mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 13:41:51 +00:00
854a8e208c
This add suspend-to-ram support. The derived_table is kept-as is, so the resume is only about pm_runtime_* calls and restoring the same registers as the probe. Extract the hardware initialization procedure to a function called at both probe-time & resume-time. The probe-time loop is split in two to ensure doing the hardware initialization before registering thermal zones. That ensures our callbacks cannot be called while in bad state. The 100ms delay in the hardware initialization sequence was removed. It was initially added to be sure the thresholds are programmed before enabling the interrupt, but in fact it's not needed (tested on J7200 platform). Signed-off-by: Théo Lebrun <theo.lebrun@bootlin.com> Acked-by: Keerthy <j-keerthy@ti.com> Signed-off-by: Thomas Richard <thomas.richard@bootlin.com> Link: https://lore.kernel.org/r/20240425153238.498750-1-thomas.richard@bootlin.com Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
610 lines
15 KiB
C
610 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* TI Bandgap temperature sensor driver for J72XX SoC Family
|
|
*
|
|
* Copyright (C) 2021 Texas Instruments Incorporated - http://www.ti.com/
|
|
*/
|
|
|
|
#include <linux/math.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/err.h>
|
|
#include <linux/types.h>
|
|
#include <linux/io.h>
|
|
#include <linux/thermal.h>
|
|
#include <linux/of.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/slab.h>
|
|
|
|
#define K3_VTM_DEVINFO_PWR0_OFFSET 0x4
|
|
#define K3_VTM_DEVINFO_PWR0_TEMPSENS_CT_MASK 0xf0
|
|
#define K3_VTM_TMPSENS0_CTRL_OFFSET 0x300
|
|
#define K3_VTM_MISC_CTRL_OFFSET 0xc
|
|
#define K3_VTM_TMPSENS_STAT_OFFSET 0x8
|
|
#define K3_VTM_ANYMAXT_OUTRG_ALERT_EN 0x1
|
|
#define K3_VTM_MISC_CTRL2_OFFSET 0x10
|
|
#define K3_VTM_TS_STAT_DTEMP_MASK 0x3ff
|
|
#define K3_VTM_MAX_NUM_TS 8
|
|
#define K3_VTM_TMPSENS_CTRL_SOC BIT(5)
|
|
#define K3_VTM_TMPSENS_CTRL_CLRZ BIT(6)
|
|
#define K3_VTM_TMPSENS_CTRL_CLKON_REQ BIT(7)
|
|
#define K3_VTM_TMPSENS_CTRL_MAXT_OUTRG_EN BIT(11)
|
|
|
|
#define K3_VTM_CORRECTION_TEMP_CNT 3
|
|
|
|
#define MINUS40CREF 5
|
|
#define PLUS30CREF 253
|
|
#define PLUS125CREF 730
|
|
#define PLUS150CREF 940
|
|
|
|
#define TABLE_SIZE 1024
|
|
#define MAX_TEMP 123000
|
|
#define COOL_DOWN_TEMP 105000
|
|
|
|
#define FACTORS_REDUCTION 13
|
|
static int *derived_table;
|
|
|
|
static int compute_value(int index, const s64 *factors, int nr_factors,
|
|
int reduction)
|
|
{
|
|
s64 value = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < nr_factors; i++)
|
|
value += factors[i] * int_pow(index, i);
|
|
|
|
return (int)div64_s64(value, int_pow(10, reduction));
|
|
}
|
|
|
|
static void init_table(int factors_size, int *table, const s64 *factors)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < TABLE_SIZE; i++)
|
|
table[i] = compute_value(i, factors, factors_size,
|
|
FACTORS_REDUCTION);
|
|
}
|
|
|
|
/**
|
|
* struct err_values - structure containing error/reference values
|
|
* @refs: reference error values for -40C, 30C, 125C & 150C
|
|
* @errs: Actual error values for -40C, 30C, 125C & 150C read from the efuse
|
|
*/
|
|
struct err_values {
|
|
int refs[4];
|
|
int errs[4];
|
|
};
|
|
|
|
static void create_table_segments(struct err_values *err_vals, int seg,
|
|
int *ref_table)
|
|
{
|
|
