linux/drivers/devfreq/tegra30-devfreq.c
Dmitry Osipenko 6a575e84f1 PM / devfreq: tegra30: Separate configurations per-SoC generation
Previously we were using count-weight of the T124 for T30 in order to
get EMC clock rate that was reasonable for T30. In fact the count-weight
should be x2 times smaller on T30, but then devfreq was producing a bit
too low EMC clock rate for ISO memory clients, like display controller
for example.

Now both Tegra ACTMON and Tegra DRM display drivers support interconnect
framework and display driver tells to ICC what a minimum memory bandwidth
is needed, preventing FIFO underflows. Thus, now we can use a proper
count-weight value for Tegra30 and MC_ALL device config needs a bit more
aggressive boosting.

Add a separate ACTMON driver configuration that is specific to Tegra30.

Tested-by: Peter Geis <pgwipeout@gmail.com>
Tested-by: Nicolas Chauvet <kwizart@gmail.com>
Acked-by: Chanwoo Choi <cw00.choi@samsung.com>
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Signed-off-by: Chanwoo Choi <cw00.choi@samsung.com>
2020-12-07 10:25:51 +09:00

980 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* A devfreq driver for NVIDIA Tegra SoCs
*
* Copyright (c) 2014 NVIDIA CORPORATION. All rights reserved.
* Copyright (C) 2014 Google, Inc
*/
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/devfreq.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/reset.h>
#include <linux/workqueue.h>
#include <soc/tegra/fuse.h>
#include "governor.h"
#define ACTMON_GLB_STATUS 0x0
#define ACTMON_GLB_PERIOD_CTRL 0x4
#define ACTMON_DEV_CTRL 0x0
#define ACTMON_DEV_CTRL_K_VAL_SHIFT 10
#define ACTMON_DEV_CTRL_ENB_PERIODIC BIT(18)
#define ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN BIT(20)
#define ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN BIT(21)
#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT 23
#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT 26
#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN BIT(29)
#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN BIT(30)
#define ACTMON_DEV_CTRL_ENB BIT(31)
#define ACTMON_DEV_CTRL_STOP 0x00000000
#define ACTMON_DEV_UPPER_WMARK 0x4
#define ACTMON_DEV_LOWER_WMARK 0x8
#define ACTMON_DEV_INIT_AVG 0xc
#define ACTMON_DEV_AVG_UPPER_WMARK 0x10
#define ACTMON_DEV_AVG_LOWER_WMARK 0x14
#define ACTMON_DEV_COUNT_WEIGHT 0x18
#define ACTMON_DEV_AVG_COUNT 0x20
#define ACTMON_DEV_INTR_STATUS 0x24
#define ACTMON_INTR_STATUS_CLEAR 0xffffffff
#define ACTMON_DEV_INTR_CONSECUTIVE_UPPER BIT(31)
#define ACTMON_DEV_INTR_CONSECUTIVE_LOWER BIT(30)
#define ACTMON_ABOVE_WMARK_WINDOW 1
#define ACTMON_BELOW_WMARK_WINDOW 3
#define ACTMON_BOOST_FREQ_STEP 16000
/*
* ACTMON_AVERAGE_WINDOW_LOG2: default value for @DEV_CTRL_K_VAL, which
* translates to 2 ^ (K_VAL + 1). ex: 2 ^ (6 + 1) = 128
*/
#define ACTMON_AVERAGE_WINDOW_LOG2 6
#define ACTMON_SAMPLING_PERIOD 12 /* ms */
#define ACTMON_DEFAULT_AVG_BAND 6 /* 1/10 of % */
#define KHZ 1000
#define KHZ_MAX (ULONG_MAX / KHZ)
/* Assume that the bus is saturated if the utilization is 25% */
#define BUS_SATURATION_RATIO 25
/**
* struct tegra_devfreq_device_config - configuration specific to an ACTMON
* device
*
* Coefficients and thresholds are percentages unless otherwise noted
*/
struct tegra_devfreq_device_config {
u32 offset;
u32 irq_mask;
/* Factors applied to boost_freq every consecutive watermark breach */
unsigned int boost_up_coeff;
unsigned int boost_down_coeff;
/* Define the watermark bounds when applied to the current avg */
unsigned int boost_up_threshold;
unsigned int boost_down_threshold;
/*
* Threshold of activity (cycles translated to kHz) below which the
* CPU frequency isn't to be taken into account. This is to avoid
* increasing the EMC frequency when the CPU is very busy but not
* accessing the bus often.
