linux/drivers/clk/ti/fapll.c
Thomas Gleixner 52e6676ef5 treewide: Replace GPLv2 boilerplate/reference with SPDX - gpl-2.0_30.RULE (part 1)
Based on the normalized pattern:

    this program is free software you can redistribute it and/or modify it
    under the terms of the gnu general public license as published by the
    free software foundation version 2  this program is distributed as is
    without any warranty of any kind whether express or implied without
    even the implied warranty of merchantability or fitness for a
    particular purpose see the gnu general public license for more details

extracted by the scancode license scanner the SPDX license identifier

    GPL-2.0-only

has been chosen to replace the boilerplate/reference.

Reviewed-by: Allison Randal <allison@lohutok.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-10 14:51:35 +02:00

667 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/math64.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/clk/ti.h>
#include "clock.h"
/* FAPLL Control Register PLL_CTRL */
#define FAPLL_MAIN_MULT_N_SHIFT 16
#define FAPLL_MAIN_DIV_P_SHIFT 8
#define FAPLL_MAIN_LOCK BIT(7)
#define FAPLL_MAIN_PLLEN BIT(3)
#define FAPLL_MAIN_BP BIT(2)
#define FAPLL_MAIN_LOC_CTL BIT(0)
#define FAPLL_MAIN_MAX_MULT_N 0xffff
#define FAPLL_MAIN_MAX_DIV_P 0xff
#define FAPLL_MAIN_CLEAR_MASK \
((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
(FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
FAPLL_MAIN_LOC_CTL)
/* FAPLL powerdown register PWD */
#define FAPLL_PWD_OFFSET 4
#define MAX_FAPLL_OUTPUTS 7
#define FAPLL_MAX_RETRIES 1000
#define to_fapll(_hw) container_of(_hw, struct fapll_data, hw)
#define to_synth(_hw) container_of(_hw, struct fapll_synth, hw)
/* The bypass bit is inverted on the ddr_pll.. */
#define fapll_is_ddr_pll(va) (((u32)(va) & 0xffff) == 0x0440)
/*
* The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
* and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
*/
#define is_ddr_pll_clk1(va) (((u32)(va) & 0xffff) == 0x044c)
#define is_audio_pll_clk1(va) (((u32)(va) & 0xffff) == 0x04a8)
/* Synthesizer divider register */
#define SYNTH_LDMDIV1 BIT(8)
/* Synthesizer frequency register */
#define SYNTH_LDFREQ BIT(31)
#define SYNTH_PHASE_K 8
#define SYNTH_MAX_INT_DIV 0xf
#define SYNTH_MAX_DIV_M 0xff
struct fapll_data {
struct clk_hw hw;
void __iomem *base;
const char *name;
struct clk *clk_ref;
struct clk *clk_bypass;
struct clk_onecell_data outputs;
bool bypass_bit_inverted;
};
struct fapll_synth {
struct clk_hw hw;
struct fapll_data *fd;
int index;
void __iomem *freq;
void __iomem *div;
const char *name;
struct clk *clk_pll;
};
static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
{
u32 v = readl_relaxed(fd->base);
if (fd->bypass_bit_inverted)
return !(v & FAPLL_MAIN_BP);
else
return !!(v & FAPLL_MAIN_BP);
}
static void ti_fapll_set_bypass(struct fapll_data *fd)
{
u32 v = readl_relaxed(fd->base);
if (fd->bypass_bit_inverted)
v &= ~FAPLL_MAIN_BP;
else
v |= FAPLL_MAIN_BP;
writel_relaxed(v, fd->base);
}
static void ti_fapll_clear_bypass(struct fapll_data *fd)
{
u32 v = readl_relaxed(fd->base);
if (fd->bypass_bit_inverted)
v |= FAPLL_MAIN_BP;
else
v &= ~FAPLL_MAIN_BP;
writel_relaxed(v, fd->base);
}
static int ti_fapll_wait_lock(struct fapll_data *fd)
{
int retries = FAPLL_MAX_RETRIES;
u32 v;
while ((v = readl_relaxed(fd->base))) {
if (v & FAPLL_MAIN_LOCK)
return 0;
if (retries-- <= 0)
break;
udelay(1);
}
pr_err("%s failed to lock\n", fd->name);
return -ETIMEDOUT;
}
static int ti_fapll_enable(struct clk_hw *hw)
{
struct fapll_data *fd = to_fapll(hw);
u32 v = readl_relaxed(fd->base);
v |= FAPLL_MAIN_PLLEN;
