linux/sound/hda/hdac_stream.c
Takashi Iwai 6fd739c04f ALSA: hda: Fix regression by strip mask fix
The commit e38e486d66 ("ALSA: hda: Modify stream stripe mask only
when needed") tried to address the regression by the unconditional
application of the stripe mask, but this caused yet another
regression for the previously working devices.  Namely, the patch
clears the azx_dev->stripe flag at snd_hdac_stream_clear(), but this
may be called multiple times before restarting the stream, so this
ended up with clearance of the flag for the whole time.

This patch fixes the regression by moving the azx_dev->stripe flag
clearance at the counter-part, the close callback of HDMI codec
driver instead.

Fixes: e38e486d66 ("ALSA: hda: Modify stream stripe mask only when needed")
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=205855
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=204477
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20191214175217.31852-1-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2019-12-14 18:54:47 +01:00

766 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* HD-audio stream operations
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/clocksource.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/hdaudio.h>
#include <sound/hda_register.h>
#include "trace.h"
/**
* snd_hdac_get_stream_stripe_ctl - get stripe control value
* @bus: HD-audio core bus
* @substream: PCM substream
*/
int snd_hdac_get_stream_stripe_ctl(struct hdac_bus *bus,
struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned int channels = runtime->channels,
rate = runtime->rate,
bits_per_sample = runtime->sample_bits,
max_sdo_lines, value, sdo_line;
/* T_AZA_GCAP_NSDO is 1:2 bitfields in GCAP */
max_sdo_lines = snd_hdac_chip_readl(bus, GCAP) & AZX_GCAP_NSDO;
/* following is from HD audio spec */
for (sdo_line = max_sdo_lines; sdo_line > 0; sdo_line >>= 1) {
if (rate > 48000)
value = (channels * bits_per_sample *
(rate / 48000)) / sdo_line;
else
value = (channels * bits_per_sample) / sdo_line;
if (value >= 8)
break;
}
/* stripe value: 0 for 1SDO, 1 for 2SDO, 2 for 4SDO lines */
return sdo_line >> 1;
}
EXPORT_SYMBOL_GPL(snd_hdac_get_stream_stripe_ctl);
/**
* snd_hdac_stream_init - initialize each stream (aka device)
* @bus: HD-audio core bus
* @azx_dev: HD-audio core stream object to initialize
* @idx: stream index number
* @direction: stream direction (SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE)
* @tag: the tag id to assign
*
* Assign the starting bdl address to each stream (device) and initialize.
*/
void snd_hdac_stream_init(struct hdac_bus *bus, struct hdac_stream *azx_dev,
int idx, int direction, int tag)
{
azx_dev->bus = bus;
/* offset: SDI0=0x80, SDI1=0xa0, ... SDO3=0x160 */
azx_dev->sd_addr = bus->remap_addr + (0x20 * idx + 0x80);
/* int mask: SDI0=0x01, SDI1=0x02, ... SDO3=0x80 */
azx_dev->sd_int_sta_mask = 1 << idx;
azx_dev->index = idx;
azx_dev->direction = direction;
azx_dev->stream_tag = tag;
snd_hdac_dsp_lock_init(azx_dev);
list_add_tail(&azx_dev->list, &bus->stream_list);
}
EXPORT_SYMBOL_GPL(snd_hdac_stream_init);
/**
* snd_hdac_stream_start - start a stream
* @azx_dev: HD-audio core stream to start
* @fresh_start: false = wallclock timestamp relative to period wallclock
*
* Start a stream, set start_wallclk and set the running flag.
