mirror of
https://github.com/torvalds/linux.git
synced 2024-11-27 14:41:39 +00:00
6abaa83c73
In this cycle, we've addressed some performance issues such as lock contention, misbehaving compress_cache, allowing extent_cache for compressed files, and new sysfs to adjust ra_size for fadvise. In order to diagnose the performance issues quickly, we also added an iostat which shows the IO latencies periodically. On the stability side, we've found two memory leakage cases in the error path in compression flow. And, we've also fixed various corner cases in fiemap, quota, checkpoint=disable, zstd, and so on. Enhancement: - avoid long checkpoint latency by releasing nat_tree_lock - collect and show iostats periodically - support extent_cache for compressed files - add a sysfs entry to manage ra_size given fadvise(POSIX_FADV_SEQUENTIAL) - report f2fs GC status via sysfs - add discard_unit=%s in mount option to handle zoned device Bug fix: - fix two memory leakages when an error happens in the compressed IO flow - fix commpress_cache to get the right LBA - fix fiemap to deal with compressed case correctly - fix wrong EIO returns due to SBI_NEED_FSCK - fix missing writes when enabling checkpoint back - fix quota deadlock - fix zstd level mount option In addition to the above major updates, we've cleaned up several code paths such as dio, unnecessary operations, debugfs/f2fs/status, sanity check, and typos. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE00UqedjCtOrGVvQiQBSofoJIUNIFAmEyw1sACgkQQBSofoJI UNLJmA/+NHUgwUjLMcHvmLyp6QYpQDZtKj93/sRDo+YHOYNdYFjWWUb329PYTKWS kEdzApCP+KHfVxeSkiL/x3qWP+RlTkIf96P0kR3/BKi0tjg25G2riFWztusDDFpt xi+AW5sUFDvIx1tFumvQHAQedSwBgcZ96ovT5EwxEuONkljhZC9phEC6vSXz9nOR e2EQIyezbC5O21np1KSeqSgqRMpVkJkVcEHy4VmpMBCLMOOYPepWwKw+yPaV/jR/ zUXdo2/53vma50M5LCDPCtjCtWQgLoeNeGLxyjfzQuTJU6TmtPY65JObLPt6pUSj fRW6qIziTZbVYXzOWBD0EYilv2N4c3BNJdhQCpx2Vyjw9/LLxzqKPOUyzBoa1kjY eZVvmaLXVCKsoJdHDSi7OH/4BqS6SuSZE8eO/nGkgswqiErHZ0Vwl3bFCWC7r/Bk r2U5spJx/83XO6c9H1bzeWEies1DRtwnCDIRRuw35RtJ4uHZaqCfkuJ7rOBwC90X 4SpaAKdUxP2RWc3GKELBIhaqPn7vyMy9ile6VU14PjM8UcY5hyE87T2azqR8gGut nVjRL4cbMGTPj6m1Qj8KqBRSaLuShe6AncUy7bNGiM+JlcLcdB6OJ1ZYLl9hjx2r TbIouXThgcZ4SIK0DEaBLKz2b9/0TfaO9gw1XzpRma+bWA1pApM= =W67o -----END PGP SIGNATURE----- Merge tag 'f2fs-for-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs Pull f2fs updates from Jaegeuk Kim: "In this cycle, we've addressed some performance issues such as lock contention, misbehaving compress_cache, allowing extent_cache for compressed files, and new sysfs to adjust ra_size for fadvise. In order to diagnose the performance issues quickly, we also added an iostat which shows the IO latencies periodically. On the stability side, we've found two memory leakage cases in the error path in compression flow. And, we've also fixed various corner cases in fiemap, quota, checkpoint=disable, zstd, and so on. Enhancements: - avoid long checkpoint latency by releasing nat_tree_lock - collect and show iostats periodically - support extent_cache for compressed files - add a sysfs entry to manage ra_size given fadvise(POSIX_FADV_SEQUENTIAL) - report f2fs GC status via sysfs - add discard_unit=%s in mount option to handle zoned device Bug fixes: - fix two memory leakages when an error happens in the compressed IO flow - fix commpress_cache to get the right LBA - fix fiemap to deal with compressed case correctly - fix wrong EIO returns due to SBI_NEED_FSCK - fix missing writes when enabling checkpoint back - fix quota deadlock - fix zstd level mount option In addition to the above major updates, we've cleaned up several code paths such as dio, unnecessary operations, debugfs/f2fs/status, sanity check, and typos" * tag 'f2fs-for-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (46 commits) f2fs: should put a page beyond EOF when preparing a write f2fs: deallocate compressed pages when error happens f2fs: enable realtime discard iff device supports discard f2fs: guarantee to write dirty data when enabling checkpoint back f2fs: fix to unmap pages from userspace process in punch_hole() f2fs: fix unexpected ENOENT comes from f2fs_map_blocks() f2fs: fix to account missing .skipped_gc_rwsem f2fs: adjust unlock order for cleanup f2fs: Don't create discard thread when device doesn't support realtime discard f2fs: rebuild nat_bits during umount f2fs: introduce periodic iostat io latency traces f2fs: separate out iostat feature f2fs: compress: do sanity check on cluster f2fs: fix description about main_blkaddr node f2fs: convert S_IRUGO to 0444 f2fs: fix to keep compatibility of fault injection interface f2fs: support fault injection for f2fs_kmem_cache_alloc() f2fs: compress: allow write compress released file after truncate to zero f2fs: correct comment in segment.h f2fs: improve sbi status info in debugfs/f2fs/status ...
4232 lines
101 KiB
C
4232 lines
101 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* fs/f2fs/data.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blk-crypto.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/cleancache.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/fiemap.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include "iostat.h"
|
|
#include <trace/events/f2fs.h>
|
|
|
|
#define NUM_PREALLOC_POST_READ_CTXS 128
|
|
|
|
static struct kmem_cache *bio_post_read_ctx_cache;
|
|
static struct kmem_cache *bio_entry_slab;
|
|
static mempool_t *bio_post_read_ctx_pool;
|
|
static struct bio_set f2fs_bioset;
|
|
|
|
#define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
|
|
|
|
int __init f2fs_init_bioset(void)
|
|
{
|
|
if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
|
|
0, BIOSET_NEED_BVECS))
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void f2fs_destroy_bioset(void)
|
|
{
|
|
bioset_exit(&f2fs_bioset);
|
|
}
|
|
|
|
static bool __is_cp_guaranteed(struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
struct inode *inode;
|
|
struct f2fs_sb_info *sbi;
|
|
|
|
if (!mapping)
|
|
return false;
|
|
|
|
inode = mapping->host;
|
|
sbi = F2FS_I_SB(inode);
|
|
|
|
if (inode->i_ino == F2FS_META_INO(sbi) ||
|
|
inode->i_ino == F2FS_NODE_INO(sbi) ||
|
|
S_ISDIR(inode->i_mode))
|
|
return true;
|
|
|
|
if (f2fs_is_compressed_page(page))
|
|
return false;
|
|
if ((S_ISREG(inode->i_mode) &&
|
|
(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
|
|
page_private_gcing(page))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static enum count_type __read_io_type(struct page *page)
|
|
{
|
|
struct address_space *mapping = page_file_mapping(page);
|
|
|
|
if (mapping) {
|
|
struct inode *inode = mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
if (inode->i_ino == F2FS_META_INO(sbi))
|
|
return F2FS_RD_META;
|
|
|
|
if (inode->i_ino == F2FS_NODE_INO(sbi))
|
|
return F2FS_RD_NODE;
|
|
}
|
|
return F2FS_RD_DATA;
|
|
}
|
|
|
|
/* postprocessing steps for read bios */
|
|
enum bio_post_read_step {
|
|
#ifdef CONFIG_FS_ENCRYPTION
|
|
STEP_DECRYPT = 1 << 0,
|
|
#else
|
|
STEP_DECRYPT = 0, /* compile out the decryption-related code */
|
|
#endif
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
STEP_DECOMPRESS = 1 << 1,
|
|
#else
|
|
STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
|
|
#endif
|
|
#ifdef CONFIG_FS_VERITY
|
|
STEP_VERITY = 1 << 2,
|
|
#else
|
|
STEP_VERITY = 0, /* compile out the verity-related code */
|
|
#endif
|
|
};
|
|
|
|
struct bio_post_read_ctx {
|
|
struct bio *bio;
|
|
struct f2fs_sb_info *sbi;
|
|
struct work_struct work;
|
|
unsigned int enabled_steps;
|
|
block_t fs_blkaddr;
|
|
};
|
|
|
|
static void f2fs_finish_read_bio(struct bio *bio)
|
|
{
|
|
struct bio_vec *bv;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
/*
|
|
* Update and unlock the bio's pagecache pages, and put the
|
|
* decompression context for any compressed pages.
|
|
*/
|
|
bio_for_each_segment_all(bv, bio, iter_all) {
|
|
struct page *page = bv->bv_page;
|
|
|
|
if (f2fs_is_compressed_page(page)) {
|
|
if (bio->bi_status)
|
|
f2fs_end_read_compressed_page(page, true, 0);
|
|
f2fs_put_page_dic(page);
|
|
continue;
|
|
}
|
|
|
|
/* PG_error was set if decryption or verity failed. */
|
|
if (bio->bi_status || PageError(page)) {
|
|
ClearPageUptodate(page);
|
|
/* will re-read again later */
|
|
ClearPageError(page);
|
|
} else {
|
|
SetPageUptodate(page);
|
|
}
|
|
dec_page_count(F2FS_P_SB(page), __read_io_type(page));
|
|
unlock_page(page);
|
|
}
|
|
|
|
if (bio->bi_private)
|
|
mempool_free(bio->bi_private, bio_post_read_ctx_pool);
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void f2fs_verify_bio(struct work_struct *work)
|
|
{
|
|
struct bio_post_read_ctx *ctx =
|
|
container_of(work, struct bio_post_read_ctx, work);
|
|
struct bio *bio = ctx->bio;
|
|
bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
|
|
|
|
/*
|
|
* fsverity_verify_bio() may call readpages() again, and while verity
|
|
* will be disabled for this, decryption and/or decompression may still
|
|
* be needed, resulting in another bio_post_read_ctx being allocated.
|
|
* So to prevent deadlocks we need to release the current ctx to the
|
|
* mempool first. This assumes that verity is the last post-read step.
|
|
*/
|
|
mempool_free(ctx, bio_post_read_ctx_pool);
|
|
bio->bi_private = NULL;
|
|
|
|
/*
|
|
* Verify the bio's pages with fs-verity. Exclude compressed pages,
|
|
* as those were handled separately by f2fs_end_read_compressed_page().
|
|
*/
|
|
if (may_have_compressed_pages) {
|
|
struct bio_vec *bv;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
bio_for_each_segment_all(bv, bio, iter_all) {
|
|
struct page *page = bv->bv_page;
|
|
|
|
if (!f2fs_is_compressed_page(page) &&
|
|
!PageError(page) && !fsverity_verify_page(page))
|
|
SetPageError(page);
|
|
}
|
|
} else {
|
|
fsverity_verify_bio(bio);
|
|
}
|
|
|
|
f2fs_finish_read_bio(bio);
|
|
}
|
|
|
|
/*
|
|
* If the bio's data needs to be verified with fs-verity, then enqueue the
|
|
* verity work for the bio. Otherwise finish the bio now.
|
|
*
|
|
* Note that to avoid deadlocks, the verity work can't be done on the
|
|
* decryption/decompression workqueue. This is because verifying the data pages
|
|
* can involve reading verity metadata pages from the file, and these verity
|
|
* metadata pages may be encrypted and/or compressed.
|
|
*/
|
|
static void f2fs_verify_and_finish_bio(struct bio *bio)
|
|
{
|
|
struct bio_post_read_ctx *ctx = bio->bi_private;
|
|
|
|
if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
|
|
INIT_WORK(&ctx->work, f2fs_verify_bio);
|
|
fsverity_enqueue_verify_work(&ctx->work);
|
|
} else {
|
|
f2fs_finish_read_bio(bio);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
|
|
* remaining page was read by @ctx->bio.
|
|
*
|
|
* Note that a bio may span clusters (even a mix of compressed and uncompressed
|
|
* clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
|
|
* that the bio includes at least one compressed page. The actual decompression
|
|
* is done on a per-cluster basis, not a per-bio basis.
|
|
*/
|
|
static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
|
|
{
|
|
struct bio_vec *bv;
|
|
struct bvec_iter_all iter_all;
|
|
bool all_compressed = true;
|
|
block_t blkaddr = ctx->fs_blkaddr;
|
|
|
|
bio_for_each_segment_all(bv, ctx->bio, iter_all) {
|
|
struct page *page = bv->bv_page;
|
|
|
|
/* PG_error was set if decryption failed. */
|
|
if (f2fs_is_compressed_page(page))
|
|
f2fs_end_read_compressed_page(page, PageError(page),
|
|
blkaddr);
|
|
else
|
|
all_compressed = false;
|
|
|
|
blkaddr++;
|
|
}
|
|
|
|
/*
|
|
* Optimization: if all the bio's pages are compressed, then scheduling
|
|
* the per-bio verity work is unnecessary, as verity will be fully
|
|
* handled at the compression cluster level.