*/
u32 avg_dependency_threshold;
};
enum tegra_actmon_device {
MCALL = 0,
MCCPU,
};
static const struct tegra_devfreq_device_config tegra124_device_configs[] = {
{
/* MCALL: All memory accesses (including from the CPUs) */
.offset = 0x1c0,
.irq_mask = 1 << 26,
.boost_up_coeff = 200,
.boost_down_coeff = 50,
.boost_up_threshold = 60,
.boost_down_threshold = 40,
},
{
/* MCCPU: memory accesses from the CPUs */
.offset = 0x200,
.irq_mask = 1 << 25,
.boost_up_coeff = 800,
.boost_down_coeff = 40,
.boost_up_threshold = 27,
.boost_down_threshold = 10,
.avg_dependency_threshold = 16000, /* 16MHz in kHz units */
},
};
static const struct tegra_devfreq_device_config tegra30_device_configs[] = {
{
/* MCALL: All memory accesses (including from the CPUs) */
.offset = 0x1c0,
.irq_mask = 1 << 26,
.boost_up_coeff = 200,
.boost_down_coeff = 50,
.boost_up_threshold = 20,
.boost_down_threshold = 10,
},
{
/* MCCPU: memory accesses from the CPUs */
.offset = 0x200,
.irq_mask = 1 << 25,
.boost_up_coeff = 800,
.boost_down_coeff = 40,
.boost_up_threshold = 27,
.boost_down_threshold = 10,
.avg_dependency_threshold = 16000, /* 16MHz in kHz units */
},
};
/**
* struct tegra_devfreq_device - state specific to an ACTMON device
*
* Frequencies are in kHz.
*/
struct tegra_devfreq_device {
const struct tegra_devfreq_device_config *config;
void __iomem *regs;
/* Average event count sampled in the last interrupt */
u32 avg_count;
/*
* Extra frequency to increase the target by due to consecutive
* watermark breaches.
*/
unsigned long boost_freq;
/* Optimal frequency calculated from the stats for this device */
unsigned long target_freq;
};
struct tegra_devfreq_soc_data {
const struct tegra_devfreq_device_config *configs;
/* Weight value for count measurements */
unsigned int count_weight;
};
struct tegra_devfreq {
struct devfreq *devfreq;
struct opp_table *opp_table;
struct reset_control *reset;
struct clk *clock;
void __iomem *regs;
struct clk *emc_clock;
unsigned long max_freq;
unsigned long cur_freq;
struct notifier_block clk_rate_change_nb;
struct delayed_work cpufreq_update_work;
struct notifier_block cpu_rate_change_nb;
struct tegra_devfreq_device devices[2];
unsigned int irq;
bool started;
const struct tegra_devfreq_soc_data *soc;
};
struct tegra_actmon_emc_ratio {
unsigned long cpu_freq;
unsigned long emc_freq;
};
static const struct tegra_actmon_emc_ratio actmon_emc_ratios[] = {
{ 1400000, KHZ_MAX },
{ 1200000, 750000 },
{ 1100000, 600000 },
{ 1000000, 500000 },
{ 800000, 375000 },
{ 500000, 200000 },
{ 250000, 100000 },
};
static u32 actmon_readl(struct tegra_devfreq *tegra, u32 offset)
{
return readl_relaxed(tegra->regs + offset);
}
static void actmon_writel(struct tegra_devfreq *tegra, u32 val, u32 offset)
{
writel_relaxed(val, tegra->regs + offset);
}
static u32 device_readl(struct tegra_devfreq_device *dev, u32 offset)
{
return readl_relaxed(dev->regs + offset);
}
static void device_writel(struct tegra_devfreq_device *dev, u32 val,
u32 offset)
{
writel_relaxed(val, dev->regs + offset);
}
static unsigned long do_percent(unsigned long long val, unsigned int pct)
{
val = val * pct;
do_div(val, 100);
/*
* High freq + high boosting percent + large polling interval are
* resulting in integer overflow when watermarks are calculated.
