mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 20:51:44 +00:00
b691505ef9
Add the BOUNDARY SRR1 bit definition for when the cause of an alignment exception is a prefixed instruction that crosses a 64-byte boundary. Add the PREFIXED SRR1 bit definition for exceptions caused by prefixed instructions. Bit 35 of SRR1 is called SRR1_ISI_N_OR_G. This name comes from it being used to indicate that an ISI was due to the access being no-exec or guarded. ISA v3.1 adds another purpose. It is also set if there is an access in a cache-inhibited location for prefixed instruction. Rename from SRR1_ISI_N_OR_G to SRR1_ISI_N_G_OR_CIP. Signed-off-by: Jordan Niethe <jniethe5@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Reviewed-by: Alistair Popple <alistair@popple.id.au> Link: https://lore.kernel.org/r/20200506034050.24806-23-jniethe5@gmail.com
1298 lines
35 KiB
C
1298 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
*
|
|
* Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/module.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/sizes.h>
|
|
|
|
#include <asm/trace.h>
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/kvm_book3s.h>
|
|
#include <asm/book3s/64/mmu-hash.h>
|
|
#include <asm/hvcall.h>
|
|
#include <asm/synch.h>
|
|
#include <asm/ppc-opcode.h>
|
|
#include <asm/pte-walk.h>
|
|
|
|
/* Translate address of a vmalloc'd thing to a linear map address */
|
|
static void *real_vmalloc_addr(void *x)
|
|
{
|
|
unsigned long addr = (unsigned long) x;
|
|
pte_t *p;
|
|
/*
|
|
* assume we don't have huge pages in vmalloc space...
|
|
* So don't worry about THP collapse/split. Called
|
|
* Only in realmode with MSR_EE = 0, hence won't need irq_save/restore.
|
|
*/
|
|
p = find_init_mm_pte(addr, NULL);
|
|
if (!p || !pte_present(*p))
|
|
return NULL;
|
|
addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
|
|
return __va(addr);
|
|
}
|
|
|
|
/* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
|
|
static int global_invalidates(struct kvm *kvm)
|
|
{
|
|
int global;
|
|
int cpu;
|
|
|
|
/*
|
|
* If there is only one vcore, and it's currently running,
|
|
* as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
|
|
* we can use tlbiel as long as we mark all other physical
|
|
* cores as potentially having stale TLB entries for this lpid.
|
|
* Otherwise, don't use tlbiel.
|
|
*/
|
|
if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
|
|
global = 0;
|
|
else
|
|
global = 1;
|
|
|
|
if (!global) {
|
|
/* any other core might now have stale TLB entries... */
|
|
smp_wmb();
|
|
cpumask_setall(&kvm->arch.need_tlb_flush);
|
|
cpu = local_paca->kvm_hstate.kvm_vcore->pcpu;
|
|
/*
|
|
* On POWER9, threads are independent but the TLB is shared,
|
|
* so use the bit for the first thread to represent the core.
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
cpu = cpu_first_thread_sibling(cpu);
|
|
cpumask_clear_cpu(cpu, &kvm->arch.need_tlb_flush);
|
|
}
|
|
|
|
return global;
|
|
}
|
|
|
|
/*
|
|
* Add this HPTE into the chain for the real page.
|
|
* Must be called with the chain locked; it unlocks the chain.
|
|
*/
|
|
void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
|
|
unsigned long *rmap, long pte_index, int realmode)
|
|
{
|
|
struct revmap_entry *head, *tail;
|
|
unsigned long i;
|
|
|
|
if (*rmap & KVMPPC_RMAP_PRESENT) {
|
|
i = *rmap & KVMPPC_RMAP_INDEX;
|
|
head = &kvm->arch.hpt.rev[i];
|
|
if (realmode)
|
|
head = real_vmalloc_addr(head);
|
|
tail = &kvm->arch.hpt.rev[head->back];
|
|
if (realmode)
|
|
tail = real_vmalloc_addr(tail);
|
|
rev->forw = i;
|
|
rev->back = head->back;
|
|
tail->forw = pte_index;
|
|
head->back = pte_index;
|
|
} else {
|
|
rev->forw = rev->back = pte_index;
|
|
*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
|
|
pte_index | KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_HPT;
|
|
}
|
|
unlock_rmap(rmap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
|
|
|
|
/* Update the dirty bitmap of a memslot */
|
|
void kvmppc_update_dirty_map(const struct kvm_memory_slot *memslot,
|
|
unsigned long gfn, unsigned long psize)
|
|
{
|
|
unsigned long npages;
|
|
|
|
if (!psize || !memslot->dirty_bitmap)
|
|
return;
|
|
npages = (psize + PAGE_SIZE - 1) / PAGE_SIZE;
|
|
gfn -= memslot->base_gfn;
|
|
set_dirty_bits_atomic(memslot->dirty_bitmap, gfn, npages);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_update_dirty_map);
|
|
|
|
static void kvmppc_set_dirty_from_hpte(struct kvm *kvm,
|
|
unsigned long hpte_v, unsigned long hpte_gr)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long gfn;
|
|
unsigned long psize;
|
|
|
|
psize = kvmppc_actual_pgsz(hpte_v, hpte_gr);
|
|
gfn = hpte_rpn(hpte_gr, psize);
|
|
memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
|
|
if (memslot && memslot->dirty_bitmap)
|
|
kvmppc_update_dirty_map(memslot, gfn, psize);
|
|
}
|
|
|
|
/* Returns a pointer to the revmap entry for the page mapped by a HPTE */
|
|
static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v,