|
|
*/
|
|
if (all_compressed)
|
|
ctx->enabled_steps &= ~STEP_VERITY;
|
|
}
|
|
|
|
static void f2fs_post_read_work(struct work_struct *work)
|
|
{
|
|
struct bio_post_read_ctx *ctx =
|
|
container_of(work, struct bio_post_read_ctx, work);
|
|
|
|
if (ctx->enabled_steps & STEP_DECRYPT)
|
|
fscrypt_decrypt_bio(ctx->bio);
|
|
|
|
if (ctx->enabled_steps & STEP_DECOMPRESS)
|
|
f2fs_handle_step_decompress(ctx);
|
|
|
|
f2fs_verify_and_finish_bio(ctx->bio);
|
|
}
|
|
|
|
static void f2fs_read_end_io(struct bio *bio)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
|
|
struct bio_post_read_ctx *ctx;
|
|
|
|
iostat_update_and_unbind_ctx(bio, 0);
|
|
ctx = bio->bi_private;
|
|
|
|
if (time_to_inject(sbi, FAULT_READ_IO)) {
|
|
f2fs_show_injection_info(sbi, FAULT_READ_IO);
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
}
|
|
|
|
if (bio->bi_status) {
|
|
f2fs_finish_read_bio(bio);
|
|
return;
|
|
}
|
|
|
|
if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
|
|
INIT_WORK(&ctx->work, f2fs_post_read_work);
|
|
queue_work(ctx->sbi->post_read_wq, &ctx->work);
|
|
} else {
|
|
f2fs_verify_and_finish_bio(bio);
|
|
}
|
|
}
|
|
|
|
static void f2fs_write_end_io(struct bio *bio)
|
|
{
|
|
struct f2fs_sb_info *sbi;
|
|
struct bio_vec *bvec;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
iostat_update_and_unbind_ctx(bio, 1);
|
|
sbi = bio->bi_private;
|
|
|
|
if (time_to_inject(sbi, FAULT_WRITE_IO)) {
|
|
f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
}
|
|
|
|
bio_for_each_segment_all(bvec, bio, iter_all) {
|
|
struct page *page = bvec->bv_page;
|
|
enum count_type type = WB_DATA_TYPE(page);
|
|
|
|
if (page_private_dummy(page)) {
|
|
clear_page_private_dummy(page);
|
|
unlock_page(page);
|
|
mempool_free(page, sbi->write_io_dummy);
|
|
|
|
if (unlikely(bio->bi_status))
|
|
f2fs_stop_checkpoint(sbi, true);
|
|
continue;
|
|
}
|
|
|
|
fscrypt_finalize_bounce_page(&page);
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
if (f2fs_is_compressed_page(page)) {
|
|
f2fs_compress_write_end_io(bio, page);
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(bio->bi_status)) {
|
|
mapping_set_error(page->mapping, -EIO);
|
|
if (type == F2FS_WB_CP_DATA)
|
|
f2fs_stop_checkpoint(sbi, true);
|
|
}
|
|
|
|
f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
|
|
page->index != nid_of_node(page));
|
|
|
|
dec_page_count(sbi, type);
|
|
if (f2fs_in_warm_node_list(sbi, page))
|
|
f2fs_del_fsync_node_entry(sbi, page);
|
|
clear_page_private_gcing(page);
|
|
end_page_writeback(page);
|
|
}
|
|
if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
|
|
wq_has_sleeper(&sbi->cp_wait))
|
|
wake_up(&sbi->cp_wait);
|
|
|
|
bio_put(bio);
|
|
}
|
|
|
|
struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
|
|
block_t blk_addr, struct bio *bio)
|
|
{
|
|
struct block_device *bdev = sbi->sb->s_bdev;
|
|
int i;
|
|
|
|
if (f2fs_is_multi_device(sbi)) {
|
|
for (i = 0; i < sbi->s_ndevs; i++) {
|
|
if (FDEV(i).start_blk <= blk_addr &&
|
|
FDEV(i).end_blk >= blk_addr) {
|
|
blk_addr -= FDEV(i).start_blk;
|
|
bdev = FDEV(i).bdev;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (bio) {
|
|
bio_set_dev(bio, bdev);
|
|
bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
|
|
}
|
|
return bdev;
|
|
}
|
|
|
|
int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
|
|
{
|
|
int i;
|
|
|
|
if (!f2fs_is_multi_device(sbi))
|
|
return 0;
|
|
|
|
for (i = 0; i < sbi->s_ndevs; i++)
|
|
if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
|
|
return i;
|
|
return 0;
|
|
}
|
|
|
|
static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
|
|
{
|
|
struct f2fs_sb_info *sbi = fio->sbi;
|
|
struct bio *bio;
|
|
|
|
bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
|
|
|
|
f2fs_target_device(sbi, fio->new_blkaddr, bio);
|
|
if (is_read_io(fio->op)) {
|
|
bio->bi_end_io = f2fs_read_end_io;
|
|
bio->bi_private = NULL;
|
|
} else {
|
|
bio->bi_end_io = f2fs_write_end_io;
|
|
bio->bi_private = sbi;
|
|
bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
|
|
fio->type, fio->temp);
|
|
}
|
|
iostat_alloc_and_bind_ctx(sbi, bio, NULL);
|
|
|
|
if (fio->io_wbc)
|
|
wbc_init_bio(fio->io_wbc, bio);
|
|
|
|
return bio;
|
|
}
|
|
|
|
static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
|
|
pgoff_t first_idx,
|
|
const struct f2fs_io_info *fio,
|
|
gfp_t gfp_mask)
|
|
{
|
|
/*
|
|
* The f2fs garbage collector sets ->encrypted_page when it wants to
|
|
* read/write raw data without encryption.
|
|
*/
|
|
if (!fio || !fio->encrypted_page)
|
|
fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
|
|
}
|
|
|
|
static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
|
|
pgoff_t next_idx,
|
|
const struct f2fs_io_info *fio)
|
|
{
|
|
/*
|
|
* The f2fs garbage collector sets ->encrypted_page when it wants to
|
|
* read/write raw data without encryption.
|
|
*/
|
|
if (fio && fio->encrypted_page)
|
|
return !bio_has_crypt_ctx(bio);
|
|
|
|
return fscrypt_mergeable_bio(bio, inode, next_idx);
|
|
}
|
|
|
|
static inline void __submit_bio(struct f2fs_sb_info *sbi,
|
|
struct bio *bio, enum page_type type)
|
|
{
|
|
if (!is_read_io(bio_op(bio))) {
|
|
unsigned int start;
|
|
|
|
if (type != DATA && type != NODE)
|
|
goto submit_io;
|
|
|
|
if (f2fs_lfs_mode(sbi) && current->plug)
|
|
blk_finish_plug(current->plug);
|
|
|
|
if (!F2FS_IO_ALIGNED(sbi))
|
|
goto submit_io;
|
|
|
|
start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
|
|
start %= F2FS_IO_SIZE(sbi);
|
|
|
|
if (start == 0)
|
|
goto submit_io;
|
|
|
|
/* fill dummy pages */
|
|
for (; start < F2FS_IO_SIZE(sbi); start++) {
|
|
struct page *page =
|
|
mempool_alloc(sbi->write_io_dummy,
|
|
GFP_NOIO | __GFP_NOFAIL);
|
|
f2fs_bug_on(sbi, !page);
|
|
|
|
lock_page(page);
|
|
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
set_page_private_dummy(page);
|
|
|
|
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
|
|
f2fs_bug_on(sbi, 1);
|
|
}
|
|
/*
|
|
* In the NODE case, we lose next block address chain. So, we
|
|
* need to do checkpoint in f2fs_sync_file.
|
|
*/
|
|
if (type == NODE)
|
|
set_sbi_flag(sbi, SBI_NEED_CP);
|
|
}
|
|
submit_io:
|
|
if (is_read_io(bio_op(bio)))
|
|
trace_f2fs_submit_read_bio(sbi->sb, type, bio);
|
|
else
|
|
trace_f2fs_submit_write_bio(sbi->sb, type, bio);
|
|
|
|
iostat_update_submit_ctx(bio, type);
|
|
submit_bio(bio);
|
|
}
|
|
|
|
void f2fs_submit_bio(struct f2fs_sb_info *sbi,
|
|
struct bio *bio, enum page_type type)
|
|
{
|
|
__submit_bio(sbi, bio, type);
|
|
}
|
|
|
|
static void __attach_io_flag(struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_sb_info *sbi = fio->sbi;
|
|
unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
|
|
unsigned int io_flag, fua_flag, meta_flag;
|
|
|
|
if (fio->type == DATA)
|
|
io_flag = sbi->data_io_flag;
|
|
else if (fio->type == NODE)
|
|
io_flag = sbi->node_io_flag;
|
|
else
|
|
return;
|
|
|
|
fua_flag = io_flag & temp_mask;
|
|
meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
|
|
|
|
/*
|
|
* data/node io flag bits per temp:
|
|
* REQ_META | REQ_FUA |
|
|
* 5 | 4 | 3 | 2 | 1 | 0 |
|
|
* Cold | Warm | Hot | Cold | Warm | Hot |
|
|
*/
|
|
if ((1 << fio->temp) & meta_flag)
|
|
fio->op_flags |= REQ_META;
|
|
if ((1 << fio->temp) & fua_flag)
|
|
fio->op_flags |= REQ_FUA;
|
|
}
|
|
|
|
static void __submit_merged_bio(struct f2fs_bio_info *io)
|
|
{
|
|
struct f2fs_io_info *fio = &io->fio;
|
|
|
|
if (!io->bio)
|
|
return;
|
|
|
|
__attach_io_flag(fio);
|
|
bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
|
|
|
|
if (is_read_io(fio->op))
|
|
trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
|
|
else
|
|
trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
|
|
|
|
__submit_bio(io->sbi, io->bio, fio->type);
|
|
io->bio = NULL;
|
|
}
|
|
|
|
static bool __has_merged_page(struct bio *bio, struct inode *inode,
|
|
struct page *page, nid_t ino)
|
|
{
|
|
struct bio_vec *bvec;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
if (!bio)
|
|
return false;
|
|
|
|
if (!inode && !page && !ino)
|
|
return true;
|
|
|
|
bio_for_each_segment_all(bvec, bio, iter_all) {
|
|
struct page *target = bvec->bv_page;
|
|
|
|
if (fscrypt_is_bounce_page(target)) {
|
|
target = fscrypt_pagecache_page(target);
|
|
if (IS_ERR(target))
|
|
continue;
|
|
}
|
|
if (f2fs_is_compressed_page(target)) {
|
|
target = f2fs_compress_control_page(target);
|
|
if (IS_ERR(target))
|
|
continue;
|
|
}
|
|
|
|
if (inode && inode == target->mapping->host)
|
|
return true;
|
|
if (page && page == target)
|
|
return true;
|
|
if (ino && ino == ino_of_node(target))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
|
|
enum page_type type, enum temp_type temp)
|
|
{
|
|
enum page_type btype = PAGE_TYPE_OF_BIO(type);
|
|
struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
|
|
|
|
down_write(&io->io_rwsem);
|
|
|
|
/* change META to META_FLUSH in the checkpoint procedure */
|
|
if (type >= META_FLUSH) {
|
|
io->fio.type = META_FLUSH;
|
|
io->fio.op = REQ_OP_WRITE;
|
|
io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
|
|
if (!test_opt(sbi, NOBARRIER))
|
|
io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
|
|
}
|
|
__submit_merged_bio(io);
|
|
up_write(&io->io_rwsem);
|
|
}
|
|
|
|
static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
|
|
struct inode *inode, struct page *page,
|
|
nid_t ino, enum page_type type, bool force)
|
|
{
|
|
enum temp_type temp;
|
|
bool ret = true;
|
|
|
|
for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
|
|
if (!force) {
|
|
enum page_type btype = PAGE_TYPE_OF_BIO(type);
|
|
struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
|
|
|
|
down_read(&io->io_rwsem);
|
|
ret = __has_merged_page(io->bio, inode, page, ino);
|
|
up_read(&io->io_rwsem);
|
|
}
|
|
if (ret)
|
|
__f2fs_submit_merged_write(sbi, type, temp);
|
|
|
|
/* TODO: use HOT temp only for meta pages now. */
|
|
if (type >= META)
|
|
break;
|
|
}
|
|
}
|
|
|
|
void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
|
|
{
|
|
__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
|
|
}
|
|
|
|
void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
|
|
struct inode *inode, struct page *page,
|
|
nid_t ino, enum page_type type)
|
|
{
|
|
__submit_merged_write_cond(sbi, inode, page, ino, type, false);
|
|
}
|
|
|
|
void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
|
|
{
|
|
f2fs_submit_merged_write(sbi, DATA);
|
|
f2fs_submit_merged_write(sbi, NODE);
|
|
f2fs_submit_merged_write(sbi, META);
|
|
}
|
|
|
|
/*
|
|
* Fill the locked page with data located in the block address.
|
|
* A caller needs to unlock the page on failure.
|
|
*/
|
|
int f2fs_submit_page_bio(struct f2fs_io_info *fio)
|
|
{
|
|
struct bio *bio;
|
|
struct page *page = fio->encrypted_page ?