*/
return min_t(u64, val, U32_MAX);
}
static void tegra_devfreq_update_avg_wmark(struct tegra_devfreq *tegra,
struct tegra_devfreq_device *dev)
{
u32 avg_band_freq = tegra->max_freq * ACTMON_DEFAULT_AVG_BAND / KHZ;
u32 band = avg_band_freq * tegra->devfreq->profile->polling_ms;
u32 avg;
avg = min(dev->avg_count, U32_MAX - band);
device_writel(dev, avg + band, ACTMON_DEV_AVG_UPPER_WMARK);
avg = max(dev->avg_count, band);
device_writel(dev, avg - band, ACTMON_DEV_AVG_LOWER_WMARK);
}
static void tegra_devfreq_update_wmark(struct tegra_devfreq *tegra,
struct tegra_devfreq_device *dev)
{
u32 val = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
device_writel(dev, do_percent(val, dev->config->boost_up_threshold),
ACTMON_DEV_UPPER_WMARK);
device_writel(dev, do_percent(val, dev->config->boost_down_threshold),
ACTMON_DEV_LOWER_WMARK);
}
static void actmon_isr_device(struct tegra_devfreq *tegra,
struct tegra_devfreq_device *dev)
{
u32 intr_status, dev_ctrl;
dev->avg_count = device_readl(dev, ACTMON_DEV_AVG_COUNT);
tegra_devfreq_update_avg_wmark(tegra, dev);
intr_status = device_readl(dev, ACTMON_DEV_INTR_STATUS);
dev_ctrl = device_readl(dev, ACTMON_DEV_CTRL);
if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_UPPER) {
/*
* new_boost = min(old_boost * up_coef + step, max_freq)
*/
dev->boost_freq = do_percent(dev->boost_freq,
dev->config->boost_up_coeff);
dev->boost_freq += ACTMON_BOOST_FREQ_STEP;
dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
if (dev->boost_freq >= tegra->max_freq) {
dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
dev->boost_freq = tegra->max_freq;
}
} else if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_LOWER) {
/*
* new_boost = old_boost * down_coef
* or 0 if (old_boost * down_coef < step / 2)
*/
dev->boost_freq = do_percent(dev->boost_freq,
dev->config->boost_down_coeff);
dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
if (dev->boost_freq < (ACTMON_BOOST_FREQ_STEP >> 1)) {
dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
dev->boost_freq = 0;
}
}
device_writel(dev, dev_ctrl, ACTMON_DEV_CTRL);
device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
}
static unsigned long actmon_cpu_to_emc_rate(struct tegra_devfreq *tegra,
unsigned long cpu_freq)
{
unsigned int i;
const struct tegra_actmon_emc_ratio *ratio = actmon_emc_ratios;
for (i = 0; i < ARRAY_SIZE(actmon_emc_ratios); i++, ratio++) {
if (cpu_freq >= ratio->cpu_freq) {
if (ratio->emc_freq >= tegra->max_freq)
return tegra->max_freq;
else
return ratio->emc_freq;
}
}
return 0;
}
static unsigned long actmon_device_target_freq(struct tegra_devfreq *tegra,
struct tegra_devfreq_device *dev)
{
unsigned int avg_sustain_coef;
unsigned long target_freq;
target_freq = dev->avg_count / tegra->devfreq->profile->polling_ms;
avg_sustain_coef = 100 * 100 / dev->config->boost_up_threshold;
target_freq = do_percent(target_freq, avg_sustain_coef);
return target_freq;
}
static void actmon_update_target(struct tegra_devfreq *tegra,
struct tegra_devfreq_device *dev)
{
unsigned long cpu_freq = 0;
unsigned long static_cpu_emc_freq = 0;
dev->target_freq = actmon_device_target_freq(tegra, dev);
if (dev->config->avg_dependency_threshold &&
dev->config->avg_dependency_threshold <= dev->target_freq) {
cpu_freq = cpufreq_quick_get(0);
static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
dev->target_freq += dev->boost_freq;
dev->target_freq = max(dev->target_freq, static_cpu_emc_freq);
} else {
dev->target_freq += dev->boost_freq;
}
}
static irqreturn_t actmon_thread_isr(int irq, void *data)
{
struct tegra_devfreq *tegra = data;
bool handled = false;
unsigned int i;
u32 val;
mutex_lock(&tegra->devfreq->lock);
val = actmon_readl(tegra, ACTMON_GLB_STATUS);
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
if (val & tegra->devices[i].config->irq_mask) {
actmon_isr_device(tegra, tegra->devices + i);
handled = true;
}
}
if (handled)
update_devfreq(tegra->devfreq);
mutex_unlock(&tegra->devfreq->lock);
return handled ? IRQ_HANDLED : IRQ_NONE;
}
static int tegra_actmon_clk_notify_cb(struct notifier_block *nb,
unsigned long action, void *ptr)
{
struct clk_notifier_data *data = ptr;
struct tegra_devfreq *tegra;
struct tegra_devfreq_device *dev;
unsigned int i;