*/
void snd_hdac_stream_start(struct hdac_stream *azx_dev, bool fresh_start)
{
struct hdac_bus *bus = azx_dev->bus;
int stripe_ctl;
trace_snd_hdac_stream_start(bus, azx_dev);
azx_dev->start_wallclk = snd_hdac_chip_readl(bus, WALLCLK);
if (!fresh_start)
azx_dev->start_wallclk -= azx_dev->period_wallclk;
/* enable SIE */
snd_hdac_chip_updatel(bus, INTCTL,
1 << azx_dev->index,
1 << azx_dev->index);
/* set stripe control */
if (azx_dev->stripe) {
if (azx_dev->substream)
stripe_ctl = snd_hdac_get_stream_stripe_ctl(bus, azx_dev->substream);
else
stripe_ctl = 0;
snd_hdac_stream_updateb(azx_dev, SD_CTL_3B, SD_CTL_STRIPE_MASK,
stripe_ctl);
}
/* set DMA start and interrupt mask */
snd_hdac_stream_updateb(azx_dev, SD_CTL,
0, SD_CTL_DMA_START | SD_INT_MASK);
azx_dev->running = true;
}
EXPORT_SYMBOL_GPL(snd_hdac_stream_start);
/**
* snd_hdac_stream_clear - stop a stream DMA
* @azx_dev: HD-audio core stream to stop
*/
void snd_hdac_stream_clear(struct hdac_stream *azx_dev)
{
snd_hdac_stream_updateb(azx_dev, SD_CTL,
SD_CTL_DMA_START | SD_INT_MASK, 0);
snd_hdac_stream_writeb(azx_dev, SD_STS, SD_INT_MASK); /* to be sure */
if (azx_dev->stripe)
snd_hdac_stream_updateb(azx_dev, SD_CTL_3B, SD_CTL_STRIPE_MASK, 0);
azx_dev->running = false;
}
EXPORT_SYMBOL_GPL(snd_hdac_stream_clear);
/**
* snd_hdac_stream_stop - stop a stream
* @azx_dev: HD-audio core stream to stop
*
* Stop a stream DMA and disable stream interrupt
*/
void snd_hdac_stream_stop(struct hdac_stream *azx_dev)
{
trace_snd_hdac_stream_stop(azx_dev->bus, azx_dev);
snd_hdac_stream_clear(azx_dev);
/* disable SIE */
snd_hdac_chip_updatel(azx_dev->bus, INTCTL, 1 << azx_dev->index, 0);
}
EXPORT_SYMBOL_GPL(snd_hdac_stream_stop);
/**
* snd_hdac_stream_reset - reset a stream
* @azx_dev: HD-audio core stream to reset
*/
void snd_hdac_stream_reset(struct hdac_stream *azx_dev)
{
unsigned char val;
int timeout;
snd_hdac_stream_clear(azx_dev);
snd_hdac_stream_updateb(azx_dev, SD_CTL, 0, SD_CTL_STREAM_RESET);
udelay(3);
timeout = 300;
do {
val = snd_hdac_stream_readb(azx_dev, SD_CTL) &
SD_CTL_STREAM_RESET;
if (val)
break;
} while (--timeout);
val &= ~SD_CTL_STREAM_RESET;
snd_hdac_stream_writeb(azx_dev, SD_CTL, val);
udelay(3);
timeout = 300;
/* waiting for hardware to report that the stream is out of reset */
do {
val = snd_hdac_stream_readb(azx_dev, SD_CTL) &
SD_CTL_STREAM_RESET;
if (!val)
break;
} while (--timeout);
/* reset first position - may not be synced with hw at this time */
if (azx_dev->posbuf)
*azx_dev->posbuf = 0;
}
EXPORT_SYMBOL_GPL(snd_hdac_stream_reset);
/**
* snd_hdac_stream_setup - set up the SD for streaming
* @azx_dev: HD-audio core stream to set up
*/
int snd_hdac_stream_setup(struct hdac_stream *azx_dev)
{
struct hdac_bus *bus = azx_dev->bus;
struct snd_pcm_runtime *runtime;
unsigned int val;