|
|
fio->encrypted_page : fio->page;
|
|
|
|
if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
|
|
fio->is_por ? META_POR : (__is_meta_io(fio) ?
|
|
META_GENERIC : DATA_GENERIC_ENHANCE)))
|
|
return -EFSCORRUPTED;
|
|
|
|
trace_f2fs_submit_page_bio(page, fio);
|
|
|
|
/* Allocate a new bio */
|
|
bio = __bio_alloc(fio, 1);
|
|
|
|
f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
|
|
fio->page->index, fio, GFP_NOIO);
|
|
|
|
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
|
|
bio_put(bio);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (fio->io_wbc && !is_read_io(fio->op))
|
|
wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
|
|
|
|
__attach_io_flag(fio);
|
|
bio_set_op_attrs(bio, fio->op, fio->op_flags);
|
|
|
|
inc_page_count(fio->sbi, is_read_io(fio->op) ?
|
|
__read_io_type(page): WB_DATA_TYPE(fio->page));
|
|
|
|
__submit_bio(fio->sbi, bio, fio->type);
|
|
return 0;
|
|
}
|
|
|
|
static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
|
|
block_t last_blkaddr, block_t cur_blkaddr)
|
|
{
|
|
if (unlikely(sbi->max_io_bytes &&
|
|
bio->bi_iter.bi_size >= sbi->max_io_bytes))
|
|
return false;
|
|
if (last_blkaddr + 1 != cur_blkaddr)
|
|
return false;
|
|
return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
|
|
}
|
|
|
|
static bool io_type_is_mergeable(struct f2fs_bio_info *io,
|
|
struct f2fs_io_info *fio)
|
|
{
|
|
if (io->fio.op != fio->op)
|
|
return false;
|
|
return io->fio.op_flags == fio->op_flags;
|
|
}
|
|
|
|
static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
|
|
struct f2fs_bio_info *io,
|
|
struct f2fs_io_info *fio,
|
|
block_t last_blkaddr,
|
|
block_t cur_blkaddr)
|
|
{
|
|
if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
|
|
unsigned int filled_blocks =
|
|
F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
|
|
unsigned int io_size = F2FS_IO_SIZE(sbi);
|
|
unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
|
|
|
|
/* IOs in bio is aligned and left space of vectors is not enough */
|
|
if (!(filled_blocks % io_size) && left_vecs < io_size)
|
|
return false;
|
|
}
|
|
if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
|
|
return false;
|
|
return io_type_is_mergeable(io, fio);
|
|
}
|
|
|
|
static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
|
|
struct page *page, enum temp_type temp)
|
|
{
|
|
struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
|
|
struct bio_entry *be;
|
|
|
|
be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
|
|
be->bio = bio;
|
|
bio_get(bio);
|
|
|
|
if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
|
|
f2fs_bug_on(sbi, 1);
|
|
|
|
down_write(&io->bio_list_lock);
|
|
list_add_tail(&be->list, &io->bio_list);
|
|
up_write(&io->bio_list_lock);
|
|
}
|
|
|
|
static void del_bio_entry(struct bio_entry *be)
|
|
{
|
|
list_del(&be->list);
|
|
kmem_cache_free(bio_entry_slab, be);
|
|
}
|
|
|
|
static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
|
|
struct page *page)
|
|
{
|
|
struct f2fs_sb_info *sbi = fio->sbi;
|
|
enum temp_type temp;
|
|
bool found = false;
|
|
int ret = -EAGAIN;
|
|
|
|
for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
|
|
struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
|
|
struct list_head *head = &io->bio_list;
|
|
struct bio_entry *be;
|
|
|
|
down_write(&io->bio_list_lock);
|
|
list_for_each_entry(be, head, list) {
|
|
if (be->bio != *bio)
|
|
continue;
|
|
|
|
found = true;
|
|
|
|
f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
|
|
*fio->last_block,
|
|
fio->new_blkaddr));
|
|
if (f2fs_crypt_mergeable_bio(*bio,
|
|
fio->page->mapping->host,
|
|
fio->page->index, fio) &&
|
|
bio_add_page(*bio, page, PAGE_SIZE, 0) ==
|
|
PAGE_SIZE) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
/* page can't be merged into bio; submit the bio */
|
|
del_bio_entry(be);
|
|
__submit_bio(sbi, *bio, DATA);
|
|
break;
|
|
}
|
|
up_write(&io->bio_list_lock);
|
|
}
|
|
|
|
if (ret) {
|
|
bio_put(*bio);
|
|
*bio = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
|
|
struct bio **bio, struct page *page)
|
|
{
|
|
enum temp_type temp;
|
|
bool found = false;
|
|
struct bio *target = bio ? *bio : NULL;
|
|
|
|
for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
|
|
struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
|
|
struct list_head *head = &io->bio_list;
|
|
struct bio_entry *be;
|
|
|
|
if (list_empty(head))
|
|
continue;
|
|
|
|
down_read(&io->bio_list_lock);
|
|
list_for_each_entry(be, head, list) {
|
|
if (target)
|
|
found = (target == be->bio);
|
|
else
|
|
found = __has_merged_page(be->bio, NULL,
|
|
page, 0);
|
|
if (found)
|
|
break;
|
|
}
|
|
up_read(&io->bio_list_lock);
|
|
|
|
if (!found)
|
|
continue;
|
|
|
|
found = false;
|
|
|
|
down_write(&io->bio_list_lock);
|
|
list_for_each_entry(be, head, list) {
|
|
if (target)
|
|
found = (target == be->bio);
|
|
else
|
|
found = __has_merged_page(be->bio, NULL,
|
|
page, 0);
|
|
if (found) {
|
|
target = be->bio;
|
|
del_bio_entry(be);
|
|
break;
|
|
}
|
|
}
|
|
up_write(&io->bio_list_lock);
|
|
}
|
|
|
|
if (found)
|
|
__submit_bio(sbi, target, DATA);
|
|
if (bio && *bio) {
|
|
bio_put(*bio);
|
|
*bio = NULL;
|
|
}
|
|
}
|
|
|
|
int f2fs_merge_page_bio(struct f2fs_io_info *fio)
|
|
{
|
|
struct bio *bio = *fio->bio;
|
|
struct page *page = fio->encrypted_page ?
|
|
fio->encrypted_page : fio->page;
|
|
|
|
if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
|
|
__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
|
|
return -EFSCORRUPTED;
|
|
|
|
trace_f2fs_submit_page_bio(page, fio);
|
|
|
|
if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
|
|
fio->new_blkaddr))
|
|
f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
|
|
alloc_new:
|
|
if (!bio) {
|
|
bio = __bio_alloc(fio, BIO_MAX_VECS);
|
|
__attach_io_flag(fio);
|
|
f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
|
|
fio->page->index, fio, GFP_NOIO);
|
|
bio_set_op_attrs(bio, fio->op, fio->op_flags);
|
|
|
|
add_bio_entry(fio->sbi, bio, page, fio->temp);
|
|
} else {
|
|
if (add_ipu_page(fio, &bio, page))
|
|
goto alloc_new;
|
|
}
|
|
|
|
if (fio->io_wbc)
|
|
wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
|
|
|
|
inc_page_count(fio->sbi, WB_DATA_TYPE(page));
|
|
|
|
*fio->last_block = fio->new_blkaddr;
|
|
*fio->bio = bio;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void f2fs_submit_page_write(struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_sb_info *sbi = fio->sbi;
|
|
enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
|
|
struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
|
|
struct page *bio_page;
|
|
|
|
f2fs_bug_on(sbi, is_read_io(fio->op));
|
|
|
|
down_write(&io->io_rwsem);
|
|
next:
|
|
if (fio->in_list) {
|
|
spin_lock(&io->io_lock);
|
|
if (list_empty(&io->io_list)) {
|
|
spin_unlock(&io->io_lock);
|
|
goto out;
|
|
}
|
|
fio = list_first_entry(&io->io_list,
|
|
struct f2fs_io_info, list);
|
|
list_del(&fio->list);
|
|
spin_unlock(&io->io_lock);
|
|
}
|
|
|
|
verify_fio_blkaddr(fio);
|
|
|
|
if (fio->encrypted_page)
|
|
bio_page = fio->encrypted_page;
|
|
else if (fio->compressed_page)
|
|
bio_page = fio->compressed_page;
|
|
else
|
|
bio_page = fio->page;
|
|
|
|
/* set submitted = true as a return value */
|
|
fio->submitted = true;
|
|
|
|
inc_page_count(sbi, WB_DATA_TYPE(bio_page));
|
|
|
|
if (io->bio &&
|
|
(!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
|
|
fio->new_blkaddr) ||
|
|
!f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
|
|
bio_page->index, fio)))
|
|
__submit_merged_bio(io);
|
|
alloc_new:
|
|
if (io->bio == NULL) {
|
|
if (F2FS_IO_ALIGNED(sbi) &&
|
|
(fio->type == DATA || fio->type == NODE) &&
|
|
fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
|
|
dec_page_count(sbi, WB_DATA_TYPE(bio_page));
|
|
fio->retry = true;
|
|
goto skip;
|
|
}
|
|
io->bio = __bio_alloc(fio, BIO_MAX_VECS);
|
|
f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
|
|
bio_page->index, fio, GFP_NOIO);
|
|
io->fio = *fio;
|
|
}
|
|
|
|
if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
|
|
__submit_merged_bio(io);
|
|
goto alloc_new;
|
|
}
|
|
|
|
if (fio->io_wbc)
|
|
wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
|
|
|
|
io->last_block_in_bio = fio->new_blkaddr;
|
|
|
|
trace_f2fs_submit_page_write(fio->page, fio);
|
|
skip:
|
|
if (fio->in_list)
|
|
goto next;
|
|
out:
|
|
if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
|
|
!f2fs_is_checkpoint_ready(sbi))
|
|
__submit_merged_bio(io);
|
|
up_write(&io->io_rwsem);
|
|
}
|
|
|
|
static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
|
|
unsigned nr_pages, unsigned op_flag,
|
|
pgoff_t first_idx, bool for_write)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct bio *bio;
|
|
struct bio_post_read_ctx *ctx = NULL;
|
|
unsigned int post_read_steps = 0;
|
|
|
|
bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
|
|
bio_max_segs(nr_pages), &f2fs_bioset);
|
|
if (!bio)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
|
|
|
|
f2fs_target_device(sbi, blkaddr, bio);
|
|
bio->bi_end_io = f2fs_read_end_io;
|
|
bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
|
|
|
|
if (fscrypt_inode_uses_fs_layer_crypto(inode))
|
|
post_read_steps |= STEP_DECRYPT;
|
|
|
|
if (f2fs_need_verity(inode, first_idx))
|
|
post_read_steps |= STEP_VERITY;
|
|
|
|
/*
|
|
* STEP_DECOMPRESS is handled specially, since a compressed file might
|
|
* contain both compressed and uncompressed clusters. We'll allocate a
|
|
* bio_post_read_ctx if the file is compressed, but the caller is
|
|
* responsible for enabling STEP_DECOMPRESS if it's actually needed.
