - allocate an lkey
|
|
* @mr: memory region that this lkey protects
|
|
* @dma_region: 0->normal key, 1->restricted DMA key
|
|
*
|
|
* Returns 0 if successful, otherwise returns -errno.
|
|
*
|
|
* Increments mr reference count as required.
|
|
*
|
|
* Sets the lkey field mr for non-dma regions.
|
|
*
|
|
*/
|
|
static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
|
|
{
|
|
unsigned long flags;
|
|
u32 r;
|
|
u32 n;
|
|
int ret = 0;
|
|
struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
|
|
struct rvt_lkey_table *rkt = &dev->lkey_table;
|
|
|
|
rvt_get_mr(mr);
|
|
spin_lock_irqsave(&rkt->lock, flags);
|
|
|
|
/* special case for dma_mr lkey == 0 */
|
|
if (dma_region) {
|
|
struct rvt_mregion *tmr;
|
|
|
|
tmr = rcu_access_pointer(dev->dma_mr);
|
|
if (!tmr) {
|
|
mr->lkey_published = 1;
|
|
/* Insure published written first */
|
|
rcu_assign_pointer(dev->dma_mr, mr);
|
|
rvt_get_mr(mr);
|
|
}
|
|
goto success;
|
|
}
|
|
|
|
/* Find the next available LKEY */
|
|
r = rkt->next;
|
|
n = r;
|
|
for (;;) {
|
|
if (!rcu_access_pointer(rkt->table[r]))
|
|
break;
|
|
r = (r + 1) & (rkt->max - 1);
|
|
if (r == n)
|
|
goto bail;
|
|
}
|
|
rkt->next = (r + 1) & (rkt->max - 1);
|
|
/*
|
|
* Make sure lkey is never zero which is reserved to indicate an
|
|
* unrestricted LKEY.
|
|
*/
|
|
rkt->gen++;
|
|
/*
|
|
* bits are capped to ensure enough bits for generation number
|
|
*/
|
|
mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
|
|
((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
|
|
<< 8);
|
|
if (mr->lkey == 0) {
|
|
mr->lkey |= 1 << 8;
|
|
rkt->gen++;
|
|
}
|
|
mr->lkey_published = 1;
|
|
/* Insure published written first */
|
|
rcu_assign_pointer(rkt->table[r], mr);
|
|
success:
|
|
spin_unlock_irqrestore(&rkt->lock, flags);
|
|
out:
|
|
return ret;
|
|
bail:
|
|
rvt_put_mr(mr);
|
|
spin_unlock_irqrestore(&rkt->lock, flags);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/**
|
|
* rvt_free_lkey - free an lkey
|
|
* @mr: mr to free from tables
|
|
*/
|
|
static void rvt_free_lkey(struct rvt_mregion *mr)
|
|
{
|
|
unsigned long flags;
|
|
u32 lkey = mr->lkey;
|
|
u32 r;
|
|
struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
|
|
struct rvt_lkey_table *rkt = &dev->lkey_table;
|
|
int freed = 0;
|
|
|
|
spin_lock_irqsave(&rkt->lock, flags);
|
|
if (!lkey) {
|
|
if (mr->lkey_published) {
|
|
mr->lkey_published = 0;
|
|
/* insure published is written before pointer */
|
|
rcu_assign_pointer(dev->dma_mr, NULL);
|
|
rvt_put_mr(mr);
|
|
}
|
|
} else {
|
|
if (!mr->lkey_published)
|
|
goto out;
|
|
r = lkey >> (32 - dev->dparms.lkey_table_size);
|
|
mr->lkey_published = 0;
|
|
/* insure published is written before pointer */
|
|
rcu_assign_pointer(rkt->table[r], NULL);
|
|
}
|
|
freed++;
|
|
out:
|
|
spin_unlock_irqrestore(&rkt->lock, flags);
|
|
if (freed)
|
|
percpu_ref_kill(&mr->refcount);
|
|
}
|
|
|
|
static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
|
|
{
|
|
struct rvt_mr *mr;
|
|
int rval = -ENOMEM;
|
|
int m;
|
|
|
|
/* Allocate struct plus pointers to first level page tables. */
|
|
m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
|
|
mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL);
|
|
if (!mr)
|
|
goto bail;
|
|
|
|
rval = rvt_init_mregion(&mr->mr, pd, count, 0);
|
|
if (rval)
|
|
goto bail;
|
|
/*
|
|
* ib_reg_phys_mr() will initialize mr->ibmr except for
|
|
* lkey and rkey.
