mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 04:31:50 +00:00
7ef2a73a58
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
433 lines
11 KiB
C
433 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include "bcachefs.h"
|
|
#include "journal.h"
|
|
#include "journal_reclaim.h"
|
|
#include "replicas.h"
|
|
#include "super.h"
|
|
|
|
/*
|
|
* Journal entry pinning - machinery for holding a reference on a given journal
|
|
* entry, holding it open to ensure it gets replayed during recovery:
|
|
*/
|
|
|
|
static inline void __journal_pin_add(struct journal *j,
|
|
u64 seq,
|
|
struct journal_entry_pin *pin,
|
|
journal_pin_flush_fn flush_fn)
|
|
{
|
|
struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq);
|
|
|
|
BUG_ON(journal_pin_active(pin));
|
|
BUG_ON(!atomic_read(&pin_list->count));
|
|
|
|
atomic_inc(&pin_list->count);
|
|
pin->seq = seq;
|
|
pin->flush = flush_fn;
|
|
|
|
if (flush_fn)
|
|
list_add(&pin->list, &pin_list->list);
|
|
else
|
|
INIT_LIST_HEAD(&pin->list);
|
|
|
|
/*
|
|
* If the journal is currently full, we might want to call flush_fn
|
|
* immediately:
|
|
*/
|
|
journal_wake(j);
|
|
}
|
|
|
|
void bch2_journal_pin_add(struct journal *j, u64 seq,
|
|
struct journal_entry_pin *pin,
|
|
journal_pin_flush_fn flush_fn)
|
|
{
|
|
spin_lock(&j->lock);
|
|
__journal_pin_add(j, seq, pin, flush_fn);
|
|
spin_unlock(&j->lock);
|
|
}
|
|
|
|
static inline void __journal_pin_drop(struct journal *j,
|
|
struct journal_entry_pin *pin)
|
|
{
|
|
struct journal_entry_pin_list *pin_list;
|
|
|
|
if (!journal_pin_active(pin))
|
|
return;
|
|
|
|
pin_list = journal_seq_pin(j, pin->seq);
|
|
pin->seq = 0;
|
|
list_del_init(&pin->list);
|
|
|
|
/*
|
|
* Unpinning a journal entry make make journal_next_bucket() succeed, if
|
|
* writing a new last_seq will now make another bucket available:
|
|
*/
|
|
if (atomic_dec_and_test(&pin_list->count) &&
|
|
pin_list == &fifo_peek_front(&j->pin))
|
|
bch2_journal_reclaim_fast(j);
|
|
else if (fifo_used(&j->pin) == 1 &&
|
|
atomic_read(&pin_list->count) == 1)
|
|
journal_wake(j);
|
|
}
|
|
|
|
void bch2_journal_pin_drop(struct journal *j,
|
|
struct journal_entry_pin *pin)
|
|
{
|
|
spin_lock(&j->lock);
|
|
__journal_pin_drop(j, pin);
|
|
spin_unlock(&j->lock);
|
|
}
|
|
|
|
void bch2_journal_pin_update(struct journal *j, u64 seq,
|
|
struct journal_entry_pin *pin,
|
|
journal_pin_flush_fn flush_fn)
|
|
{
|
|
spin_lock(&j->lock);
|
|
|
|
if (pin->seq != seq) {
|
|
__journal_pin_drop(j, pin);
|
|
__journal_pin_add(j, seq, pin, flush_fn);
|
|
} else {
|
|
struct journal_entry_pin_list *pin_list =
|
|
journal_seq_pin(j, seq);
|
|
|
|
list_move(&pin->list, &pin_list->list);
|
|
}
|
|
|
|
spin_unlock(&j->lock);
|
|
}
|
|
|
|
void bch2_journal_pin_add_if_older(struct journal *j,
|
|
struct journal_entry_pin *src_pin,
|
|
struct journal_entry_pin *pin,
|
|
journal_pin_flush_fn flush_fn)
|
|
{
|
|
spin_lock(&j->lock);
|
|
|
|
if (journal_pin_active(src_pin) &&
|
|
(!journal_pin_active(pin) ||
|
|
src_pin->seq < pin->seq)) {
|
|
__journal_pin_drop(j, pin);
|
|
__journal_pin_add(j, src_pin->seq, pin, flush_fn);
|
|
}
|
|
|
|
spin_unlock(&j->lock);
|
|
}
|
|
|
|
void bch2_journal_pin_flush(struct journal *j, struct journal_entry_pin *pin)
|
|
{
|
|
BUG_ON(journal_pin_active(pin));
|
|
|
|
wait_event(j->pin_flush_wait, j->flush_in_progress != pin);
|
|
}
|
|
|
|
/*
|
|
* Journal reclaim: flush references to open journal entries to reclaim space in
|
|
* the journal
|
|
*
|
|
* May be done by the journal code in the background as needed to free up space
|
|
* for more journal entries, or as part of doing a clean shutdown, or to migrate
|
|
* data off of a specific device:
|
|
*/
|
|
|
|
/**
|
|
* bch2_journal_reclaim_fast - do the fast part of journal reclaim
|
|
*
|
|
* Called from IO submission context, does not block. Cleans up after btree
|
|
* write completions by advancing the journal pin and each cache's last_idx,
|
|
* kicking off discards and background reclaim as necessary.
