linux/fs/ntfs3/fsntfs.c
Bart Van Assche ce6b531588 fs/ntfs3: Use enum req_op where appropriate
Improve static type checking by using enum req_op instead of u32 for
block layer request operations.

Cc: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/20220714180729.1065367-60-bvanassche@acm.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2022-07-14 12:14:33 -06:00

2483 lines
52 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
*
* Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
*
*/
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include "debug.h"
#include "ntfs.h"
#include "ntfs_fs.h"
// clang-format off
const struct cpu_str NAME_MFT = {
4, 0, { '$', 'M', 'F', 'T' },
};
const struct cpu_str NAME_MIRROR = {
8, 0, { '$', 'M', 'F', 'T', 'M', 'i', 'r', 'r' },
};
const struct cpu_str NAME_LOGFILE = {
8, 0, { '$', 'L', 'o', 'g', 'F', 'i', 'l', 'e' },
};
const struct cpu_str NAME_VOLUME = {
7, 0, { '$', 'V', 'o', 'l', 'u', 'm', 'e' },
};
const struct cpu_str NAME_ATTRDEF = {
8, 0, { '$', 'A', 't', 't', 'r', 'D', 'e', 'f' },
};
const struct cpu_str NAME_ROOT = {
1, 0, { '.' },
};
const struct cpu_str NAME_BITMAP = {
7, 0, { '$', 'B', 'i', 't', 'm', 'a', 'p' },
};
const struct cpu_str NAME_BOOT = {
5, 0, { '$', 'B', 'o', 'o', 't' },
};
const struct cpu_str NAME_BADCLUS = {
8, 0, { '$', 'B', 'a', 'd', 'C', 'l', 'u', 's' },
};
const struct cpu_str NAME_QUOTA = {
6, 0, { '$', 'Q', 'u', 'o', 't', 'a' },
};
const struct cpu_str NAME_SECURE = {
7, 0, { '$', 'S', 'e', 'c', 'u', 'r', 'e' },
};
const struct cpu_str NAME_UPCASE = {
7, 0, { '$', 'U', 'p', 'C', 'a', 's', 'e' },
};
const struct cpu_str NAME_EXTEND = {
7, 0, { '$', 'E', 'x', 't', 'e', 'n', 'd' },
};
const struct cpu_str NAME_OBJID = {
6, 0, { '$', 'O', 'b', 'j', 'I', 'd' },
};
const struct cpu_str NAME_REPARSE = {
8, 0, { '$', 'R', 'e', 'p', 'a', 'r', 's', 'e' },
};
const struct cpu_str NAME_USNJRNL = {
8, 0, { '$', 'U', 's', 'n', 'J', 'r', 'n', 'l' },
};
const __le16 BAD_NAME[4] = {
cpu_to_le16('$'), cpu_to_le16('B'), cpu_to_le16('a'), cpu_to_le16('d'),
};
const __le16 I30_NAME[4] = {
cpu_to_le16('$'), cpu_to_le16('I'), cpu_to_le16('3'), cpu_to_le16('0'),
};
const __le16 SII_NAME[4] = {
cpu_to_le16('$'), cpu_to_le16('S'), cpu_to_le16('I'), cpu_to_le16('I'),
};
const __le16 SDH_NAME[4] = {
cpu_to_le16('$'), cpu_to_le16('S'), cpu_to_le16('D'), cpu_to_le16('H'),
};
const __le16 SDS_NAME[4] = {
cpu_to_le16('$'), cpu_to_le16('S'), cpu_to_le16('D'), cpu_to_le16('S'),
};
const __le16 SO_NAME[2] = {
cpu_to_le16('$'), cpu_to_le16('O'),
};
const __le16 SQ_NAME[2] = {
cpu_to_le16('$'), cpu_to_le16('Q'),
};
const __le16 SR_NAME[2] = {
cpu_to_le16('$'), cpu_to_le16('R'),
};
#ifdef CONFIG_NTFS3_LZX_XPRESS
const __le16 WOF_NAME[17] = {
cpu_to_le16('W'), cpu_to_le16('o'), cpu_to_le16('f'), cpu_to_le16('C'),
cpu_to_le16('o'), cpu_to_le16('m'), cpu_to_le16('p'), cpu_to_le16('r'),
cpu_to_le16('e'), cpu_to_le16('s'), cpu_to_le16('s'), cpu_to_le16('e'),
cpu_to_le16('d'), cpu_to_le16('D'), cpu_to_le16('a'), cpu_to_le16('t'),
cpu_to_le16('a'),
};
#endif
// clang-format on
/*
* ntfs_fix_pre_write - Insert fixups into @rhdr before writing to disk.
*/
bool ntfs_fix_pre_write(struct NTFS_RECORD_HEADER *rhdr, size_t bytes)
{
u16 *fixup, *ptr;
u16 sample;
u16 fo = le16_to_cpu(rhdr->fix_off);
u16 fn = le16_to_cpu(rhdr->fix_num);
if ((fo & 1) || fo + fn * sizeof(short) > SECTOR_SIZE || !fn-- ||
fn * SECTOR_SIZE > bytes) {
return false;
}
/* Get fixup pointer. */
fixup = Add2Ptr(rhdr, fo);
if (*fixup >= 0x7FFF)
*fixup = 1;
else
*fixup += 1;
sample = *fixup;
ptr = Add2Ptr(rhdr, SECTOR_SIZE - sizeof(short));
while (fn--) {
*++fixup = *ptr;
*ptr = sample;
ptr += SECTOR_SIZE / sizeof(short);
}
return true;
}
/*
* ntfs_fix_post_read - Remove fixups after reading from disk.
*
* Return: < 0 if error, 0 if ok, 1 if need to update fixups.
*/
int ntfs_fix_post_read(struct NTFS_RECORD_HEADER *rhdr, size_t bytes,
bool simple)
{
int ret;
u16 *fixup, *ptr;
u16 sample, fo, fn;
fo = le16_to_cpu(rhdr->fix_off);
fn = simple ? ((bytes >> SECTOR_SHIFT) + 1)
: le16_to_cpu(rhdr->fix_num);
/* Check errors. */
if ((fo & 1) || fo + fn * sizeof(short) > SECTOR_SIZE || !fn-- ||
fn * SECTOR_SIZE > bytes) {
return -EINVAL; /* Native chkntfs returns ok! */
}
/* Get fixup pointer. */
fixup = Add2Ptr(rhdr, fo);
sample = *fixup;
ptr = Add2Ptr(rhdr, SECTOR_SIZE - sizeof(short));
ret = 0;
while (fn--) {
/* Test current word. */
if (*ptr != sample) {
/* Fixup does not match! Is it serious error? */
ret = -E_NTFS_FIXUP;
}
/* Replace fixup. */
*ptr = *++fixup;
ptr += SECTOR_SIZE / sizeof(short);
}
return ret;
}
/*
* ntfs_extend_init - Load $Extend file.
*/
int ntfs_extend_init(struct ntfs_sb_info *sbi)
{
int err;
struct super_block *sb = sbi->sb;
struct inode *inode, *inode2;
struct MFT_REF ref;
if (sbi->volume.major_ver < 3) {
ntfs_notice(sb, "Skip $Extend 'cause NTFS version");
return 0;
}
ref.low = cpu_to_le32(MFT_REC_EXTEND);
ref.high = 0;
ref.seq = cpu_to_le16(MFT_REC_EXTEND);
inode = ntfs_iget5(sb, &ref, &NAME_EXTEND);
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
ntfs_err(sb, "Failed to load $Extend.");
inode = NULL;
goto out;
}
/* If ntfs_iget5() reads from disk it never returns bad inode. */
if (!S_ISDIR(inode->i_mode)) {
err = -EINVAL;
goto out;
}
/* Try to find $ObjId */
inode2 = dir_search_u(inode, &NAME_OBJID, NULL);
if (inode2 && !IS_ERR(inode2)) {
if (is_bad_inode(inode2)) {
iput(inode2);
} else {
sbi->objid.ni = ntfs_i(inode2);
sbi->objid_no = inode2->i_ino;
}
}
/* Try to find $Quota */
inode2 = dir_search_u(inode, &NAME_QUOTA, NULL);
if (inode2 && !IS_ERR(inode2)) {
sbi->quota_no = inode2->i_ino;
iput(inode2);
}
/* Try to find $Reparse */
inode2 = dir_search_u(inode, &NAME_REPARSE, NULL);
if (inode2 && !IS_ERR(inode2)) {
sbi->reparse.ni = ntfs_i(inode2);
sbi->reparse_no = inode2->i_ino;
}
/* Try to find $UsnJrnl */
inode2 = dir_search_u(inode, &NAME_USNJRNL, NULL);
if (inode2 && !IS_ERR(inode2)) {
sbi->usn_jrnl_no = inode2->i_ino;
iput(inode2);
}
err = 0;
out:
iput(inode);
return err;
}
int ntfs_loadlog_and_replay(struct ntfs_inode *ni, struct ntfs_sb_info *sbi)
{
int err = 0;
struct super_block *sb = sbi->sb;
bool initialized = false;
struct MFT_REF ref;
struct inode *inode;
/* Check for 4GB. */
if (ni->vfs_inode.i_size >= 0x100000000ull) {
ntfs_err(sb, "\x24LogFile is too big");
err = -EINVAL;
goto out;
}
sbi->flags |= NTFS_FLAGS_LOG_REPLAYING;
ref.low = cpu_to_le32(MFT_REC_MFT);
ref.high = 0;
ref.seq = cpu_to_le16(1);
inode = ntfs_iget5(sb, &ref, NULL);
if (IS_ERR(inode))
inode = NULL;
if (!inode) {
/* Try to use MFT copy. */
u64 t64 = sbi->mft.lbo;
sbi->mft.lbo = sbi->mft.lbo2;
inode = ntfs_iget5(sb, &ref, NULL);
sbi->mft.lbo = t64;
if (IS_ERR(inode))
inode = NULL;
}
if (!inode) {
err = -EINVAL;
ntfs_err(sb, "Failed to load $MFT.");
goto out;
}
sbi->mft.ni = ntfs_i(inode);
/* LogFile should not contains attribute list. */
err = ni_load_all_mi(sbi->mft.ni);
if (!err)
err = log_replay(ni, &initialized);
iput(inode);
sbi->mft.ni = NULL;
sync_blockdev(sb->s_bdev);
invalidate_bdev(sb->s_bdev);
if (sbi->flags & NTFS_FLAGS_NEED_REPLAY) {
err = 0;
goto out;
}
if (sb_rdonly(sb) || !initialized)
goto out;
/* Fill LogFile by '-1' if it is initialized. */
err = ntfs_bio_fill_1(sbi, &ni->file.run);
out:
sbi->flags &= ~NTFS_FLAGS_LOG_REPLAYING;
return err;
}
/*
* ntfs_query_def
*
* Return: Current ATTR_DEF_ENTRY for given attribute type.