|
|
unsigned long hpte_gr,
|
|
struct kvm_memory_slot **memslotp,
|
|
unsigned long *gfnp)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long *rmap;
|
|
unsigned long gfn;
|
|
|
|
gfn = hpte_rpn(hpte_gr, kvmppc_actual_pgsz(hpte_v, hpte_gr));
|
|
memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
|
|
if (memslotp)
|
|
*memslotp = memslot;
|
|
if (gfnp)
|
|
*gfnp = gfn;
|
|
if (!memslot)
|
|
return NULL;
|
|
|
|
rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
|
|
return rmap;
|
|
}
|
|
|
|
/* Remove this HPTE from the chain for a real page */
|
|
static void remove_revmap_chain(struct kvm *kvm, long pte_index,
|
|
struct revmap_entry *rev,
|
|
unsigned long hpte_v, unsigned long hpte_r)
|
|
{
|
|
struct revmap_entry *next, *prev;
|
|
unsigned long ptel, head;
|
|
unsigned long *rmap;
|
|
unsigned long rcbits;
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long gfn;
|
|
|
|
rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
|
|
ptel = rev->guest_rpte |= rcbits;
|
|
rmap = revmap_for_hpte(kvm, hpte_v, ptel, &memslot, &gfn);
|
|
if (!rmap)
|
|
return;
|
|
lock_rmap(rmap);
|
|
|
|
head = *rmap & KVMPPC_RMAP_INDEX;
|
|
next = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->forw]);
|
|
prev = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->back]);
|
|
next->back = rev->back;
|
|
prev->forw = rev->forw;
|
|
if (head == pte_index) {
|
|
head = rev->forw;
|
|
if (head == pte_index)
|
|
*rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
|
|
else
|
|
*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
|
|
}
|
|
*rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
|
|
if (rcbits & HPTE_R_C)
|
|
kvmppc_update_dirty_map(memslot, gfn,
|
|
kvmppc_actual_pgsz(hpte_v, hpte_r));
|
|
unlock_rmap(rmap);
|
|
}
|
|
|
|
long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
|
|
long pte_index, unsigned long pteh, unsigned long ptel,
|
|
pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
|
|
{
|
|
unsigned long i, pa, gpa, gfn, psize;
|
|
unsigned long slot_fn, hva;
|
|
__be64 *hpte;
|
|
struct revmap_entry *rev;
|
|
unsigned long g_ptel;
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned hpage_shift;
|
|
bool is_ci;
|
|
unsigned long *rmap;
|
|
pte_t *ptep;
|
|
unsigned int writing;
|
|
unsigned long mmu_seq;
|
|
unsigned long rcbits;
|
|
|
|
if (kvm_is_radix(kvm))
|
|
return H_FUNCTION;
|
|
psize = kvmppc_actual_pgsz(pteh, ptel);
|
|
if (!psize)
|
|
return H_PARAMETER;
|
|
writing = hpte_is_writable(ptel);
|
|
pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
|
|
ptel &= ~HPTE_GR_RESERVED;
|
|
g_ptel = ptel;
|
|
|
|
/* used later to detect if we might have been invalidated */
|
|
mmu_seq = kvm->mmu_notifier_seq;
|
|
smp_rmb();
|
|
|
|
/* Find the memslot (if any) for this address */
|
|
gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
|
|
gfn = gpa >> PAGE_SHIFT;
|
|
memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
|
|
pa = 0;
|
|
is_ci = false;
|
|
rmap = NULL;
|
|
if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
|
|
/* Emulated MMIO - mark this with key=31 */
|
|
pteh |= HPTE_V_ABSENT;
|
|
ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
|
|
goto do_insert;
|
|
}
|
|
|
|
/* Check if the requested page fits entirely in the memslot. */
|
|
if (!slot_is_aligned(memslot, psize))
|
|
return H_PARAMETER;
|
|
slot_fn = gfn - memslot->base_gfn;
|
|
rmap = &memslot->arch.rmap[slot_fn];
|
|
|
|
/* Translate to host virtual address */
|
|
hva = __gfn_to_hva_memslot(memslot, gfn);
|
|
|
|
arch_spin_lock(&kvm->mmu_lock.rlock.raw_lock);
|
|
ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &hpage_shift);
|
|
if (ptep) {
|
|
pte_t pte;
|
|
unsigned int host_pte_size;
|
|
|
|
if (hpage_shift)
|
|
host_pte_size = 1ul << hpage_shift;
|
|
else
|
|
host_pte_size = PAGE_SIZE;
|
|
/*
|
|
* We should always find the guest page size
|
|
* to <= host page size, if host is using hugepage
|
|
*/
|
|
if (host_pte_size < psize) {
|
|
arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
|
|
return H_PARAMETER;
|
|
}
|
|
pte = kvmppc_read_update_linux_pte(ptep, writing);
|
|
if (pte_present(pte) && !pte_protnone(pte)) {
|
|
if (writing && !__pte_write(pte))
|
|
/* make the actual HPTE be read-only */
|
|
ptel = hpte_make_readonly(ptel);
|
|
is_ci = pte_ci(pte);
|
|
pa = pte_pfn(pte) << PAGE_SHIFT;
|
|
pa |= hva & (host_pte_size - 1);
|
|
pa |= gpa & ~PAGE_MASK;
|
|
}
|
|
}
|
|
arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
|
|
|
|
ptel &= HPTE_R_KEY | HPTE_R_PP0 | (psize-1);
|
|
ptel |= pa;
|
|
|
|
if (pa)
|
|
pteh |= HPTE_V_VALID;
|
|
else {
|
|
pteh |= HPTE_V_ABSENT;
|
|
ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
|
|
}
|
|
|
|
/*If we had host pte mapping then Check WIMG */
|
|
if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) {
|
|
if (is_ci)
|
|
return H_PARAMETER;
|
|
/*
|
|
* Allow guest to map emulated device memory as
|
|
* uncacheable, but actually make it cacheable.