|
|
*/
|
|
void bch2_journal_reclaim_fast(struct journal *j)
|
|
{
|
|
struct journal_entry_pin_list temp;
|
|
bool popped = false;
|
|
|
|
lockdep_assert_held(&j->lock);
|
|
|
|
/*
|
|
* Unpin journal entries whose reference counts reached zero, meaning
|
|
* all btree nodes got written out
|
|
*/
|
|
while (!fifo_empty(&j->pin) &&
|
|
!atomic_read(&fifo_peek_front(&j->pin).count)) {
|
|
BUG_ON(!list_empty(&fifo_peek_front(&j->pin).list));
|
|
BUG_ON(!fifo_pop(&j->pin, temp));
|
|
popped = true;
|
|
}
|
|
|
|
if (popped)
|
|
journal_wake(j);
|
|
}
|
|
|
|
static void journal_pin_mark_flushing(struct journal *j,
|
|
struct journal_entry_pin *pin,
|
|
u64 seq)
|
|
{
|
|
lockdep_assert_held(&j->reclaim_lock);
|
|
|
|
list_move(&pin->list, &journal_seq_pin(j, seq)->flushed);
|
|
BUG_ON(j->flush_in_progress);
|
|
j->flush_in_progress = pin;
|
|
}
|
|
|
|
static void journal_pin_flush(struct journal *j,
|
|
struct journal_entry_pin *pin,
|
|
u64 seq)
|
|
{
|
|
pin->flush(j, pin, seq);
|
|
|
|
BUG_ON(j->flush_in_progress != pin);
|
|
j->flush_in_progress = NULL;
|
|
wake_up(&j->pin_flush_wait);
|
|
}
|
|
|
|
static struct journal_entry_pin *
|
|
journal_get_next_pin(struct journal *j, u64 seq_to_flush, u64 *seq)
|
|
{
|
|
struct journal_entry_pin_list *pin_list;
|
|
struct journal_entry_pin *ret = NULL;
|
|
|
|
/* no need to iterate over empty fifo entries: */
|
|
bch2_journal_reclaim_fast(j);
|
|
|
|
fifo_for_each_entry_ptr(pin_list, &j->pin, *seq)
|
|
if (*seq > seq_to_flush ||
|
|
(ret = list_first_entry_or_null(&pin_list->list,
|
|
struct journal_entry_pin, list)))
|
|
break;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool should_discard_bucket(struct journal *j, struct journal_device *ja)
|
|
{
|
|
bool ret;
|
|
|
|
spin_lock(&j->lock);
|
|
ret = ja->nr &&
|
|
(ja->last_idx != ja->cur_idx &&
|
|
ja->bucket_seq[ja->last_idx] < j->last_seq_ondisk);
|
|
spin_unlock(&j->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* bch2_journal_reclaim_work - free up journal buckets
|
|
*
|
|
* Background journal reclaim writes out btree nodes. It should be run
|
|
* early enough so that we never completely run out of journal buckets.