|
|
*/
|
|
|
|
if (post_read_steps || f2fs_compressed_file(inode)) {
|
|
/* Due to the mempool, this never fails. */
|
|
ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
|
|
ctx->bio = bio;
|
|
ctx->sbi = sbi;
|
|
ctx->enabled_steps = post_read_steps;
|
|
ctx->fs_blkaddr = blkaddr;
|
|
bio->bi_private = ctx;
|
|
}
|
|
iostat_alloc_and_bind_ctx(sbi, bio, ctx);
|
|
|
|
return bio;
|
|
}
|
|
|
|
/* This can handle encryption stuffs */
|
|
static int f2fs_submit_page_read(struct inode *inode, struct page *page,
|
|
block_t blkaddr, int op_flags, bool for_write)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct bio *bio;
|
|
|
|
bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
|
|
page->index, for_write);
|
|
if (IS_ERR(bio))
|
|
return PTR_ERR(bio);
|
|
|
|
/* wait for GCed page writeback via META_MAPPING */
|
|
f2fs_wait_on_block_writeback(inode, blkaddr);
|
|
|
|
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
|
|
bio_put(bio);
|
|
return -EFAULT;
|
|
}
|
|
ClearPageError(page);
|
|
inc_page_count(sbi, F2FS_RD_DATA);
|
|
f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
|
|
__submit_bio(sbi, bio, DATA);
|
|
return 0;
|
|
}
|
|
|
|
static void __set_data_blkaddr(struct dnode_of_data *dn)
|
|
{
|
|
struct f2fs_node *rn = F2FS_NODE(dn->node_page);
|
|
__le32 *addr_array;
|
|
int base = 0;
|
|
|
|
if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
|
|
base = get_extra_isize(dn->inode);
|
|
|
|
/* Get physical address of data block */
|
|
addr_array = blkaddr_in_node(rn);
|
|
addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
|
|
}
|
|
|
|
/*
|
|
* Lock ordering for the change of data block address:
|
|
* ->data_page
|
|
* ->node_page
|
|
* update block addresses in the node page
|
|
*/
|
|
void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
|
|
{
|
|
f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
|
|
__set_data_blkaddr(dn);
|
|
if (set_page_dirty(dn->node_page))
|
|
dn->node_changed = true;
|
|
}
|
|
|
|
void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
|
|
{
|
|
dn->data_blkaddr = blkaddr;
|
|
f2fs_set_data_blkaddr(dn);
|
|
f2fs_update_extent_cache(dn);
|
|
}
|
|
|
|
/* dn->ofs_in_node will be returned with up-to-date last block pointer */
|
|
int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
int err;
|
|
|
|
if (!count)
|
|
return 0;
|
|
|
|
if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
|
|
return -EPERM;
|
|
if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
|
|
return err;
|
|
|
|
trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
|
|
dn->ofs_in_node, count);
|
|
|
|
f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
|
|
|
|
for (; count > 0; dn->ofs_in_node++) {
|
|
block_t blkaddr = f2fs_data_blkaddr(dn);
|
|
|
|
if (blkaddr == NULL_ADDR) {
|
|
dn->data_blkaddr = NEW_ADDR;
|
|
__set_data_blkaddr(dn);
|
|
count--;
|
|
}
|
|
}
|
|
|
|
if (set_page_dirty(dn->node_page))
|
|
dn->node_changed = true;
|
|
return 0;
|
|
}
|
|
|
|
/* Should keep dn->ofs_in_node unchanged */
|
|
int f2fs_reserve_new_block(struct dnode_of_data *dn)
|
|
{
|
|
unsigned int ofs_in_node = dn->ofs_in_node;
|
|
int ret;
|
|
|
|
ret = f2fs_reserve_new_blocks(dn, 1);
|
|
dn->ofs_in_node = ofs_in_node;
|
|
return ret;
|
|
}
|
|
|
|
int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
|
|
{
|
|
bool need_put = dn->inode_page ? false : true;
|
|
int err;
|
|
|
|
err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
|
|
if (err)
|
|
return err;
|
|
|
|
if (dn->data_blkaddr == NULL_ADDR)
|
|
err = f2fs_reserve_new_block(dn);
|
|
if (err || need_put)
|
|
f2fs_put_dnode(dn);
|
|
return err;
|
|
}
|
|
|
|
int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
|
|
{
|
|
struct extent_info ei = {0, };
|
|
struct inode *inode = dn->inode;
|
|
|
|
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
|
|
dn->data_blkaddr = ei.blk + index - ei.fofs;
|
|
return 0;
|
|
}
|
|
|
|
return f2fs_reserve_block(dn, index);
|
|
}
|
|
|
|
struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
|
|
int op_flags, bool for_write)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct dnode_of_data dn;
|
|
struct page *page;
|
|
struct extent_info ei = {0, };
|
|
int err;
|
|
|
|
page = f2fs_grab_cache_page(mapping, index, for_write);
|
|
if (!page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
|
|
dn.data_blkaddr = ei.blk + index - ei.fofs;
|
|
if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
|
|
DATA_GENERIC_ENHANCE_READ)) {
|
|
err = -EFSCORRUPTED;
|
|
goto put_err;
|
|
}
|
|
goto got_it;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
|
|
if (err)
|
|
goto put_err;
|
|
f2fs_put_dnode(&dn);
|
|
|
|
if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
|
|
err = -ENOENT;
|
|
goto put_err;
|
|
}
|
|
if (dn.data_blkaddr != NEW_ADDR &&
|
|
!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
|
|
dn.data_blkaddr,
|
|
DATA_GENERIC_ENHANCE)) {
|
|
err = -EFSCORRUPTED;
|
|
goto put_err;
|
|
}
|
|
got_it:
|
|
if (PageUptodate(page)) {
|
|
unlock_page(page);
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* A new dentry page is allocated but not able to be written, since its
|
|
* new inode page couldn't be allocated due to -ENOSPC.
|
|
* In such the case, its blkaddr can be remained as NEW_ADDR.
|
|
* see, f2fs_add_link -> f2fs_get_new_data_page ->
|
|
* f2fs_init_inode_metadata.
|
|
*/
|
|
if (dn.data_blkaddr == NEW_ADDR) {
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
unlock_page(page);
|
|
return page;
|
|
}
|
|
|
|
err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
|
|
op_flags, for_write);
|
|
if (err)
|
|
goto put_err;
|
|
return page;
|
|
|
|
put_err:
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct page *page;
|
|
|
|
page = find_get_page(mapping, index);
|
|
if (page && PageUptodate(page))
|
|
return page;
|
|
f2fs_put_page(page, 0);
|
|
|
|
page = f2fs_get_read_data_page(inode, index, 0, false);
|
|
if (IS_ERR(page))
|
|
return page;
|
|
|
|
if (PageUptodate(page))
|
|
return page;
|
|
|
|
wait_on_page_locked(page);
|
|
if (unlikely(!PageUptodate(page))) {
|
|
f2fs_put_page(page, 0);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* If it tries to access a hole, return an error.
|
|
* Because, the callers, functions in dir.c and GC, should be able to know
|
|
* whether this page exists or not.
|
|
*/
|
|
struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
|
|
bool for_write)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct page *page;
|
|
repeat:
|
|
page = f2fs_get_read_data_page(inode, index, 0, for_write);
|
|
if (IS_ERR(page))
|
|
return page;
|
|
|
|
/* wait for read completion */
|
|
lock_page(page);
|
|
if (unlikely(page->mapping != mapping)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
if (unlikely(!PageUptodate(page))) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* Caller ensures that this data page is never allocated.
|
|
* A new zero-filled data page is allocated in the page cache.
|
|
*
|
|
* Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
|
|
* f2fs_unlock_op().
|
|
* Note that, ipage is set only by make_empty_dir, and if any error occur,
|
|
* ipage should be released by this function.
|
|
*/
|
|
struct page *f2fs_get_new_data_page(struct inode *inode,
|
|
struct page *ipage, pgoff_t index, bool new_i_size)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct page *page;
|
|
struct dnode_of_data dn;
|
|
int err;
|
|
|
|
page = f2fs_grab_cache_page(mapping, index, true);
|
|
if (!page) {
|
|
/*
|
|
* before exiting, we should make sure ipage will be released
|
|
* if any error occur.
|
|
*/
|
|
f2fs_put_page(ipage, 1);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, NULL, 0);
|
|
err = f2fs_reserve_block(&dn, index);
|
|
if (err) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(err);
|
|
}
|
|
if (!ipage)
|
|
f2fs_put_dnode(&dn);
|
|
|
|
if (PageUptodate(page))
|
|
goto got_it;
|
|
|
|
if (dn.data_blkaddr == NEW_ADDR) {
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
} else {
|
|
f2fs_put_page(page, 1);
|
|
|
|
/* if ipage exists, blkaddr should be NEW_ADDR */
|
|
f2fs_bug_on(F2FS_I_SB(inode), ipage);
|
|
page = f2fs_get_lock_data_page(inode, index, true);
|
|
if (IS_ERR(page))
|
|
return page;
|
|
}
|
|
got_it:
|
|
if (new_i_size && i_size_read(inode) <
|
|
((loff_t)(index + 1) << PAGE_SHIFT))
|
|
f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
|
|
return page;
|
|
}
|
|
|
|
static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
struct f2fs_summary sum;
|
|
struct node_info ni;
|
|
block_t old_blkaddr;
|
|
blkcnt_t count = 1;
|
|
int err;
|
|
|
|
if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
|
|
return -EPERM;
|
|
|
|
err = f2fs_get_node_info(sbi, dn->nid, &ni);
|
|
if (err)
|
|
return err;
|
|
|
|
dn->data_blkaddr = f2fs_data_blkaddr(dn);
|
|
if (dn->data_blkaddr != NULL_ADDR)
|
|
goto alloc;
|
|
|
|
if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
|
|
return err;
|
|
|
|
alloc:
|
|
set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
|
|
old_blkaddr = dn->data_blkaddr;
|
|
f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
|
|
&sum, seg_type, NULL);
|
|
if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
|
|
invalidate_mapping_pages(META_MAPPING(sbi),
|
|
old_blkaddr, old_blkaddr);
|
|
f2fs_invalidate_compress_page(sbi, old_blkaddr);
|
|
}
|
|
f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
|
|
|
|
/*
|
|
* i_size will be updated by direct_IO. Otherwise, we'll get stale
|
|
* data from unwritten block via dio_read.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
struct f2fs_map_blocks map;
|
|
int flag;
|
|
int err = 0;
|
|
bool direct_io = iocb->ki_flags & IOCB_DIRECT;
|
|
|
|
map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
|
|
map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
|
|
if (map.m_len > map.m_lblk)
|
|
map.m_len -= map.m_lblk;
|
|
else
|
|
map.m_len = 0;
|
|
|
|
map.m_next_pgofs = NULL;
|
|
map.m_next_extent = NULL;
|
|
map.m_seg_type = NO_CHECK_TYPE;
|
|
map.m_may_create = true;
|
|
|
|
if (direct_io) {
|
|
map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
|
|
flag = f2fs_force_buffered_io(inode, iocb, from) ?
|
|
F2FS_GET_BLOCK_PRE_AIO :
|
|
F2FS_GET_BLOCK_PRE_DIO;
|
|
goto map_blocks;
|
|
}
|
|
if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
|
|
err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
return err;
|
|
}
|
|
if (f2fs_has_inline_data(inode))
|
|
return err;
|
|
|
|
flag = F2FS_GET_BLOCK_PRE_AIO;
|
|
|
|
map_blocks:
|
|
err = f2fs_map_blocks(inode, &map, 1, flag);
|
|
if (map.m_len > 0 && err == -ENOSPC) {
|
|
if (!direct_io)
|
|
set_inode_flag(inode, FI_NO_PREALLOC);
|
|
err = 0;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
|
|
{
|
|
if (flag == F2FS_GET_BLOCK_PRE_AIO) {
|
|
if (lock)
|
|
down_read(&sbi->node_change);
|
|
else
|
|
up_read(&sbi->node_change);
|
|
} else {
|
|
if (lock)
|
|
f2fs_lock_op(sbi);
|
|
else
|
|
f2fs_unlock_op(sbi);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* f2fs_map_blocks() tries to find or build mapping relationship which
|
|
* maps continuous logical blocks to physical blocks, and return such
|
|
* info via f2fs_map_blocks structure.
|
|
*/
|
|
int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
|
|
int create, int flag)
|
|
{
|
|
unsigned int maxblocks = map->m_len;
|
|
struct dnode_of_data dn;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
|
|
pgoff_t pgofs, end_offset, end;
|
|
int err = 0, ofs = 1;
|
|
unsigned int ofs_in_node, last_ofs_in_node;
|
|
blkcnt_t prealloc;
|
|
struct extent_info ei = {0, };
|
|
block_t blkaddr;
|
|
unsigned int start_pgofs;
|
|
|
|
if (!maxblocks)
|
|
return 0;
|
|
|
|
map->m_len = 0;
|
|
map->m_flags = 0;
|
|
|
|
/* it only supports block size == page size */
|
|
pgofs = (pgoff_t)map->m_lblk;
|
|
end = pgofs + maxblocks;
|
|
|
|
if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
|
|
if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
|
|
map->m_may_create)
|
|
goto next_dnode;
|
|
|
|
map->m_pblk = ei.blk + pgofs - ei.fofs;
|
|
map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
|
|
map->m_flags = F2FS_MAP_MAPPED;
|
|
if (map->m_next_extent)
|
|
*map->m_next_extent = pgofs + map->m_len;
|
|
|
|
/* for hardware encryption, but to avoid potential issue in future */
|
|
if (flag == F2FS_GET_BLOCK_DIO)
|
|
f2fs_wait_on_block_writeback_range(inode,
|
|
map->m_pblk, map->m_len);
|
|
goto out;
|
|
}
|
|
|
|
next_dnode:
|
|
if (map->m_may_create)
|
|
f2fs_do_map_lock(sbi, flag, true);
|
|
|
|
/* When reading holes, we need its node page */
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
|
|
if (err) {
|
|
if (flag == F2FS_GET_BLOCK_BMAP)
|
|
map->m_pblk = 0;
|
|
|
|
if (err == -ENOENT) {
|
|
/*
|
|
* There is one exceptional case that read_node_page()
|
|
* may return -ENOENT due to filesystem has been
|
|
* shutdown or cp_error, so force to convert error
|
|
* number to EIO for such case.