*/
const struct ATTR_DEF_ENTRY *ntfs_query_def(struct ntfs_sb_info *sbi,
enum ATTR_TYPE type)
{
int type_in = le32_to_cpu(type);
size_t min_idx = 0;
size_t max_idx = sbi->def_entries - 1;
while (min_idx <= max_idx) {
size_t i = min_idx + ((max_idx - min_idx) >> 1);
const struct ATTR_DEF_ENTRY *entry = sbi->def_table + i;
int diff = le32_to_cpu(entry->type) - type_in;
if (!diff)
return entry;
if (diff < 0)
min_idx = i + 1;
else if (i)
max_idx = i - 1;
else
return NULL;
}
return NULL;
}
/*
* ntfs_look_for_free_space - Look for a free space in bitmap.
*/
int ntfs_look_for_free_space(struct ntfs_sb_info *sbi, CLST lcn, CLST len,
CLST *new_lcn, CLST *new_len,
enum ALLOCATE_OPT opt)
{
int err;
CLST alen;
struct super_block *sb = sbi->sb;
size_t alcn, zlen, zeroes, zlcn, zlen2, ztrim, new_zlen;
struct wnd_bitmap *wnd = &sbi->used.bitmap;
down_write_nested(&wnd->rw_lock, BITMAP_MUTEX_CLUSTERS);
if (opt & ALLOCATE_MFT) {
zlen = wnd_zone_len(wnd);
if (!zlen) {
err = ntfs_refresh_zone(sbi);
if (err)
goto up_write;
zlen = wnd_zone_len(wnd);
}
if (!zlen) {
ntfs_err(sbi->sb, "no free space to extend mft");
err = -ENOSPC;
goto up_write;
}
lcn = wnd_zone_bit(wnd);
alen = min_t(CLST, len, zlen);
wnd_zone_set(wnd, lcn + alen, zlen - alen);
err = wnd_set_used(wnd, lcn, alen);
if (err)
goto up_write;
alcn = lcn;
goto space_found;
}
/*
* 'Cause cluster 0 is always used this value means that we should use
* cached value of 'next_free_lcn' to improve performance.
*/
if (!lcn)
lcn = sbi->used.next_free_lcn;
if (lcn >= wnd->nbits)
lcn = 0;
alen = wnd_find(wnd, len, lcn, BITMAP_FIND_MARK_AS_USED, &alcn);
if (alen)
goto space_found;
/* Try to use clusters from MftZone. */
zlen = wnd_zone_len(wnd);
zeroes = wnd_zeroes(wnd);
/* Check too big request */
if (len > zeroes + zlen || zlen <= NTFS_MIN_MFT_ZONE) {
err = -ENOSPC;
goto up_write;
}
/* How many clusters to cat from zone. */
zlcn = wnd_zone_bit(wnd);
zlen2 = zlen >> 1;
ztrim = clamp_val(len, zlen2, zlen);
new_zlen = max_t(size_t, zlen - ztrim, NTFS_MIN_MFT_ZONE);
wnd_zone_set(wnd, zlcn, new_zlen);
/* Allocate continues clusters. */
alen = wnd_find(wnd, len, 0,
BITMAP_FIND_MARK_AS_USED | BITMAP_FIND_FULL, &alcn);
if (!alen) {
err = -ENOSPC;
goto up_write;
}
space_found:
err = 0;
*new_len = alen;
*new_lcn = alcn;
ntfs_unmap_meta(sb, alcn, alen);
/* Set hint for next requests. */
if (!(opt & ALLOCATE_MFT))
sbi->used.next_free_lcn = alcn + alen;
up_write:
up_write(&wnd->rw_lock);
return err;
}
/*
* ntfs_extend_mft - Allocate additional MFT records.
*
* sbi->mft.bitmap is locked for write.
*
* NOTE: recursive:
* ntfs_look_free_mft ->
* ntfs_extend_mft ->
* attr_set_size ->
* ni_insert_nonresident ->
* ni_insert_attr ->
* ni_ins_attr_ext ->
* ntfs_look_free_mft ->
* ntfs_extend_mft
*
* To avoid recursive always allocate space for two new MFT records
* see attrib.c: "at least two MFT to avoid recursive loop".
*/
static int ntfs_extend_mft(struct ntfs_sb_info *sbi)
{
int err;
struct ntfs_inode *ni = sbi->mft.ni;
size_t new_mft_total;
u64 new_mft_bytes, new_bitmap_bytes;
struct ATTRIB *attr;
struct wnd_bitmap *wnd = &sbi->mft.bitmap;
new_mft_total = (wnd->nbits + MFT_INCREASE_CHUNK + 127) & (CLST)~127;
new_mft_bytes = (u64)new_mft_total << sbi->record_bits;
/* Step 1: Resize $MFT::DATA. */
down_write(&ni->file.run_lock);
err = attr_set_size(ni, ATTR_DATA, NULL, 0, &ni->file.run,
new_mft_bytes, NULL, false, &attr);
if (err) {
up_write(&ni->file.run_lock);
goto out;
}
attr->nres.valid_size = attr->nres.data_size;
new_mft_total = le64_to_cpu(attr->nres.alloc_size) >> sbi->record_bits;
ni->mi.dirty = true;
/* Step 2: Resize $MFT::BITMAP. */
new_bitmap_bytes = bitmap_size(new_mft_total);
err = attr_set_size(ni, ATTR_BITMAP, NULL, 0, &sbi->mft.bitmap.run,
new_bitmap_bytes, &new_bitmap_bytes, true, NULL);
/* Refresh MFT Zone if necessary. */
down_write_nested(&sbi->used.bitmap.rw_lock, BITMAP_MUTEX_CLUSTERS);
ntfs_refresh_zone(sbi);
up_write(&sbi->used.bitmap.rw_lock);
up_write(&ni->file.run_lock);
if (err)
goto out;
err = wnd_extend(wnd, new_mft_total);
if (err)
goto out;
ntfs_clear_mft_tail(sbi, sbi->mft.used, new_mft_total);
err = _ni_write_inode(&ni->vfs_inode, 0);
out:
return err;
}
/*
* ntfs_look_free_mft - Look for a free MFT record.
*/
int ntfs_look_free_mft(struct ntfs_sb_info *sbi, CLST *rno, bool mft,
struct ntfs_inode *ni, struct mft_inode **mi)
{
int err = 0;
size_t zbit, zlen, from, to, fr;
size_t mft_total;
struct MFT_REF ref;
struct super_block *sb = sbi->sb;
struct wnd_bitmap *wnd = &sbi->mft.bitmap;
u32 ir;
static_assert(sizeof(sbi->mft.reserved_bitmap) * 8 >=
MFT_REC_FREE - MFT_REC_RESERVED);
if (!mft)
down_write_nested(&wnd->rw_lock, BITMAP_MUTEX_MFT);
zlen = wnd_zone_len(wnd);
/* Always reserve space for MFT. */
if (zlen) {
if (mft) {
zbit = wnd_zone_bit(wnd);
*rno = zbit;
wnd_zone_set(wnd, zbit + 1, zlen - 1);
}
goto found;
}
/* No MFT zone. Find the nearest to '0' free MFT. */
if (!wnd_find(wnd, 1, MFT_REC_FREE, 0, &zbit)) {
/* Resize MFT */
mft_total = wnd->nbits;
err = ntfs_extend_mft(sbi);
if (!err) {
zbit = mft_total;
goto reserve_mft;
}
if (!mft || MFT_REC_FREE == sbi->mft.next_reserved)
goto out;
err = 0;
/*
* Look for free record reserved area [11-16) ==
* [MFT_REC_RESERVED, MFT_REC_FREE ) MFT bitmap always
* marks it as used.