if (azx_dev->substream)
runtime = azx_dev->substream->runtime;
else
runtime = NULL;
/* make sure the run bit is zero for SD */
snd_hdac_stream_clear(azx_dev);
/* program the stream_tag */
val = snd_hdac_stream_readl(azx_dev, SD_CTL);
val = (val & ~SD_CTL_STREAM_TAG_MASK) |
(azx_dev->stream_tag << SD_CTL_STREAM_TAG_SHIFT);
if (!bus->snoop)
val |= SD_CTL_TRAFFIC_PRIO;
snd_hdac_stream_writel(azx_dev, SD_CTL, val);
/* program the length of samples in cyclic buffer */
snd_hdac_stream_writel(azx_dev, SD_CBL, azx_dev->bufsize);
/* program the stream format */
/* this value needs to be the same as the one programmed */
snd_hdac_stream_writew(azx_dev, SD_FORMAT, azx_dev->format_val);
/* program the stream LVI (last valid index) of the BDL */
snd_hdac_stream_writew(azx_dev, SD_LVI, azx_dev->frags - 1);
/* program the BDL address */
/* lower BDL address */
snd_hdac_stream_writel(azx_dev, SD_BDLPL, (u32)azx_dev->bdl.addr);
/* upper BDL address */
snd_hdac_stream_writel(azx_dev, SD_BDLPU,
upper_32_bits(azx_dev->bdl.addr));
/* enable the position buffer */
if (bus->use_posbuf && bus->posbuf.addr) {
if (!(snd_hdac_chip_readl(bus, DPLBASE) & AZX_DPLBASE_ENABLE))
snd_hdac_chip_writel(bus, DPLBASE,
(u32)bus->posbuf.addr | AZX_DPLBASE_ENABLE);
}
/* set the interrupt enable bits in the descriptor control register */
snd_hdac_stream_updatel(azx_dev, SD_CTL, 0, SD_INT_MASK);
azx_dev->fifo_size = snd_hdac_stream_readw(azx_dev, SD_FIFOSIZE) + 1;
/* when LPIB delay correction gives a small negative value,
* we ignore it; currently set the threshold statically to
* 64 frames
*/
if (runtime && runtime->period_size > 64)
azx_dev->delay_negative_threshold =
-frames_to_bytes(runtime, 64);
else
azx_dev->delay_negative_threshold = 0;
/* wallclk has 24Mhz clock source */
if (runtime)
azx_dev->period_wallclk = (((runtime->period_size * 24000) /
runtime->rate) * 1000);
return 0;
}
EXPORT_SYMBOL_GPL(snd_hdac_stream_setup);
/**
* snd_hdac_stream_cleanup - cleanup a stream
* @azx_dev: HD-audio core stream to clean up
*/
void snd_hdac_stream_cleanup(struct hdac_stream *azx_dev)
{
snd_hdac_stream_writel(azx_dev, SD_BDLPL, 0);
snd_hdac_stream_writel(azx_dev, SD_BDLPU, 0);
snd_hdac_stream_writel(azx_dev, SD_CTL, 0);
azx_dev->bufsize = 0;
azx_dev->period_bytes = 0;
azx_dev->format_val = 0;
}
EXPORT_SYMBOL_GPL(snd_hdac_stream_cleanup);
/**
* snd_hdac_stream_assign - assign a stream for the PCM
* @bus: HD-audio core bus
* @substream: PCM substream to assign
*
* Look for an unused stream for the given PCM substream, assign it
* and return the stream object. If no stream is free, returns NULL.
* The function tries to keep using the same stream object when it's used
* beforehand. Also, when bus->reverse_assign flag is set, the last free
* or matching entry is returned. This is needed for some strange codecs.