int m = 0, c, num, den, i, err, idx1, idx2, err1, err2, ref1, ref2;
|
|
|
|
if (seg == 0)
|
|
idx1 = 0;
|
|
else
|
|
idx1 = err_vals->refs[seg];
|
|
|
|
idx2 = err_vals->refs[seg + 1];
|
|
err1 = err_vals->errs[seg];
|
|
err2 = err_vals->errs[seg + 1];
|
|
ref1 = err_vals->refs[seg];
|
|
ref2 = err_vals->refs[seg + 1];
|
|
|
|
/*
|
|
* Calculate the slope with adc values read from the register
|
|
* as the y-axis param and err in adc value as x-axis param
|
|
*/
|
|
num = ref2 - ref1;
|
|
den = err2 - err1;
|
|
if (den)
|
|
m = num / den;
|
|
c = ref2 - m * err2;
|
|
|
|
/*
|
|
* Take care of divide by zero error if error values are same
|
|
* Or when the slope is 0
|
|
*/
|
|
if (den != 0 && m != 0) {
|
|
for (i = idx1; i <= idx2; i++) {
|
|
err = (i - c) / m;
|
|
if (((i + err) < 0) || ((i + err) >= TABLE_SIZE))
|
|
continue;
|
|
derived_table[i] = ref_table[i + err];
|
|
}
|
|
} else { /* Constant error take care of divide by zero */
|
|
for (i = idx1; i <= idx2; i++) {
|
|
if (((i + err1) < 0) || ((i + err1) >= TABLE_SIZE))
|
|
continue;
|
|
derived_table[i] = ref_table[i + err1];
|
|
}
|
|
}
|
|
}
|
|
|
|
static int prep_lookup_table(struct err_values *err_vals, int *ref_table)
|
|
{
|
|
int inc, i, seg;
|
|
|
|
/*
|
|
* Fill up the lookup table under 3 segments
|
|
* region -40C to +30C
|
|
* region +30C to +125C
|
|
* region +125C to +150C
|
|
*/
|
|
for (seg = 0; seg < 3; seg++)
|
|
create_table_segments(err_vals, seg, ref_table);
|
|
|
|
/* Get to the first valid temperature */
|
|
i = 0;
|
|
while (!derived_table[i])
|
|
i++;
|
|
|
|
/*
|
|
* Get to the last zero index and back fill the temperature for
|
|
* sake of continuity
|
|
*/
|
|
if (i) {
|
|
/* 300 milli celsius steps */
|
|
while (i--)
|
|
derived_table[i] = derived_table[i + 1] - 300;
|
|
}
|
|
|
|
/*
|
|
* Fill the last trailing 0s which are unfilled with increments of
|
|
* 100 milli celsius till 1023 code
|
|
*/
|
|
i = TABLE_SIZE - 1;
|
|
while (!derived_table[i])
|
|
i--;
|
|
|
|
i++;
|
|
inc = 1;
|
|
while (i < TABLE_SIZE) {
|
|
derived_table[i] = derived_table[i - 1] + inc * 100;
|
|
i++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct k3_thermal_data;
|
|
|
|
struct k3_j72xx_bandgap {
|
|
struct device *dev;
|
|
void __iomem *base;
|
|
void __iomem *cfg2_base;
|
|
struct k3_thermal_data *ts_data[K3_VTM_MAX_NUM_TS];
|
|
int cnt;
|
|
};
|
|
|
|
/* common data structures */
|
|
struct k3_thermal_data {
|
|
struct k3_j72xx_bandgap *bgp;
|
|
u32 ctrl_offset;
|
|
u32 stat_offset;
|
|
};
|
|
|
|
static int two_cmp(int tmp, int mask)
|
|
{
|
|
tmp = ~(tmp);
|
|
tmp &= mask;
|
|
tmp += 1;
|
|
|
|
/* Return negative value */
|
|
return (0 - tmp);
|
|
}
|
|
|
|
static unsigned int vtm_get_best_value(unsigned int s0, unsigned int s1,
|
|
unsigned int s2)
|
|
{
|
|
int d01 = abs(s0 - s1);
|
|
int d02 = abs(s0 - s2);
|
|
int d12 = abs(s1 - s2);
|
|
|
|
if (d01 <= d02 && d01 <= d12)
|
|
return (s0 + s1) / 2;
|
|
|
|
if (d02 <= d01 && d02 <= d12)
|
|
return (s0 + s2) / 2;
|
|
|
|
return (s1 + s2) / 2;
|
|
}
|
|
|
|
static inline int k3_bgp_read_temp(struct k3_thermal_data *devdata,
|
|
int *temp)
|
|
{
|
|
struct k3_j72xx_bandgap *bgp;
|
|
unsigned int dtemp, s0, s1, s2;
|
|
|
|
bgp = devdata->bgp;
|
|
/*
|
|
* Errata is applicable for am654 pg 1.0 silicon/J7ES. There
|
|
* is a variation of the order for certain degree centigrade on AM654.