|
|
*/
|
|
rval = rvt_alloc_lkey(&mr->mr, 0);
|
|
if (rval)
|
|
goto bail_mregion;
|
|
mr->ibmr.lkey = mr->mr.lkey;
|
|
mr->ibmr.rkey = mr->mr.lkey;
|
|
done:
|
|
return mr;
|
|
|
|
bail_mregion:
|
|
rvt_deinit_mregion(&mr->mr);
|
|
bail:
|
|
kfree(mr);
|
|
mr = ERR_PTR(rval);
|
|
goto done;
|
|
}
|
|
|
|
static void __rvt_free_mr(struct rvt_mr *mr)
|
|
{
|
|
rvt_free_lkey(&mr->mr);
|
|
rvt_deinit_mregion(&mr->mr);
|
|
kfree(mr);
|
|
}
|
|
|
|
/**
|
|
* rvt_get_dma_mr - get a DMA memory region
|
|
* @pd: protection domain for this memory region
|
|
* @acc: access flags
|
|
*
|
|
* Return: the memory region on success, otherwise returns an errno.
|
|
* Note that all DMA addresses should be created via the functions in
|
|
* struct dma_virt_ops.
|
|
*/
|
|
struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
|
|
{
|
|
struct rvt_mr *mr;
|
|
struct ib_mr *ret;
|
|
int rval;
|
|
|
|
if (ibpd_to_rvtpd(pd)->user)
|
|
return ERR_PTR(-EPERM);
|
|
|
|
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
|
|
if (!mr) {
|
|
ret = ERR_PTR(-ENOMEM);
|
|
goto bail;
|
|
}
|
|
|
|
rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
|
|
if (rval) {
|
|
ret = ERR_PTR(rval);
|
|
goto bail;
|
|
}
|
|
|
|
rval = rvt_alloc_lkey(&mr->mr, 1);
|
|
if (rval) {
|
|
ret = ERR_PTR(rval);
|
|
goto bail_mregion;
|
|
}
|
|
|
|
mr->mr.access_flags = acc;
|
|
ret = &mr->ibmr;
|
|
done:
|
|
return ret;
|
|
|
|
bail_mregion:
|
|
rvt_deinit_mregion(&mr->mr);
|
|
bail:
|
|
kfree(mr);
|
|
goto done;
|
|
}
|
|
|
|
/**
|
|
* rvt_reg_user_mr - register a userspace memory region
|
|
* @pd: protection domain for this memory region
|
|
* @start: starting userspace address
|
|
* @length: length of region to register
|
|
* @mr_access_flags: access flags for this memory region
|
|
* @udata: unused by the driver
|
|
*
|
|
* Return: the memory region on success, otherwise returns an errno.