*/
struct hdac_stream *snd_hdac_stream_assign(struct hdac_bus *bus,
struct snd_pcm_substream *substream)
{
struct hdac_stream *azx_dev;
struct hdac_stream *res = NULL;
/* make a non-zero unique key for the substream */
int key = (substream->pcm->device << 16) | (substream->number << 2) |
(substream->stream + 1);
list_for_each_entry(azx_dev, &bus->stream_list, list) {
if (azx_dev->direction != substream->stream)
continue;
if (azx_dev->opened)
continue;
if (azx_dev->assigned_key == key) {
res = azx_dev;
break;
}
if (!res || bus->reverse_assign)
res = azx_dev;
}
if (res) {
spin_lock_irq(&bus->reg_lock);
res->opened = 1;
res->running = 0;
res->assigned_key = key;
res->substream = substream;
spin_unlock_irq(&bus->reg_lock);
}
return res;
}
EXPORT_SYMBOL_GPL(snd_hdac_stream_assign);
/**
* snd_hdac_stream_release - release the assigned stream
* @azx_dev: HD-audio core stream to release
*
* Release the stream that has been assigned by snd_hdac_stream_assign().
*/
void snd_hdac_stream_release(struct hdac_stream *azx_dev)
{
struct hdac_bus *bus = azx_dev->bus;
spin_lock_irq(&bus->reg_lock);
azx_dev->opened = 0;
azx_dev->running = 0;
azx_dev->substream = NULL;
spin_unlock_irq(&bus->reg_lock);
}
EXPORT_SYMBOL_GPL(snd_hdac_stream_release);
/**
* snd_hdac_get_stream - return hdac_stream based on stream_tag and
* direction
*
* @bus: HD-audio core bus
* @dir: direction for the stream to be found
* @stream_tag: stream tag for stream to be found
*/
struct hdac_stream *snd_hdac_get_stream(struct hdac_bus *bus,
int dir, int stream_tag)
{
struct hdac_stream *s;
list_for_each_entry(s, &bus->stream_list, list) {
if (s->direction == dir && s->stream_tag == stream_tag)
return s;
}
return NULL;
}
EXPORT_SYMBOL_GPL(snd_hdac_get_stream);
/*
* set up a BDL entry
*/
static int setup_bdle(struct hdac_bus *bus,
struct snd_dma_buffer *dmab,
struct hdac_stream *azx_dev, __le32 **bdlp,
int ofs, int size, int with_ioc)
{
__le32 *bdl = *bdlp;
while (size > 0) {
dma_addr_t addr;
int chunk;
if (azx_dev->frags >= AZX_MAX_BDL_ENTRIES)
return -EINVAL;
addr = snd_sgbuf_get_addr(dmab, ofs);
/* program the address field of the BDL entry */
bdl[0] = cpu_to_le32((u32)addr);
bdl[1] = cpu_to_le32(upper_32_bits(addr));
/* program the size field of the BDL entry */
chunk = snd_sgbuf_get_chunk_size(dmab, ofs, size);
/* one BDLE cannot cross 4K boundary on CTHDA chips */
if (bus->align_bdle_4k) {
u32 remain = 0x1000 - (ofs & 0xfff);
if (chunk > remain)
chunk = remain;
}
bdl[2] = cpu_to_le32(chunk);
/* program the IOC to enable interrupt
* only when the whole fragment is processed
*/
size -= chunk;
bdl[3] = (size || !with_ioc) ? 0 : cpu_to_le32(0x01);
bdl += 4;
azx_dev->frags++;
ofs += chunk;
}
*bdlp = bdl;
return ofs;
}
/**
* snd_hdac_stream_setup_periods - set up BDL entries
* @azx_dev: HD-audio core stream to set up
*
* Set up the buffer descriptor table of the given stream based on the
* period and buffer sizes of the assigned PCM substream.