|
|
* Work around that by getting the average of two closest
|
|
* readings out of three readings everytime we want to
|
|
* report temperatures.
|
|
*
|
|
* Errata workaround.
|
|
*/
|
|
s0 = readl(bgp->base + devdata->stat_offset) &
|
|
K3_VTM_TS_STAT_DTEMP_MASK;
|
|
s1 = readl(bgp->base + devdata->stat_offset) &
|
|
K3_VTM_TS_STAT_DTEMP_MASK;
|
|
s2 = readl(bgp->base + devdata->stat_offset) &
|
|
K3_VTM_TS_STAT_DTEMP_MASK;
|
|
dtemp = vtm_get_best_value(s0, s1, s2);
|
|
|
|
if (dtemp < 0 || dtemp >= TABLE_SIZE)
|
|
return -EINVAL;
|
|
|
|
*temp = derived_table[dtemp];
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Get temperature callback function for thermal zone */
|
|
static int k3_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
|
|
{
|
|
return k3_bgp_read_temp(thermal_zone_device_priv(tz), temp);
|
|
}
|
|
|
|
static const struct thermal_zone_device_ops k3_of_thermal_ops = {
|
|
.get_temp = k3_thermal_get_temp,
|
|
};
|
|
|
|
static int k3_j72xx_bandgap_temp_to_adc_code(int temp)
|
|
{
|
|
int low = 0, high = TABLE_SIZE - 1, mid;
|
|
|
|
if (temp > 160000 || temp < -50000)
|
|
return -EINVAL;
|
|
|
|
/* Binary search to find the adc code */
|
|
while (low < (high - 1)) {
|
|
mid = (low + high) / 2;
|
|
if (temp <= derived_table[mid])
|
|
high = mid;
|
|
else
|
|
low = mid;
|
|
}
|
|
|
|
return mid;
|
|
}
|
|
|
|
static void get_efuse_values(int id, struct k3_thermal_data *data, int *err,
|
|
void __iomem *fuse_base)
|
|
{
|
|
int i, tmp, pow;
|
|
int ct_offsets[5][K3_VTM_CORRECTION_TEMP_CNT] = {
|
|
{ 0x0, 0x8, 0x4 },
|
|
{ 0x0, 0x8, 0x4 },
|
|
{ 0x0, -1, 0x4 },
|
|
{ 0x0, 0xC, -1 },
|
|
{ 0x0, 0xc, 0x8 }
|
|
};
|
|
int ct_bm[5][K3_VTM_CORRECTION_TEMP_CNT] = {
|
|
{ 0x3f, 0x1fe000, 0x1ff },
|
|
{ 0xfc0, 0x1fe000, 0x3fe00 },
|
|
{ 0x3f000, 0x7f800000, 0x7fc0000 },
|
|
{ 0xfc0000, 0x1fe0, 0x1f800000 },
|
|
{ 0x3f000000, 0x1fe000, 0x1ff0 }
|
|
};
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
/* Extract the offset value using bit-mask */
|
|
if (ct_offsets[id][i] == -1 && i == 1) {
|
|
/* 25C offset Case of Sensor 2 split between 2 regs */
|
|
tmp = (readl(fuse_base + 0x8) & 0xE0000000) >> (29);
|
|
tmp |= ((readl(fuse_base + 0xC) & 0x1F) << 3);
|
|
pow = tmp & 0x80;
|
|
} else if (ct_offsets[id][i] == -1 && i == 2) {
|
|
/* 125C Case of Sensor 3 split between 2 regs */
|
|
tmp = (readl(fuse_base + 0x4) & 0xF8000000) >> (27);
|
|
tmp |= ((readl(fuse_base + 0x8) & 0xF) << 5);
|
|
pow = tmp & 0x100;
|
|
} else {
|
|
tmp = readl(fuse_base + ct_offsets[id][i]);
|
|
tmp &= ct_bm[id][i];
|
|
tmp = tmp >> __ffs(ct_bm[id][i]);
|
|
|
|
/* Obtain the sign bit pow*/
|
|
pow = ct_bm[id][i] >> __ffs(ct_bm[id][i]);
|
|
pow += 1;
|
|
pow /= 2;
|
|
}
|
|
|
|
/* Check for negative value */
|
|
if (tmp & pow) {
|
|
/* 2's complement value */
|
|
tmp = two_cmp(tmp, ct_bm[id][i] >> __ffs(ct_bm[id][i]));
|
|
}
|
|
err[i] = tmp;
|
|
}
|
|
|
|
/* Err value for 150C is set to 0 */
|
|
err[i] = 0;
|
|
}
|
|
|
|
static void print_look_up_table(struct device *dev, int *ref_table)