if (action != POST_RATE_CHANGE)
return NOTIFY_OK;
tegra = container_of(nb, struct tegra_devfreq, clk_rate_change_nb);
tegra->cur_freq = data->new_rate / KHZ;
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
dev = &tegra->devices[i];
tegra_devfreq_update_wmark(tegra, dev);
}
return NOTIFY_OK;
}
static void tegra_actmon_delayed_update(struct work_struct *work)
{
struct tegra_devfreq *tegra = container_of(work, struct tegra_devfreq,
cpufreq_update_work.work);
mutex_lock(&tegra->devfreq->lock);
update_devfreq(tegra->devfreq);
mutex_unlock(&tegra->devfreq->lock);
}
static unsigned long
tegra_actmon_cpufreq_contribution(struct tegra_devfreq *tegra,
unsigned int cpu_freq)
{
struct tegra_devfreq_device *actmon_dev = &tegra->devices[MCCPU];
unsigned long static_cpu_emc_freq, dev_freq;
dev_freq = actmon_device_target_freq(tegra, actmon_dev);
/* check whether CPU's freq is taken into account at all */
if (dev_freq < actmon_dev->config->avg_dependency_threshold)
return 0;
static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
if (dev_freq + actmon_dev->boost_freq >= static_cpu_emc_freq)
return 0;
return static_cpu_emc_freq;
}
static int tegra_actmon_cpu_notify_cb(struct notifier_block *nb,
unsigned long action, void *ptr)
{
struct cpufreq_freqs *freqs = ptr;
struct tegra_devfreq *tegra;
unsigned long old, new, delay;
if (action != CPUFREQ_POSTCHANGE)
return NOTIFY_OK;
tegra = container_of(nb, struct tegra_devfreq, cpu_rate_change_nb);
/*
* Quickly check whether CPU frequency should be taken into account
* at all, without blocking CPUFreq's core.
*/
if (mutex_trylock(&tegra->devfreq->lock)) {
old = tegra_actmon_cpufreq_contribution(tegra, freqs->old);
new = tegra_actmon_cpufreq_contribution(tegra, freqs->new);
mutex_unlock(&tegra->devfreq->lock);
/*
* If CPU's frequency shouldn't be taken into account at
* the moment, then there is no need to update the devfreq's
* state because ISR will re-check CPU's frequency on the
* next interrupt.
*/
if (old == new)
return NOTIFY_OK;
}
/*
* CPUFreq driver should support CPUFREQ_ASYNC_NOTIFICATION in order
* to allow asynchronous notifications. This means we can't block
* here for too long, otherwise CPUFreq's core will complain with a
* warning splat.
*/
delay = msecs_to_jiffies(ACTMON_SAMPLING_PERIOD);
schedule_delayed_work(&tegra->cpufreq_update_work, delay);
return NOTIFY_OK;
}
static void tegra_actmon_configure_device(struct tegra_devfreq *tegra,
struct tegra_devfreq_device *dev)
{
u32 val = 0;
/* reset boosting on governor's restart */
dev->boost_freq = 0;
dev->target_freq = tegra->cur_freq;
dev->avg_count = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
device_writel(dev, dev->avg_count, ACTMON_DEV_INIT_AVG);
tegra_devfreq_update_avg_wmark(tegra, dev);
tegra_devfreq_update_wmark(tegra, dev);
device_writel(dev, tegra->soc->count_weight, ACTMON_DEV_COUNT_WEIGHT);
device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
val |= ACTMON_DEV_CTRL_ENB_PERIODIC;
val |= (ACTMON_AVERAGE_WINDOW_LOG2 - 1)
<< ACTMON_DEV_CTRL_K_VAL_SHIFT;
val |= (ACTMON_BELOW_WMARK_WINDOW - 1)
<< ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT;
val |= (ACTMON_ABOVE_WMARK_WINDOW - 1)
<< ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT;
val |= ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN;
val |= ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN;
val |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
val |= ACTMON_DEV_CTRL_ENB;
device_writel(dev, val, ACTMON_DEV_CTRL);
}
static void tegra_actmon_stop_devices(struct tegra_devfreq *tegra)
{
struct tegra_devfreq_device *dev = tegra->devices;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++, dev++) {
device_writel(dev, ACTMON_DEV_CTRL_STOP, ACTMON_DEV_CTRL);
device_writel(dev, ACTMON_INTR_STATUS_CLEAR,
ACTMON_DEV_INTR_STATUS);
}
}
static int tegra_actmon_resume(struct tegra_devfreq *tegra)
{
unsigned int i;
int err;
if (!tegra->devfreq->profile->polling_ms || !tegra->started)
return 0;
actmon_writel(tegra, tegra->devfreq->profile->polling_ms - 1,
ACTMON_GLB_PERIOD_CTRL);
/*
* CLK notifications are needed in order to reconfigure the upper
* consecutive watermark in accordance to the actual clock rate
* to avoid unnecessary upper interrupts.