*/
int snd_hdac_stream_setup_periods(struct hdac_stream *azx_dev)
{
struct hdac_bus *bus = azx_dev->bus;
struct snd_pcm_substream *substream = azx_dev->substream;
struct snd_pcm_runtime *runtime = substream->runtime;
__le32 *bdl;
int i, ofs, periods, period_bytes;
int pos_adj, pos_align;
/* reset BDL address */
snd_hdac_stream_writel(azx_dev, SD_BDLPL, 0);
snd_hdac_stream_writel(azx_dev, SD_BDLPU, 0);
period_bytes = azx_dev->period_bytes;
periods = azx_dev->bufsize / period_bytes;
/* program the initial BDL entries */
bdl = (__le32 *)azx_dev->bdl.area;
ofs = 0;
azx_dev->frags = 0;
pos_adj = bus->bdl_pos_adj;
if (!azx_dev->no_period_wakeup && pos_adj > 0) {
pos_align = pos_adj;
pos_adj = (pos_adj * runtime->rate + 47999) / 48000;
if (!pos_adj)
pos_adj = pos_align;
else
pos_adj = ((pos_adj + pos_align - 1) / pos_align) *
pos_align;
pos_adj = frames_to_bytes(runtime, pos_adj);
if (pos_adj >= period_bytes) {
dev_warn(bus->dev, "Too big adjustment %d\n",
pos_adj);
pos_adj = 0;
} else {
ofs = setup_bdle(bus, snd_pcm_get_dma_buf(substream),
azx_dev,
&bdl, ofs, pos_adj, true);
if (ofs < 0)
goto error;
}
} else
pos_adj = 0;
for (i = 0; i < periods; i++) {
if (i == periods - 1 && pos_adj)
ofs = setup_bdle(bus, snd_pcm_get_dma_buf(substream),
azx_dev, &bdl, ofs,
period_bytes - pos_adj, 0);
else
ofs = setup_bdle(bus, snd_pcm_get_dma_buf(substream),
azx_dev, &bdl, ofs,
period_bytes,
!azx_dev->no_period_wakeup);
if (ofs < 0)
goto error;
}
return 0;
error:
dev_err(bus->dev, "Too many BDL entries: buffer=%d, period=%d\n",
azx_dev->bufsize, period_bytes);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_hdac_stream_setup_periods);
/**
* snd_hdac_stream_set_params - set stream parameters
* @azx_dev: HD-audio core stream for which parameters are to be set
* @format_val: format value parameter
*
* Setup the HD-audio core stream parameters from substream of the stream
* and passed format value
*/
int snd_hdac_stream_set_params(struct hdac_stream *azx_dev,
unsigned int format_val)
{
unsigned int bufsize, period_bytes;
struct snd_pcm_substream *substream = azx_dev->substream;
struct snd_pcm_runtime *runtime;
int err;
if (!substream)
return -EINVAL;
runtime = substream->runtime;
bufsize = snd_pcm_lib_buffer_bytes(substream);
period_bytes = snd_pcm_lib_period_bytes(substream);
if (bufsize != azx_dev->bufsize ||
period_bytes != azx_dev->period_bytes ||
format_val != azx_dev->format_val ||
runtime->no_period_wakeup != azx_dev->no_period_wakeup) {
azx_dev->bufsize = bufsize;
azx_dev->period_bytes = period_bytes;
azx_dev->format_val = format_val;
azx_dev->no_period_wakeup = runtime->no_period_wakeup;
err = snd_hdac_stream_setup_periods(azx_dev);
if (err < 0)
return err;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_hdac_stream_set_params);
static u64 azx_cc_read(const struct cyclecounter *cc)
{
struct hdac_stream *azx_dev = container_of(cc, struct hdac_stream, cc);
return snd_hdac_chip_readl(azx_dev->bus, WALLCLK);
}
static void azx_timecounter_init(struct hdac_stream *azx_dev,
bool force, u64 last)
{
struct timecounter *tc = &azx_dev->tc;
struct cyclecounter *cc = &azx_dev->cc;
u64 nsec;
cc->read = azx_cc_read;
cc->mask = CLOCKSOURCE_MASK(32);
/*
* Converting from 24 MHz to ns means applying a 125/3 factor.