|
|
*/
|
|
struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
|
|
u64 virt_addr, int mr_access_flags,
|
|
struct ib_udata *udata)
|
|
{
|
|
struct rvt_mr *mr;
|
|
struct ib_umem *umem;
|
|
struct scatterlist *sg;
|
|
int n, m, entry;
|
|
struct ib_mr *ret;
|
|
|
|
if (length == 0)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
umem = ib_umem_get(pd->uobject->context, start, length,
|
|
mr_access_flags, 0);
|
|
if (IS_ERR(umem))
|
|
return (void *)umem;
|
|
|
|
n = umem->nmap;
|
|
|
|
mr = __rvt_alloc_mr(n, pd);
|
|
if (IS_ERR(mr)) {
|
|
ret = (struct ib_mr *)mr;
|
|
goto bail_umem;
|
|
}
|
|
|
|
mr->mr.user_base = start;
|
|
mr->mr.iova = virt_addr;
|
|
mr->mr.length = length;
|
|
mr->mr.offset = ib_umem_offset(umem);
|
|
mr->mr.access_flags = mr_access_flags;
|
|
mr->umem = umem;
|
|
|
|
mr->mr.page_shift = umem->page_shift;
|
|
m = 0;
|
|
n = 0;
|
|
for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
|
|
void *vaddr;
|
|
|
|
vaddr = page_address(sg_page(sg));
|
|
if (!vaddr) {
|
|
ret = ERR_PTR(-EINVAL);
|
|
goto bail_inval;
|
|
}
|
|
mr->mr.map[m]->segs[n].vaddr = vaddr;
|
|
mr->mr.map[m]->segs[n].length = BIT(umem->page_shift);
|
|
trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr,
|
|
BIT(umem->page_shift));
|
|
n++;
|
|
if (n == RVT_SEGSZ) {
|
|
m++;
|
|
n = 0;
|
|
}
|
|
}
|
|
return &mr->ibmr;
|
|
|
|
bail_inval:
|
|
__rvt_free_mr(mr);
|
|
|
|
bail_umem:
|
|
ib_umem_release(umem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rvt_dereg_clean_qp_cb - callback from iterator
|
|
* @qp - the qp
|
|
* @v - the mregion (as u64)
|
|
*
|
|
* This routine fields the callback for all QPs and
|
|
* for QPs in the same PD as the MR will call the
|
|
* rvt_qp_mr_clean() to potentially cleanup references.
|
|
*/
|
|
static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
|
|
{
|
|
struct rvt_mregion *mr = (struct rvt_mregion *)v;
|
|
|
|
/* skip PDs that are not ours */
|
|
if (mr->pd != qp->ibqp.pd)
|
|
return;
|
|
rvt_qp_mr_clean(qp, mr->lkey);
|
|
}
|
|
|
|
/**
|
|
* rvt_dereg_clean_qps - find QPs for reference cleanup
|
|
* @mr - the MR that is being deregistered
|
|
*
|
|
* This routine iterates RC QPs looking for references
|
|
* to the lkey noted in mr.
|
|
*/
|
|
static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
|
|
{
|
|
struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
|
|
|
|
rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
|
|
}
|
|
|
|
/**
|
|
* rvt_check_refs - check references
|
|
* @mr - the megion
|
|
* @t - the caller identification
|
|
*
|
|
* This routine checks MRs holding a reference during
|
|
* when being de-registered.
|
|
*
|
|
* If the count is non-zero, the code calls a clean routine then
|
|
* waits for the timeout for the count to zero.
|
|
*/
|
|
static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
|
|
{
|
|
unsigned long timeout;
|
|
struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
|
|
|
|
if (mr->lkey) {
|
|
/* avoid dma mr */
|
|
rvt_dereg_clean_qps(mr);
|
|
/* @mr was indexed on rcu protected @lkey_table */
|
|
synchronize_rcu();
|
|
}
|
|
|
|
timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
|
|
if (!timeout) {
|
|
rvt_pr_err(rdi,
|
|
"%s timeout mr %p pd %p lkey %x refcount %ld\n",
|
|
t, mr, mr->pd, mr->lkey,
|
|
atomic_long_read(&mr->refcount.count));
|
|
rvt_get_mr(mr);
|
|
return -EBUSY;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rvt_mr_has_lkey - is MR
|
|
* @mr - the mregion
|
|
* @lkey - the lkey
|
|
*/
|
|
bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
|
|
{
|
|
return mr && lkey == mr->lkey;
|
|
}
|
|
|
|
/**
|
|
* rvt_ss_has_lkey - is mr in sge tests
|
|
* @ss - the sge state
|
|
* @lkey
|
|
*
|
|
* This code tests for an MR in the indicated
|
|
* sge state.