|
|
{
|
|
int i;
|
|
|
|
dev_dbg(dev, "The contents of derived array\n");
|
|
dev_dbg(dev, "Code Temperature\n");
|
|
for (i = 0; i < TABLE_SIZE; i++)
|
|
dev_dbg(dev, "%d %d %d\n", i, derived_table[i], ref_table[i]);
|
|
}
|
|
|
|
static void k3_j72xx_bandgap_init_hw(struct k3_j72xx_bandgap *bgp)
|
|
{
|
|
struct k3_thermal_data *data;
|
|
int id, high_max, low_temp;
|
|
u32 val;
|
|
|
|
for (id = 0; id < bgp->cnt; id++) {
|
|
data = bgp->ts_data[id];
|
|
val = readl(bgp->cfg2_base + data->ctrl_offset);
|
|
val |= (K3_VTM_TMPSENS_CTRL_MAXT_OUTRG_EN |
|
|
K3_VTM_TMPSENS_CTRL_SOC |
|
|
K3_VTM_TMPSENS_CTRL_CLRZ | BIT(4));
|
|
writel(val, bgp->cfg2_base + data->ctrl_offset);
|
|
}
|
|
|
|
/*
|
|
* Program TSHUT thresholds
|
|
* Step 1: set the thresholds to ~123C and 105C WKUP_VTM_MISC_CTRL2
|
|
* Step 2: WKUP_VTM_TMPSENS_CTRL_j set the MAXT_OUTRG_EN bit
|
|
* This is already taken care as per of init
|
|
* Step 3: WKUP_VTM_MISC_CTRL set the ANYMAXT_OUTRG_ALERT_EN bit
|
|
*/
|
|
high_max = k3_j72xx_bandgap_temp_to_adc_code(MAX_TEMP);
|
|
low_temp = k3_j72xx_bandgap_temp_to_adc_code(COOL_DOWN_TEMP);
|
|
|
|
writel((low_temp << 16) | high_max, bgp->cfg2_base + K3_VTM_MISC_CTRL2_OFFSET);
|
|
writel(K3_VTM_ANYMAXT_OUTRG_ALERT_EN, bgp->cfg2_base + K3_VTM_MISC_CTRL_OFFSET);
|
|
}
|
|
|
|
struct k3_j72xx_bandgap_data {
|
|
const bool has_errata_i2128;
|
|
};
|
|
|
|
static int k3_j72xx_bandgap_probe(struct platform_device *pdev)
|
|
{
|
|
const struct k3_j72xx_bandgap_data *driver_data;
|
|
struct thermal_zone_device *ti_thermal;
|
|
struct device *dev = &pdev->dev;
|
|
bool workaround_needed = false;
|
|
struct k3_j72xx_bandgap *bgp;
|
|
struct k3_thermal_data *data;
|
|
struct err_values err_vals;
|
|
void __iomem *fuse_base;
|
|
int ret = 0, val, id;
|
|
struct resource *res;
|
|
int *ref_table;
|
|
|
|
const s64 golden_factors[] = {
|
|
-490019999999999936,
|
|
3251200000000000,
|
|
-1705800000000,
|
|
603730000,
|
|
-92627,
|
|
};
|
|
|
|
const s64 pvt_wa_factors[] = {
|
|
-415230000000000000,
|
|
3126600000000000,
|
|
-1157800000000,
|
|
};
|
|
|
|
bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL);
|
|
if (!bgp)
|
|
return -ENOMEM;
|
|
|
|
bgp->dev = dev;
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
bgp->base = devm_ioremap_resource(dev, res);
|
|
if (IS_ERR(bgp->base))
|
|
return PTR_ERR(bgp->base);
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
|
|
bgp->cfg2_base = devm_ioremap_resource(dev, res);
|
|
if (IS_ERR(bgp->cfg2_base))
|
|
return PTR_ERR(bgp->cfg2_base);
|
|
|
|
driver_data = of_device_get_match_data(dev);
|
|
if (driver_data)
|
|
workaround_needed = driver_data->has_errata_i2128;
|
|
|
|
/*
|
|
* Some of TI's J721E SoCs require a software trimming procedure
|
|
* for the temperature monitors to function properly. To determine
|
|
* if this particular SoC is NOT affected, both bits in the
|
|
* WKUP_SPARE_FUSE0[31:30] will be set (0xC0000000) indicating
|
|
* when software trimming should NOT be applied.
