mirror of
https://github.com/torvalds/linux.git
synced 2024-12-06 02:52:22 +00:00
a58f85b5d5
Fix occurences of unsigned integer variable declarations that are not preferred by standards of checkpatch scripts. This removes a significant number of checkpatch warnings for files in math-emu directory (several files become completely warning-free), and thus makes easier to spot (now and in the future) other, perhaps more significant, checkpatch errors and warnings. Signed-off-by: Aleksandar Markovic <aleksandar.markovic@mips.com> Reviewed-by: James Hogan <jhogan@kernel.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Douglas Leung <douglas.leung@mips.com> Cc: Goran Ferenc <goran.ferenc@mips.com> Cc: "Maciej W. Rozycki" <macro@imgtec.com> Cc: Manuel Lauss <manuel.lauss@gmail.com> Cc: Miodrag Dinic <miodrag.dinic@mips.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Petar Jovanovic <petar.jovanovic@mips.com> Cc: Raghu Gandham <raghu.gandham@mips.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/17582/ Signed-off-by: James Hogan <jhogan@kernel.org>
348 lines
7.8 KiB
C
348 lines
7.8 KiB
C
/*
|
|
* IEEE754 floating point arithmetic
|
|
* double precision: MADDF.f (Fused Multiply Add)
|
|
* MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
|
|
*
|
|
* MIPS floating point support
|
|
* Copyright (C) 2015 Imagination Technologies, Ltd.
|
|
* Author: Markos Chandras <markos.chandras@imgtec.com>
|
|
*
|
|
* This program is free software; you can distribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; version 2 of the License.
|
|
*/
|
|
|
|
#include "ieee754dp.h"
|
|
|
|
|
|
/* 128 bits shift right logical with rounding. */
|
|
void srl128(u64 *hptr, u64 *lptr, int count)
|
|
{
|
|
u64 low;
|
|
|
|
if (count >= 128) {
|
|
*lptr = *hptr != 0 || *lptr != 0;
|
|
*hptr = 0;
|
|
} else if (count >= 64) {
|
|
if (count == 64) {
|
|
*lptr = *hptr | (*lptr != 0);
|
|
} else {
|
|
low = *lptr;
|
|
*lptr = *hptr >> (count - 64);
|
|
*lptr |= (*hptr << (128 - count)) != 0 || low != 0;
|
|
}
|
|
*hptr = 0;
|
|
} else {
|
|
low = *lptr;
|
|
*lptr = low >> count | *hptr << (64 - count);
|
|
*lptr |= (low << (64 - count)) != 0;
|
|
*hptr = *hptr >> count;
|
|
}
|
|
}
|
|
|
|
static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x,
|
|
union ieee754dp y, enum maddf_flags flags)
|
|
{
|
|
int re;
|
|
int rs;
|
|
unsigned int lxm;
|
|
unsigned int hxm;
|
|
unsigned int lym;
|
|
unsigned int hym;
|
|
u64 lrm;
|
|
u64 hrm;
|
|
u64 lzm;
|
|
u64 hzm;
|
|
u64 t;
|
|
u64 at;
|
|
int s;
|
|
|
|
COMPXDP;
|
|
COMPYDP;
|
|
COMPZDP;
|
|
|
|
EXPLODEXDP;
|
|
EXPLODEYDP;
|
|
EXPLODEZDP;
|
|
|
|
FLUSHXDP;
|
|
FLUSHYDP;
|
|
FLUSHZDP;
|
|
|
|
ieee754_clearcx();
|
|
|
|
/*
|
|
* Handle the cases when at least one of x, y or z is a NaN.
|
|
* Order of precedence is sNaN, qNaN and z, x, y.
|
|
*/
|
|
if (zc == IEEE754_CLASS_SNAN)
|
|
return ieee754dp_nanxcpt(z);
|
|
if (xc == IEEE754_CLASS_SNAN)
|
|
return ieee754dp_nanxcpt(x);
|
|
if (yc == IEEE754_CLASS_SNAN)
|
|
return ieee754dp_nanxcpt(y);
|
|
if (zc == IEEE754_CLASS_QNAN)
|
|
return z;
|
|
if (xc == IEEE754_CLASS_QNAN)
|
|
return x;
|
|
if (yc == IEEE754_CLASS_QNAN)
|
|
return y;
|
|
|
|
if (zc == IEEE754_CLASS_DNORM)
|
|
DPDNORMZ;
|
|
/* ZERO z cases are handled separately below */
|
|
|
|
switch (CLPAIR(xc, yc)) {
|
|
|
|
/*
|
|
* Infinity handling
|
|
*/
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
|
|
ieee754_setcx(IEEE754_INVALID_OPERATION);
|
|
return ieee754dp_indef();
|
|
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
|
|
if ((zc == IEEE754_CLASS_INF) &&
|
|
((!(flags & MADDF_NEGATE_PRODUCT) && (zs != (xs ^ ys))) ||
|
|
((flags & MADDF_NEGATE_PRODUCT) && (zs == (xs ^ ys))))) {
|
|
/*
|
|
* Cases of addition of infinities with opposite signs
|
|
* or subtraction of infinities with same signs.