* To avoid any saturation issues in intermediate operations,
* the 125 factor is applied first. The division is applied
* last after reading the timecounter value.
* Applying the 1/3 factor as part of the multiplication
* requires at least 20 bits for a decent precision, however
* overflows occur after about 4 hours or less, not a option.
*/
cc->mult = 125; /* saturation after 195 years */
cc->shift = 0;
nsec = 0; /* audio time is elapsed time since trigger */
timecounter_init(tc, cc, nsec);
if (force) {
/*
* force timecounter to use predefined value,
* used for synchronized starts
*/
tc->cycle_last = last;
}
}
/**
* snd_hdac_stream_timecounter_init - initialize time counter
* @azx_dev: HD-audio core stream (master stream)
* @streams: bit flags of streams to set up
*
* Initializes the time counter of streams marked by the bit flags (each
* bit corresponds to the stream index).
* The trigger timestamp of PCM substream assigned to the given stream is
* updated accordingly, too.
*/
void snd_hdac_stream_timecounter_init(struct hdac_stream *azx_dev,
unsigned int streams)
{
struct hdac_bus *bus = azx_dev->bus;
struct snd_pcm_runtime *runtime = azx_dev->substream->runtime;
struct hdac_stream *s;
bool inited = false;
u64 cycle_last = 0;
int i = 0;
list_for_each_entry(s, &bus->stream_list, list) {
if (streams & (1 << i)) {
azx_timecounter_init(s, inited, cycle_last);
if (!inited) {
inited = true;
cycle_last = s->tc.cycle_last;
}
}
i++;
}
snd_pcm_gettime(runtime, &runtime->trigger_tstamp);
runtime->trigger_tstamp_latched = true;
}
EXPORT_SYMBOL_GPL(snd_hdac_stream_timecounter_init);
/**
* snd_hdac_stream_sync_trigger - turn on/off stream sync register
* @azx_dev: HD-audio core stream (master stream)
* @streams: bit flags of streams to sync
*/
void snd_hdac_stream_sync_trigger(struct hdac_stream *azx_dev, bool set,
unsigned int streams, unsigned int reg)
{
struct hdac_bus *bus = azx_dev->bus;
unsigned int val;
if (!reg)
reg = AZX_REG_SSYNC;
val = _snd_hdac_chip_readl(bus, reg);
if (set)
val |= streams;
else
val &= ~streams;
_snd_hdac_chip_writel(bus, reg, val);
}
EXPORT_SYMBOL_GPL(snd_hdac_stream_sync_trigger);
/**
* snd_hdac_stream_sync - sync with start/strop trigger operation
* @azx_dev: HD-audio core stream (master stream)
* @start: true = start, false = stop
* @streams: bit flags of streams to sync
*
* For @start = true, wait until all FIFOs get ready.
* For @start = false, wait until all RUN bits are cleared.
*/
void snd_hdac_stream_sync(struct hdac_stream *azx_dev, bool start,
unsigned int streams)
{
struct hdac_bus *bus = azx_dev->bus;
int i, nwait, timeout;
struct hdac_stream *s;
for (timeout = 5000; timeout; timeout--) {
nwait = 0;
i = 0;
list_for_each_entry(s, &bus->stream_list, list) {
if (streams & (1 << i)) {
if (start) {
/* check FIFO gets ready */
if (!(snd_hdac_stream_readb(s, SD_STS) &
SD_STS_FIFO_READY))
nwait++;
} else {
/* check RUN bit is cleared */
if (snd_hdac_stream_readb(s, SD_CTL) &
SD_CTL_DMA_START)
nwait++;
}
}
i++;
}
if (!nwait)
break;
cpu_relax();
}
}
EXPORT_SYMBOL_GPL(snd_hdac_stream_sync);
#ifdef CONFIG_SND_HDA_DSP_LOADER
/**
* snd_hdac_dsp_prepare - prepare for DSP loading
* @azx_dev: HD-audio core stream used for DSP loading
* @format: HD-audio stream format
* @byte_size: data chunk byte size
* @bufp: allocated buffer
*
* Allocate the buffer for the given size and set up the given stream for
* DSP loading. Returns the stream tag (>= 0), or a negative error code.