|
|
*/
|
|
bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
|
|
{
|
|
int i;
|
|
bool rval = false;
|
|
|
|
if (!ss->num_sge)
|
|
return rval;
|
|
/* first one */
|
|
rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
|
|
/* any others */
|
|
for (i = 0; !rval && i < ss->num_sge - 1; i++)
|
|
rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
|
|
return rval;
|
|
}
|
|
|
|
/**
|
|
* rvt_dereg_mr - unregister and free a memory region
|
|
* @ibmr: the memory region to free
|
|
*
|
|
*
|
|
* Note that this is called to free MRs created by rvt_get_dma_mr()
|
|
* or rvt_reg_user_mr().
|
|
*
|
|
* Returns 0 on success.
|
|
*/
|
|
int rvt_dereg_mr(struct ib_mr *ibmr)
|
|
{
|
|
struct rvt_mr *mr = to_imr(ibmr);
|
|
int ret;
|
|
|
|
rvt_free_lkey(&mr->mr);
|
|
|
|
rvt_put_mr(&mr->mr); /* will set completion if last */
|
|
ret = rvt_check_refs(&mr->mr, __func__);
|
|
if (ret)
|
|
goto out;
|
|
rvt_deinit_mregion(&mr->mr);
|
|
if (mr->umem)
|
|
ib_umem_release(mr->umem);
|
|
kfree(mr);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rvt_alloc_mr - Allocate a memory region usable with the
|
|
* @pd: protection domain for this memory region
|
|
* @mr_type: mem region type
|
|
* @max_num_sg: Max number of segments allowed
|
|
*
|
|
* Return: the memory region on success, otherwise return an errno.
|
|
*/
|
|
struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
|
|
enum ib_mr_type mr_type,
|
|
u32 max_num_sg)
|
|
{
|
|
struct rvt_mr *mr;
|
|
|
|
if (mr_type != IB_MR_TYPE_MEM_REG)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
mr = __rvt_alloc_mr(max_num_sg, pd);
|
|
if (IS_ERR(mr))
|
|
return (struct ib_mr *)mr;
|
|
|
|
return &mr->ibmr;
|
|
}
|
|
|
|
/**
|
|
* rvt_set_page - page assignment function called by ib_sg_to_pages
|
|
* @ibmr: memory region
|
|
* @addr: dma address of mapped page
|
|
*
|
|
* Return: 0 on success
|
|
*/
|
|
static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
|
|
{
|
|
struct rvt_mr *mr = to_imr(ibmr);
|
|
u32 ps = 1 << mr->mr.page_shift;
|
|
u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
|
|
int m, n;
|
|
|
|
if (unlikely(mapped_segs == mr->mr.max_segs))
|
|
return -ENOMEM;
|
|
|
|
if (mr->mr.length == 0) {
|
|
mr->mr.user_base = addr;
|
|
mr->mr.iova = addr;
|
|
}
|
|
|
|
m = mapped_segs / RVT_SEGSZ;
|
|
n = mapped_segs % RVT_SEGSZ;
|
|
mr->mr.map[m]->segs[n].vaddr = (void *)addr;
|
|
mr->mr.map[m]->segs[n].length = ps;
|
|
trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
|
|
mr->mr.length += ps;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rvt_map_mr_sg - map sg list and set it the memory region
|
|
* @ibmr: memory region
|
|
* @sg: dma mapped scatterlist
|
|
* @sg_nents: number of entries in sg
|
|
* @sg_offset: offset in bytes into sg
|
|
*
|
|
* Return: number of sg elements mapped to the memory region
|
|
*/
|
|
int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
|
|
int sg_nents, unsigned int *sg_offset)
|
|
{
|
|
struct rvt_mr *mr = to_imr(ibmr);
|
|
|
|
mr->mr.length = 0;
|
|
mr->mr.page_shift = PAGE_SHIFT;
|
|
return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
|
|
rvt_set_page);
|
|
}
|
|
|
|
/**
|
|
* rvt_fast_reg_mr - fast register physical MR
|
|
* @qp: the queue pair where the work request comes from
|
|
* @ibmr: the memory region to be registered
|
|
* @key: updated key for this memory region
|
|
* @access: access flags for this memory region
|
|
*
|
|
* Returns 0 on success.