*/
err = clk_notifier_register(tegra->emc_clock,
&tegra->clk_rate_change_nb);
if (err) {
dev_err(tegra->devfreq->dev.parent,
"Failed to register rate change notifier\n");
return err;
}
tegra->cur_freq = clk_get_rate(tegra->emc_clock) / KHZ;
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++)
tegra_actmon_configure_device(tegra, &tegra->devices[i]);
/*
* We are estimating CPU's memory bandwidth requirement based on
* amount of memory accesses and system's load, judging by CPU's
* frequency. We also don't want to receive events about CPU's
* frequency transaction when governor is stopped, hence notifier
* is registered dynamically.
*/
err = cpufreq_register_notifier(&tegra->cpu_rate_change_nb,
CPUFREQ_TRANSITION_NOTIFIER);
if (err) {
dev_err(tegra->devfreq->dev.parent,
"Failed to register rate change notifier: %d\n", err);
goto err_stop;
}
enable_irq(tegra->irq);
return 0;
err_stop:
tegra_actmon_stop_devices(tegra);
clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
return err;
}
static int tegra_actmon_start(struct tegra_devfreq *tegra)
{
int ret = 0;
if (!tegra->started) {
tegra->started = true;
ret = tegra_actmon_resume(tegra);
if (ret)
tegra->started = false;
}
return ret;
}
static void tegra_actmon_pause(struct tegra_devfreq *tegra)
{
if (!tegra->devfreq->profile->polling_ms || !tegra->started)
return;
disable_irq(tegra->irq);
cpufreq_unregister_notifier(&tegra->cpu_rate_change_nb,
CPUFREQ_TRANSITION_NOTIFIER);
cancel_delayed_work_sync(&tegra->cpufreq_update_work);
tegra_actmon_stop_devices(tegra);
clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
}
static void tegra_actmon_stop(struct tegra_devfreq *tegra)
{
tegra_actmon_pause(tegra);
tegra->started = false;
}
static int tegra_devfreq_target(struct device *dev, unsigned long *freq,
u32 flags)
{
struct dev_pm_opp *opp;
int ret;
opp = devfreq_recommended_opp(dev, freq, flags);
if (IS_ERR(opp)) {
dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
return PTR_ERR(opp);
}
ret = dev_pm_opp_set_bw(dev, opp);
dev_pm_opp_put(opp);
return ret;
}
static int tegra_devfreq_get_dev_status(struct device *dev,
struct devfreq_dev_status *stat)
{
struct tegra_devfreq *tegra = dev_get_drvdata(dev);
struct tegra_devfreq_device *actmon_dev;
unsigned long cur_freq;
cur_freq = READ_ONCE(tegra->cur_freq);
/* To be used by the tegra governor */
stat->private_data = tegra;
/* The below are to be used by the other governors */
stat->current_frequency = cur_freq * KHZ;
actmon_dev = &tegra->devices[MCALL];
/* Number of cycles spent on memory access */
stat->busy_time = device_readl(actmon_dev, ACTMON_DEV_AVG_COUNT);
/* The bus can be considered to be saturated way before 100% */
stat->busy_time *= 100 / BUS_SATURATION_RATIO;
/* Number of cycles in a sampling period */
stat->total_time = tegra->devfreq->profile->polling_ms * cur_freq;
stat->busy_time = min(stat->busy_time, stat->total_time);
return 0;
}
static struct devfreq_dev_profile tegra_devfreq_profile = {
.polling_ms = ACTMON_SAMPLING_PERIOD,
.target = tegra_devfreq_target,
.get_dev_status = tegra_devfreq_get_dev_status,
};
static int tegra_governor_get_target(struct devfreq *devfreq,
unsigned long *freq)
{
struct devfreq_dev_status *stat;
struct tegra_devfreq *tegra;
struct tegra_devfreq_device *dev;
unsigned long target_freq = 0;
unsigned int i;
int err;
err = devfreq_update_stats(devfreq);
if (err)
return err;
stat = &devfreq->last_status;
tegra = stat->private_data;
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
dev = &tegra->devices[i];
actmon_update_target(tegra, dev);
target_freq = max(target_freq, dev->target_freq);
}
/*
* tegra-devfreq driver operates with KHz units, while OPP table
* entries use Hz units. Hence we need to convert the units for the
* devfreq core.