writel_relaxed(v, fd->base);
ti_fapll_wait_lock(fd);
return 0;
}
static void ti_fapll_disable(struct clk_hw *hw)
{
struct fapll_data *fd = to_fapll(hw);
u32 v = readl_relaxed(fd->base);
v &= ~FAPLL_MAIN_PLLEN;
writel_relaxed(v, fd->base);
}
static int ti_fapll_is_enabled(struct clk_hw *hw)
{
struct fapll_data *fd = to_fapll(hw);
u32 v = readl_relaxed(fd->base);
return v & FAPLL_MAIN_PLLEN;
}
static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct fapll_data *fd = to_fapll(hw);
u32 fapll_n, fapll_p, v;
u64 rate;
if (ti_fapll_clock_is_bypass(fd))
return parent_rate;
rate = parent_rate;
/* PLL pre-divider is P and multiplier is N */
v = readl_relaxed(fd->base);
fapll_p = (v >> 8) & 0xff;
if (fapll_p)
do_div(rate, fapll_p);
fapll_n = v >> 16;
if (fapll_n)
rate *= fapll_n;
return rate;
}
static u8 ti_fapll_get_parent(struct clk_hw *hw)
{
struct fapll_data *fd = to_fapll(hw);
if (ti_fapll_clock_is_bypass(fd))
return 1;
return 0;
}
static int ti_fapll_set_div_mult(unsigned long rate,
unsigned long parent_rate,
u32 *pre_div_p, u32 *mult_n)
{
/*
* So far no luck getting decent clock with PLL divider,
* PLL does not seem to lock and the signal does not look
* right. It seems the divider can only be used together
* with the multiplier?
*/
if (rate < parent_rate) {
pr_warn("FAPLL main divider rates unsupported\n");
return -EINVAL;
}
*mult_n = rate / parent_rate;
if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
return -EINVAL;
*pre_div_p = 1;
return 0;
}
static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
u32 pre_div_p, mult_n;
int error;
if (!rate)
return -EINVAL;
error = ti_fapll_set_div_mult(rate, *parent_rate,
&pre_div_p, &mult_n);
if (error)
return error;
rate = *parent_rate / pre_div_p;
rate *= mult_n;
return rate;
}
static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct fapll_data *fd = to_fapll(hw);
u32 pre_div_p, mult_n, v;
int error;
if (!rate)
return -EINVAL;
error = ti_fapll_set_div_mult(rate, parent_rate,
&pre_div_p, &mult_n);
if (error)
return error;
ti_fapll_set_bypass(fd);
v = readl_relaxed(fd->base);
v &= ~FAPLL_MAIN_CLEAR_MASK;
v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
writel_relaxed(v, fd->base);
if (ti_fapll_is_enabled(hw))
ti_fapll_wait_lock(fd);
ti_fapll_clear_bypass(fd);
return 0;
}
static const struct clk_ops ti_fapll_ops = {
.enable = ti_fapll_enable,
.disable = ti_fapll_disable,
.is_enabled = ti_fapll_is_enabled,
.recalc_rate = ti_fapll_recalc_rate,
.get_parent = ti_fapll_get_parent,
.round_rate = ti_fapll_round_rate,
.set_rate = ti_fapll_set_rate,
};
static int ti_fapll_synth_enable(struct clk_hw *hw)
{
struct fapll_synth *synth = to_synth(hw);
u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
v &= ~(1 << synth->index);
writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
return 0;
}
static void ti_fapll_synth_disable(struct clk_hw *hw)
{
struct fapll_synth *synth = to_synth(hw);
u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
v |= 1 << synth->index;
writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
}
static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
{
struct fapll_synth *synth = to_synth(hw);
u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
return !(v & (1 << synth->index));
}
/*
* See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
*/
static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct fapll_synth *synth = to_synth(hw);
u32 synth_div_m;
u64 rate;
/* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
if (!synth->div)
return 32768;
/*
* PLL in bypass sets the synths in bypass mode too. The PLL rate
* can be also be set to 27MHz, so we can't use parent_rate to
* check for bypass mode.