|
|
*/
|
|
ieee754_setcx(IEEE754_INVALID_OPERATION);
|
|
return ieee754dp_indef();
|
|
}
|
|
/*
|
|
* z is here either not an infinity, or an infinity having the
|
|
* same sign as product (x*y) (in case of MADDF.D instruction)
|
|
* or product -(x*y) (in MSUBF.D case). The result must be an
|
|
* infinity, and its sign is determined only by the value of
|
|
* (flags & MADDF_NEGATE_PRODUCT) and the signs of x and y.
|
|
*/
|
|
if (flags & MADDF_NEGATE_PRODUCT)
|
|
return ieee754dp_inf(1 ^ (xs ^ ys));
|
|
else
|
|
return ieee754dp_inf(xs ^ ys);
|
|
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
|
|
if (zc == IEEE754_CLASS_INF)
|
|
return ieee754dp_inf(zs);
|
|
if (zc == IEEE754_CLASS_ZERO) {
|
|
/* Handle cases +0 + (-0) and similar ones. */
|
|
if ((!(flags & MADDF_NEGATE_PRODUCT)
|
|
&& (zs == (xs ^ ys))) ||
|
|
((flags & MADDF_NEGATE_PRODUCT)
|
|
&& (zs != (xs ^ ys))))
|
|
/*
|
|
* Cases of addition of zeros of equal signs
|
|
* or subtraction of zeroes of opposite signs.
|
|
* The sign of the resulting zero is in any
|
|
* such case determined only by the sign of z.
|
|
*/
|
|
return z;
|
|
|
|
return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
|
|
}
|
|
/* x*y is here 0, and z is not 0, so just return z */
|
|
return z;
|
|
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
|
|
DPDNORMX;
|
|
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
|
|
if (zc == IEEE754_CLASS_INF)
|
|
return ieee754dp_inf(zs);
|
|
DPDNORMY;
|
|
break;
|
|
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
|
|
if (zc == IEEE754_CLASS_INF)
|
|
return ieee754dp_inf(zs);
|
|
DPDNORMX;
|
|
break;
|
|
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
|
|
if (zc == IEEE754_CLASS_INF)
|
|
return ieee754dp_inf(zs);
|
|
/* fall through to real computations */
|
|
}
|
|
|
|
/* Finally get to do some computation */
|
|
|
|
/*
|
|
* Do the multiplication bit first
|
|
*
|
|
* rm = xm * ym, re = xe + ye basically
|
|
*
|
|
* At this point xm and ym should have been normalized.
|
|
*/
|
|
assert(xm & DP_HIDDEN_BIT);
|
|
assert(ym & DP_HIDDEN_BIT);
|
|
|
|
re = xe + ye;
|
|
rs = xs ^ ys;
|
|
if (flags & MADDF_NEGATE_PRODUCT)
|
|
rs ^= 1;
|
|
|
|
/* shunt to top of word */
|
|
xm <<= 64 - (DP_FBITS + 1);
|
|
ym <<= 64 - (DP_FBITS + 1);
|
|
|
|
/*
|
|
* Multiply 64 bits xm and ym to give 128 bits result in hrm:lrm.