*/
*freq = target_freq * KHZ;
return 0;
}
static int tegra_governor_event_handler(struct devfreq *devfreq,
unsigned int event, void *data)
{
struct tegra_devfreq *tegra = dev_get_drvdata(devfreq->dev.parent);
unsigned int *new_delay = data;
int ret = 0;
/*
* Couple devfreq-device with the governor early because it is
* needed at the moment of governor's start (used by ISR).
*/
tegra->devfreq = devfreq;
switch (event) {
case DEVFREQ_GOV_START:
devfreq_monitor_start(devfreq);
ret = tegra_actmon_start(tegra);
break;
case DEVFREQ_GOV_STOP:
tegra_actmon_stop(tegra);
devfreq_monitor_stop(devfreq);
break;
case DEVFREQ_GOV_UPDATE_INTERVAL:
/*
* ACTMON hardware supports up to 256 milliseconds for the
* sampling period.
*/
if (*new_delay > 256) {
ret = -EINVAL;
break;
}
tegra_actmon_pause(tegra);
devfreq_update_interval(devfreq, new_delay);
ret = tegra_actmon_resume(tegra);
break;
case DEVFREQ_GOV_SUSPEND:
tegra_actmon_stop(tegra);
devfreq_monitor_suspend(devfreq);
break;
case DEVFREQ_GOV_RESUME:
devfreq_monitor_resume(devfreq);
ret = tegra_actmon_start(tegra);
break;
}
return ret;
}
static struct devfreq_governor tegra_devfreq_governor = {
.name = "tegra_actmon",
.attrs = DEVFREQ_GOV_ATTR_POLLING_INTERVAL,
.flags = DEVFREQ_GOV_FLAG_IMMUTABLE
| DEVFREQ_GOV_FLAG_IRQ_DRIVEN,
.get_target_freq = tegra_governor_get_target,
.event_handler = tegra_governor_event_handler,
};
static int tegra_devfreq_probe(struct platform_device *pdev)
{
u32 hw_version = BIT(tegra_sku_info.soc_speedo_id);
struct tegra_devfreq_device *dev;
struct tegra_devfreq *tegra;
struct devfreq *devfreq;
unsigned int i;
long rate;
int err;
tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
if (!tegra)
return -ENOMEM;
tegra->soc = of_device_get_match_data(&pdev->dev);
tegra->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(tegra->regs))
return PTR_ERR(tegra->regs);
tegra->reset = devm_reset_control_get(&pdev->dev, "actmon");
if (IS_ERR(tegra->reset)) {
dev_err(&pdev->dev, "Failed to get reset\n");
return PTR_ERR(tegra->reset);
}
tegra->clock = devm_clk_get(&pdev->dev, "actmon");
if (IS_ERR(tegra->clock)) {
dev_err(&pdev->dev, "Failed to get actmon clock\n");
return PTR_ERR(tegra->clock);
}
tegra->emc_clock = devm_clk_get(&pdev->dev, "emc");
if (IS_ERR(tegra->emc_clock))
return dev_err_probe(&pdev->dev, PTR_ERR(tegra->emc_clock),
"Failed to get emc clock\n");
err = platform_get_irq(pdev, 0);
if (err < 0)
return err;
tegra->irq = err;
irq_set_status_flags(tegra->irq, IRQ_NOAUTOEN);
err = devm_request_threaded_irq(&pdev->dev, tegra->irq, NULL,
actmon_thread_isr, IRQF_ONESHOT,
"tegra-devfreq", tegra);
if (err) {
dev_err(&pdev->dev, "Interrupt request failed: %d\n", err);
return err;
}
tegra->opp_table = dev_pm_opp_set_supported_hw(&pdev->dev,
&hw_version, 1);
err = PTR_ERR_OR_ZERO(tegra->opp_table);
if (err) {
dev_err(&pdev->dev, "Failed to set supported HW: %d\n", err);
return err;
}
err = dev_pm_opp_of_add_table(&pdev->dev);
if (err) {
dev_err(&pdev->dev, "Failed to add OPP table: %d\n", err);