*/
if (ti_fapll_clock_is_bypass(synth->fd))
return parent_rate;
rate = parent_rate;
/*
* Synth frequency integer and fractional divider.
* Note that the phase output K is 8, so the result needs
* to be multiplied by SYNTH_PHASE_K.
*/
if (synth->freq) {
u32 v, synth_int_div, synth_frac_div, synth_div_freq;
v = readl_relaxed(synth->freq);
synth_int_div = (v >> 24) & 0xf;
synth_frac_div = v & 0xffffff;
synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
rate *= 10000000;
do_div(rate, synth_div_freq);
rate *= SYNTH_PHASE_K;
}
/* Synth post-divider M */
synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
return DIV_ROUND_UP_ULL(rate, synth_div_m);
}
static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct fapll_synth *synth = to_synth(hw);
unsigned long current_rate, frac_rate;
u32 post_div_m;
current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
frac_rate = current_rate * post_div_m;
return frac_rate;
}
static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
unsigned long rate,
unsigned long parent_rate)
{
u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
if (post_div_m > SYNTH_MAX_DIV_M)
return -EINVAL;
if (!post_div_m)
post_div_m = 1;
for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
SYNTH_PHASE_K *
10000000,
rate * post_div_m);
synth_frac_div = synth_int_div % 10000000;
synth_int_div /= 10000000;
if (synth_int_div <= SYNTH_MAX_INT_DIV)
break;
}
if (synth_int_div > SYNTH_MAX_INT_DIV)
return -EINVAL;
v = readl_relaxed(synth->freq);
v &= ~0x1fffffff;
v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
v |= (synth_frac_div & 0xffffff);
v |= SYNTH_LDFREQ;
writel_relaxed(v, synth->freq);
return post_div_m;
}
static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
struct fapll_synth *synth = to_synth(hw);
struct fapll_data *fd = synth->fd;
unsigned long r;
if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
return -EINVAL;
/* Only post divider m available with no fractional divider? */
if (!synth->freq) {
unsigned long frac_rate;
u32 synth_post_div_m;
frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
goto out;
}
r = *parent_rate * SYNTH_PHASE_K;
if (rate > r)
goto out;
r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
if (rate < r)
goto out;
r = rate;
out:
return r;
}
static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct fapll_synth *synth = to_synth(hw);
struct fapll_data *fd = synth->fd;
unsigned long frac_rate, post_rate = 0;
u32 post_div_m = 0, v;
if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
return -EINVAL;
/* Produce the rate with just post divider M? */
frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
if (frac_rate < rate) {
if (!synth->freq)
return -EINVAL;
} else {
post_div_m = DIV_ROUND_UP(frac_rate, rate);
if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
if (!synth->freq && !post_rate)
return -EINVAL;
}
/* Need to recalculate the fractional divider? */
if ((post_rate != rate) && synth->freq)
post_div_m = ti_fapll_synth_set_frac_rate(synth,
rate,
parent_rate);
v = readl_relaxed(synth->div);
v &= ~SYNTH_MAX_DIV_M;
v |= post_div_m;
v |= SYNTH_LDMDIV1;
writel_relaxed(v, synth->div);
return 0;
}
static const struct clk_ops ti_fapll_synt_ops = {
.enable = ti_fapll_synth_enable,
.disable = ti_fapll_synth_disable,
.is_enabled = ti_fapll_synth_is_enabled,
.recalc_rate = ti_fapll_synth_recalc_rate,
.round_rate = ti_fapll_synth_round_rate,
.set_rate = ti_fapll_synth_set_rate,
};
static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
void __iomem *freq,
void __iomem *div,
int index,
const char *name,