|
|
*/
|
|
int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
|
|
int access)
|
|
{
|
|
struct rvt_mr *mr = to_imr(ibmr);
|
|
|
|
if (qp->ibqp.pd != mr->mr.pd)
|
|
return -EACCES;
|
|
|
|
/* not applicable to dma MR or user MR */
|
|
if (!mr->mr.lkey || mr->umem)
|
|
return -EINVAL;
|
|
|
|
if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
|
|
return -EINVAL;
|
|
|
|
ibmr->lkey = key;
|
|
ibmr->rkey = key;
|
|
mr->mr.lkey = key;
|
|
mr->mr.access_flags = access;
|
|
atomic_set(&mr->mr.lkey_invalid, 0);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(rvt_fast_reg_mr);
|
|
|
|
/**
|
|
* rvt_invalidate_rkey - invalidate an MR rkey
|
|
* @qp: queue pair associated with the invalidate op
|
|
* @rkey: rkey to invalidate
|
|
*
|
|
* Returns 0 on success.
|
|
*/
|
|
int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
|
|
{
|
|
struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
|
|
struct rvt_lkey_table *rkt = &dev->lkey_table;
|
|
struct rvt_mregion *mr;
|
|
|
|
if (rkey == 0)
|
|
return -EINVAL;
|
|
|
|
rcu_read_lock();
|
|
mr = rcu_dereference(
|
|
rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
|
|
if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
|
|
goto bail;
|
|
|
|
atomic_set(&mr->lkey_invalid, 1);
|
|
rcu_read_unlock();
|
|
return 0;
|
|
|
|
bail:
|
|
rcu_read_unlock();
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL(rvt_invalidate_rkey);
|
|
|
|
/**
|
|
* rvt_alloc_fmr - allocate a fast memory region
|
|
* @pd: the protection domain for this memory region
|
|
* @mr_access_flags: access flags for this memory region
|
|
* @fmr_attr: fast memory region attributes
|
|
*
|
|
* Return: the memory region on success, otherwise returns an errno.
|
|
*/
|
|
struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
|
|
struct ib_fmr_attr *fmr_attr)
|
|
{
|
|
struct rvt_fmr *fmr;
|
|
int m;
|
|
struct ib_fmr *ret;
|
|
int rval = -ENOMEM;
|
|
|
|
/* Allocate struct plus pointers to first level page tables. */
|
|
m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
|
|
fmr = kzalloc(struct_size(fmr, mr.map, m), GFP_KERNEL);
|
|
if (!fmr)
|
|
goto bail;
|
|
|
|
rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages,
|
|
PERCPU_REF_INIT_ATOMIC);
|
|
if (rval)
|
|
goto bail;
|
|
|
|
/*
|
|
* ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
|
|
* rkey.
|
|
*/
|
|
rval = rvt_alloc_lkey(&fmr->mr, 0);
|
|
if (rval)
|
|
goto bail_mregion;
|
|
fmr->ibfmr.rkey = fmr->mr.lkey;
|
|
fmr->ibfmr.lkey = fmr->mr.lkey;
|
|
/*
|
|
* Resources are allocated but no valid mapping (RKEY can't be
|
|
* used).
|
|
*/
|
|
fmr->mr.access_flags = mr_access_flags;
|
|
fmr->mr.max_segs = fmr_attr->max_pages;
|
|
fmr->mr.page_shift = fmr_attr->page_shift;
|
|
|
|
ret = &fmr->ibfmr;
|
|
done:
|
|
return ret;
|
|
|
|
bail_mregion:
|
|
rvt_deinit_mregion(&fmr->mr);
|
|
bail:
|
|
kfree(fmr);
|
|
ret = ERR_PTR(rval);
|
|
goto done;
|
|
}
|
|
|
|
/**
|
|
* rvt_map_phys_fmr - set up a fast memory region
|
|
* @ibfmr: the fast memory region to set up
|
|
* @page_list: the list of pages to associate with the fast memory region
|
|
* @list_len: the number of pages to associate with the fast memory region
|
|
* @iova: the virtual address of the start of the fast memory region
|
|
*
|
|
* This may be called from interrupt context.