|
|
*/
|
|
ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
|
|
ptel |= HPTE_R_M;
|
|
}
|
|
|
|
/* Find and lock the HPTEG slot to use */
|
|
do_insert:
|
|
if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
|
|
return H_PARAMETER;
|
|
if (likely((flags & H_EXACT) == 0)) {
|
|
pte_index &= ~7UL;
|
|
hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
|
|
for (i = 0; i < 8; ++i) {
|
|
if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 &&
|
|
try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
|
|
HPTE_V_ABSENT))
|
|
break;
|
|
hpte += 2;
|
|
}
|
|
if (i == 8) {
|
|
/*
|
|
* Since try_lock_hpte doesn't retry (not even stdcx.
|
|
* failures), it could be that there is a free slot
|
|
* but we transiently failed to lock it. Try again,
|
|
* actually locking each slot and checking it.
|
|
*/
|
|
hpte -= 16;
|
|
for (i = 0; i < 8; ++i) {
|
|
u64 pte;
|
|
while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
pte = be64_to_cpu(hpte[0]);
|
|
if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT)))
|
|
break;
|
|
__unlock_hpte(hpte, pte);
|
|
hpte += 2;
|
|
}
|
|
if (i == 8)
|
|
return H_PTEG_FULL;
|
|
}
|
|
pte_index += i;
|
|
} else {
|
|
hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
|
|
if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
|
|
HPTE_V_ABSENT)) {
|
|
/* Lock the slot and check again */
|
|
u64 pte;
|
|
|
|
while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
pte = be64_to_cpu(hpte[0]);
|
|
if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
|
|
__unlock_hpte(hpte, pte);
|
|
return H_PTEG_FULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Save away the guest's idea of the second HPTE dword */
|
|
rev = &kvm->arch.hpt.rev[pte_index];
|
|
if (realmode)
|
|
rev = real_vmalloc_addr(rev);
|
|
if (rev) {
|
|
rev->guest_rpte = g_ptel;
|
|
note_hpte_modification(kvm, rev);
|
|
}
|
|
|
|
/* Link HPTE into reverse-map chain */
|
|
if (pteh & HPTE_V_VALID) {
|
|
if (realmode)
|
|
rmap = real_vmalloc_addr(rmap);
|
|
lock_rmap(rmap);
|
|
/* Check for pending invalidations under the rmap chain lock */
|
|
if (mmu_notifier_retry(kvm, mmu_seq)) {
|
|
/* inval in progress, write a non-present HPTE */
|
|
pteh |= HPTE_V_ABSENT;
|
|
pteh &= ~HPTE_V_VALID;
|
|
ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
|
|
unlock_rmap(rmap);
|
|
} else {
|
|
kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
|
|
realmode);
|
|
/* Only set R/C in real HPTE if already set in *rmap */
|
|
rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
|
|
ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
|
|
}
|
|
}
|
|
|
|
/* Convert to new format on P9 */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
ptel = hpte_old_to_new_r(pteh, ptel);
|
|
pteh = hpte_old_to_new_v(pteh);
|
|
}
|
|
hpte[1] = cpu_to_be64(ptel);
|
|
|
|
/* Write the first HPTE dword, unlocking the HPTE and making it valid */
|
|
eieio();
|
|
__unlock_hpte(hpte, pteh);
|
|
asm volatile("ptesync" : : : "memory");
|
|
|
|
*pte_idx_ret = pte_index;
|
|
return H_SUCCESS;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
|
|
|
|
long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
|
|
long pte_index, unsigned long pteh, unsigned long ptel)
|
|
{
|
|
return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
|
|
vcpu->arch.pgdir, true,
|
|
&vcpu->arch.regs.gpr[4]);
|
|
}
|
|
|
|
#ifdef __BIG_ENDIAN__
|
|
#define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
|
|
#else
|
|
#define LOCK_TOKEN (*(u32 *)(&get_paca()->paca_index))
|
|
#endif
|
|
|
|
static inline int is_mmio_hpte(unsigned long v, unsigned long r)
|
|
{
|
|
return ((v & HPTE_V_ABSENT) &&
|
|
(r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
|
|
(HPTE_R_KEY_HI | HPTE_R_KEY_LO));
|
|
}
|
|
|
|
static inline void fixup_tlbie_lpid(unsigned long rb_value, unsigned long lpid)
|
|
{
|
|
|
|
if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
|
|
/* Radix flush for a hash guest */
|
|
|
|
unsigned long rb,rs,prs,r,ric;
|
|
|
|
rb = PPC_BIT(52); /* IS = 2 */
|
|
rs = 0; /* lpid = 0 */
|
|
prs = 0; /* partition scoped */
|
|
r = 1; /* radix format */
|
|
ric = 0; /* RIC_FLSUH_TLB */
|
|
|
|
/*
|
|
* Need the extra ptesync to make sure we don't
|
|
* re-order the tlbie
|
|
*/
|
|
asm volatile("ptesync": : :"memory");
|
|
asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
|
|
: : "r"(rb), "i"(r), "i"(prs),
|
|
"i"(ric), "r"(rs) : "memory");
|
|
}
|
|
|
|
if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
|
|
asm volatile("ptesync": : :"memory");
|
|
asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
|
|
"r" (rb_value), "r" (lpid));
|
|
}
|
|
}
|
|
|
|
static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
|
|
long npages, int global, bool need_sync)
|
|
{
|
|
long i;
|
|
|
|
/*
|
|
* We use the POWER9 5-operand versions of tlbie and tlbiel here.
|
|
* Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores
|
|
* the RS field, this is backwards-compatible with P7 and P8.