goto put_hw;
}
err = clk_prepare_enable(tegra->clock);
if (err) {
dev_err(&pdev->dev,
"Failed to prepare and enable ACTMON clock\n");
goto remove_table;
}
err = reset_control_reset(tegra->reset);
if (err) {
dev_err(&pdev->dev, "Failed to reset hardware: %d\n", err);
goto disable_clk;
}
rate = clk_round_rate(tegra->emc_clock, ULONG_MAX);
if (rate < 0) {
dev_err(&pdev->dev, "Failed to round clock rate: %ld\n", rate);
err = rate;
goto disable_clk;
}
tegra->max_freq = rate / KHZ;
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
dev = tegra->devices + i;
dev->config = tegra->soc->configs + i;
dev->regs = tegra->regs + dev->config->offset;
}
platform_set_drvdata(pdev, tegra);
tegra->clk_rate_change_nb.notifier_call = tegra_actmon_clk_notify_cb;
tegra->cpu_rate_change_nb.notifier_call = tegra_actmon_cpu_notify_cb;
INIT_DELAYED_WORK(&tegra->cpufreq_update_work,
tegra_actmon_delayed_update);
err = devfreq_add_governor(&tegra_devfreq_governor);
if (err) {
dev_err(&pdev->dev, "Failed to add governor: %d\n", err);
goto remove_opps;
}
tegra_devfreq_profile.initial_freq = clk_get_rate(tegra->emc_clock);
devfreq = devfreq_add_device(&pdev->dev, &tegra_devfreq_profile,
"tegra_actmon", NULL);
if (IS_ERR(devfreq)) {
err = PTR_ERR(devfreq);
goto remove_governor;
}
return 0;
remove_governor:
devfreq_remove_governor(&tegra_devfreq_governor);
remove_opps:
dev_pm_opp_remove_all_dynamic(&pdev->dev);
reset_control_reset(tegra->reset);
disable_clk:
clk_disable_unprepare(tegra->clock);
remove_table:
dev_pm_opp_of_remove_table(&pdev->dev);
put_hw:
dev_pm_opp_put_supported_hw(tegra->opp_table);
return err;
}
static int tegra_devfreq_remove(struct platform_device *pdev)
{
struct tegra_devfreq *tegra = platform_get_drvdata(pdev);
devfreq_remove_device(tegra->devfreq);
devfreq_remove_governor(&tegra_devfreq_governor);
reset_control_reset(tegra->reset);
clk_disable_unprepare(tegra->clock);
dev_pm_opp_of_remove_table(&pdev->dev);
dev_pm_opp_put_supported_hw(tegra->opp_table);
return 0;
}
static const struct tegra_devfreq_soc_data tegra124_soc = {
.configs = tegra124_device_configs,
/*
* Activity counter is incremented every 256 memory transactions,
* and each transaction takes 4 EMC clocks.
*/
.count_weight = 4 * 256,
};
static const struct tegra_devfreq_soc_data tegra30_soc = {
.configs = tegra30_device_configs,
.count_weight = 2 * 256,
};
static const struct of_device_id tegra_devfreq_of_match[] = {
{ .compatible = "nvidia,tegra30-actmon", .data = &tegra30_soc, },
{ .compatible = "nvidia,tegra124-actmon", .data = &tegra124_soc, },
{ },
};
MODULE_DEVICE_TABLE(of, tegra_devfreq_of_match);
static struct platform_driver tegra_devfreq_driver = {
.probe = tegra_devfreq_probe,
.remove = tegra_devfreq_remove,
.driver = {
.name = "tegra-devfreq",
.of_match_table = tegra_devfreq_of_match,
},
};
module_platform_driver(tegra_devfreq_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Tegra devfreq driver");
MODULE_AUTHOR("Tomeu Vizoso <tomeu.vizoso@collabora.com>");