|
|
*
|
|
* https://www.ti.com/lit/er/sprz455c/sprz455c.pdf
|
|
*/
|
|
if (workaround_needed) {
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
|
|
fuse_base = devm_ioremap_resource(dev, res);
|
|
if (IS_ERR(fuse_base))
|
|
return PTR_ERR(fuse_base);
|
|
|
|
if ((readl(fuse_base) & 0xc0000000) == 0xc0000000)
|
|
workaround_needed = false;
|
|
}
|
|
|
|
dev_dbg(bgp->dev, "Work around %sneeded\n",
|
|
workaround_needed ? "" : "not ");
|
|
|
|
pm_runtime_enable(dev);
|
|
ret = pm_runtime_get_sync(dev);
|
|
if (ret < 0) {
|
|
pm_runtime_put_noidle(dev);
|
|
pm_runtime_disable(dev);
|
|
return ret;
|
|
}
|
|
|
|
/* Get the sensor count in the VTM */
|
|
val = readl(bgp->base + K3_VTM_DEVINFO_PWR0_OFFSET);
|
|
bgp->cnt = val & K3_VTM_DEVINFO_PWR0_TEMPSENS_CT_MASK;
|
|
bgp->cnt >>= __ffs(K3_VTM_DEVINFO_PWR0_TEMPSENS_CT_MASK);
|
|
|
|
data = devm_kcalloc(bgp->dev, bgp->cnt, sizeof(*data), GFP_KERNEL);
|
|
if (!data) {
|
|
ret = -ENOMEM;
|
|
goto err_alloc;
|
|
}
|
|
|
|
ref_table = kzalloc(sizeof(*ref_table) * TABLE_SIZE, GFP_KERNEL);
|
|
if (!ref_table) {
|
|
ret = -ENOMEM;
|
|
goto err_alloc;
|
|
}
|
|
|
|
derived_table = devm_kzalloc(bgp->dev, sizeof(*derived_table) * TABLE_SIZE,
|
|
GFP_KERNEL);
|
|
if (!derived_table) {
|
|
ret = -ENOMEM;
|
|
goto err_free_ref_table;
|
|
}
|
|
|
|
if (!workaround_needed)
|
|
init_table(5, ref_table, golden_factors);
|
|
else
|
|
init_table(3, ref_table, pvt_wa_factors);
|
|
|
|
/* Precompute the derived table & fill each thermal sensor struct */
|
|
for (id = 0; id < bgp->cnt; id++) {
|
|
data[id].bgp = bgp;
|
|
data[id].ctrl_offset = K3_VTM_TMPSENS0_CTRL_OFFSET + id * 0x20;
|
|
data[id].stat_offset = data[id].ctrl_offset +
|
|
K3_VTM_TMPSENS_STAT_OFFSET;
|
|
|
|
if (workaround_needed) {
|
|
/* ref adc values for -40C, 30C & 125C respectively */
|
|
err_vals.refs[0] = MINUS40CREF;
|
|
err_vals.refs[1] = PLUS30CREF;
|
|
err_vals.refs[2] = PLUS125CREF;
|
|
err_vals.refs[3] = PLUS150CREF;
|
|
get_efuse_values(id, &data[id], err_vals.errs, fuse_base);
|
|
}
|
|
|
|
if (id == 0 && workaround_needed)
|
|
prep_lookup_table(&err_vals, ref_table);
|
|
else if (id == 0 && !workaround_needed)
|
|
memcpy(derived_table, ref_table, TABLE_SIZE * 4);
|
|
|
|
bgp->ts_data[id] = &data[id];
|
|
}
|
|
|
|
k3_j72xx_bandgap_init_hw(bgp);
|
|
|
|
/* Register the thermal sensors */
|
|
for (id = 0; id < bgp->cnt; id++) {
|
|
ti_thermal = devm_thermal_of_zone_register(bgp->dev, id, &data[id],
|
|
&k3_of_thermal_ops);
|
|
if (IS_ERR(ti_thermal)) {