|
|
*/
|
|
if (global) {
|
|
if (need_sync)
|
|
asm volatile("ptesync" : : : "memory");
|
|
for (i = 0; i < npages; ++i) {
|
|
asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
|
|
"r" (rbvalues[i]), "r" (kvm->arch.lpid));
|
|
}
|
|
|
|
fixup_tlbie_lpid(rbvalues[i - 1], kvm->arch.lpid);
|
|
asm volatile("eieio; tlbsync; ptesync" : : : "memory");
|
|
} else {
|
|
if (need_sync)
|
|
asm volatile("ptesync" : : : "memory");
|
|
for (i = 0; i < npages; ++i) {
|
|
asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : :
|
|
"r" (rbvalues[i]), "r" (0));
|
|
}
|
|
asm volatile("ptesync" : : : "memory");
|
|
}
|
|
}
|
|
|
|
long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
|
|
unsigned long pte_index, unsigned long avpn,
|
|
unsigned long *hpret)
|
|
{
|
|
__be64 *hpte;
|
|
unsigned long v, r, rb;
|
|
struct revmap_entry *rev;
|
|
u64 pte, orig_pte, pte_r;
|
|
|
|
if (kvm_is_radix(kvm))
|
|
return H_FUNCTION;
|
|
if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
|
|
return H_PARAMETER;
|
|
hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
|
|
while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
pte = orig_pte = be64_to_cpu(hpte[0]);
|
|
pte_r = be64_to_cpu(hpte[1]);
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
pte = hpte_new_to_old_v(pte, pte_r);
|
|
pte_r = hpte_new_to_old_r(pte_r);
|
|
}
|
|
if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
|
|
((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
|
|
((flags & H_ANDCOND) && (pte & avpn) != 0)) {
|
|
__unlock_hpte(hpte, orig_pte);
|
|
return H_NOT_FOUND;
|
|
}
|
|
|
|
rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
|
|
v = pte & ~HPTE_V_HVLOCK;
|
|
if (v & HPTE_V_VALID) {
|
|
hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
|
|
rb = compute_tlbie_rb(v, pte_r, pte_index);
|
|
do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
|
|
/*
|
|
* The reference (R) and change (C) bits in a HPT
|
|
* entry can be set by hardware at any time up until
|
|
* the HPTE is invalidated and the TLB invalidation
|
|
* sequence has completed. This means that when
|
|
* removing a HPTE, we need to re-read the HPTE after
|
|
* the invalidation sequence has completed in order to
|
|
* obtain reliable values of R and C.
|
|
*/
|
|
remove_revmap_chain(kvm, pte_index, rev, v,
|
|
be64_to_cpu(hpte[1]));
|
|
}
|
|
r = rev->guest_rpte & ~HPTE_GR_RESERVED;
|
|
note_hpte_modification(kvm, rev);
|
|
unlock_hpte(hpte, 0);
|
|
|
|
if (is_mmio_hpte(v, pte_r))
|
|
atomic64_inc(&kvm->arch.mmio_update);
|
|
|
|
if (v & HPTE_V_ABSENT)
|
|
v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID;
|
|
hpret[0] = v;
|
|
hpret[1] = r;
|
|
return H_SUCCESS;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
|
|
|
|
long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
|
|
unsigned long pte_index, unsigned long avpn)
|
|
{
|
|
return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
|
|
&vcpu->arch.regs.gpr[4]);
|
|
}
|
|
|
|
long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
unsigned long *args = &vcpu->arch.regs.gpr[4];
|
|
__be64 *hp, *hptes[4];
|
|
unsigned long tlbrb[4];
|
|
long int i, j, k, n, found, indexes[4];
|
|
unsigned long flags, req, pte_index, rcbits;
|
|
int global;
|
|
long int ret = H_SUCCESS;
|
|
struct revmap_entry *rev, *revs[4];
|
|
u64 hp0, hp1;
|
|
|
|
if (kvm_is_radix(kvm))
|
|
return H_FUNCTION;
|
|
global = global_invalidates(kvm);
|
|
for (i = 0; i < 4 && ret == H_SUCCESS; ) {
|
|
n = 0;
|
|
for (; i < 4; ++i) {
|
|
j = i * 2;
|
|
pte_index = args[j];
|
|
flags = pte_index >> 56;
|
|
pte_index &= ((1ul << 56) - 1);
|
|
req = flags >> 6;
|
|
flags &= 3;
|
|
if (req == 3) { /* no more requests */
|
|
i = 4;
|
|
break;
|
|
}
|
|
if (req != 1 || flags == 3 ||
|
|
pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
|
|
/* parameter error */
|
|
args[j] = ((0xa0 | flags) << 56) + pte_index;
|
|
ret = H_PARAMETER;
|
|
break;
|
|
}
|
|
hp = (__be64 *) (kvm->arch.hpt.virt + (pte_index << 4));
|
|
/* to avoid deadlock, don't spin except for first */
|
|
if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
|
|
if (n)
|
|
break;
|
|
while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
}
|
|
found = 0;
|
|
hp0 = be64_to_cpu(hp[0]);
|
|
hp1 = be64_to_cpu(hp[1]);
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
hp0 = hpte_new_to_old_v(hp0, hp1);
|
|
hp1 = hpte_new_to_old_r(hp1);
|
|
}
|
|
if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
|
|
switch (flags & 3) {
|
|
case 0: /* absolute */
|
|
found = 1;
|
|
break;
|
|
case 1: /* andcond */
|
|
if (!(hp0 & args[j + 1]))
|
|
found = 1;
|
|
break;
|
|
case 2: /* AVPN */
|
|
if ((hp0 & ~0x7fUL) == args[j + 1])
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
|
|
args[j] = ((0x90 | flags) << 56) + pte_index;
|
|
continue;
|
|
}
|
|
|
|
args[j] = ((0x80 | flags) << 56) + pte_index;
|
|
rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
|
|
note_hpte_modification(kvm, rev);
|
|
|
|
if (!(hp0 & HPTE_V_VALID)) {
|
|
/* insert R and C bits from PTE */
|
|
rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
|
|
args[j] |= rcbits << (56 - 5);
|
|
hp[0] = 0;
|
|
if (is_mmio_hpte(hp0, hp1))
|
|
atomic64_inc(&kvm->arch.mmio_update);
|
|
continue;
|
|
}
|
|
|
|
/* leave it locked */
|
|
hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
|
|
tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index);
|
|
indexes[n] = j;
|
|
hptes[n] = hp;
|
|
revs[n] = rev;
|
|
++n;
|
|
}
|
|
|
|
if (!n)
|
|
break;
|
|
|
|
/* Now that we've collected a batch, do the tlbies */
|
|
do_tlbies(kvm, tlbrb, n, global, true);
|
|
|
|
/* Read PTE low words after tlbie to get final R/C values */
|
|
for (k = 0; k < n; ++k) {
|
|
j = indexes[k];
|
|
pte_index = args[j] & ((1ul << 56) - 1);
|
|
hp = hptes[k];
|
|
rev = revs[k];
|
|
remove_revmap_chain(kvm, pte_index, rev,
|
|
be64_to_cpu(hp[0]), be64_to_cpu(hp[1]));
|
|
rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
|
|
args[j] |= rcbits << (56 - 5);
|
|
__unlock_hpte(hp, 0);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
|
|
unsigned long pte_index, unsigned long avpn,
|
|
unsigned long va)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
__be64 *hpte;
|
|
struct revmap_entry *rev;
|
|
unsigned long v, r, rb, mask, bits;
|
|
u64 pte_v, pte_r;
|
|
|
|
if (kvm_is_radix(kvm))
|
|
return H_FUNCTION;
|
|
if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
|
|
return H_PARAMETER;
|
|
|
|
hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
|
|
while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
v = pte_v = be64_to_cpu(hpte[0]);
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1]));
|
|
if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
|
|
((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) {
|
|
__unlock_hpte(hpte, pte_v);
|
|
return H_NOT_FOUND;
|
|
}
|
|
|
|
pte_r = be64_to_cpu(hpte[1]);
|
|
bits = (flags << 55) & HPTE_R_PP0;
|
|
bits |= (flags << 48) & HPTE_R_KEY_HI;
|
|
bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
|
|
|
|
/* Update guest view of 2nd HPTE dword */
|
|
mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
|
|
HPTE_R_KEY_HI | HPTE_R_KEY_LO;
|
|
rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
|
|
if (rev) {
|
|
r = (rev->guest_rpte & ~mask) | bits;
|
|
rev->guest_rpte = r;
|
|
note_hpte_modification(kvm, rev);
|
|
}
|
|
|
|
/* Update HPTE */
|
|
if (v & HPTE_V_VALID) {
|
|
/*
|
|
* If the page is valid, don't let it transition from
|
|
* readonly to writable. If it should be writable, we'll
|
|
* take a trap and let the page fault code sort it out.
|
|
*/
|
|
r = (pte_r & ~mask) | bits;
|
|
if (hpte_is_writable(r) && !hpte_is_writable(pte_r))
|
|
r = hpte_make_readonly(r);
|
|
/* If the PTE is changing, invalidate it first */
|
|
if (r != pte_r) {
|
|
rb = compute_tlbie_rb(v, r, pte_index);
|
|
hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) |
|
|
HPTE_V_ABSENT);
|
|
do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
|
|
/* Don't lose R/C bit updates done by hardware */
|
|
r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C);
|
|
hpte[1] = cpu_to_be64(r);
|
|
}
|
|
}
|
|
unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK);
|
|
asm volatile("ptesync" : : : "memory");
|
|
if (is_mmio_hpte(v, pte_r))
|
|
atomic64_inc(&kvm->arch.mmio_update);
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
|
|
unsigned long pte_index)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
__be64 *hpte;
|
|
unsigned long v, r;
|
|
int i, n = 1;
|
|
struct revmap_entry *rev = NULL;
|
|
|
|
if (kvm_is_radix(kvm))
|
|
return H_FUNCTION;
|
|
if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
|
|
return H_PARAMETER;
|
|
if (flags & H_READ_4) {
|
|
pte_index &= ~3;
|
|
n = 4;
|
|
}
|
|
rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
|
|
for (i = 0; i < n; ++i, ++pte_index) {
|
|
hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
|
|
v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
|
|
r = be64_to_cpu(hpte[1]);
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
v = hpte_new_to_old_v(v, r);
|
|
r = hpte_new_to_old_r(r);
|
|
}
|
|
if (v & HPTE_V_ABSENT) {
|
|
v &= ~HPTE_V_ABSENT;
|
|
v |= HPTE_V_VALID;
|
|
}
|
|
if (v & HPTE_V_VALID) {
|
|
r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
|
|
r &= ~HPTE_GR_RESERVED;
|
|
}
|
|
vcpu->arch.regs.gpr[4 + i * 2] = v;
|
|
vcpu->arch.regs.gpr[5 + i * 2] = r;
|
|
}
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags,
|
|
unsigned long pte_index)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
__be64 *hpte;
|
|
unsigned long v, r, gr;
|
|
struct revmap_entry *rev;
|
|
unsigned long *rmap;
|
|
long ret = H_NOT_FOUND;
|
|
|
|
if (kvm_is_radix(kvm))
|
|
return H_FUNCTION;
|
|
if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
|
|
return H_PARAMETER;
|
|
|
|
rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
|
|
hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
|
|
while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
v = be64_to_cpu(hpte[0]);
|
|
r = be64_to_cpu(hpte[1]);
|
|
if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
|
|
goto out;
|
|
|
|
gr = rev->guest_rpte;
|
|
if (rev->guest_rpte & HPTE_R_R) {
|
|
rev->guest_rpte &= ~HPTE_R_R;
|
|
note_hpte_modification(kvm, rev);
|
|
}
|
|
if (v & HPTE_V_VALID) {
|
|
gr |= r & (HPTE_R_R | HPTE_R_C);
|
|
if (r & HPTE_R_R) {
|
|
kvmppc_clear_ref_hpte(kvm, hpte, pte_index);
|
|
rmap = revmap_for_hpte(kvm, v, gr, NULL, NULL);
|
|
if (rmap) {
|
|
lock_rmap(rmap);
|
|
*rmap |= KVMPPC_RMAP_REFERENCED;