*/
if (!sbi->mft.reserved_bitmap) {
/* Once per session create internal bitmap for 5 bits. */
sbi->mft.reserved_bitmap = 0xFF;
ref.high = 0;
for (ir = MFT_REC_RESERVED; ir < MFT_REC_FREE; ir++) {
struct inode *i;
struct ntfs_inode *ni;
struct MFT_REC *mrec;
ref.low = cpu_to_le32(ir);
ref.seq = cpu_to_le16(ir);
i = ntfs_iget5(sb, &ref, NULL);
if (IS_ERR(i)) {
next:
ntfs_notice(
sb,
"Invalid reserved record %x",
ref.low);
continue;
}
if (is_bad_inode(i)) {
iput(i);
goto next;
}
ni = ntfs_i(i);
mrec = ni->mi.mrec;
if (!is_rec_base(mrec))
goto next;
if (mrec->hard_links)
goto next;
if (!ni_std(ni))
goto next;
if (ni_find_attr(ni, NULL, NULL, ATTR_NAME,
NULL, 0, NULL, NULL))
goto next;
__clear_bit(ir - MFT_REC_RESERVED,
&sbi->mft.reserved_bitmap);
}
}
/* Scan 5 bits for zero. Bit 0 == MFT_REC_RESERVED */
zbit = find_next_zero_bit(&sbi->mft.reserved_bitmap,
MFT_REC_FREE, MFT_REC_RESERVED);
if (zbit >= MFT_REC_FREE) {
sbi->mft.next_reserved = MFT_REC_FREE;
goto out;
}
zlen = 1;
sbi->mft.next_reserved = zbit;
} else {
reserve_mft:
zlen = zbit == MFT_REC_FREE ? (MFT_REC_USER - MFT_REC_FREE) : 4;
if (zbit + zlen > wnd->nbits)
zlen = wnd->nbits - zbit;
while (zlen > 1 && !wnd_is_free(wnd, zbit, zlen))
zlen -= 1;
/* [zbit, zbit + zlen) will be used for MFT itself. */
from = sbi->mft.used;
if (from < zbit)
from = zbit;
to = zbit + zlen;
if (from < to) {
ntfs_clear_mft_tail(sbi, from, to);
sbi->mft.used = to;
}
}
if (mft) {
*rno = zbit;
zbit += 1;
zlen -= 1;
}
wnd_zone_set(wnd, zbit, zlen);
found:
if (!mft) {
/* The request to get record for general purpose. */
if (sbi->mft.next_free < MFT_REC_USER)
sbi->mft.next_free = MFT_REC_USER;
for (;;) {
if (sbi->mft.next_free >= sbi->mft.bitmap.nbits) {
} else if (!wnd_find(wnd, 1, MFT_REC_USER, 0, &fr)) {
sbi->mft.next_free = sbi->mft.bitmap.nbits;
} else {
*rno = fr;
sbi->mft.next_free = *rno + 1;
break;
}
err = ntfs_extend_mft(sbi);
if (err)
goto out;
}
}
if (ni && !ni_add_subrecord(ni, *rno, mi)) {
err = -ENOMEM;
goto out;
}
/* We have found a record that are not reserved for next MFT. */
if (*rno >= MFT_REC_FREE)
wnd_set_used(wnd, *rno, 1);
else if (*rno >= MFT_REC_RESERVED && sbi->mft.reserved_bitmap_inited)
__set_bit(*rno - MFT_REC_RESERVED, &sbi->mft.reserved_bitmap);
out:
if (!mft)
up_write(&wnd->rw_lock);
return err;
}
/*
* ntfs_mark_rec_free - Mark record as free.
*/
void ntfs_mark_rec_free(struct ntfs_sb_info *sbi, CLST rno)
{
struct wnd_bitmap *wnd = &sbi->mft.bitmap;
down_write_nested(&wnd->rw_lock, BITMAP_MUTEX_MFT);
if (rno >= wnd->nbits)
goto out;
if (rno >= MFT_REC_FREE) {
if (!wnd_is_used(wnd, rno, 1))
ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
else
wnd_set_free(wnd, rno, 1);
} else if (rno >= MFT_REC_RESERVED && sbi->mft.reserved_bitmap_inited) {
__clear_bit(rno - MFT_REC_RESERVED, &sbi->mft.reserved_bitmap);
}
if (rno < wnd_zone_bit(wnd))
wnd_zone_set(wnd, rno, 1);
else if (rno < sbi->mft.next_free && rno >= MFT_REC_USER)
sbi->mft.next_free = rno;
out:
up_write(&wnd->rw_lock);
}
/*
* ntfs_clear_mft_tail - Format empty records [from, to).
*
* sbi->mft.bitmap is locked for write.
*/
int ntfs_clear_mft_tail(struct ntfs_sb_info *sbi, size_t from, size_t to)
{
int err;
u32 rs;
u64 vbo;
struct runs_tree *run;
struct ntfs_inode *ni;
if (from >= to)
return 0;
rs = sbi->record_size;
ni = sbi->mft.ni;
run = &ni->file.run;
down_read(&ni->file.run_lock);
vbo = (u64)from * rs;
for (; from < to; from++, vbo += rs) {
struct ntfs_buffers nb;
err = ntfs_get_bh(sbi, run, vbo, rs, &nb);
if (err)
goto out;
err = ntfs_write_bh(sbi, &sbi->new_rec->rhdr, &nb, 0);
nb_put(&nb);
if (err)
goto out;
}
out:
sbi->mft.used = from;
up_read(&ni->file.run_lock);
return err;
}
/*
* ntfs_refresh_zone - Refresh MFT zone.
*
* sbi->used.bitmap is locked for rw.
* sbi->mft.bitmap is locked for write.
* sbi->mft.ni->file.run_lock for write.
*/
int ntfs_refresh_zone(struct ntfs_sb_info *sbi)
{
CLST zone_limit, zone_max, lcn, vcn, len;
size_t lcn_s, zlen;
struct wnd_bitmap *wnd = &sbi->used.bitmap;
struct ntfs_inode *ni = sbi->mft.ni;
/* Do not change anything unless we have non empty MFT zone. */
if (wnd_zone_len(wnd))
return 0;
/*
* Compute the MFT zone at two steps.
* It would be nice if we are able to allocate 1/8 of
* total clusters for MFT but not more then 512 MB.
*/
zone_limit = (512 * 1024 * 1024) >> sbi->cluster_bits;
zone_max = wnd->nbits >> 3;
if (zone_max > zone_limit)
zone_max = zone_limit;
vcn = bytes_to_cluster(sbi,
(u64)sbi->mft.bitmap.nbits << sbi->record_bits);
if (!run_lookup_entry(&ni->file.run, vcn - 1, &lcn, &len, NULL))
lcn = SPARSE_LCN;
/* We should always find Last Lcn for MFT. */
if (lcn == SPARSE_LCN)
return -EINVAL;
lcn_s = lcn + 1;
/* Try to allocate clusters after last MFT run. */
zlen = wnd_find(wnd, zone_max, lcn_s, 0, &lcn_s);
if (!zlen) {
ntfs_notice(sbi->sb, "MftZone: unavailable");
return 0;
}
/* Truncate too large zone. */
wnd_zone_set(wnd, lcn_s, zlen);
return 0;
}
/*
* ntfs_update_mftmirr - Update $MFTMirr data.
*/
int ntfs_update_mftmirr(struct ntfs_sb_info *sbi, int wait)
{
int err;
struct super_block *sb = sbi->sb;
u32 blocksize = sb->s_blocksize;
sector_t block1, block2;
u32 bytes;
if (!(sbi->flags & NTFS_FLAGS_MFTMIRR))
return 0;
err = 0;
bytes = sbi->mft.recs_mirr << sbi->record_bits;
block1 = sbi->mft.lbo >> sb->s_blocksize_bits;
block2 = sbi->mft.lbo2 >> sb->s_blocksize_bits;
for (; bytes >= blocksize; bytes -= blocksize) {
struct buffer_head *bh1, *bh2;
bh1 = sb_bread(sb, block1++);
if (!bh1) {
err = -EIO;
goto out;
}
bh2 = sb_getblk(sb, block2++);
if (!bh2) {
put_bh(bh1);
err = -EIO;
goto out;
}
if (buffer_locked(bh2))
__wait_on_buffer(bh2);
lock_buffer(bh2);
memcpy(bh2->b_data, bh1->b_data, blocksize);
set_buffer_uptodate(bh2);
mark_buffer_dirty(bh2);
unlock_buffer(bh2);
put_bh(bh1);
bh1 = NULL;
if (wait)
err = sync_dirty_buffer(bh2);
put_bh(bh2);
if (err)
goto out;
}
sbi->flags &= ~NTFS_FLAGS_MFTMIRR;
out:
return err;
}
/*
* ntfs_set_state
*
* Mount: ntfs_set_state(NTFS_DIRTY_DIRTY)
* Umount: ntfs_set_state(NTFS_DIRTY_CLEAR)
* NTFS error: ntfs_set_state(NTFS_DIRTY_ERROR)
*/
int ntfs_set_state(struct ntfs_sb_info *sbi, enum NTFS_DIRTY_FLAGS dirty)
{
int err;
struct ATTRIB *attr;
struct VOLUME_INFO *info;
struct mft_inode *mi;
struct ntfs_inode *ni;
/*
* Do not change state if fs was real_dirty.