*/
int snd_hdac_dsp_prepare(struct hdac_stream *azx_dev, unsigned int format,
unsigned int byte_size, struct snd_dma_buffer *bufp)
{
struct hdac_bus *bus = azx_dev->bus;
__le32 *bdl;
int err;
snd_hdac_dsp_lock(azx_dev);
spin_lock_irq(&bus->reg_lock);
if (azx_dev->running || azx_dev->locked) {
spin_unlock_irq(&bus->reg_lock);
err = -EBUSY;
goto unlock;
}
azx_dev->locked = true;
spin_unlock_irq(&bus->reg_lock);
err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV_SG, bus->dev,
byte_size, bufp);
if (err < 0)
goto err_alloc;
azx_dev->substream = NULL;
azx_dev->bufsize = byte_size;
azx_dev->period_bytes = byte_size;
azx_dev->format_val = format;
snd_hdac_stream_reset(azx_dev);
/* reset BDL address */
snd_hdac_stream_writel(azx_dev, SD_BDLPL, 0);
snd_hdac_stream_writel(azx_dev, SD_BDLPU, 0);
azx_dev->frags = 0;
bdl = (__le32 *)azx_dev->bdl.area;
err = setup_bdle(bus, bufp, azx_dev, &bdl, 0, byte_size, 0);
if (err < 0)
goto error;
snd_hdac_stream_setup(azx_dev);
snd_hdac_dsp_unlock(azx_dev);
return azx_dev->stream_tag;
error:
snd_dma_free_pages(bufp);
err_alloc:
spin_lock_irq(&bus->reg_lock);
azx_dev->locked = false;
spin_unlock_irq(&bus->reg_lock);
unlock:
snd_hdac_dsp_unlock(azx_dev);
return err;
}
EXPORT_SYMBOL_GPL(snd_hdac_dsp_prepare);
/**
* snd_hdac_dsp_trigger - start / stop DSP loading
* @azx_dev: HD-audio core stream used for DSP loading
* @start: trigger start or stop
*/
void snd_hdac_dsp_trigger(struct hdac_stream *azx_dev, bool start)
{
if (start)
snd_hdac_stream_start(azx_dev, true);
else
snd_hdac_stream_stop(azx_dev);
}
EXPORT_SYMBOL_GPL(snd_hdac_dsp_trigger);
/**
* snd_hdac_dsp_cleanup - clean up the stream from DSP loading to normal
* @azx_dev: HD-audio core stream used for DSP loading
* @dmab: buffer used by DSP loading
*/
void snd_hdac_dsp_cleanup(struct hdac_stream *azx_dev,
struct snd_dma_buffer *dmab)
{
struct hdac_bus *bus = azx_dev->bus;
if (!dmab->area || !azx_dev->locked)
return;
snd_hdac_dsp_lock(azx_dev);
/* reset BDL address */
snd_hdac_stream_writel(azx_dev, SD_BDLPL, 0);
snd_hdac_stream_writel(azx_dev, SD_BDLPU, 0);
snd_hdac_stream_writel(azx_dev, SD_CTL, 0);
azx_dev->bufsize = 0;
azx_dev->period_bytes = 0;
azx_dev->format_val = 0;
snd_dma_free_pages(dmab);
dmab->area = NULL;
spin_lock_irq(&bus->reg_lock);
azx_dev->locked = false;
spin_unlock_irq(&bus->reg_lock);
snd_hdac_dsp_unlock(azx_dev);
}
EXPORT_SYMBOL_GPL(snd_hdac_dsp_cleanup);
#endif /* CONFIG_SND_HDA_DSP_LOADER */