|
|
dev_err(bgp->dev, "thermal zone device is NULL\n");
|
|
ret = PTR_ERR(ti_thermal);
|
|
goto err_free_ref_table;
|
|
}
|
|
}
|
|
|
|
platform_set_drvdata(pdev, bgp);
|
|
|
|
print_look_up_table(dev, ref_table);
|
|
/*
|
|
* Now that the derived_table has the appropriate look up values
|
|
* Free up the ref_table
|
|
*/
|
|
kfree(ref_table);
|
|
|
|
return 0;
|
|
|
|
err_free_ref_table:
|
|
kfree(ref_table);
|
|
|
|
err_alloc:
|
|
pm_runtime_put_sync(&pdev->dev);
|
|
pm_runtime_disable(&pdev->dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void k3_j72xx_bandgap_remove(struct platform_device *pdev)
|
|
{
|
|
pm_runtime_put_sync(&pdev->dev);
|
|
pm_runtime_disable(&pdev->dev);
|
|
}
|
|
|
|
static int k3_j72xx_bandgap_suspend(struct device *dev)
|
|
{
|
|
pm_runtime_put_sync(dev);
|
|
pm_runtime_disable(dev);
|
|
return 0;
|
|
}
|
|
|
|
static int k3_j72xx_bandgap_resume(struct device *dev)
|
|
{
|
|
struct k3_j72xx_bandgap *bgp = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
pm_runtime_enable(dev);
|
|
ret = pm_runtime_get_sync(dev);
|
|
if (ret < 0) {
|
|
pm_runtime_put_noidle(dev);
|
|
pm_runtime_disable(dev);
|
|
return ret;
|
|
}
|
|
|
|
k3_j72xx_bandgap_init_hw(bgp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static DEFINE_SIMPLE_DEV_PM_OPS(k3_j72xx_bandgap_pm_ops,
|
|
k3_j72xx_bandgap_suspend,
|
|
k3_j72xx_bandgap_resume);
|
|
|
|
static const struct k3_j72xx_bandgap_data k3_j72xx_bandgap_j721e_data = {
|
|
.has_errata_i2128 = true,
|
|
};
|
|
|
|
static const struct k3_j72xx_bandgap_data k3_j72xx_bandgap_j7200_data = {
|
|
.has_errata_i2128 = false,
|
|
};
|
|
|
|
static const struct of_device_id of_k3_j72xx_bandgap_match[] = {
|
|
{
|
|
.compatible = "ti,j721e-vtm",
|
|
.data = &k3_j72xx_bandgap_j721e_data,
|
|
},
|
|
{
|
|
.compatible = "ti,j7200-vtm",
|
|
.data = &k3_j72xx_bandgap_j7200_data,
|
|
},
|
|
{ /* sentinel */ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, of_k3_j72xx_bandgap_match);
|
|
|
|
static struct platform_driver k3_j72xx_bandgap_sensor_driver = {
|
|
.probe = k3_j72xx_bandgap_probe,
|
|
.remove_new = k3_j72xx_bandgap_remove,
|
|
.driver = {
|
|
.name = "k3-j72xx-soc-thermal",
|
|
.of_match_table = of_k3_j72xx_bandgap_match,
|
|
.pm = pm_sleep_ptr(&k3_j72xx_bandgap_pm_ops),
|
|
},
|
|
};
|
|
|
|
module_platform_driver(k3_j72xx_bandgap_sensor_driver);
|
|
|
|
MODULE_DESCRIPTION("K3 bandgap temperature sensor driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("J Keerthy <j-keerthy@ti.com>");
|