|
|
*
|
|
* High watermarks for triggering background reclaim:
|
|
* - FIFO has fewer than 512 entries left
|
|
* - fewer than 25% journal buckets free
|
|
*
|
|
* Background reclaim runs until low watermarks are reached:
|
|
* - FIFO has more than 1024 entries left
|
|
* - more than 50% journal buckets free
|
|
*
|
|
* As long as a reclaim can complete in the time it takes to fill up
|
|
* 512 journal entries or 25% of all journal buckets, then
|
|
* journal_next_bucket() should not stall.
|
|
*/
|
|
void bch2_journal_reclaim_work(struct work_struct *work)
|
|
{
|
|
struct bch_fs *c = container_of(to_delayed_work(work),
|
|
struct bch_fs, journal.reclaim_work);
|
|
struct journal *j = &c->journal;
|
|
struct bch_dev *ca;
|
|
struct journal_entry_pin *pin;
|
|
u64 seq, seq_to_flush = 0;
|
|
unsigned iter, bucket_to_flush;
|
|
unsigned long next_flush;
|
|
bool reclaim_lock_held = false, need_flush;
|
|
|
|
/*
|
|
* Advance last_idx to point to the oldest journal entry containing
|
|
* btree node updates that have not yet been written out
|
|
*/
|
|
for_each_rw_member(ca, c, iter) {
|
|
struct journal_device *ja = &ca->journal;
|
|
|
|
if (!ja->nr)
|
|
continue;
|
|
|
|
while (should_discard_bucket(j, ja)) {
|
|
if (!reclaim_lock_held) {
|
|
/*
|
|
* ugh:
|
|
* might be called from __journal_res_get()
|
|
* under wait_event() - have to go back to
|
|
* TASK_RUNNING before doing something that
|
|
* would block, but only if we're doing work:
|
|
*/
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
mutex_lock(&j->reclaim_lock);
|
|
reclaim_lock_held = true;
|
|
/* recheck under reclaim_lock: */
|
|
continue;
|
|
}
|
|
|
|
if (ca->mi.discard &&
|
|
bdev_max_discard_sectors(ca->disk_sb.bdev))
|
|
blkdev_issue_discard(ca->disk_sb.bdev,
|
|
bucket_to_sector(ca,
|
|
ja->buckets[ja->last_idx]),
|
|
ca->mi.bucket_size, GFP_NOIO);
|
|
|
|
spin_lock(&j->lock);
|
|
ja->last_idx = (ja->last_idx + 1) % ja->nr;
|
|
spin_unlock(&j->lock);
|
|
|
|
journal_wake(j);
|
|
}
|
|
|
|
/*
|
|
* Write out enough btree nodes to free up 50% journal
|
|
* buckets
|
|
*/
|
|
spin_lock(&j->lock);
|
|
bucket_to_flush = (ja->cur_idx + (ja->nr >> 1)) % ja->nr;
|
|
seq_to_flush = max_t(u64, seq_to_flush,
|
|
ja->bucket_seq[bucket_to_flush]);
|
|
spin_unlock(&j->lock);
|
|
}
|
|
|
|
/* Also flush if the pin fifo is more than half full */
|
|
spin_lock(&j->lock);
|
|
seq_to_flush = max_t(s64, seq_to_flush,
|
|
(s64) journal_cur_seq(j) -
|
|
(j->pin.size >> 1));
|
|
|
|
/*
|
|
* If it's been longer than j->reclaim_delay_ms since we last flushed,
|
|
* make sure to flush at least one journal pin:
|
|
*/
|
|
next_flush = j->last_flushed + msecs_to_jiffies(j->reclaim_delay_ms);
|
|
need_flush = time_after(jiffies, next_flush);
|
|
|
|
while ((pin = journal_get_next_pin(j, need_flush
|
|
? U64_MAX
|
|
: seq_to_flush, &seq))) {
|
|
if (!reclaim_lock_held) {
|
|
spin_unlock(&j->lock);