|
|
*/
|
|
if (map->m_may_create &&
|
|
(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
|
|
f2fs_cp_error(sbi))) {
|
|
err = -EIO;
|
|
goto unlock_out;
|
|
}
|
|
|
|
err = 0;
|
|
if (map->m_next_pgofs)
|
|
*map->m_next_pgofs =
|
|
f2fs_get_next_page_offset(&dn, pgofs);
|
|
if (map->m_next_extent)
|
|
*map->m_next_extent =
|
|
f2fs_get_next_page_offset(&dn, pgofs);
|
|
}
|
|
goto unlock_out;
|
|
}
|
|
|
|
start_pgofs = pgofs;
|
|
prealloc = 0;
|
|
last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
|
|
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
|
|
|
|
next_block:
|
|
blkaddr = f2fs_data_blkaddr(&dn);
|
|
|
|
if (__is_valid_data_blkaddr(blkaddr) &&
|
|
!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
|
|
err = -EFSCORRUPTED;
|
|
goto sync_out;
|
|
}
|
|
|
|
if (__is_valid_data_blkaddr(blkaddr)) {
|
|
/* use out-place-update for driect IO under LFS mode */
|
|
if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
|
|
map->m_may_create) {
|
|
err = __allocate_data_block(&dn, map->m_seg_type);
|
|
if (err)
|
|
goto sync_out;
|
|
blkaddr = dn.data_blkaddr;
|
|
set_inode_flag(inode, FI_APPEND_WRITE);
|
|
}
|
|
} else {
|
|
if (create) {
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
err = -EIO;
|
|
goto sync_out;
|
|
}
|
|
if (flag == F2FS_GET_BLOCK_PRE_AIO) {
|
|
if (blkaddr == NULL_ADDR) {
|
|
prealloc++;
|
|
last_ofs_in_node = dn.ofs_in_node;
|
|
}
|
|
} else {
|
|
WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
|
|
flag != F2FS_GET_BLOCK_DIO);
|
|
err = __allocate_data_block(&dn,
|
|
map->m_seg_type);
|
|
if (!err)
|
|
set_inode_flag(inode, FI_APPEND_WRITE);
|
|
}
|
|
if (err)
|
|
goto sync_out;
|
|
map->m_flags |= F2FS_MAP_NEW;
|
|
blkaddr = dn.data_blkaddr;
|
|
} else {
|
|
if (f2fs_compressed_file(inode) &&
|
|
f2fs_sanity_check_cluster(&dn) &&
|
|
(flag != F2FS_GET_BLOCK_FIEMAP ||
|
|
IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
|
|
err = -EFSCORRUPTED;
|
|
goto sync_out;
|
|
}
|
|
if (flag == F2FS_GET_BLOCK_BMAP) {
|
|
map->m_pblk = 0;
|
|
goto sync_out;
|
|
}
|
|
if (flag == F2FS_GET_BLOCK_PRECACHE)
|
|
goto sync_out;
|
|
if (flag == F2FS_GET_BLOCK_FIEMAP &&
|
|
blkaddr == NULL_ADDR) {
|
|
if (map->m_next_pgofs)
|
|
*map->m_next_pgofs = pgofs + 1;
|
|
goto sync_out;
|
|
}
|
|
if (flag != F2FS_GET_BLOCK_FIEMAP) {
|
|
/* for defragment case */
|
|
if (map->m_next_pgofs)
|
|
*map->m_next_pgofs = pgofs + 1;
|
|
goto sync_out;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (flag == F2FS_GET_BLOCK_PRE_AIO)
|
|
goto skip;
|
|
|
|
if (map->m_len == 0) {
|
|
/* preallocated unwritten block should be mapped for fiemap. */
|
|
if (blkaddr == NEW_ADDR)
|
|
map->m_flags |= F2FS_MAP_UNWRITTEN;
|
|
map->m_flags |= F2FS_MAP_MAPPED;
|
|
|
|
map->m_pblk = blkaddr;
|
|
map->m_len = 1;
|
|
} else if ((map->m_pblk != NEW_ADDR &&
|
|
blkaddr == (map->m_pblk + ofs)) ||
|
|
(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
|
|
flag == F2FS_GET_BLOCK_PRE_DIO) {
|
|
ofs++;
|
|
map->m_len++;
|
|
} else {
|
|
goto sync_out;
|
|
}
|
|
|
|
skip:
|
|
dn.ofs_in_node++;
|
|
pgofs++;
|
|
|
|
/* preallocate blocks in batch for one dnode page */
|
|
if (flag == F2FS_GET_BLOCK_PRE_AIO &&
|
|
(pgofs == end || dn.ofs_in_node == end_offset)) {
|
|
|
|
dn.ofs_in_node = ofs_in_node;
|
|
err = f2fs_reserve_new_blocks(&dn, prealloc);
|
|
if (err)
|
|
goto sync_out;
|
|
|
|
map->m_len += dn.ofs_in_node - ofs_in_node;
|
|
if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
|
|
err = -ENOSPC;
|
|
goto sync_out;
|
|
}
|
|
dn.ofs_in_node = end_offset;
|
|
}
|
|
|
|
if (pgofs >= end)
|
|
goto sync_out;
|
|
else if (dn.ofs_in_node < end_offset)
|
|
goto next_block;
|
|
|
|
if (flag == F2FS_GET_BLOCK_PRECACHE) {
|
|
if (map->m_flags & F2FS_MAP_MAPPED) {
|
|
unsigned int ofs = start_pgofs - map->m_lblk;
|
|
|
|
f2fs_update_extent_cache_range(&dn,
|
|
start_pgofs, map->m_pblk + ofs,
|
|
map->m_len - ofs);
|
|
}
|
|
}
|
|
|
|
f2fs_put_dnode(&dn);
|
|
|
|
if (map->m_may_create) {
|
|
f2fs_do_map_lock(sbi, flag, false);
|
|
f2fs_balance_fs(sbi, dn.node_changed);
|
|
}
|
|
goto next_dnode;
|
|
|
|
sync_out:
|
|
|
|
/* for hardware encryption, but to avoid potential issue in future */
|
|
if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
|
|
f2fs_wait_on_block_writeback_range(inode,
|
|
map->m_pblk, map->m_len);
|
|
|
|
if (flag == F2FS_GET_BLOCK_PRECACHE) {
|
|
if (map->m_flags & F2FS_MAP_MAPPED) {
|
|
unsigned int ofs = start_pgofs - map->m_lblk;
|
|
|
|
f2fs_update_extent_cache_range(&dn,
|
|
start_pgofs, map->m_pblk + ofs,
|
|
map->m_len - ofs);
|
|
}
|
|
if (map->m_next_extent)
|
|
*map->m_next_extent = pgofs + 1;
|
|
}
|
|
f2fs_put_dnode(&dn);
|
|
unlock_out:
|
|
if (map->m_may_create) {
|
|
f2fs_do_map_lock(sbi, flag, false);
|
|
f2fs_balance_fs(sbi, dn.node_changed);
|
|
}
|
|
out:
|
|
trace_f2fs_map_blocks(inode, map, err);
|
|
return err;
|
|
}
|
|
|
|
bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
|
|
{
|
|
struct f2fs_map_blocks map;
|
|
block_t last_lblk;
|
|
int err;
|
|
|
|
if (pos + len > i_size_read(inode))
|
|
return false;
|
|
|
|
map.m_lblk = F2FS_BYTES_TO_BLK(pos);
|
|
map.m_next_pgofs = NULL;
|
|
map.m_next_extent = NULL;
|
|
map.m_seg_type = NO_CHECK_TYPE;
|
|
map.m_may_create = false;
|
|
last_lblk = F2FS_BLK_ALIGN(pos + len);
|
|
|
|
while (map.m_lblk < last_lblk) {
|
|
map.m_len = last_lblk - map.m_lblk;
|
|
err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
|
|
if (err || map.m_len == 0)
|
|
return false;
|
|
map.m_lblk += map.m_len;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
|
|
{
|
|
return (bytes >> inode->i_blkbits);
|
|
}
|
|
|
|
static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
|
|
{
|
|
return (blks << inode->i_blkbits);
|
|
}
|
|
|
|
static int __get_data_block(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh, int create, int flag,
|
|
pgoff_t *next_pgofs, int seg_type, bool may_write)
|
|
{
|
|
struct f2fs_map_blocks map;
|
|
int err;
|
|
|
|
map.m_lblk = iblock;
|
|
map.m_len = bytes_to_blks(inode, bh->b_size);
|
|
map.m_next_pgofs = next_pgofs;
|
|
map.m_next_extent = NULL;
|
|
map.m_seg_type = seg_type;
|
|
map.m_may_create = may_write;
|
|
|
|
err = f2fs_map_blocks(inode, &map, create, flag);
|
|
if (!err) {
|
|
map_bh(bh, inode->i_sb, map.m_pblk);
|
|
bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
|
|
bh->b_size = blks_to_bytes(inode, map.m_len);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create)
|
|
{
|
|
return __get_data_block(inode, iblock, bh_result, create,
|
|
F2FS_GET_BLOCK_DIO, NULL,
|
|
f2fs_rw_hint_to_seg_type(inode->i_write_hint),
|
|
true);
|
|
}
|
|
|
|
static int get_data_block_dio(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create)
|
|
{
|
|
return __get_data_block(inode, iblock, bh_result, create,
|
|
F2FS_GET_BLOCK_DIO, NULL,
|
|
f2fs_rw_hint_to_seg_type(inode->i_write_hint),
|
|
false);
|
|
}
|
|
|
|
static int f2fs_xattr_fiemap(struct inode *inode,
|
|
struct fiemap_extent_info *fieinfo)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct page *page;
|
|
struct node_info ni;
|
|
__u64 phys = 0, len;
|
|
__u32 flags;
|
|
nid_t xnid = F2FS_I(inode)->i_xattr_nid;
|
|
int err = 0;
|
|
|
|
if (f2fs_has_inline_xattr(inode)) {
|
|
int offset;
|
|
|
|
page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
|
|
inode->i_ino, false);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
|
|
if (err) {
|
|
f2fs_put_page(page, 1);
|
|
return err;
|
|
}
|
|
|
|
phys = blks_to_bytes(inode, ni.blk_addr);
|
|
offset = offsetof(struct f2fs_inode, i_addr) +
|
|
sizeof(__le32) * (DEF_ADDRS_PER_INODE -
|
|
get_inline_xattr_addrs(inode));
|
|
|
|
phys += offset;
|
|
len = inline_xattr_size(inode);
|
|
|
|
f2fs_put_page(page, 1);
|
|
|
|
flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
|
|
|
|
if (!xnid)
|
|
flags |= FIEMAP_EXTENT_LAST;
|
|
|
|
err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
|
|
trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
|
|
if (err || err == 1)
|
|
return err;
|
|
}
|
|
|
|
if (xnid) {
|
|
page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
err = f2fs_get_node_info(sbi, xnid, &ni);
|
|
if (err) {
|
|
f2fs_put_page(page, 1);
|
|
return err;
|
|
}
|
|
|
|
phys = blks_to_bytes(inode, ni.blk_addr);
|
|
len = inode->i_sb->s_blocksize;
|
|
|
|
f2fs_put_page(page, 1);
|
|
|
|
flags = FIEMAP_EXTENT_LAST;
|
|
}
|
|
|
|
if (phys) {
|
|
err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
|
|
trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
|
|
}
|
|
|
|
return (err < 0 ? err : 0);
|
|
}
|
|
|
|
static loff_t max_inode_blocks(struct inode *inode)
|
|
{
|
|
loff_t result = ADDRS_PER_INODE(inode);
|
|
loff_t leaf_count = ADDRS_PER_BLOCK(inode);
|
|
|
|
/* two direct node blocks */
|
|
result += (leaf_count * 2);
|
|
|
|
/* two indirect node blocks */
|
|
leaf_count *= NIDS_PER_BLOCK;
|
|
result += (leaf_count * 2);
|
|
|
|
/* one double indirect node block */
|
|
leaf_count *= NIDS_PER_BLOCK;
|
|
result += leaf_count;
|
|
|
|
return result;
|
|
}
|
|
|
|
int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
|
|
u64 start, u64 len)
|
|
{
|
|
struct f2fs_map_blocks map;
|
|
sector_t start_blk, last_blk;
|
|
pgoff_t next_pgofs;
|
|
u64 logical = 0, phys = 0, size = 0;
|
|
u32 flags = 0;
|
|
int ret = 0;
|
|
bool compr_cluster = false, compr_appended;
|
|
unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
|
|
unsigned int count_in_cluster = 0;
|
|
loff_t maxbytes;
|
|
|
|
if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
|
|
ret = f2fs_precache_extents(inode);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
|
|
if (ret)
|
|
return ret;
|
|
|
|
inode_lock(inode);
|
|
|
|
maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
|
|
if (start > maxbytes) {
|
|
ret = -EFBIG;
|
|
goto out;
|
|
}
|
|
|
|
if (len > maxbytes || (maxbytes - len) < start)
|
|
len = maxbytes - start;
|
|
|
|
if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
|
|
ret = f2fs_xattr_fiemap(inode, fieinfo);
|
|
goto out;
|
|
}
|
|
|
|
if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
|
|
ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
|
|
if (ret != -EAGAIN)
|
|
goto out;
|
|
}
|
|
|
|
if (bytes_to_blks(inode, len) == 0)
|
|
len = blks_to_bytes(inode, 1);
|
|
|
|
start_blk = bytes_to_blks(inode, start);
|
|
last_blk = bytes_to_blks(inode, start + len - 1);
|
|
|
|
next:
|
|
memset(&map, 0, sizeof(map));
|
|
map.m_lblk = start_blk;
|
|
map.m_len = bytes_to_blks(inode, len);
|
|
map.m_next_pgofs = &next_pgofs;
|
|
map.m_seg_type = NO_CHECK_TYPE;
|
|
|
|
if (compr_cluster) {
|
|
map.m_lblk += 1;
|
|
map.m_len = cluster_size - count_in_cluster;
|
|
}
|
|
|
|
ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* HOLE */
|
|
if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
|
|
start_blk = next_pgofs;
|
|
|
|
if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
|
|
max_inode_blocks(inode)))
|
|
goto prep_next;
|
|
|
|
flags |= FIEMAP_EXTENT_LAST;
|
|
}
|
|
|
|
compr_appended = false;
|
|
/* In a case of compressed cluster, append this to the last extent */
|
|
if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
|
|
!(map.m_flags & F2FS_MAP_FLAGS))) {
|
|
compr_appended = true;
|
|
goto skip_fill;
|
|
}
|
|
|
|
if (size) {
|
|
flags |= FIEMAP_EXTENT_MERGED;
|
|
if (IS_ENCRYPTED(inode))
|
|
flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
|
|
|
|
ret = fiemap_fill_next_extent(fieinfo, logical,
|
|
phys, size, flags);
|
|
trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
|
|
if (ret)
|
|
goto out;
|
|
size = 0;
|
|
}
|
|
|
|
if (start_blk > last_blk)
|
|
goto out;
|
|
|
|
skip_fill:
|
|
if (map.m_pblk == COMPRESS_ADDR) {
|
|
compr_cluster = true;
|
|
count_in_cluster = 1;
|
|
} else if (compr_appended) {
|
|
unsigned int appended_blks = cluster_size -
|
|
count_in_cluster + 1;
|
|
size += blks_to_bytes(inode, appended_blks);
|
|
start_blk += appended_blks;
|
|
compr_cluster = false;
|
|
} else {
|
|
logical = blks_to_bytes(inode, start_blk);
|
|
phys = __is_valid_data_blkaddr(map.m_pblk) ?