|
|
unlock_rmap(rmap);
|
|
}
|
|
}
|
|
}
|
|
vcpu->arch.regs.gpr[4] = gr;
|
|
ret = H_SUCCESS;
|
|
out:
|
|
unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
|
|
return ret;
|
|
}
|
|
|
|
long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags,
|
|
unsigned long pte_index)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
__be64 *hpte;
|
|
unsigned long v, r, gr;
|
|
struct revmap_entry *rev;
|
|
long ret = H_NOT_FOUND;
|
|
|
|
if (kvm_is_radix(kvm))
|
|
return H_FUNCTION;
|
|
if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
|
|
return H_PARAMETER;
|
|
|
|
rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
|
|
hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
|
|
while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
v = be64_to_cpu(hpte[0]);
|
|
r = be64_to_cpu(hpte[1]);
|
|
if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
|
|
goto out;
|
|
|
|
gr = rev->guest_rpte;
|
|
if (gr & HPTE_R_C) {
|
|
rev->guest_rpte &= ~HPTE_R_C;
|
|
note_hpte_modification(kvm, rev);
|
|
}
|
|
if (v & HPTE_V_VALID) {
|
|
/* need to make it temporarily absent so C is stable */
|
|
hpte[0] |= cpu_to_be64(HPTE_V_ABSENT);
|
|
kvmppc_invalidate_hpte(kvm, hpte, pte_index);
|
|
r = be64_to_cpu(hpte[1]);
|
|
gr |= r & (HPTE_R_R | HPTE_R_C);
|
|
if (r & HPTE_R_C) {
|
|
hpte[1] = cpu_to_be64(r & ~HPTE_R_C);
|
|
eieio();
|
|
kvmppc_set_dirty_from_hpte(kvm, v, gr);
|
|
}
|
|
}
|
|
vcpu->arch.regs.gpr[4] = gr;
|
|
ret = H_SUCCESS;
|
|
out:
|
|
unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
|
|
return ret;
|
|
}
|
|
|
|
static int kvmppc_get_hpa(struct kvm_vcpu *vcpu, unsigned long mmu_seq,
|
|
unsigned long gpa, int writing, unsigned long *hpa,
|
|
struct kvm_memory_slot **memslot_p)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long gfn, hva, pa, psize = PAGE_SHIFT;
|
|
unsigned int shift;
|
|
pte_t *ptep, pte;
|
|
|
|
/* Find the memslot for this address */
|
|
gfn = gpa >> PAGE_SHIFT;
|
|
memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
|
|
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
|
|
return H_PARAMETER;
|
|
|
|
/* Translate to host virtual address */
|
|
hva = __gfn_to_hva_memslot(memslot, gfn);
|
|
|
|
/* Try to find the host pte for that virtual address */
|
|
ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
|
|
if (!ptep)
|
|
return H_TOO_HARD;
|
|
pte = kvmppc_read_update_linux_pte(ptep, writing);
|
|
if (!pte_present(pte))
|
|
return H_TOO_HARD;
|
|
|
|
/* Convert to a physical address */
|
|
if (shift)
|
|
psize = 1UL << shift;
|
|
pa = pte_pfn(pte) << PAGE_SHIFT;
|
|
pa |= hva & (psize - 1);
|
|
pa |= gpa & ~PAGE_MASK;
|
|
|
|
if (hpa)
|
|
*hpa = pa;
|
|
if (memslot_p)
|
|
*memslot_p = memslot;
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static long kvmppc_do_h_page_init_zero(struct kvm_vcpu *vcpu,
|
|
unsigned long dest)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
unsigned long pa, mmu_seq;
|
|
long ret = H_SUCCESS;
|
|
int i;
|
|
|
|
/* Used later to detect if we might have been invalidated */
|
|
mmu_seq = kvm->mmu_notifier_seq;
|
|
smp_rmb();
|
|
|
|
arch_spin_lock(&kvm->mmu_lock.rlock.raw_lock);
|
|
|
|
ret = kvmppc_get_hpa(vcpu, mmu_seq, dest, 1, &pa, &memslot);
|
|
if (ret != H_SUCCESS)
|
|
goto out_unlock;
|
|
|
|
/* Zero the page */
|
|
for (i = 0; i < SZ_4K; i += L1_CACHE_BYTES, pa += L1_CACHE_BYTES)
|
|
dcbz((void *)pa);
|
|
kvmppc_update_dirty_map(memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
|
|
|
|
out_unlock:
|
|
arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
|
|
return ret;
|
|
}
|
|
|
|
static long kvmppc_do_h_page_init_copy(struct kvm_vcpu *vcpu,
|
|
unsigned long dest, unsigned long src)
|
|
{
|
|
unsigned long dest_pa, src_pa, mmu_seq;
|
|
struct kvm_memory_slot *dest_memslot;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
long ret = H_SUCCESS;
|
|
|
|
/* Used later to detect if we might have been invalidated */
|
|
mmu_seq = kvm->mmu_notifier_seq;
|
|
smp_rmb();
|
|
|
|
arch_spin_lock(&kvm->mmu_lock.rlock.raw_lock);
|
|
ret = kvmppc_get_hpa(vcpu, mmu_seq, dest, 1, &dest_pa, &dest_memslot);
|
|
if (ret != H_SUCCESS)
|
|
goto out_unlock;
|
|
|
|
ret = kvmppc_get_hpa(vcpu, mmu_seq, src, 0, &src_pa, NULL);
|
|
if (ret != H_SUCCESS)
|
|
goto out_unlock;
|
|
|
|
/* Copy the page */
|
|
memcpy((void *)dest_pa, (void *)src_pa, SZ_4K);
|
|
|
|
kvmppc_update_dirty_map(dest_memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
|
|
|
|
out_unlock:
|
|
arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
|
|
return ret;
|
|
}
|
|
|
|
long kvmppc_rm_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
|
|
unsigned long dest, unsigned long src)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
u64 pg_mask = SZ_4K - 1; /* 4K page size */
|
|
long ret = H_SUCCESS;
|
|
|
|
/* Don't handle radix mode here, go up to the virtual mode handler */
|
|
if (kvm_is_radix(kvm))
|
|
return H_TOO_HARD;
|
|
|
|
/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
|
|
if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
|
|
H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
|
|
return H_PARAMETER;
|
|
|
|
/* dest (and src if copy_page flag set) must be page aligned */
|
|
if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
|
|