|
|
__set_current_state(TASK_RUNNING);
|
|
mutex_lock(&j->reclaim_lock);
|
|
reclaim_lock_held = true;
|
|
spin_lock(&j->lock);
|
|
continue;
|
|
}
|
|
|
|
journal_pin_mark_flushing(j, pin, seq);
|
|
spin_unlock(&j->lock);
|
|
|
|
journal_pin_flush(j, pin, seq);
|
|
|
|
need_flush = false;
|
|
j->last_flushed = jiffies;
|
|
|
|
spin_lock(&j->lock);
|
|
}
|
|
|
|
spin_unlock(&j->lock);
|
|
|
|
if (reclaim_lock_held)
|
|
mutex_unlock(&j->reclaim_lock);
|
|
|
|
if (!test_bit(BCH_FS_RO, &c->flags))
|
|
queue_delayed_work(c->journal_reclaim_wq, &j->reclaim_work,
|
|
msecs_to_jiffies(j->reclaim_delay_ms));
|
|
}
|
|
|
|
static int journal_flush_done(struct journal *j, u64 seq_to_flush)
|
|
{
|
|
struct journal_entry_pin *pin;
|
|
u64 pin_seq;
|
|
int ret;
|
|
|
|
ret = bch2_journal_error(j);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&j->reclaim_lock);
|
|
spin_lock(&j->lock);
|
|
|
|
while ((pin = journal_get_next_pin(j, seq_to_flush, &pin_seq))) {
|
|
journal_pin_mark_flushing(j, pin, pin_seq);
|
|
spin_unlock(&j->lock);
|
|
|
|
journal_pin_flush(j, pin, pin_seq);
|
|
|
|
spin_lock(&j->lock);
|
|
}
|
|
/*
|
|
* If journal replay hasn't completed, the unreplayed journal entries
|
|
* hold refs on their corresponding sequence numbers
|
|
*/
|
|
ret = !test_bit(JOURNAL_REPLAY_DONE, &j->flags) ||
|
|
journal_last_seq(j) > seq_to_flush ||
|
|
(fifo_used(&j->pin) == 1 &&
|
|
atomic_read(&fifo_peek_front(&j->pin).count) == 1);
|
|
|
|
spin_unlock(&j->lock);
|
|
mutex_unlock(&j->reclaim_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush)
|
|
{
|
|
if (!test_bit(JOURNAL_STARTED, &j->flags))
|
|
return;
|
|
|
|
closure_wait_event(&j->async_wait, journal_flush_done(j, seq_to_flush));
|
|
}
|
|
|
|
int bch2_journal_flush_device_pins(struct journal *j, int dev_idx)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
struct journal_entry_pin_list *p;
|
|
u64 iter, seq = 0;
|
|
int ret = 0;
|
|
|
|
spin_lock(&j->lock);
|
|
fifo_for_each_entry_ptr(p, &j->pin, iter)
|
|
if (dev_idx >= 0
|
|
? bch2_dev_list_has_dev(p->devs, dev_idx)
|
|
: p->devs.nr < c->opts.metadata_replicas)
|
|
seq = iter;
|
|
spin_unlock(&j->lock);
|
|
|
|
bch2_journal_flush_pins(j, seq);
|
|
|
|
ret = bch2_journal_error(j);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&c->replicas_gc_lock);
|
|
bch2_replicas_gc_start(c, 1 << BCH_DATA_JOURNAL);
|
|
|
|
seq = 0;
|
|
|
|
spin_lock(&j->lock);
|
|
while (!ret && seq < j->pin.back) {
|
|
struct bch_replicas_padded replicas;
|
|
|
|
seq = max(seq, journal_last_seq(j));
|
|
bch2_devlist_to_replicas(&replicas.e, BCH_DATA_JOURNAL,
|
|
journal_seq_pin(j, seq)->devs);
|
|
seq++;
|
|
|
|
spin_unlock(&j->lock);
|
|
ret = bch2_mark_replicas(c, &replicas.e);
|
|
spin_lock(&j->lock);
|
|
}
|
|
spin_unlock(&j->lock);
|
|
|
|
ret = bch2_replicas_gc_end(c, ret);
|
|
mutex_unlock(&c->replicas_gc_lock);
|
|
|
|
return ret;
|
|
}
|