* Do not change state if fs already dirty(clear).
* Do not change any thing if mounted read only.
*/
if (sbi->volume.real_dirty || sb_rdonly(sbi->sb))
return 0;
/* Check cached value. */
if ((dirty == NTFS_DIRTY_CLEAR ? 0 : VOLUME_FLAG_DIRTY) ==
(sbi->volume.flags & VOLUME_FLAG_DIRTY))
return 0;
ni = sbi->volume.ni;
if (!ni)
return -EINVAL;
mutex_lock_nested(&ni->ni_lock, NTFS_INODE_MUTEX_DIRTY);
attr = ni_find_attr(ni, NULL, NULL, ATTR_VOL_INFO, NULL, 0, NULL, &mi);
if (!attr) {
err = -EINVAL;
goto out;
}
info = resident_data_ex(attr, SIZEOF_ATTRIBUTE_VOLUME_INFO);
if (!info) {
err = -EINVAL;
goto out;
}
switch (dirty) {
case NTFS_DIRTY_ERROR:
ntfs_notice(sbi->sb, "Mark volume as dirty due to NTFS errors");
sbi->volume.real_dirty = true;
fallthrough;
case NTFS_DIRTY_DIRTY:
info->flags |= VOLUME_FLAG_DIRTY;
break;
case NTFS_DIRTY_CLEAR:
info->flags &= ~VOLUME_FLAG_DIRTY;
break;
}
/* Cache current volume flags. */
sbi->volume.flags = info->flags;
mi->dirty = true;
err = 0;
out:
ni_unlock(ni);
if (err)
return err;
mark_inode_dirty(&ni->vfs_inode);
/* verify(!ntfs_update_mftmirr()); */
/*
* If we used wait=1, sync_inode_metadata waits for the io for the
* inode to finish. It hangs when media is removed.
* So wait=0 is sent down to sync_inode_metadata
* and filemap_fdatawrite is used for the data blocks.
*/
err = sync_inode_metadata(&ni->vfs_inode, 0);
if (!err)
err = filemap_fdatawrite(ni->vfs_inode.i_mapping);
return err;
}
/*
* security_hash - Calculates a hash of security descriptor.
*/
static inline __le32 security_hash(const void *sd, size_t bytes)
{
u32 hash = 0;
const __le32 *ptr = sd;
bytes >>= 2;
while (bytes--)
hash = ((hash >> 0x1D) | (hash << 3)) + le32_to_cpu(*ptr++);
return cpu_to_le32(hash);
}
int ntfs_sb_read(struct super_block *sb, u64 lbo, size_t bytes, void *buffer)
{
struct block_device *bdev = sb->s_bdev;
u32 blocksize = sb->s_blocksize;
u64 block = lbo >> sb->s_blocksize_bits;
u32 off = lbo & (blocksize - 1);
u32 op = blocksize - off;
for (; bytes; block += 1, off = 0, op = blocksize) {
struct buffer_head *bh = __bread(bdev, block, blocksize);
if (!bh)
return -EIO;
if (op > bytes)
op = bytes;
memcpy(buffer, bh->b_data + off, op);
put_bh(bh);
bytes -= op;
buffer = Add2Ptr(buffer, op);
}
return 0;
}
int ntfs_sb_write(struct super_block *sb, u64 lbo, size_t bytes,
const void *buf, int wait)
{
u32 blocksize = sb->s_blocksize;
struct block_device *bdev = sb->s_bdev;
sector_t block = lbo >> sb->s_blocksize_bits;
u32 off = lbo & (blocksize - 1);
u32 op = blocksize - off;
struct buffer_head *bh;
if (!wait && (sb->s_flags & SB_SYNCHRONOUS))
wait = 1;
for (; bytes; block += 1, off = 0, op = blocksize) {
if (op > bytes)
op = bytes;
if (op < blocksize) {
bh = __bread(bdev, block, blocksize);
if (!bh) {
ntfs_err(sb, "failed to read block %llx",
(u64)block);
return -EIO;
}
} else {
bh = __getblk(bdev, block, blocksize);
if (!bh)
return -ENOMEM;
}
if (buffer_locked(bh))
__wait_on_buffer(bh);
lock_buffer(bh);
if (buf) {
memcpy(bh->b_data + off, buf, op);
buf = Add2Ptr(buf, op);
} else {
memset(bh->b_data + off, -1, op);
}
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
unlock_buffer(bh);
if (wait) {
int err = sync_dirty_buffer(bh);
if (err) {
ntfs_err(
sb,
"failed to sync buffer at block %llx, error %d",
(u64)block, err);
put_bh(bh);
return err;
}
}
put_bh(bh);
bytes -= op;
}
return 0;
}
int ntfs_sb_write_run(struct ntfs_sb_info *sbi, const struct runs_tree *run,
u64 vbo, const void *buf, size_t bytes, int sync)
{
struct super_block *sb = sbi->sb;
u8 cluster_bits = sbi->cluster_bits;
u32 off = vbo & sbi->cluster_mask;
CLST lcn, clen, vcn = vbo >> cluster_bits, vcn_next;
u64 lbo, len;
size_t idx;
if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx))
return -ENOENT;
if (lcn == SPARSE_LCN)
return -EINVAL;
lbo = ((u64)lcn << cluster_bits) + off;
len = ((u64)clen << cluster_bits) - off;
for (;;) {
u32 op = min_t(u64, len, bytes);
int err = ntfs_sb_write(sb, lbo, op, buf, sync);
if (err)
return err;
bytes -= op;
if (!bytes)
break;
vcn_next = vcn + clen;
if (!run_get_entry(run, ++idx, &vcn, &lcn, &clen) ||
vcn != vcn_next)
return -ENOENT;
if (lcn == SPARSE_LCN)
return -EINVAL;
if (buf)
buf = Add2Ptr(buf, op);
lbo = ((u64)lcn << cluster_bits);
len = ((u64)clen << cluster_bits);
}
return 0;
}
struct buffer_head *ntfs_bread_run(struct ntfs_sb_info *sbi,
const struct runs_tree *run, u64 vbo)
{
struct super_block *sb = sbi->sb;
u8 cluster_bits = sbi->cluster_bits;
CLST lcn;
u64 lbo;
if (!run_lookup_entry(run, vbo >> cluster_bits, &lcn, NULL, NULL))
return ERR_PTR(-ENOENT);
lbo = ((u64)lcn << cluster_bits) + (vbo & sbi->cluster_mask);
return ntfs_bread(sb, lbo >> sb->s_blocksize_bits);
}
int ntfs_read_run_nb(struct ntfs_sb_info *sbi, const struct runs_tree *run,
u64 vbo, void *buf, u32 bytes, struct ntfs_buffers *nb)
{
int err;
struct super_block *sb = sbi->sb;
u32 blocksize = sb->s_blocksize;
u8 cluster_bits = sbi->cluster_bits;
u32 off = vbo & sbi->cluster_mask;
u32 nbh = 0;
CLST vcn_next, vcn = vbo >> cluster_bits;
CLST lcn, clen;
u64 lbo, len;
size_t idx;
struct buffer_head *bh;
if (!run) {
/* First reading of $Volume + $MFTMirr + $LogFile goes here. */
if (vbo > MFT_REC_VOL * sbi->record_size) {
err = -ENOENT;
goto out;
}
/* Use absolute boot's 'MFTCluster' to read record. */
lbo = vbo + sbi->mft.lbo;
len = sbi->record_size;
} else if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx)) {
err = -ENOENT;
goto out;
} else {
if (lcn == SPARSE_LCN) {
err = -EINVAL;
goto out;
}
lbo = ((u64)lcn << cluster_bits) + off;
len = ((u64)clen << cluster_bits) - off;
}
off = lbo & (blocksize - 1);
if (nb) {
nb->off = off;
nb->bytes = bytes;
}
for (;;) {
u32 len32 = len >= bytes ? bytes : len;
sector_t block = lbo >> sb->s_blocksize_bits;
do {
u32 op = blocksize - off;
if (op > len32)
op = len32;
bh = ntfs_bread(sb, block);
if (!bh) {
err = -EIO;
goto out;
}
if (buf) {
memcpy(buf, bh->b_data + off, op);
buf = Add2Ptr(buf, op);
}
if (!nb) {
put_bh(bh);
} else if (nbh >= ARRAY_SIZE(nb->bh)) {
err = -EINVAL;
goto out;
} else {
nb->bh[nbh++] = bh;
nb->nbufs = nbh;
}
bytes -= op;
if (!bytes)
return 0;
len32 -= op;
block += 1;
off = 0;
} while (len32);
vcn_next = vcn + clen;
if (!run_get_entry(run, ++idx, &vcn, &lcn, &clen) ||
vcn != vcn_next) {
err = -ENOENT;
goto out;
}
if (lcn == SPARSE_LCN) {
err = -EINVAL;
goto out;
}
lbo = ((u64)lcn << cluster_bits);
len = ((u64)clen << cluster_bits);
}
out:
if (!nbh)
return err;
while (nbh) {
put_bh(nb->bh[--nbh]);
nb->bh[nbh] = NULL;
}
nb->nbufs = 0;
return err;
}
/*
* ntfs_read_bh
*
* Return: < 0 if error, 0 if ok, -E_NTFS_FIXUP if need to update fixups.