return H_PARAMETER;
|
|
|
|
/* zero and/or copy the page as determined by the flags */
|
|
if (flags & H_COPY_PAGE)
|
|
ret = kvmppc_do_h_page_init_copy(vcpu, dest, src);
|
|
else if (flags & H_ZERO_PAGE)
|
|
ret = kvmppc_do_h_page_init_zero(vcpu, dest);
|
|
|
|
/* We can ignore the other flags */
|
|
|
|
return ret;
|
|
}
|
|
|
|
void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
|
|
unsigned long pte_index)
|
|
{
|
|
unsigned long rb;
|
|
u64 hp0, hp1;
|
|
|
|
hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
|
|
hp0 = be64_to_cpu(hptep[0]);
|
|
hp1 = be64_to_cpu(hptep[1]);
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
hp0 = hpte_new_to_old_v(hp0, hp1);
|
|
hp1 = hpte_new_to_old_r(hp1);
|
|
}
|
|
rb = compute_tlbie_rb(hp0, hp1, pte_index);
|
|
do_tlbies(kvm, &rb, 1, 1, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
|
|
|
|
void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
|
|
unsigned long pte_index)
|
|
{
|
|
unsigned long rb;
|
|
unsigned char rbyte;
|
|
u64 hp0, hp1;
|
|
|
|
hp0 = be64_to_cpu(hptep[0]);
|
|
hp1 = be64_to_cpu(hptep[1]);
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
hp0 = hpte_new_to_old_v(hp0, hp1);
|
|
hp1 = hpte_new_to_old_r(hp1);
|
|
}
|
|
rb = compute_tlbie_rb(hp0, hp1, pte_index);
|
|
rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
|
|
/* modify only the second-last byte, which contains the ref bit */
|
|
*((char *)hptep + 14) = rbyte;
|
|
do_tlbies(kvm, &rb, 1, 1, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
|
|
|
|
static int slb_base_page_shift[4] = {
|
|
24, /* 16M */
|
|
16, /* 64k */
|
|
34, /* 16G */
|
|
20, /* 1M, unsupported */
|
|
};
|
|
|
|
static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu,
|
|
unsigned long eaddr, unsigned long slb_v, long mmio_update)
|
|
{
|
|
struct mmio_hpte_cache_entry *entry = NULL;
|
|
unsigned int pshift;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) {
|
|
entry = &vcpu->arch.mmio_cache.entry[i];
|
|
if (entry->mmio_update == mmio_update) {
|
|
pshift = entry->slb_base_pshift;
|
|
if ((entry->eaddr >> pshift) == (eaddr >> pshift) &&
|
|
entry->slb_v == slb_v)
|
|
return entry;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct mmio_hpte_cache_entry *
|
|
next_mmio_cache_entry(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned int index = vcpu->arch.mmio_cache.index;
|
|
|
|
vcpu->arch.mmio_cache.index++;
|
|
if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE)
|
|
vcpu->arch.mmio_cache.index = 0;
|
|
|
|
return &vcpu->arch.mmio_cache.entry[index];
|
|
}
|
|
|
|
/* When called from virtmode, this func should be protected by
|
|
* preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
|
|
* can trigger deadlock issue.
|
|
*/
|
|
long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
|
|
unsigned long valid)
|
|
{
|
|
unsigned int i;
|
|
unsigned int pshift;
|
|
unsigned long somask;
|
|
unsigned long vsid, hash;
|
|
unsigned long avpn;
|
|
__be64 *hpte;
|
|
unsigned long mask, val;
|
|
unsigned long v, r, orig_v;
|
|
|
|
/* Get page shift, work out hash and AVPN etc. */
|
|
mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
|
|
val = 0;
|
|
pshift = 12;
|
|
if (slb_v & SLB_VSID_L) {
|
|
mask |= HPTE_V_LARGE;
|
|
val |= HPTE_V_LARGE;
|
|
pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
|
|
}
|
|
if (slb_v & SLB_VSID_B_1T) {
|
|
somask = (1UL << 40) - 1;
|
|
vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
|
|
vsid ^= vsid << 25;
|
|
} else {
|
|
somask = (1UL << 28) - 1;
|
|
vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
|
|
}
|
|
hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvmppc_hpt_mask(&kvm->arch.hpt);
|
|
avpn = slb_v & ~(somask >> 16); /* also includes B */
|
|
avpn |= (eaddr & somask) >> 16;
|
|
|
|
if (pshift >= 24)
|
|
avpn &= ~((1UL << (pshift - 16)) - 1);
|
|
else
|
|
avpn &= ~0x7fUL;
|
|
val |= avpn;
|
|
|
|
for (;;) {
|
|
hpte = (__be64 *)(kvm->arch.hpt.virt + (hash << 7));
|
|
|
|
for (i = 0; i < 16; i += 2) {
|
|
/* Read the PTE racily */
|
|
v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1]));
|
|
|
|
/* Check valid/absent, hash, segment size and AVPN */
|
|
if (!(v & valid) || (v & mask) != val)
|
|
continue;
|
|
|
|
/* Lock the PTE and read it under the lock */
|
|
while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
|
|
r = be64_to_cpu(hpte[i+1]);
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
v = hpte_new_to_old_v(v, r);
|
|
r = hpte_new_to_old_r(r);
|
|
}
|
|
|
|
/*
|
|
* Check the HPTE again, including base page size
|
|
*/
|
|
if ((v & valid) && (v & mask) == val &&
|
|
kvmppc_hpte_base_page_shift(v, r) == pshift)
|
|
/* Return with the HPTE still locked */
|
|
return (hash << 3) + (i >> 1);
|
|
|
|
__unlock_hpte(&hpte[i], orig_v);
|
|
}
|
|
|
|
if (val & HPTE_V_SECONDARY)
|
|
break;
|
|
val |= HPTE_V_SECONDARY;
|
|
hash = hash ^ kvmppc_hpt_mask(&kvm->arch.hpt);
|
|
}
|
|
return -1;
|
|
}
|
|
EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
|
|
|
|
/*
|
|
* Called in real mode to check whether an HPTE not found fault
|
|
* is due to accessing a paged-out page or an emulated MMIO page,
|
|
* or if a protection fault is due to accessing a page that the
|
|
* guest wanted read/write access to but which we made read-only.