|
|
*/
|
|
|
|
/* 32 * 32 => 64 */
|
|
#define DPXMULT(x, y) ((u64)(x) * (u64)y)
|
|
|
|
lxm = xm;
|
|
hxm = xm >> 32;
|
|
lym = ym;
|
|
hym = ym >> 32;
|
|
|
|
lrm = DPXMULT(lxm, lym);
|
|
hrm = DPXMULT(hxm, hym);
|
|
|
|
t = DPXMULT(lxm, hym);
|
|
|
|
at = lrm + (t << 32);
|
|
hrm += at < lrm;
|
|
lrm = at;
|
|
|
|
hrm = hrm + (t >> 32);
|
|
|
|
t = DPXMULT(hxm, lym);
|
|
|
|
at = lrm + (t << 32);
|
|
hrm += at < lrm;
|
|
lrm = at;
|
|
|
|
hrm = hrm + (t >> 32);
|
|
|
|
/* Put explicit bit at bit 126 if necessary */
|
|
if ((int64_t)hrm < 0) {
|
|
lrm = (hrm << 63) | (lrm >> 1);
|
|
hrm = hrm >> 1;
|
|
re++;
|
|
}
|
|
|
|
assert(hrm & (1 << 62));
|
|
|
|
if (zc == IEEE754_CLASS_ZERO) {
|
|
/*
|
|
* Move explicit bit from bit 126 to bit 55 since the
|
|
* ieee754dp_format code expects the mantissa to be
|
|
* 56 bits wide (53 + 3 rounding bits).
|
|
*/
|
|
srl128(&hrm, &lrm, (126 - 55));
|
|
return ieee754dp_format(rs, re, lrm);
|
|
}
|
|
|
|
/* Move explicit bit from bit 52 to bit 126 */
|
|
lzm = 0;
|
|
hzm = zm << 10;
|
|
assert(hzm & (1 << 62));
|
|
|
|
/* Make the exponents the same */
|
|
if (ze > re) {
|
|
/*
|
|
* Have to shift y fraction right to align.
|
|
*/
|
|
s = ze - re;
|
|
srl128(&hrm, &lrm, s);
|
|
re += s;
|
|
} else if (re > ze) {
|
|
/*
|
|
* Have to shift x fraction right to align.
|
|
*/
|
|
s = re - ze;
|
|
srl128(&hzm, &lzm, s);
|
|
ze += s;
|
|
}
|
|
assert(ze == re);
|
|
assert(ze <= DP_EMAX);
|
|
|
|
/* Do the addition */
|
|
if (zs == rs) {
|
|
/*
|
|
* Generate 128 bit result by adding two 127 bit numbers
|
|
* leaving result in hzm:lzm, zs and ze.
|
|
*/
|
|
hzm = hzm + hrm + (lzm > (lzm + lrm));
|
|
lzm = lzm + lrm;
|
|
if ((int64_t)hzm < 0) { /* carry out */
|
|
srl128(&hzm, &lzm, 1);
|
|
ze++;
|
|
}
|
|
} else {
|
|
if (hzm > hrm || (hzm == hrm && lzm >= lrm)) {
|
|
hzm = hzm - hrm - (lzm < lrm);
|
|
lzm = lzm - lrm;
|
|
} else {
|
|
hzm = hrm - hzm - (lrm < lzm);
|
|
lzm = lrm - lzm;
|
|
zs = rs;
|
|
}
|
|
if (lzm == 0 && hzm == 0)
|
|
return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
|
|
|
|
/*
|
|
* Put explicit bit at bit 126 if necessary.
|
|
*/
|
|
if (hzm == 0) {
|
|
/* left shift by 63 or 64 bits */
|
|
if ((int64_t)lzm < 0) {
|
|
/* MSB of lzm is the explicit bit */
|
|
hzm = lzm >> 1;
|
|
lzm = lzm << 63;
|
|
ze -= 63;
|
|
} else {
|
|
hzm = lzm;
|
|
lzm = 0;
|
|
ze -= 64;
|
|
}
|
|
}
|
|
|
|
t = 0;
|
|
while ((hzm >> (62 - t)) == 0)
|
|
t++;
|
|
|
|
assert(t <= 62);
|
|
if (t) {
|
|
hzm = hzm << t | lzm >> (64 - t);
|
|
lzm = lzm << t;
|
|
ze -= t;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Move explicit bit from bit 126 to bit 55 since the
|
|
* ieee754dp_format code expects the mantissa to be
|
|
* 56 bits wide (53 + 3 rounding bits).
|
|
*/
|
|
srl128(&hzm, &lzm, (126 - 55));
|
|
|
|
return ieee754dp_format(zs, ze, lzm);
|
|
}
|
|
|
|
union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x,
|
|
union ieee754dp y)
|
|
{
|
|
return _dp_maddf(z, x, y, 0);
|
|
}
|
|
|
|
union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x,
|
|
union ieee754dp y)
|
|
{
|
|
return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
|
|
}
|