*/
int ntfs_read_bh(struct ntfs_sb_info *sbi, const struct runs_tree *run, u64 vbo,
struct NTFS_RECORD_HEADER *rhdr, u32 bytes,
struct ntfs_buffers *nb)
{
int err = ntfs_read_run_nb(sbi, run, vbo, rhdr, bytes, nb);
if (err)
return err;
return ntfs_fix_post_read(rhdr, nb->bytes, true);
}
int ntfs_get_bh(struct ntfs_sb_info *sbi, const struct runs_tree *run, u64 vbo,
u32 bytes, struct ntfs_buffers *nb)
{
int err = 0;
struct super_block *sb = sbi->sb;
u32 blocksize = sb->s_blocksize;
u8 cluster_bits = sbi->cluster_bits;
CLST vcn_next, vcn = vbo >> cluster_bits;
u32 off;
u32 nbh = 0;
CLST lcn, clen;
u64 lbo, len;
size_t idx;
nb->bytes = bytes;
if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx)) {
err = -ENOENT;
goto out;
}
off = vbo & sbi->cluster_mask;
lbo = ((u64)lcn << cluster_bits) + off;
len = ((u64)clen << cluster_bits) - off;
nb->off = off = lbo & (blocksize - 1);
for (;;) {
u32 len32 = min_t(u64, len, bytes);
sector_t block = lbo >> sb->s_blocksize_bits;
do {
u32 op;
struct buffer_head *bh;
if (nbh >= ARRAY_SIZE(nb->bh)) {
err = -EINVAL;
goto out;
}
op = blocksize - off;
if (op > len32)
op = len32;
if (op == blocksize) {
bh = sb_getblk(sb, block);
if (!bh) {
err = -ENOMEM;
goto out;
}
if (buffer_locked(bh))
__wait_on_buffer(bh);
set_buffer_uptodate(bh);
} else {
bh = ntfs_bread(sb, block);
if (!bh) {
err = -EIO;
goto out;
}
}
nb->bh[nbh++] = bh;
bytes -= op;
if (!bytes) {
nb->nbufs = nbh;
return 0;
}
block += 1;
len32 -= op;
off = 0;
} while (len32);
vcn_next = vcn + clen;
if (!run_get_entry(run, ++idx, &vcn, &lcn, &clen) ||
vcn != vcn_next) {
err = -ENOENT;
goto out;
}
lbo = ((u64)lcn << cluster_bits);
len = ((u64)clen << cluster_bits);
}
out:
while (nbh) {
put_bh(nb->bh[--nbh]);
nb->bh[nbh] = NULL;
}
nb->nbufs = 0;
return err;
}
int ntfs_write_bh(struct ntfs_sb_info *sbi, struct NTFS_RECORD_HEADER *rhdr,
struct ntfs_buffers *nb, int sync)
{
int err = 0;
struct super_block *sb = sbi->sb;
u32 block_size = sb->s_blocksize;
u32 bytes = nb->bytes;
u32 off = nb->off;
u16 fo = le16_to_cpu(rhdr->fix_off);
u16 fn = le16_to_cpu(rhdr->fix_num);
u32 idx;
__le16 *fixup;
__le16 sample;
if ((fo & 1) || fo + fn * sizeof(short) > SECTOR_SIZE || !fn-- ||
fn * SECTOR_SIZE > bytes) {
return -EINVAL;
}
for (idx = 0; bytes && idx < nb->nbufs; idx += 1, off = 0) {
u32 op = block_size - off;
char *bh_data;
struct buffer_head *bh = nb->bh[idx];
__le16 *ptr, *end_data;
if (op > bytes)
op = bytes;
if (buffer_locked(bh))
__wait_on_buffer(bh);
lock_buffer(nb->bh[idx]);
bh_data = bh->b_data + off;
end_data = Add2Ptr(bh_data, op);
memcpy(bh_data, rhdr, op);
if (!idx) {
u16 t16;
fixup = Add2Ptr(bh_data, fo);
sample = *fixup;
t16 = le16_to_cpu(sample);
if (t16 >= 0x7FFF) {
sample = *fixup = cpu_to_le16(1);
} else {
sample = cpu_to_le16(t16 + 1);
*fixup = sample;
}
*(__le16 *)Add2Ptr(rhdr, fo) = sample;
}
ptr = Add2Ptr(bh_data, SECTOR_SIZE - sizeof(short));
do {
*++fixup = *ptr;
*ptr = sample;
ptr += SECTOR_SIZE / sizeof(short);
} while (ptr < end_data);
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
unlock_buffer(bh);
if (sync) {
int err2 = sync_dirty_buffer(bh);
if (!err && err2)
err = err2;
}
bytes -= op;
rhdr = Add2Ptr(rhdr, op);
}
return err;
}
/*
* ntfs_bio_pages - Read/write pages from/to disk.
*/
int ntfs_bio_pages(struct ntfs_sb_info *sbi, const struct runs_tree *run,
struct page **pages, u32 nr_pages, u64 vbo, u32 bytes,
enum req_op op)
{
int err = 0;
struct bio *new, *bio = NULL;
struct super_block *sb = sbi->sb;
struct block_device *bdev = sb->s_bdev;
struct page *page;
u8 cluster_bits = sbi->cluster_bits;
CLST lcn, clen, vcn, vcn_next;
u32 add, off, page_idx;
u64 lbo, len;
size_t run_idx;
struct blk_plug plug;
if (!bytes)
return 0;
blk_start_plug(&plug);
/* Align vbo and bytes to be 512 bytes aligned. */
lbo = (vbo + bytes + 511) & ~511ull;
vbo = vbo & ~511ull;
bytes = lbo - vbo;
vcn = vbo >> cluster_bits;
if (!run_lookup_entry(run, vcn, &lcn, &clen, &run_idx)) {
err = -ENOENT;
goto out;
}
off = vbo & sbi->cluster_mask;
page_idx = 0;
page = pages[0];
for (;;) {
lbo = ((u64)lcn << cluster_bits) + off;
len = ((u64)clen << cluster_bits) - off;
new_bio:
new = bio_alloc(bdev, nr_pages - page_idx, op, GFP_NOFS);
if (bio) {
bio_chain(bio, new);
submit_bio(bio);
}
bio = new;
bio->bi_iter.bi_sector = lbo >> 9;
while (len) {
off = vbo & (PAGE_SIZE - 1);
add = off + len > PAGE_SIZE ? (PAGE_SIZE - off) : len;
if (bio_add_page(bio, page, add, off) < add)
goto new_bio;
if (bytes <= add)
goto out;
bytes -= add;
vbo += add;
if (add + off == PAGE_SIZE) {
page_idx += 1;
if (WARN_ON(page_idx >= nr_pages)) {
err = -EINVAL;
goto out;
}
page = pages[page_idx];
}
if (len <= add)
break;
len -= add;
lbo += add;
}
vcn_next = vcn + clen;
if (!run_get_entry(run, ++run_idx, &vcn, &lcn, &clen) ||
vcn != vcn_next) {
err = -ENOENT;
goto out;
}
off = 0;
}
out:
if (bio) {
if (!err)
err = submit_bio_wait(bio);
bio_put(bio);
}
blk_finish_plug(&plug);
return err;
}
/*
* ntfs_bio_fill_1 - Helper for ntfs_loadlog_and_replay().
*
* Fill on-disk logfile range by (-1)
* this means empty logfile.
*/
int ntfs_bio_fill_1(struct ntfs_sb_info *sbi, const struct runs_tree *run)
{
int err = 0;
struct super_block *sb = sbi->sb;
struct block_device *bdev = sb->s_bdev;
u8 cluster_bits = sbi->cluster_bits;
struct bio *new, *bio = NULL;
CLST lcn, clen;
u64 lbo, len;
size_t run_idx;
struct page *fill;
void *kaddr;
struct blk_plug plug;
fill = alloc_page(GFP_KERNEL);
if (!fill)
return -ENOMEM;
kaddr = kmap_atomic(fill);
memset(kaddr, -1, PAGE_SIZE);
kunmap_atomic(kaddr);
flush_dcache_page(fill);
lock_page(fill);
if (!run_lookup_entry(run, 0, &lcn, &clen, &run_idx)) {
err = -ENOENT;
goto out;
}
/*
* TODO: Try blkdev_issue_write_same.