|
|
*
|
|
* Return: 0 on success
|
|
*/
|
|
|
|
int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
|
|
int list_len, u64 iova)
|
|
{
|
|
struct rvt_fmr *fmr = to_ifmr(ibfmr);
|
|
struct rvt_lkey_table *rkt;
|
|
unsigned long flags;
|
|
int m, n;
|
|
unsigned long i;
|
|
u32 ps;
|
|
struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
|
|
|
|
i = atomic_long_read(&fmr->mr.refcount.count);
|
|
if (i > 2)
|
|
return -EBUSY;
|
|
|
|
if (list_len > fmr->mr.max_segs)
|
|
return -EINVAL;
|
|
|
|
rkt = &rdi->lkey_table;
|
|
spin_lock_irqsave(&rkt->lock, flags);
|
|
fmr->mr.user_base = iova;
|
|
fmr->mr.iova = iova;
|
|
ps = 1 << fmr->mr.page_shift;
|
|
fmr->mr.length = list_len * ps;
|
|
m = 0;
|
|
n = 0;
|
|
for (i = 0; i < list_len; i++) {
|
|
fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
|
|
fmr->mr.map[m]->segs[n].length = ps;
|
|
trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps);
|
|
if (++n == RVT_SEGSZ) {
|
|
m++;
|
|
n = 0;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&rkt->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rvt_unmap_fmr - unmap fast memory regions
|
|
* @fmr_list: the list of fast memory regions to unmap
|
|
*
|
|
* Return: 0 on success.
|
|
*/
|
|
int rvt_unmap_fmr(struct list_head *fmr_list)
|
|
{
|
|
struct rvt_fmr *fmr;
|
|
struct rvt_lkey_table *rkt;
|
|
unsigned long flags;
|
|
struct rvt_dev_info *rdi;
|
|
|
|
list_for_each_entry(fmr, fmr_list, ibfmr.list) {
|
|
rdi = ib_to_rvt(fmr->ibfmr.device);
|
|
rkt = &rdi->lkey_table;
|
|
spin_lock_irqsave(&rkt->lock, flags);
|
|
fmr->mr.user_base = 0;
|
|
fmr->mr.iova = 0;
|
|
fmr->mr.length = 0;
|
|
spin_unlock_irqrestore(&rkt->lock, flags);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rvt_dealloc_fmr - deallocate a fast memory region
|
|
* @ibfmr: the fast memory region to deallocate
|
|
*
|
|
* Return: 0 on success.
|
|
*/
|
|
int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
|
|
{
|
|
struct rvt_fmr *fmr = to_ifmr(ibfmr);
|
|
int ret = 0;
|
|
|
|
rvt_free_lkey(&fmr->mr);
|
|
rvt_put_mr(&fmr->mr); /* will set completion if last */
|
|
ret = rvt_check_refs(&fmr->mr, __func__);
|
|
if (ret)
|
|
goto out;
|
|
rvt_deinit_mregion(&fmr->mr);
|
|
kfree(fmr);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rvt_sge_adjacent - is isge compressible
|
|
* @last_sge: last outgoing SGE written
|
|
* @sge: SGE to check
|
|
*
|
|
* If adjacent will update last_sge to add length.
|
|
*
|
|
* Return: true if isge is adjacent to last sge
|
|
*/
|
|
static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
|
|
struct ib_sge *sge)
|
|
{
|
|
if (last_sge && sge->lkey == last_sge->mr->lkey &&
|
|
((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
|
|
if (sge->lkey) {
|
|
if (unlikely((sge->addr - last_sge->mr->user_base +
|
|
sge->length > last_sge->mr->length)))
|
|
return false; /* overrun, caller will catch */
|
|
} else {
|
|
last_sge->length += sge->length;
|
|
}
|
|
last_sge->sge_length += sge->length;
|
|
trace_rvt_sge_adjacent(last_sge, sge);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* rvt_lkey_ok - check IB SGE for validity and initialize
|
|
* @rkt: table containing lkey to check SGE against
|
|
* @pd: protection domain
|
|
* @isge: outgoing internal SGE
|
|
* @last_sge: last outgoing SGE written
|
|
* @sge: SGE to check
|
|
* @acc: access flags
|
|
*
|
|
* Check the IB SGE for validity and initialize our internal version
|
|
* of it.