|
|
* Returns a possibly modified status (DSISR) value if not
|
|
* (i.e. pass the interrupt to the guest),
|
|
* -1 to pass the fault up to host kernel mode code, -2 to do that
|
|
* and also load the instruction word (for MMIO emulation),
|
|
* or 0 if we should make the guest retry the access.
|
|
*/
|
|
long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
|
|
unsigned long slb_v, unsigned int status, bool data)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
long int index;
|
|
unsigned long v, r, gr, orig_v;
|
|
__be64 *hpte;
|
|
unsigned long valid;
|
|
struct revmap_entry *rev;
|
|
unsigned long pp, key;
|
|
struct mmio_hpte_cache_entry *cache_entry = NULL;
|
|
long mmio_update = 0;
|
|
|
|
/* For protection fault, expect to find a valid HPTE */
|
|
valid = HPTE_V_VALID;
|
|
if (status & DSISR_NOHPTE) {
|
|
valid |= HPTE_V_ABSENT;
|
|
mmio_update = atomic64_read(&kvm->arch.mmio_update);
|
|
cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update);
|
|
}
|
|
if (cache_entry) {
|
|
index = cache_entry->pte_index;
|
|
v = cache_entry->hpte_v;
|
|
r = cache_entry->hpte_r;
|
|
gr = cache_entry->rpte;
|
|
} else {
|
|
index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
|
|
if (index < 0) {
|
|
if (status & DSISR_NOHPTE)
|
|
return status; /* there really was no HPTE */
|
|
return 0; /* for prot fault, HPTE disappeared */
|
|
}
|
|
hpte = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
|
|
v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
|
|
r = be64_to_cpu(hpte[1]);
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
v = hpte_new_to_old_v(v, r);
|
|
r = hpte_new_to_old_r(r);
|
|
}
|
|
rev = real_vmalloc_addr(&kvm->arch.hpt.rev[index]);
|
|
gr = rev->guest_rpte;
|
|
|
|
unlock_hpte(hpte, orig_v);
|
|
}
|
|
|
|
/* For not found, if the HPTE is valid by now, retry the instruction */
|
|
if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
|
|
return 0;
|
|
|
|
/* Check access permissions to the page */
|
|
pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
|
|
key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
|
|
status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
|
|
if (!data) {
|
|
if (gr & (HPTE_R_N | HPTE_R_G))
|
|
return status | SRR1_ISI_N_G_OR_CIP;
|
|
if (!hpte_read_permission(pp, slb_v & key))
|
|
return status | SRR1_ISI_PROT;
|
|
} else if (status & DSISR_ISSTORE) {
|
|
/* check write permission */
|
|
if (!hpte_write_permission(pp, slb_v & key))
|
|
return status | DSISR_PROTFAULT;
|
|
} else {
|
|
if (!hpte_read_permission(pp, slb_v & key))
|
|
return status | DSISR_PROTFAULT;
|
|
}
|
|
|
|
/* Check storage key, if applicable */
|
|
if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
|
|
unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
|
|
if (status & DSISR_ISSTORE)
|
|
perm >>= 1;
|
|
if (perm & 1)
|
|
return status | DSISR_KEYFAULT;
|
|
}
|
|
|
|
/* Save HPTE info for virtual-mode handler */
|
|
vcpu->arch.pgfault_addr = addr;
|
|
vcpu->arch.pgfault_index = index;
|
|
vcpu->arch.pgfault_hpte[0] = v;
|
|
vcpu->arch.pgfault_hpte[1] = r;
|
|
vcpu->arch.pgfault_cache = cache_entry;
|
|
|
|
/* Check the storage key to see if it is possibly emulated MMIO */
|
|
if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
|
|
(HPTE_R_KEY_HI | HPTE_R_KEY_LO)) {
|
|
if (!cache_entry) {
|
|
unsigned int pshift = 12;
|
|
unsigned int pshift_index;
|
|
|
|
if (slb_v & SLB_VSID_L) {
|
|
pshift_index = ((slb_v & SLB_VSID_LP) >> 4);
|
|
pshift = slb_base_page_shift[pshift_index];
|
|
}
|
|
cache_entry = next_mmio_cache_entry(vcpu);
|
|
cache_entry->eaddr = addr;
|
|
cache_entry->slb_base_pshift = pshift;
|
|
cache_entry->pte_index = index;
|
|
cache_entry->hpte_v = v;
|
|
cache_entry->hpte_r = r;
|
|
cache_entry->rpte = gr;
|
|
cache_entry->slb_v = slb_v;
|
|
cache_entry->mmio_update = mmio_update;
|
|
}
|
|
if (data && (vcpu->arch.shregs.msr & MSR_IR))
|
|
return -2; /* MMIO emulation - load instr word */
|
|
}
|
|
|
|
return -1; /* send fault up to host kernel mode */
|
|
}
|