*/
blk_start_plug(&plug);
do {
lbo = (u64)lcn << cluster_bits;
len = (u64)clen << cluster_bits;
new_bio:
new = bio_alloc(bdev, BIO_MAX_VECS, REQ_OP_WRITE, GFP_NOFS);
if (bio) {
bio_chain(bio, new);
submit_bio(bio);
}
bio = new;
bio->bi_iter.bi_sector = lbo >> 9;
for (;;) {
u32 add = len > PAGE_SIZE ? PAGE_SIZE : len;
if (bio_add_page(bio, fill, add, 0) < add)
goto new_bio;
lbo += add;
if (len <= add)
break;
len -= add;
}
} while (run_get_entry(run, ++run_idx, NULL, &lcn, &clen));
if (!err)
err = submit_bio_wait(bio);
bio_put(bio);
blk_finish_plug(&plug);
out:
unlock_page(fill);
put_page(fill);
return err;
}
int ntfs_vbo_to_lbo(struct ntfs_sb_info *sbi, const struct runs_tree *run,
u64 vbo, u64 *lbo, u64 *bytes)
{
u32 off;
CLST lcn, len;
u8 cluster_bits = sbi->cluster_bits;
if (!run_lookup_entry(run, vbo >> cluster_bits, &lcn, &len, NULL))
return -ENOENT;
off = vbo & sbi->cluster_mask;
*lbo = lcn == SPARSE_LCN ? -1 : (((u64)lcn << cluster_bits) + off);
*bytes = ((u64)len << cluster_bits) - off;
return 0;
}
struct ntfs_inode *ntfs_new_inode(struct ntfs_sb_info *sbi, CLST rno, bool dir)
{
int err = 0;
struct super_block *sb = sbi->sb;
struct inode *inode = new_inode(sb);
struct ntfs_inode *ni;
if (!inode)
return ERR_PTR(-ENOMEM);
ni = ntfs_i(inode);
err = mi_format_new(&ni->mi, sbi, rno, dir ? RECORD_FLAG_DIR : 0,
false);
if (err)
goto out;
inode->i_ino = rno;
if (insert_inode_locked(inode) < 0) {
err = -EIO;
goto out;
}
out:
if (err) {
iput(inode);
ni = ERR_PTR(err);
}
return ni;
}
/*
* O:BAG:BAD:(A;OICI;FA;;;WD)
* Owner S-1-5-32-544 (Administrators)
* Group S-1-5-32-544 (Administrators)
* ACE: allow S-1-1-0 (Everyone) with FILE_ALL_ACCESS
*/
const u8 s_default_security[] __aligned(8) = {
0x01, 0x00, 0x04, 0x80, 0x30, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x02, 0x00, 0x1C, 0x00,
0x01, 0x00, 0x00, 0x00, 0x00, 0x03, 0x14, 0x00, 0xFF, 0x01, 0x1F, 0x00,
0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,
0x01, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x20, 0x00, 0x00, 0x00,
0x20, 0x02, 0x00, 0x00, 0x01, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05,
0x20, 0x00, 0x00, 0x00, 0x20, 0x02, 0x00, 0x00,
};
static_assert(sizeof(s_default_security) == 0x50);
static inline u32 sid_length(const struct SID *sid)
{
return struct_size(sid, SubAuthority, sid->SubAuthorityCount);
}
/*
* is_acl_valid
*
* Thanks Mark Harmstone for idea.
*/
static bool is_acl_valid(const struct ACL *acl, u32 len)
{
const struct ACE_HEADER *ace;
u32 i;
u16 ace_count, ace_size;
if (acl->AclRevision != ACL_REVISION &&
acl->AclRevision != ACL_REVISION_DS) {
/*
* This value should be ACL_REVISION, unless the ACL contains an
* object-specific ACE, in which case this value must be ACL_REVISION_DS.
* All ACEs in an ACL must be at the same revision level.
*/
return false;
}
if (acl->Sbz1)
return false;
if (le16_to_cpu(acl->AclSize) > len)
return false;
if (acl->Sbz2)
return false;
len -= sizeof(struct ACL);
ace = (struct ACE_HEADER *)&acl[1];
ace_count = le16_to_cpu(acl->AceCount);
for (i = 0; i < ace_count; i++) {
if (len < sizeof(struct ACE_HEADER))
return false;
ace_size = le16_to_cpu(ace->AceSize);
if (len < ace_size)
return false;
len -= ace_size;
ace = Add2Ptr(ace, ace_size);
}
return true;
}
bool is_sd_valid(const struct SECURITY_DESCRIPTOR_RELATIVE *sd, u32 len)
{
u32 sd_owner, sd_group, sd_sacl, sd_dacl;
if (len < sizeof(struct SECURITY_DESCRIPTOR_RELATIVE))
return false;
if (sd->Revision != 1)
return false;
if (sd->Sbz1)
return false;
if (!(sd->Control & SE_SELF_RELATIVE))
return false;
sd_owner = le32_to_cpu(sd->Owner);
if (sd_owner) {
const struct SID *owner = Add2Ptr(sd, sd_owner);
if (sd_owner + offsetof(struct SID, SubAuthority) > len)
return false;
if (owner->Revision != 1)
return false;
if (sd_owner + sid_length(owner) > len)
return false;
}
sd_group = le32_to_cpu(sd->Group);
if (sd_group) {
const struct SID *group = Add2Ptr(sd, sd_group);
if (sd_group + offsetof(struct SID, SubAuthority) > len)
return false;
if (group->Revision != 1)
return false;
if (sd_group + sid_length(group) > len)
return false;
}
sd_sacl = le32_to_cpu(sd->Sacl);
if (sd_sacl) {
const struct ACL *sacl = Add2Ptr(sd, sd_sacl);
if (sd_sacl + sizeof(struct ACL) > len)
return false;
if (!is_acl_valid(sacl, len - sd_sacl))
return false;
}
sd_dacl = le32_to_cpu(sd->Dacl);
if (sd_dacl) {
const struct ACL *dacl = Add2Ptr(sd, sd_dacl);
if (sd_dacl + sizeof(struct ACL) > len)
return false;
if (!is_acl_valid(dacl, len - sd_dacl))
return false;
}
return true;
}
/*
* ntfs_security_init - Load and parse $Secure.
*/
int ntfs_security_init(struct ntfs_sb_info *sbi)
{
int err;
struct super_block *sb = sbi->sb;
struct inode *inode;
struct ntfs_inode *ni;
struct MFT_REF ref;
struct ATTRIB *attr;
struct ATTR_LIST_ENTRY *le;
u64 sds_size;
size_t off;
struct NTFS_DE *ne;
struct NTFS_DE_SII *sii_e;
struct ntfs_fnd *fnd_sii = NULL;
const struct INDEX_ROOT *root_sii;
const struct INDEX_ROOT *root_sdh;
struct ntfs_index *indx_sdh = &sbi->security.index_sdh;
struct ntfs_index *indx_sii = &sbi->security.index_sii;
ref.low = cpu_to_le32(MFT_REC_SECURE);
ref.high = 0;
ref.seq = cpu_to_le16(MFT_REC_SECURE);
inode = ntfs_iget5(sb, &ref, &NAME_SECURE);
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
ntfs_err(sb, "Failed to load $Secure.");
inode = NULL;
goto out;
}
ni = ntfs_i(inode);
le = NULL;
attr = ni_find_attr(ni, NULL, &le, ATTR_ROOT, SDH_NAME,
ARRAY_SIZE(SDH_NAME), NULL, NULL);
if (!attr) {
err = -EINVAL;
goto out;
}
root_sdh = resident_data(attr);
if (root_sdh->type != ATTR_ZERO ||
root_sdh->rule != NTFS_COLLATION_TYPE_SECURITY_HASH) {
err = -EINVAL;
goto out;
}
err = indx_init(indx_sdh, sbi, attr, INDEX_MUTEX_SDH);
if (err)
goto out;
attr = ni_find_attr(ni, attr, &le, ATTR_ROOT, SII_NAME,
ARRAY_SIZE(SII_NAME), NULL, NULL);
if (!attr) {
err = -EINVAL;
goto out;
}
root_sii = resident_data(attr);
if (root_sii->type != ATTR_ZERO ||
root_sii->rule != NTFS_COLLATION_TYPE_UINT) {
err = -EINVAL;
goto out;
}
err = indx_init(indx_sii, sbi, attr, INDEX_MUTEX_SII);
if (err)
goto out;
fnd_sii = fnd_get();
if (!fnd_sii) {
err = -ENOMEM;
goto out;
}
sds_size = inode->i_size;
/* Find the last valid Id. */
sbi->security.next_id = SECURITY_ID_FIRST;
/* Always write new security at the end of bucket. */
sbi->security.next_off =
ALIGN(sds_size - SecurityDescriptorsBlockSize, 16);
off = 0;
ne = NULL;
for (;;) {
u32 next_id;
err = indx_find_raw(indx_sii, ni, root_sii, &ne, &off, fnd_sii);
if (err || !ne)
break;
sii_e = (struct NTFS_DE_SII *)ne;
if (le16_to_cpu(ne->view.data_size) < SIZEOF_SECURITY_HDR)
continue;
next_id = le32_to_cpu(sii_e->sec_id) + 1;
if (next_id >= sbi->security.next_id)
sbi->security.next_id = next_id;
}
sbi->security.ni = ni;
inode = NULL;
out:
iput(inode);
fnd_put(fnd_sii);
return err;
}
/*
* ntfs_get_security_by_id - Read security descriptor by id.