|
|
blks_to_bytes(inode, map.m_pblk) : 0;
|
|
size = blks_to_bytes(inode, map.m_len);
|
|
flags = 0;
|
|
|
|
if (compr_cluster) {
|
|
flags = FIEMAP_EXTENT_ENCODED;
|
|
count_in_cluster += map.m_len;
|
|
if (count_in_cluster == cluster_size) {
|
|
compr_cluster = false;
|
|
size += blks_to_bytes(inode, 1);
|
|
}
|
|
} else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
|
|
flags = FIEMAP_EXTENT_UNWRITTEN;
|
|
}
|
|
|
|
start_blk += bytes_to_blks(inode, size);
|
|
}
|
|
|
|
prep_next:
|
|
cond_resched();
|
|
if (fatal_signal_pending(current))
|
|
ret = -EINTR;
|
|
else
|
|
goto next;
|
|
out:
|
|
if (ret == 1)
|
|
ret = 0;
|
|
|
|
inode_unlock(inode);
|
|
return ret;
|
|
}
|
|
|
|
static inline loff_t f2fs_readpage_limit(struct inode *inode)
|
|
{
|
|
if (IS_ENABLED(CONFIG_FS_VERITY) &&
|
|
(IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
|
|
return inode->i_sb->s_maxbytes;
|
|
|
|
return i_size_read(inode);
|
|
}
|
|
|
|
static int f2fs_read_single_page(struct inode *inode, struct page *page,
|
|
unsigned nr_pages,
|
|
struct f2fs_map_blocks *map,
|
|
struct bio **bio_ret,
|
|
sector_t *last_block_in_bio,
|
|
bool is_readahead)
|
|
{
|
|
struct bio *bio = *bio_ret;
|
|
const unsigned blocksize = blks_to_bytes(inode, 1);
|
|
sector_t block_in_file;
|
|
sector_t last_block;
|
|
sector_t last_block_in_file;
|
|
sector_t block_nr;
|
|
int ret = 0;
|
|
|
|
block_in_file = (sector_t)page_index(page);
|
|
last_block = block_in_file + nr_pages;
|
|
last_block_in_file = bytes_to_blks(inode,
|
|
f2fs_readpage_limit(inode) + blocksize - 1);
|
|
if (last_block > last_block_in_file)
|
|
last_block = last_block_in_file;
|
|
|
|
/* just zeroing out page which is beyond EOF */
|
|
if (block_in_file >= last_block)
|
|
goto zero_out;
|
|
/*
|
|
* Map blocks using the previous result first.
|
|
*/
|
|
if ((map->m_flags & F2FS_MAP_MAPPED) &&
|
|
block_in_file > map->m_lblk &&
|
|
block_in_file < (map->m_lblk + map->m_len))
|
|
goto got_it;
|
|
|
|
/*
|
|
* Then do more f2fs_map_blocks() calls until we are
|
|
* done with this page.
|
|
*/
|
|
map->m_lblk = block_in_file;
|
|
map->m_len = last_block - block_in_file;
|
|
|
|
ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
|
|
if (ret)
|
|
goto out;
|
|
got_it:
|
|
if ((map->m_flags & F2FS_MAP_MAPPED)) {
|
|
block_nr = map->m_pblk + block_in_file - map->m_lblk;
|
|
SetPageMappedToDisk(page);
|
|
|
|
if (!PageUptodate(page) && (!PageSwapCache(page) &&
|
|
!cleancache_get_page(page))) {
|
|
SetPageUptodate(page);
|
|
goto confused;
|
|
}
|
|
|
|
if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
|
|
DATA_GENERIC_ENHANCE_READ)) {
|
|
ret = -EFSCORRUPTED;
|
|
goto out;
|
|
}
|
|
} else {
|
|
zero_out:
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
if (f2fs_need_verity(inode, page->index) &&
|
|
!fsverity_verify_page(page)) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
unlock_page(page);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* This page will go to BIO. Do we need to send this
|
|
* BIO off first?
|
|
*/
|
|
if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
|
|
*last_block_in_bio, block_nr) ||
|
|
!f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
|
|
submit_and_realloc:
|
|
__submit_bio(F2FS_I_SB(inode), bio, DATA);
|
|
bio = NULL;
|
|
}
|
|
if (bio == NULL) {
|
|
bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
|
|
is_readahead ? REQ_RAHEAD : 0, page->index,
|
|
false);
|
|
if (IS_ERR(bio)) {
|
|
ret = PTR_ERR(bio);
|
|
bio = NULL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the page is under writeback, we need to wait for
|
|
* its completion to see the correct decrypted data.
|
|
*/
|
|
f2fs_wait_on_block_writeback(inode, block_nr);
|
|
|
|
if (bio_add_page(bio, page, blocksize, 0) < blocksize)
|
|
goto submit_and_realloc;
|
|
|
|
inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
|
|
f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
|
|
ClearPageError(page);
|
|
*last_block_in_bio = block_nr;
|
|
goto out;
|
|
confused:
|
|
if (bio) {
|
|
__submit_bio(F2FS_I_SB(inode), bio, DATA);
|
|
bio = NULL;
|
|
}
|
|
unlock_page(page);
|
|
out:
|
|
*bio_ret = bio;
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
|
|
unsigned nr_pages, sector_t *last_block_in_bio,
|
|
bool is_readahead, bool for_write)
|
|
{
|
|
struct dnode_of_data dn;
|
|
struct inode *inode = cc->inode;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct bio *bio = *bio_ret;
|
|
unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
|
|
sector_t last_block_in_file;
|
|
const unsigned blocksize = blks_to_bytes(inode, 1);
|
|
struct decompress_io_ctx *dic = NULL;
|
|
struct extent_info ei = {0, };
|
|
bool from_dnode = true;
|
|
int i;
|
|
int ret = 0;
|
|
|
|
f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
|
|
|
|
last_block_in_file = bytes_to_blks(inode,
|
|
f2fs_readpage_limit(inode) + blocksize - 1);
|
|
|
|
/* get rid of pages beyond EOF */
|
|
for (i = 0; i < cc->cluster_size; i++) {
|
|
struct page *page = cc->rpages[i];
|
|
|
|
if (!page)
|
|
continue;
|
|
if ((sector_t)page->index >= last_block_in_file) {
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
} else if (!PageUptodate(page)) {
|
|
continue;
|
|
}
|
|
unlock_page(page);
|
|
if (for_write)
|
|
put_page(page);
|
|
cc->rpages[i] = NULL;
|
|
cc->nr_rpages--;
|
|
}
|
|
|
|
/* we are done since all pages are beyond EOF */
|
|
if (f2fs_cluster_is_empty(cc))
|
|
goto out;
|
|
|
|
if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
|
|
from_dnode = false;
|
|
|
|
if (!from_dnode)
|
|
goto skip_reading_dnode;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
|
|
if (ret)
|
|
goto out;
|
|
|
|
f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
|
|
|
|
skip_reading_dnode:
|
|
for (i = 1; i < cc->cluster_size; i++) {
|
|
block_t blkaddr;
|
|
|
|
blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
|
|
dn.ofs_in_node + i) :
|
|
ei.blk + i - 1;
|
|
|
|
if (!__is_valid_data_blkaddr(blkaddr))
|
|
break;
|
|
|
|
if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
|
|
ret = -EFAULT;
|
|
goto out_put_dnode;
|
|
}
|
|
cc->nr_cpages++;
|
|
|
|
if (!from_dnode && i >= ei.c_len)
|
|
break;
|
|
}
|
|
|
|
/* nothing to decompress */
|
|
if (cc->nr_cpages == 0) {
|
|
ret = 0;
|
|
goto out_put_dnode;
|
|
}
|
|
|
|
dic = f2fs_alloc_dic(cc);
|
|
if (IS_ERR(dic)) {
|
|
ret = PTR_ERR(dic);
|
|
goto out_put_dnode;
|
|
}
|
|
|
|
for (i = 0; i < cc->nr_cpages; i++) {
|
|
struct page *page = dic->cpages[i];
|
|
block_t blkaddr;
|
|
struct bio_post_read_ctx *ctx;
|
|
|
|
blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
|
|
dn.ofs_in_node + i + 1) :
|
|
ei.blk + i;
|
|
|
|
f2fs_wait_on_block_writeback(inode, blkaddr);
|
|
|
|
if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
|
|
if (atomic_dec_and_test(&dic->remaining_pages))
|
|
f2fs_decompress_cluster(dic);
|
|
continue;
|
|
}
|
|
|
|
if (bio && (!page_is_mergeable(sbi, bio,
|
|
*last_block_in_bio, blkaddr) ||
|
|
!f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
|
|
submit_and_realloc:
|
|
__submit_bio(sbi, bio, DATA);
|
|
bio = NULL;
|
|
}
|
|
|
|
if (!bio) {
|
|
bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
|
|
is_readahead ? REQ_RAHEAD : 0,
|
|
page->index, for_write);
|
|
if (IS_ERR(bio)) {
|
|
ret = PTR_ERR(bio);
|
|
f2fs_decompress_end_io(dic, ret);
|
|
f2fs_put_dnode(&dn);
|
|
*bio_ret = NULL;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (bio_add_page(bio, page, blocksize, 0) < blocksize)
|
|
goto submit_and_realloc;
|
|
|
|
ctx = get_post_read_ctx(bio);
|
|
ctx->enabled_steps |= STEP_DECOMPRESS;
|
|
refcount_inc(&dic->refcnt);
|
|
|
|
inc_page_count(sbi, F2FS_RD_DATA);
|
|
f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
|
|
f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
|
|
ClearPageError(page);
|
|
*last_block_in_bio = blkaddr;
|
|
}
|
|
|
|
if (from_dnode)
|
|
f2fs_put_dnode(&dn);
|
|
|
|
*bio_ret = bio;
|
|
return 0;
|
|
|
|
out_put_dnode:
|
|
if (from_dnode)
|
|
f2fs_put_dnode(&dn);
|
|
out:
|
|
for (i = 0; i < cc->cluster_size; i++) {
|
|
if (cc->rpages[i]) {
|
|
ClearPageUptodate(cc->rpages[i]);
|
|
ClearPageError(cc->rpages[i]);
|
|
unlock_page(cc->rpages[i]);
|
|
}
|
|
}
|
|
*bio_ret = bio;
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This function was originally taken from fs/mpage.c, and customized for f2fs.
|
|
* Major change was from block_size == page_size in f2fs by default.