|
|
*
|
|
* Increments the reference count when a new sge is stored.
|
|
*
|
|
* Return: 0 if compressed, 1 if added , otherwise returns -errno.
|
|
*/
|
|
int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
|
|
struct rvt_sge *isge, struct rvt_sge *last_sge,
|
|
struct ib_sge *sge, int acc)
|
|
{
|
|
struct rvt_mregion *mr;
|
|
unsigned n, m;
|
|
size_t off;
|
|
|
|
/*
|
|
* We use LKEY == zero for kernel virtual addresses
|
|
* (see rvt_get_dma_mr() and dma_virt_ops).
|
|
*/
|
|
if (sge->lkey == 0) {
|
|
struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
|
|
|
|
if (pd->user)
|
|
return -EINVAL;
|
|
if (rvt_sge_adjacent(last_sge, sge))
|
|
return 0;
|
|
rcu_read_lock();
|
|
mr = rcu_dereference(dev->dma_mr);
|
|
if (!mr)
|
|
goto bail;
|
|
rvt_get_mr(mr);
|
|
rcu_read_unlock();
|
|
|
|
isge->mr = mr;
|
|
isge->vaddr = (void *)sge->addr;
|
|
isge->length = sge->length;
|
|
isge->sge_length = sge->length;
|
|
isge->m = 0;
|
|
isge->n = 0;
|
|
goto ok;
|
|
}
|
|
if (rvt_sge_adjacent(last_sge, sge))
|
|
return 0;
|
|
rcu_read_lock();
|
|
mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
|
|
if (!mr)
|
|
goto bail;
|
|
rvt_get_mr(mr);
|
|
if (!READ_ONCE(mr->lkey_published))
|
|
goto bail_unref;
|
|
|
|
if (unlikely(atomic_read(&mr->lkey_invalid) ||
|
|
mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
|
|
goto bail_unref;
|
|
|
|
off = sge->addr - mr->user_base;
|
|
if (unlikely(sge->addr < mr->user_base ||
|
|
off + sge->length > mr->length ||
|
|
(mr->access_flags & acc) != acc))
|
|
goto bail_unref;
|
|
rcu_read_unlock();
|
|
|
|
off += mr->offset;
|
|
if (mr->page_shift) {
|
|
/*
|
|
* page sizes are uniform power of 2 so no loop is necessary
|
|
* entries_spanned_by_off is the number of times the loop below
|
|
* would have executed.
|
|
*/
|
|
size_t entries_spanned_by_off;
|
|
|
|
entries_spanned_by_off = off >> mr->page_shift;
|
|
off -= (entries_spanned_by_off << mr->page_shift);
|
|
m = entries_spanned_by_off / RVT_SEGSZ;
|
|
n = entries_spanned_by_off % RVT_SEGSZ;
|
|
} else {
|
|
m = 0;
|
|
n = 0;
|
|
while (off >= mr->map[m]->segs[n].length) {
|
|
off -= mr->map[m]->segs[n].length;
|
|
n++;
|
|
if (n >= RVT_SEGSZ) {
|
|
m++;
|
|
n = 0;
|
|
}
|
|
}
|
|
}
|
|
isge->mr = mr;
|
|
isge->vaddr = mr->map[m]->segs[n].vaddr + off;
|
|
isge->length = mr->map[m]->segs[n].length - off;
|
|
isge->sge_length = sge->length;
|
|
isge->m = m;
|
|
isge->n = n;
|
|
ok:
|
|
trace_rvt_sge_new(isge, sge);
|
|
return 1;
|
|
bail_unref:
|
|
rvt_put_mr(mr);
|
|
bail:
|
|
rcu_read_unlock();
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL(rvt_lkey_ok);
|
|
|
|
/**
|
|
* rvt_rkey_ok - check the IB virtual address, length, and RKEY
|
|
* @qp: qp for validation
|
|
* @sge: SGE state
|
|
* @len: length of data
|
|
* @vaddr: virtual address to place data
|
|
* @rkey: rkey to check
|
|
* @acc: access flags
|
|
*
|
|
* Return: 1 if successful, otherwise 0.