*/
int ntfs_get_security_by_id(struct ntfs_sb_info *sbi, __le32 security_id,
struct SECURITY_DESCRIPTOR_RELATIVE **sd,
size_t *size)
{
int err;
int diff;
struct ntfs_inode *ni = sbi->security.ni;
struct ntfs_index *indx = &sbi->security.index_sii;
void *p = NULL;
struct NTFS_DE_SII *sii_e;
struct ntfs_fnd *fnd_sii;
struct SECURITY_HDR d_security;
const struct INDEX_ROOT *root_sii;
u32 t32;
*sd = NULL;
mutex_lock_nested(&ni->ni_lock, NTFS_INODE_MUTEX_SECURITY);
fnd_sii = fnd_get();
if (!fnd_sii) {
err = -ENOMEM;
goto out;
}
root_sii = indx_get_root(indx, ni, NULL, NULL);
if (!root_sii) {
err = -EINVAL;
goto out;
}
/* Try to find this SECURITY descriptor in SII indexes. */
err = indx_find(indx, ni, root_sii, &security_id, sizeof(security_id),
NULL, &diff, (struct NTFS_DE **)&sii_e, fnd_sii);
if (err)
goto out;
if (diff)
goto out;
t32 = le32_to_cpu(sii_e->sec_hdr.size);
if (t32 < SIZEOF_SECURITY_HDR) {
err = -EINVAL;
goto out;
}
if (t32 > SIZEOF_SECURITY_HDR + 0x10000) {
/* Looks like too big security. 0x10000 - is arbitrary big number. */
err = -EFBIG;
goto out;
}
*size = t32 - SIZEOF_SECURITY_HDR;
p = kmalloc(*size, GFP_NOFS);
if (!p) {
err = -ENOMEM;
goto out;
}
err = ntfs_read_run_nb(sbi, &ni->file.run,
le64_to_cpu(sii_e->sec_hdr.off), &d_security,
sizeof(d_security), NULL);
if (err)
goto out;
if (memcmp(&d_security, &sii_e->sec_hdr, SIZEOF_SECURITY_HDR)) {
err = -EINVAL;
goto out;
}
err = ntfs_read_run_nb(sbi, &ni->file.run,
le64_to_cpu(sii_e->sec_hdr.off) +
SIZEOF_SECURITY_HDR,
p, *size, NULL);
if (err)
goto out;
*sd = p;
p = NULL;
out:
kfree(p);
fnd_put(fnd_sii);
ni_unlock(ni);
return err;
}
/*
* ntfs_insert_security - Insert security descriptor into $Secure::SDS.
*
* SECURITY Descriptor Stream data is organized into chunks of 256K bytes
* and it contains a mirror copy of each security descriptor. When writing
* to a security descriptor at location X, another copy will be written at
* location (X+256K).
* When writing a security descriptor that will cross the 256K boundary,
* the pointer will be advanced by 256K to skip
* over the mirror portion.
*/
int ntfs_insert_security(struct ntfs_sb_info *sbi,
const struct SECURITY_DESCRIPTOR_RELATIVE *sd,
u32 size_sd, __le32 *security_id, bool *inserted)
{
int err, diff;
struct ntfs_inode *ni = sbi->security.ni;
struct ntfs_index *indx_sdh = &sbi->security.index_sdh;
struct ntfs_index *indx_sii = &sbi->security.index_sii;
struct NTFS_DE_SDH *e;
struct NTFS_DE_SDH sdh_e;
struct NTFS_DE_SII sii_e;
struct SECURITY_HDR *d_security;
u32 new_sec_size = size_sd + SIZEOF_SECURITY_HDR;
u32 aligned_sec_size = ALIGN(new_sec_size, 16);
struct SECURITY_KEY hash_key;
struct ntfs_fnd *fnd_sdh = NULL;
const struct INDEX_ROOT *root_sdh;
const struct INDEX_ROOT *root_sii;
u64 mirr_off, new_sds_size;
u32 next, left;
static_assert((1 << Log2OfSecurityDescriptorsBlockSize) ==
SecurityDescriptorsBlockSize);
hash_key.hash = security_hash(sd, size_sd);
hash_key.sec_id = SECURITY_ID_INVALID;
if (inserted)
*inserted = false;
*security_id = SECURITY_ID_INVALID;
/* Allocate a temporal buffer. */
d_security = kzalloc(aligned_sec_size, GFP_NOFS);
if (!d_security)
return -ENOMEM;
mutex_lock_nested(&ni->ni_lock, NTFS_INODE_MUTEX_SECURITY);
fnd_sdh = fnd_get();
if (!fnd_sdh) {
err = -ENOMEM;
goto out;
}
root_sdh = indx_get_root(indx_sdh, ni, NULL, NULL);
if (!root_sdh) {
err = -EINVAL;
goto out;
}
root_sii = indx_get_root(indx_sii, ni, NULL, NULL);
if (!root_sii) {
err = -EINVAL;
goto out;
}
/*
* Check if such security already exists.
* Use "SDH" and hash -> to get the offset in "SDS".
*/
err = indx_find(indx_sdh, ni, root_sdh, &hash_key, sizeof(hash_key),
&d_security->key.sec_id, &diff, (struct NTFS_DE **)&e,
fnd_sdh);
if (err)
goto out;
while (e) {
if (le32_to_cpu(e->sec_hdr.size) == new_sec_size) {
err = ntfs_read_run_nb(sbi, &ni->file.run,
le64_to_cpu(e->sec_hdr.off),
d_security, new_sec_size, NULL);
if (err)
goto out;
if (le32_to_cpu(d_security->size) == new_sec_size &&
d_security->key.hash == hash_key.hash &&
!memcmp(d_security + 1, sd, size_sd)) {
*security_id = d_security->key.sec_id;
/* Such security already exists. */
err = 0;
goto out;
}
}
err = indx_find_sort(indx_sdh, ni, root_sdh,
(struct NTFS_DE **)&e, fnd_sdh);
if (err)
goto out;
if (!e || e->key.hash != hash_key.hash)
break;
}
/* Zero unused space. */
next = sbi->security.next_off & (SecurityDescriptorsBlockSize - 1);
left = SecurityDescriptorsBlockSize - next;
/* Zero gap until SecurityDescriptorsBlockSize. */
if (left < new_sec_size) {
/* Zero "left" bytes from sbi->security.next_off. */
sbi->security.next_off += SecurityDescriptorsBlockSize + left;
}
/* Zero tail of previous security. */
//used = ni->vfs_inode.i_size & (SecurityDescriptorsBlockSize - 1);
/*
* Example:
* 0x40438 == ni->vfs_inode.i_size
* 0x00440 == sbi->security.next_off
* need to zero [0x438-0x440)
* if (next > used) {
* u32 tozero = next - used;
* zero "tozero" bytes from sbi->security.next_off - tozero
*/
/* Format new security descriptor. */
d_security->key.hash = hash_key.hash;
d_security->key.sec_id = cpu_to_le32(sbi->security.next_id);
d_security->off = cpu_to_le64(sbi->security.next_off);
d_security->size = cpu_to_le32(new_sec_size);
memcpy(d_security + 1, sd, size_sd);
/* Write main SDS bucket. */
err = ntfs_sb_write_run(sbi, &ni->file.run, sbi->security.next_off,
d_security, aligned_sec_size, 0);
if (err)
goto out;
mirr_off = sbi->security.next_off + SecurityDescriptorsBlockSize;
new_sds_size = mirr_off + aligned_sec_size;
if (new_sds_size > ni->vfs_inode.i_size) {
err = attr_set_size(ni, ATTR_DATA, SDS_NAME,
ARRAY_SIZE(SDS_NAME), &ni->file.run,
new_sds_size, &new_sds_size, false, NULL);
if (err)
goto out;
}
/* Write copy SDS bucket. */
err = ntfs_sb_write_run(sbi, &ni->file.run, mirr_off, d_security,
aligned_sec_size, 0);
if (err)
goto out;
/* Fill SII entry. */
sii_e.de.view.data_off =
cpu_to_le16(offsetof(struct NTFS_DE_SII, sec_hdr));
sii_e.de.view.data_size = cpu_to_le16(SIZEOF_SECURITY_HDR);
sii_e.de.view.res = 0;
sii_e.de.size = cpu_to_le16(SIZEOF_SII_DIRENTRY);
sii_e.de.key_size = cpu_to_le16(sizeof(d_security->key.sec_id));
sii_e.de.flags = 0;
sii_e.de.res = 0;
sii_e.sec_id = d_security->key.sec_id;
memcpy(&sii_e.sec_hdr, d_security, SIZEOF_SECURITY_HDR);
err = indx_insert_entry(indx_sii, ni, &sii_e.de, NULL, NULL, 0);
if (err)
goto out;
/* Fill SDH entry. */
sdh_e.de.view.data_off =
cpu_to_le16(offsetof(struct NTFS_DE_SDH, sec_hdr));
sdh_e.de.view.data_size = cpu_to_le16(SIZEOF_SECURITY_HDR);
sdh_e.de.view.res = 0;
sdh_e.de.size = cpu_to_le16(SIZEOF_SDH_DIRENTRY);
sdh_e.de.key_size = cpu_to_le16(sizeof(sdh_e.key));
sdh_e.de.flags = 0;
sdh_e.de.res = 0;
sdh_e.key.hash = d_security->key.hash;
sdh_e.key.sec_id = d_security->key.sec_id;
memcpy(&sdh_e.sec_hdr, d_security, SIZEOF_SECURITY_HDR);
sdh_e.magic[0] = cpu_to_le16('I');
sdh_e.magic[1] = cpu_to_le16('I');
fnd_clear(fnd_sdh);
err = indx_insert_entry(indx_sdh, ni, &sdh_e.de, (void *)(size_t)1,
fnd_sdh, 0);
if (err)
goto out;
*security_id = d_security->key.sec_id;
if (inserted)
*inserted = true;
/* Update Id and offset for next descriptor. */
sbi->security.next_id += 1;
sbi->security.next_off += aligned_sec_size;
out:
fnd_put(fnd_sdh);
mark_inode_dirty(&ni->vfs_inode);
ni_unlock(ni);
kfree(d_security);
return err;
}
/*
* ntfs_reparse_init - Load and parse $Extend/$Reparse.