|
|
*/
|
|
static int f2fs_mpage_readpages(struct inode *inode,
|
|
struct readahead_control *rac, struct page *page)
|
|
{
|
|
struct bio *bio = NULL;
|
|
sector_t last_block_in_bio = 0;
|
|
struct f2fs_map_blocks map;
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
struct compress_ctx cc = {
|
|
.inode = inode,
|
|
.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
|
|
.cluster_size = F2FS_I(inode)->i_cluster_size,
|
|
.cluster_idx = NULL_CLUSTER,
|
|
.rpages = NULL,
|
|
.cpages = NULL,
|
|
.nr_rpages = 0,
|
|
.nr_cpages = 0,
|
|
};
|
|
pgoff_t nc_cluster_idx = NULL_CLUSTER;
|
|
#endif
|
|
unsigned nr_pages = rac ? readahead_count(rac) : 1;
|
|
unsigned max_nr_pages = nr_pages;
|
|
int ret = 0;
|
|
|
|
map.m_pblk = 0;
|
|
map.m_lblk = 0;
|
|
map.m_len = 0;
|
|
map.m_flags = 0;
|
|
map.m_next_pgofs = NULL;
|
|
map.m_next_extent = NULL;
|
|
map.m_seg_type = NO_CHECK_TYPE;
|
|
map.m_may_create = false;
|
|
|
|
for (; nr_pages; nr_pages--) {
|
|
if (rac) {
|
|
page = readahead_page(rac);
|
|
prefetchw(&page->flags);
|
|
}
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
if (f2fs_compressed_file(inode)) {
|
|
/* there are remained comressed pages, submit them */
|
|
if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
|
|
ret = f2fs_read_multi_pages(&cc, &bio,
|
|
max_nr_pages,
|
|
&last_block_in_bio,
|
|
rac != NULL, false);
|
|
f2fs_destroy_compress_ctx(&cc, false);
|
|
if (ret)
|
|
goto set_error_page;
|
|
}
|
|
if (cc.cluster_idx == NULL_CLUSTER) {
|
|
if (nc_cluster_idx ==
|
|
page->index >> cc.log_cluster_size) {
|
|
goto read_single_page;
|
|
}
|
|
|
|
ret = f2fs_is_compressed_cluster(inode, page->index);
|
|
if (ret < 0)
|
|
goto set_error_page;
|
|
else if (!ret) {
|
|
nc_cluster_idx =
|
|
page->index >> cc.log_cluster_size;
|
|
goto read_single_page;
|
|
}
|
|
|
|
nc_cluster_idx = NULL_CLUSTER;
|
|
}
|
|
ret = f2fs_init_compress_ctx(&cc);
|
|
if (ret)
|
|
goto set_error_page;
|
|
|
|
f2fs_compress_ctx_add_page(&cc, page);
|
|
|
|
goto next_page;
|
|
}
|
|
read_single_page:
|
|
#endif
|
|
|
|
ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
|
|
&bio, &last_block_in_bio, rac);
|
|
if (ret) {
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
set_error_page:
|
|
#endif
|
|
SetPageError(page);
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
unlock_page(page);
|
|
}
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
next_page:
|
|
#endif
|
|
if (rac)
|
|
put_page(page);
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
if (f2fs_compressed_file(inode)) {
|
|
/* last page */
|
|
if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
|
|
ret = f2fs_read_multi_pages(&cc, &bio,
|
|
max_nr_pages,
|
|
&last_block_in_bio,
|
|
rac != NULL, false);
|
|
f2fs_destroy_compress_ctx(&cc, false);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
if (bio)
|
|
__submit_bio(F2FS_I_SB(inode), bio, DATA);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_read_data_page(struct file *file, struct page *page)
|
|
{
|
|
struct inode *inode = page_file_mapping(page)->host;
|
|
int ret = -EAGAIN;
|
|
|
|
trace_f2fs_readpage(page, DATA);
|
|
|
|
if (!f2fs_is_compress_backend_ready(inode)) {
|
|
unlock_page(page);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* If the file has inline data, try to read it directly */
|
|
if (f2fs_has_inline_data(inode))
|
|
ret = f2fs_read_inline_data(inode, page);
|
|
if (ret == -EAGAIN)
|
|
ret = f2fs_mpage_readpages(inode, NULL, page);
|
|
return ret;
|
|
}
|
|
|
|
static void f2fs_readahead(struct readahead_control *rac)
|
|
{
|
|
struct inode *inode = rac->mapping->host;
|
|
|
|
trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
|
|
|
|
if (!f2fs_is_compress_backend_ready(inode))
|
|
return;
|
|
|
|
/* If the file has inline data, skip readpages */
|
|
if (f2fs_has_inline_data(inode))
|
|
return;
|
|
|
|
f2fs_mpage_readpages(inode, rac, NULL);
|
|
}
|
|
|
|
int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
|
|
{
|
|
struct inode *inode = fio->page->mapping->host;
|
|
struct page *mpage, *page;
|
|
gfp_t gfp_flags = GFP_NOFS;
|
|
|
|
if (!f2fs_encrypted_file(inode))
|
|
return 0;
|
|
|
|
page = fio->compressed_page ? fio->compressed_page : fio->page;
|
|
|
|
/* wait for GCed page writeback via META_MAPPING */
|
|
f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
|
|
|
|
if (fscrypt_inode_uses_inline_crypto(inode))
|
|
return 0;
|
|
|
|
retry_encrypt:
|
|
fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
|
|
PAGE_SIZE, 0, gfp_flags);
|
|
if (IS_ERR(fio->encrypted_page)) {
|
|
/* flush pending IOs and wait for a while in the ENOMEM case */
|
|
if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
|
|
f2fs_flush_merged_writes(fio->sbi);
|
|
congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
|
|
gfp_flags |= __GFP_NOFAIL;
|
|
goto retry_encrypt;
|
|
}
|
|
return PTR_ERR(fio->encrypted_page);
|
|
}
|
|
|
|
mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
|
|
if (mpage) {
|
|
if (PageUptodate(mpage))
|
|
memcpy(page_address(mpage),
|
|
page_address(fio->encrypted_page), PAGE_SIZE);
|
|
f2fs_put_page(mpage, 1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline bool check_inplace_update_policy(struct inode *inode,
|
|
struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
unsigned int policy = SM_I(sbi)->ipu_policy;
|
|
|
|
if (policy & (0x1 << F2FS_IPU_FORCE))
|
|
return true;
|
|
if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
|
|
return true;
|
|
if (policy & (0x1 << F2FS_IPU_UTIL) &&
|
|
utilization(sbi) > SM_I(sbi)->min_ipu_util)
|
|
return true;
|
|
if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
|
|
utilization(sbi) > SM_I(sbi)->min_ipu_util)
|
|
return true;
|
|
|
|
/*
|
|
* IPU for rewrite async pages
|
|
*/
|
|
if (policy & (0x1 << F2FS_IPU_ASYNC) &&
|
|
fio && fio->op == REQ_OP_WRITE &&
|
|
!(fio->op_flags & REQ_SYNC) &&
|
|
!IS_ENCRYPTED(inode))
|
|
return true;
|
|
|
|
/* this is only set during fdatasync */
|
|
if (policy & (0x1 << F2FS_IPU_FSYNC) &&
|
|
is_inode_flag_set(inode, FI_NEED_IPU))
|
|
return true;
|
|
|
|
if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
|
|
!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
|
|
{
|
|
/* swap file is migrating in aligned write mode */
|
|
if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
|
|
return false;
|
|
|
|
if (f2fs_is_pinned_file(inode))
|
|
return true;
|
|
|
|
/* if this is cold file, we should overwrite to avoid fragmentation */
|
|
if (file_is_cold(inode))
|
|
return true;
|
|
|
|
return check_inplace_update_policy(inode, fio);
|
|
}
|
|
|
|
bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
if (f2fs_lfs_mode(sbi))
|
|
return true;
|
|
if (S_ISDIR(inode->i_mode))
|
|
return true;
|
|
if (IS_NOQUOTA(inode))
|
|
return true;
|
|
if (f2fs_is_atomic_file(inode))
|
|
return true;
|
|
if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
|
|
return true;
|
|
|
|
/* swap file is migrating in aligned write mode */
|
|
if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
|
|
return true;
|
|
|
|
if (fio) {
|
|
if (page_private_gcing(fio->page))
|
|
return true;
|
|
if (page_private_dummy(fio->page))
|
|
return true;
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
|
|
f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline bool need_inplace_update(struct f2fs_io_info *fio)
|
|
{
|
|
struct inode *inode = fio->page->mapping->host;
|
|
|
|
if (f2fs_should_update_outplace(inode, fio))
|
|
return false;
|
|
|
|
return f2fs_should_update_inplace(inode, fio);
|
|
}
|
|
|
|
int f2fs_do_write_data_page(struct f2fs_io_info *fio)
|
|
{
|
|
struct page *page = fio->page;
|
|
struct inode *inode = page->mapping->host;
|
|
struct dnode_of_data dn;
|
|
struct extent_info ei = {0, };
|
|
struct node_info ni;
|
|
bool ipu_force = false;
|
|
int err = 0;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
if (need_inplace_update(fio) &&
|
|
f2fs_lookup_extent_cache(inode, page->index, &ei)) {
|
|
fio->old_blkaddr = ei.blk + page->index - ei.fofs;
|
|
|
|
if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
|
|
DATA_GENERIC_ENHANCE))
|
|
return -EFSCORRUPTED;
|
|
|
|
ipu_force = true;
|
|
fio->need_lock = LOCK_DONE;
|
|
goto got_it;
|
|
}
|
|
|
|
/* Deadlock due to between page->lock and f2fs_lock_op */
|
|
if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
|
|
return -EAGAIN;
|
|
|
|
err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
|
|
if (err)
|
|
goto out;
|
|
|
|
fio->old_blkaddr = dn.data_blkaddr;
|
|
|
|
/* This page is already truncated */
|
|
if (fio->old_blkaddr == NULL_ADDR) {
|
|
ClearPageUptodate(page);
|
|
clear_page_private_gcing(page);
|
|
goto out_writepage;
|
|
}
|
|
got_it:
|
|
if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
|
|
!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
|
|
DATA_GENERIC_ENHANCE)) {
|
|
err = -EFSCORRUPTED;
|
|
goto out_writepage;
|
|
}
|
|
/*
|
|
* If current allocation needs SSR,
|
|
* it had better in-place writes for updated data.
|
|
*/
|
|
if (ipu_force ||
|
|
(__is_valid_data_blkaddr(fio->old_blkaddr) &&
|
|
need_inplace_update(fio))) {
|
|
err = f2fs_encrypt_one_page(fio);
|
|
if (err)
|
|
goto out_writepage;
|
|
|
|
set_page_writeback(page);
|
|
ClearPageError(page);
|
|
f2fs_put_dnode(&dn);
|
|
if (fio->need_lock == LOCK_REQ)
|
|
f2fs_unlock_op(fio->sbi);
|
|
err = f2fs_inplace_write_data(fio);
|
|
if (err) {
|
|
if (fscrypt_inode_uses_fs_layer_crypto(inode))
|
|
fscrypt_finalize_bounce_page(&fio->encrypted_page);
|
|
if (PageWriteback(page))
|
|
end_page_writeback(page);
|
|
} else {
|
|
set_inode_flag(inode, FI_UPDATE_WRITE);
|
|
}
|
|
trace_f2fs_do_write_data_page(fio->page, IPU);
|
|
return err;
|
|
}
|
|
|
|
if (fio->need_lock == LOCK_RETRY) {
|
|
if (!f2fs_trylock_op(fio->sbi)) {
|
|
err = -EAGAIN;
|
|
goto out_writepage;
|
|
}
|
|
fio->need_lock = LOCK_REQ;
|
|
}
|
|
|
|
err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
|
|
if (err)
|
|
goto out_writepage;
|
|
|
|
fio->version = ni.version;
|
|
|
|
err = f2fs_encrypt_one_page(fio);
|
|
if (err)
|
|
goto out_writepage;
|
|
|
|
set_page_writeback(page);
|
|
ClearPageError(page);
|
|
|
|
if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
|
|
f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
|
|
|
|
/* LFS mode write path */
|
|
f2fs_outplace_write_data(&dn, fio);
|
|
trace_f2fs_do_write_data_page(page, OPU);
|
|
set_inode_flag(inode, FI_APPEND_WRITE);
|
|
if (page->index == 0)
|
|
set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
|
|
out_writepage:
|
|
f2fs_put_dnode(&dn);
|
|
out:
|
|
if (fio->need_lock == LOCK_REQ)
|
|
f2fs_unlock_op(fio->sbi);
|
|
return err;
|
|
}
|
|
|
|
int f2fs_write_single_data_page(struct page *page, int *submitted,
|
|
struct bio **bio,
|
|
sector_t *last_block,
|
|
struct writeback_control *wbc,
|
|
enum iostat_type io_type,
|
|
int compr_blocks,
|
|
bool allow_balance)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
loff_t i_size = i_size_read(inode);
|
|
const pgoff_t end_index = ((unsigned long long)i_size)
|
|
>> PAGE_SHIFT;
|
|
loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
|
|
unsigned offset = 0;
|
|
bool need_balance_fs = false;
|
|
int err = 0;
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.ino = inode->i_ino,
|
|
.type = DATA,
|
|
.op = REQ_OP_WRITE,
|
|
.op_flags = wbc_to_write_flags(wbc),
|
|
.old_blkaddr = NULL_ADDR,
|
|
.page = page,
|
|
.encrypted_page = NULL,
|
|
.submitted = false,
|
|
.compr_blocks = compr_blocks,
|
|
.need_lock = LOCK_RETRY,
|
|
.io_type = io_type,
|
|
.io_wbc = wbc,
|
|
.bio = bio,
|
|
.last_block = last_block,
|
|
};
|
|
|
|
trace_f2fs_writepage(page, DATA);
|
|
|
|
/* we should bypass data pages to proceed the kworkder jobs */
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
mapping_set_error(page->mapping, -EIO);
|
|
/*
|
|
* don't drop any dirty dentry pages for keeping lastest
|
|
* directory structure.
|
|
*/
|
|
if (S_ISDIR(inode->i_mode))
|
|
goto redirty_out;
|
|
goto out;
|
|
}
|
|
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto redirty_out;
|
|
|
|
if (page->index < end_index ||
|
|
f2fs_verity_in_progress(inode) ||
|
|
compr_blocks)
|
|
goto write;
|
|
|
|
/*
|
|
* If the offset is out-of-range of file size,
|
|
* this page does not have to be written to disk.