const char *parent,
struct clk *pll_clk)
{
struct clk_init_data *init;
struct fapll_synth *synth;
struct clk *clk = ERR_PTR(-ENOMEM);
init = kzalloc(sizeof(*init), GFP_KERNEL);
if (!init)
return ERR_PTR(-ENOMEM);
init->ops = &ti_fapll_synt_ops;
init->name = name;
init->parent_names = &parent;
init->num_parents = 1;
synth = kzalloc(sizeof(*synth), GFP_KERNEL);
if (!synth)
goto free;
synth->fd = fd;
synth->index = index;
synth->freq = freq;
synth->div = div;
synth->name = name;
synth->hw.init = init;
synth->clk_pll = pll_clk;
clk = clk_register(NULL, &synth->hw);
if (IS_ERR(clk)) {
pr_err("failed to register clock\n");
goto free;
}
return clk;
free:
kfree(synth);
kfree(init);
return clk;
}
static void __init ti_fapll_setup(struct device_node *node)
{
struct fapll_data *fd;
struct clk_init_data *init = NULL;
const char *parent_name[2];
struct clk *pll_clk;
const char *name;
int i;
fd = kzalloc(sizeof(*fd), GFP_KERNEL);
if (!fd)
return;
fd->outputs.clks = kzalloc(sizeof(struct clk *) *
MAX_FAPLL_OUTPUTS + 1,
GFP_KERNEL);
if (!fd->outputs.clks)
goto free;
init = kzalloc(sizeof(*init), GFP_KERNEL);
if (!init)
goto free;
init->ops = &ti_fapll_ops;
name = ti_dt_clk_name(node);
init->name = name;
init->num_parents = of_clk_get_parent_count(node);
if (init->num_parents != 2) {
pr_err("%pOFn must have two parents\n", node);
goto free;
}
of_clk_parent_fill(node, parent_name, 2);
init->parent_names = parent_name;
fd->clk_ref = of_clk_get(node, 0);
if (IS_ERR(fd->clk_ref)) {
pr_err("%pOFn could not get clk_ref\n", node);
goto free;
}
fd->clk_bypass = of_clk_get(node, 1);
if (IS_ERR(fd->clk_bypass)) {
pr_err("%pOFn could not get clk_bypass\n", node);
goto free;
}
fd->base = of_iomap(node, 0);
if (!fd->base) {
pr_err("%pOFn could not get IO base\n", node);
goto free;
}
if (fapll_is_ddr_pll(fd->base))
fd->bypass_bit_inverted = true;
fd->name = name;
fd->hw.init = init;
/* Register the parent PLL */
pll_clk = clk_register(NULL, &fd->hw);
if (IS_ERR(pll_clk))
goto unmap;
fd->outputs.clks[0] = pll_clk;
fd->outputs.clk_num++;
/*
* Set up the child synthesizers starting at index 1 as the
* PLL output is at index 0. We need to check the clock-indices
* for numbering in case there are holes in the synth mapping,
* and then probe the synth register to see if it has a FREQ
* register available.
*/
for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
const char *output_name;
void __iomem *freq, *div;
struct clk *synth_clk;
int output_instance;
u32 v;
if (of_property_read_string_index(node, "clock-output-names",
i, &output_name))
continue;
if (of_property_read_u32_index(node, "clock-indices", i,
&output_instance))
output_instance = i;
freq = fd->base + (output_instance * 8);
div = freq + 4;
/* Check for hardwired audio_pll_clk1 */
if (is_audio_pll_clk1(freq)) {
freq = NULL;
div = NULL;
} else {
/* Does the synthesizer have a FREQ register? */
v = readl_relaxed(freq);
if (!v)
freq = NULL;
}
synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
output_name, name, pll_clk);
if (IS_ERR(synth_clk))
continue;
fd->outputs.clks[output_instance] = synth_clk;
fd->outputs.clk_num++;
clk_register_clkdev(synth_clk, output_name, NULL);
}
/* Register the child synthesizers as the FAPLL outputs */
of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
/* Add clock alias for the outputs */
kfree(init);
return;
unmap:
iounmap(fd->base);
free:
if (fd->clk_bypass)
clk_put(fd->clk_bypass);
if (fd->clk_ref)
clk_put(fd->clk_ref);
kfree(fd->outputs.clks);
kfree(fd);
kfree(init);
}
CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);