*/
int ntfs_reparse_init(struct ntfs_sb_info *sbi)
{
int err;
struct ntfs_inode *ni = sbi->reparse.ni;
struct ntfs_index *indx = &sbi->reparse.index_r;
struct ATTRIB *attr;
struct ATTR_LIST_ENTRY *le;
const struct INDEX_ROOT *root_r;
if (!ni)
return 0;
le = NULL;
attr = ni_find_attr(ni, NULL, &le, ATTR_ROOT, SR_NAME,
ARRAY_SIZE(SR_NAME), NULL, NULL);
if (!attr) {
err = -EINVAL;
goto out;
}
root_r = resident_data(attr);
if (root_r->type != ATTR_ZERO ||
root_r->rule != NTFS_COLLATION_TYPE_UINTS) {
err = -EINVAL;
goto out;
}
err = indx_init(indx, sbi, attr, INDEX_MUTEX_SR);
if (err)
goto out;
out:
return err;
}
/*
* ntfs_objid_init - Load and parse $Extend/$ObjId.
*/
int ntfs_objid_init(struct ntfs_sb_info *sbi)
{
int err;
struct ntfs_inode *ni = sbi->objid.ni;
struct ntfs_index *indx = &sbi->objid.index_o;
struct ATTRIB *attr;
struct ATTR_LIST_ENTRY *le;
const struct INDEX_ROOT *root;
if (!ni)
return 0;
le = NULL;
attr = ni_find_attr(ni, NULL, &le, ATTR_ROOT, SO_NAME,
ARRAY_SIZE(SO_NAME), NULL, NULL);
if (!attr) {
err = -EINVAL;
goto out;
}
root = resident_data(attr);
if (root->type != ATTR_ZERO ||
root->rule != NTFS_COLLATION_TYPE_UINTS) {
err = -EINVAL;
goto out;
}
err = indx_init(indx, sbi, attr, INDEX_MUTEX_SO);
if (err)
goto out;
out:
return err;
}
int ntfs_objid_remove(struct ntfs_sb_info *sbi, struct GUID *guid)
{
int err;
struct ntfs_inode *ni = sbi->objid.ni;
struct ntfs_index *indx = &sbi->objid.index_o;
if (!ni)
return -EINVAL;
mutex_lock_nested(&ni->ni_lock, NTFS_INODE_MUTEX_OBJID);
err = indx_delete_entry(indx, ni, guid, sizeof(*guid), NULL);
mark_inode_dirty(&ni->vfs_inode);
ni_unlock(ni);
return err;
}
int ntfs_insert_reparse(struct ntfs_sb_info *sbi, __le32 rtag,
const struct MFT_REF *ref)
{
int err;
struct ntfs_inode *ni = sbi->reparse.ni;
struct ntfs_index *indx = &sbi->reparse.index_r;
struct NTFS_DE_R re;
if (!ni)
return -EINVAL;
memset(&re, 0, sizeof(re));
re.de.view.data_off = cpu_to_le16(offsetof(struct NTFS_DE_R, zero));
re.de.size = cpu_to_le16(sizeof(struct NTFS_DE_R));
re.de.key_size = cpu_to_le16(sizeof(re.key));
re.key.ReparseTag = rtag;
memcpy(&re.key.ref, ref, sizeof(*ref));
mutex_lock_nested(&ni->ni_lock, NTFS_INODE_MUTEX_REPARSE);
err = indx_insert_entry(indx, ni, &re.de, NULL, NULL, 0);
mark_inode_dirty(&ni->vfs_inode);
ni_unlock(ni);
return err;
}
int ntfs_remove_reparse(struct ntfs_sb_info *sbi, __le32 rtag,
const struct MFT_REF *ref)
{
int err, diff;
struct ntfs_inode *ni = sbi->reparse.ni;
struct ntfs_index *indx = &sbi->reparse.index_r;
struct ntfs_fnd *fnd = NULL;
struct REPARSE_KEY rkey;
struct NTFS_DE_R *re;
struct INDEX_ROOT *root_r;
if (!ni)
return -EINVAL;
rkey.ReparseTag = rtag;
rkey.ref = *ref;
mutex_lock_nested(&ni->ni_lock, NTFS_INODE_MUTEX_REPARSE);
if (rtag) {
err = indx_delete_entry(indx, ni, &rkey, sizeof(rkey), NULL);
goto out1;
}
fnd = fnd_get();
if (!fnd) {
err = -ENOMEM;
goto out1;
}
root_r = indx_get_root(indx, ni, NULL, NULL);
if (!root_r) {
err = -EINVAL;
goto out;
}
/* 1 - forces to ignore rkey.ReparseTag when comparing keys. */
err = indx_find(indx, ni, root_r, &rkey, sizeof(rkey), (void *)1, &diff,
(struct NTFS_DE **)&re, fnd);
if (err)
goto out;
if (memcmp(&re->key.ref, ref, sizeof(*ref))) {
/* Impossible. Looks like volume corrupt? */
goto out;
}
memcpy(&rkey, &re->key, sizeof(rkey));
fnd_put(fnd);
fnd = NULL;
err = indx_delete_entry(indx, ni, &rkey, sizeof(rkey), NULL);
if (err)
goto out;
out:
fnd_put(fnd);
out1:
mark_inode_dirty(&ni->vfs_inode);
ni_unlock(ni);
return err;
}
static inline void ntfs_unmap_and_discard(struct ntfs_sb_info *sbi, CLST lcn,
CLST len)
{
ntfs_unmap_meta(sbi->sb, lcn, len);
ntfs_discard(sbi, lcn, len);
}
void mark_as_free_ex(struct ntfs_sb_info *sbi, CLST lcn, CLST len, bool trim)
{
CLST end, i;
struct wnd_bitmap *wnd = &sbi->used.bitmap;
down_write_nested(&wnd->rw_lock, BITMAP_MUTEX_CLUSTERS);
if (!wnd_is_used(wnd, lcn, len)) {
ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
end = lcn + len;
len = 0;
for (i = lcn; i < end; i++) {
if (wnd_is_used(wnd, i, 1)) {
if (!len)
lcn = i;
len += 1;
continue;
}
if (!len)
continue;
if (trim)
ntfs_unmap_and_discard(sbi, lcn, len);
wnd_set_free(wnd, lcn, len);
len = 0;
}
if (!len)
goto out;
}
if (trim)
ntfs_unmap_and_discard(sbi, lcn, len);
wnd_set_free(wnd, lcn, len);
out:
up_write(&wnd->rw_lock);
}
/*
* run_deallocate - Deallocate clusters.
*/
int run_deallocate(struct ntfs_sb_info *sbi, struct runs_tree *run, bool trim)
{
CLST lcn, len;
size_t idx = 0;
while (run_get_entry(run, idx++, NULL, &lcn, &len)) {
if (lcn == SPARSE_LCN)
continue;
mark_as_free_ex(sbi, lcn, len, trim);
}
return 0;
}