|
|
*
|
|
* increments the reference count upon success
|
|
*/
|
|
int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
|
|
u32 len, u64 vaddr, u32 rkey, int acc)
|
|
{
|
|
struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
|
|
struct rvt_lkey_table *rkt = &dev->lkey_table;
|
|
struct rvt_mregion *mr;
|
|
unsigned n, m;
|
|
size_t off;
|
|
|
|
/*
|
|
* We use RKEY == zero for kernel virtual addresses
|
|
* (see rvt_get_dma_mr() and dma_virt_ops).
|
|
*/
|
|
rcu_read_lock();
|
|
if (rkey == 0) {
|
|
struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
|
|
struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
|
|
|
|
if (pd->user)
|
|
goto bail;
|
|
mr = rcu_dereference(rdi->dma_mr);
|
|
if (!mr)
|
|
goto bail;
|
|
rvt_get_mr(mr);
|
|
rcu_read_unlock();
|
|
|
|
sge->mr = mr;
|
|
sge->vaddr = (void *)vaddr;
|
|
sge->length = len;
|
|
sge->sge_length = len;
|
|
sge->m = 0;
|
|
sge->n = 0;
|
|
goto ok;
|
|
}
|
|
|
|
mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
|
|
if (!mr)
|
|
goto bail;
|
|
rvt_get_mr(mr);
|
|
/* insure mr read is before test */
|
|
if (!READ_ONCE(mr->lkey_published))
|
|
goto bail_unref;
|
|
if (unlikely(atomic_read(&mr->lkey_invalid) ||
|
|
mr->lkey != rkey || qp->ibqp.pd != mr->pd))
|
|
goto bail_unref;
|
|
|
|
off = vaddr - mr->iova;
|
|
if (unlikely(vaddr < mr->iova || off + len > mr->length ||
|
|
(mr->access_flags & acc) == 0))
|
|
goto bail_unref;
|
|
rcu_read_unlock();
|
|
|
|
off += mr->offset;
|
|
if (mr->page_shift) {
|
|
/*
|
|
* page sizes are uniform power of 2 so no loop is necessary
|
|
* entries_spanned_by_off is the number of times the loop below
|
|
* would have executed.
|
|
*/
|
|
size_t entries_spanned_by_off;
|
|
|
|
entries_spanned_by_off = off >> mr->page_shift;
|
|
off -= (entries_spanned_by_off << mr->page_shift);
|
|
m = entries_spanned_by_off / RVT_SEGSZ;
|
|
n = entries_spanned_by_off % RVT_SEGSZ;
|
|
} else {
|
|
m = 0;
|
|
n = 0;
|
|
while (off >= mr->map[m]->segs[n].length) {
|
|
off -= mr->map[m]->segs[n].length;
|
|
n++;
|
|
if (n >= RVT_SEGSZ) {
|
|
m++;
|
|
n = 0;
|
|
}
|
|
}
|
|
}
|
|
sge->mr = mr;
|
|
sge->vaddr = mr->map[m]->segs[n].vaddr + off;
|
|
sge->length = mr->map[m]->segs[n].length - off;
|
|
sge->sge_length = len;
|
|
sge->m = m;
|
|
sge->n = n;
|
|
ok:
|
|
return 1;
|
|
bail_unref:
|
|
rvt_put_mr(mr);
|
|
bail:
|
|
rcu_read_unlock();
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(rvt_rkey_ok);
|