|
|
*/
|
|
offset = i_size & (PAGE_SIZE - 1);
|
|
if ((page->index >= end_index + 1) || !offset)
|
|
goto out;
|
|
|
|
zero_user_segment(page, offset, PAGE_SIZE);
|
|
write:
|
|
if (f2fs_is_drop_cache(inode))
|
|
goto out;
|
|
/* we should not write 0'th page having journal header */
|
|
if (f2fs_is_volatile_file(inode) && (!page->index ||
|
|
(!wbc->for_reclaim &&
|
|
f2fs_available_free_memory(sbi, BASE_CHECK))))
|
|
goto redirty_out;
|
|
|
|
/* Dentry/quota blocks are controlled by checkpoint */
|
|
if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
|
|
/*
|
|
* We need to wait for node_write to avoid block allocation during
|
|
* checkpoint. This can only happen to quota writes which can cause
|
|
* the below discard race condition.
|
|
*/
|
|
if (IS_NOQUOTA(inode))
|
|
down_read(&sbi->node_write);
|
|
|
|
fio.need_lock = LOCK_DONE;
|
|
err = f2fs_do_write_data_page(&fio);
|
|
|
|
if (IS_NOQUOTA(inode))
|
|
up_read(&sbi->node_write);
|
|
|
|
goto done;
|
|
}
|
|
|
|
if (!wbc->for_reclaim)
|
|
need_balance_fs = true;
|
|
else if (has_not_enough_free_secs(sbi, 0, 0))
|
|
goto redirty_out;
|
|
else
|
|
set_inode_flag(inode, FI_HOT_DATA);
|
|
|
|
err = -EAGAIN;
|
|
if (f2fs_has_inline_data(inode)) {
|
|
err = f2fs_write_inline_data(inode, page);
|
|
if (!err)
|
|
goto out;
|
|
}
|
|
|
|
if (err == -EAGAIN) {
|
|
err = f2fs_do_write_data_page(&fio);
|
|
if (err == -EAGAIN) {
|
|
fio.need_lock = LOCK_REQ;
|
|
err = f2fs_do_write_data_page(&fio);
|
|
}
|
|
}
|
|
|
|
if (err) {
|
|
file_set_keep_isize(inode);
|
|
} else {
|
|
spin_lock(&F2FS_I(inode)->i_size_lock);
|
|
if (F2FS_I(inode)->last_disk_size < psize)
|
|
F2FS_I(inode)->last_disk_size = psize;
|
|
spin_unlock(&F2FS_I(inode)->i_size_lock);
|
|
}
|
|
|
|
done:
|
|
if (err && err != -ENOENT)
|
|
goto redirty_out;
|
|
|
|
out:
|
|
inode_dec_dirty_pages(inode);
|
|
if (err) {
|
|
ClearPageUptodate(page);
|
|
clear_page_private_gcing(page);
|
|
}
|
|
|
|
if (wbc->for_reclaim) {
|
|
f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
|
|
clear_inode_flag(inode, FI_HOT_DATA);
|
|
f2fs_remove_dirty_inode(inode);
|
|
submitted = NULL;
|
|
}
|
|
unlock_page(page);
|
|
if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
|
|
!F2FS_I(inode)->cp_task && allow_balance)
|
|
f2fs_balance_fs(sbi, need_balance_fs);
|
|
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
f2fs_submit_merged_write(sbi, DATA);
|
|
f2fs_submit_merged_ipu_write(sbi, bio, NULL);
|
|
submitted = NULL;
|
|
}
|
|
|
|
if (submitted)
|
|
*submitted = fio.submitted ? 1 : 0;
|
|
|
|
return 0;
|
|
|
|
redirty_out:
|
|
redirty_page_for_writepage(wbc, page);
|
|
/*
|
|
* pageout() in MM traslates EAGAIN, so calls handle_write_error()
|
|
* -> mapping_set_error() -> set_bit(AS_EIO, ...).
|
|
* file_write_and_wait_range() will see EIO error, which is critical
|
|
* to return value of fsync() followed by atomic_write failure to user.
|
|
*/
|
|
if (!err || wbc->for_reclaim)
|
|
return AOP_WRITEPAGE_ACTIVATE;
|
|
unlock_page(page);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_write_data_page(struct page *page,
|
|
struct writeback_control *wbc)
|
|
{
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
struct inode *inode = page->mapping->host;
|
|
|
|
if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
|
|
goto out;
|
|
|
|
if (f2fs_compressed_file(inode)) {
|
|
if (f2fs_is_compressed_cluster(inode, page->index)) {
|
|
redirty_page_for_writepage(wbc, page);
|
|
return AOP_WRITEPAGE_ACTIVATE;
|
|
}
|
|
}
|
|
out:
|
|
#endif
|
|
|
|
return f2fs_write_single_data_page(page, NULL, NULL, NULL,
|
|
wbc, FS_DATA_IO, 0, true);
|
|
}
|
|
|
|
/*
|
|
* This function was copied from write_cche_pages from mm/page-writeback.c.
|
|
* The major change is making write step of cold data page separately from
|
|
* warm/hot data page.
|
|
*/
|
|
static int f2fs_write_cache_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc,
|
|
enum iostat_type io_type)
|
|
{
|
|
int ret = 0;
|
|
int done = 0, retry = 0;
|
|
struct pagevec pvec;
|
|
struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
|
|
struct bio *bio = NULL;
|
|
sector_t last_block;
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
struct inode *inode = mapping->host;
|
|
struct compress_ctx cc = {
|
|
.inode = inode,
|
|
.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
|
|
.cluster_size = F2FS_I(inode)->i_cluster_size,
|
|
.cluster_idx = NULL_CLUSTER,
|
|
.rpages = NULL,
|
|
.nr_rpages = 0,
|
|
.cpages = NULL,
|
|
.rbuf = NULL,
|
|
.cbuf = NULL,
|
|
.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
|
|
.private = NULL,
|
|
};
|
|
#endif
|
|
int nr_pages;
|
|
pgoff_t index;
|
|
pgoff_t end; /* Inclusive */
|
|
pgoff_t done_index;
|
|
int range_whole = 0;
|
|
xa_mark_t tag;
|
|
int nwritten = 0;
|
|
int submitted = 0;
|
|
int i;
|
|
|
|
pagevec_init(&pvec);
|
|
|
|
if (get_dirty_pages(mapping->host) <=
|
|
SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
|
|
set_inode_flag(mapping->host, FI_HOT_DATA);
|
|
else
|
|
clear_inode_flag(mapping->host, FI_HOT_DATA);
|
|
|
|
if (wbc->range_cyclic) {
|
|
index = mapping->writeback_index; /* prev offset */
|
|
end = -1;
|
|
} else {
|
|
index = wbc->range_start >> PAGE_SHIFT;
|
|
end = wbc->range_end >> PAGE_SHIFT;
|
|
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
|
|
range_whole = 1;
|
|
}
|
|
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
|
|
tag = PAGECACHE_TAG_TOWRITE;
|
|
else
|
|
tag = PAGECACHE_TAG_DIRTY;
|
|
retry:
|
|
retry = 0;
|
|
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
|
|
tag_pages_for_writeback(mapping, index, end);
|
|
done_index = index;
|
|
while (!done && !retry && (index <= end)) {
|
|
nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
|
|
tag);
|
|
if (nr_pages == 0)
|
|
break;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
bool need_readd;
|
|
readd:
|
|
need_readd = false;
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
if (f2fs_compressed_file(inode)) {
|
|
ret = f2fs_init_compress_ctx(&cc);
|
|
if (ret) {
|
|
done = 1;
|
|
break;
|
|
}
|
|
|
|
if (!f2fs_cluster_can_merge_page(&cc,
|
|
page->index)) {
|
|
ret = f2fs_write_multi_pages(&cc,
|
|
&submitted, wbc, io_type);
|
|
if (!ret)
|
|
need_readd = true;
|
|
goto result;
|
|
}
|
|
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
goto lock_page;
|
|
|
|
if (f2fs_cluster_is_empty(&cc)) {
|
|
void *fsdata = NULL;
|
|
struct page *pagep;
|
|
int ret2;
|
|
|
|
ret2 = f2fs_prepare_compress_overwrite(
|
|
inode, &pagep,
|
|
page->index, &fsdata);
|
|
if (ret2 < 0) {
|
|
ret = ret2;
|
|
done = 1;
|
|
break;
|
|
} else if (ret2 &&
|
|
!f2fs_compress_write_end(inode,
|
|
fsdata, page->index,
|
|
1)) {
|
|
retry = 1;
|
|
break;
|
|
}
|
|
} else {
|
|
goto lock_page;
|
|
}
|
|
}
|
|
#endif
|
|
/* give a priority to WB_SYNC threads */
|
|
if (atomic_read(&sbi->wb_sync_req[DATA]) &&
|
|
wbc->sync_mode == WB_SYNC_NONE) {
|
|
done = 1;
|
|
break;
|
|
}
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
lock_page:
|
|
#endif
|
|
done_index = page->index;
|
|
retry_write:
|
|
lock_page(page);
|
|
|
|
if (unlikely(page->mapping != mapping)) {
|
|
continue_unlock:
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
|
|
if (!PageDirty(page)) {
|
|
/* someone wrote it for us */
|
|
goto continue_unlock;
|
|
}
|
|
|
|
if (PageWriteback(page)) {
|
|
if (wbc->sync_mode != WB_SYNC_NONE)
|
|
f2fs_wait_on_page_writeback(page,
|
|
DATA, true, true);
|
|
else
|
|
goto continue_unlock;
|
|
}
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
goto continue_unlock;
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
if (f2fs_compressed_file(inode)) {
|
|
get_page(page);
|
|
f2fs_compress_ctx_add_page(&cc, page);
|
|
continue;
|
|
}
|
|
#endif
|
|
ret = f2fs_write_single_data_page(page, &submitted,
|
|
&bio, &last_block, wbc, io_type,
|
|
0, true);
|
|
if (ret == AOP_WRITEPAGE_ACTIVATE)
|
|
unlock_page(page);
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
result:
|
|
#endif
|
|
nwritten += submitted;
|
|
wbc->nr_to_write -= submitted;
|
|
|
|
if (unlikely(ret)) {
|
|
/*
|
|
* keep nr_to_write, since vfs uses this to
|
|
* get # of written pages.
|
|
*/
|
|
if (ret == AOP_WRITEPAGE_ACTIVATE) {
|
|
ret = 0;
|
|
goto next;
|
|
} else if (ret == -EAGAIN) {
|
|
ret = 0;
|
|
if (wbc->sync_mode == WB_SYNC_ALL) {
|
|
cond_resched();
|
|
congestion_wait(BLK_RW_ASYNC,
|
|
DEFAULT_IO_TIMEOUT);
|
|
goto retry_write;
|
|
}
|
|
goto next;
|
|
}
|
|
done_index = page->index + 1;
|
|
done = 1;
|
|
break;
|
|
}
|
|
|
|
if (wbc->nr_to_write <= 0 &&
|
|
wbc->sync_mode == WB_SYNC_NONE) {
|
|
done = 1;
|
|
break;
|
|
}
|
|
next:
|
|
if (need_readd)
|
|
goto readd;
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
}
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
/* flush remained pages in compress cluster */
|
|
if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
|
|
ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
|
|
nwritten += submitted;
|
|
wbc->nr_to_write -= submitted;
|
|
if (ret) {
|
|
done = 1;
|
|
retry = 0;
|
|
}
|
|
}
|
|
if (f2fs_compressed_file(inode))
|
|
f2fs_destroy_compress_ctx(&cc, false);
|
|
#endif
|
|
if (retry) {
|
|
index = 0;
|
|
end = -1;
|
|
goto retry;
|
|
}
|
|
if (wbc->range_cyclic && !done)
|
|
done_index = 0;
|
|
if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
|
|
mapping->writeback_index = done_index;
|
|
|
|
if (nwritten)
|
|
f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
|
|
NULL, 0, DATA);
|
|
/* submit cached bio of IPU write */
|
|
if (bio)
|
|
f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline bool __should_serialize_io(struct inode *inode,
|
|
struct writeback_control *wbc)
|
|
{
|
|
/* to avoid deadlock in path of data flush */
|
|
if (F2FS_I(inode)->cp_task)
|
|
return false;
|
|
|
|
if (!S_ISREG(inode->i_mode))
|
|
return false;
|
|
if (IS_NOQUOTA(inode))
|
|
return false;
|
|
|
|
if (f2fs_need_compress_data(inode))
|
|
return true;
|
|
if (wbc->sync_mode != WB_SYNC_ALL)
|
|
return true;
|
|
if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int __f2fs_write_data_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc,
|
|
enum iostat_type io_type)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct blk_plug plug;
|
|
int ret;
|
|
bool locked = false;
|
|
|
|
/* deal with chardevs and other special file */
|
|
if (!mapping->a_ops->writepage)
|
|
return 0;
|
|
|
|
/* skip writing if there is no dirty page in this inode */
|
|
if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
|
|
return 0;
|
|
|
|
/* during POR, we don't need to trigger writepage at all. */
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto skip_write;
|
|
|
|
if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
|
|
wbc->sync_mode == WB_SYNC_NONE &&
|
|
get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
|
|
f2fs_available_free_memory(sbi, DIRTY_DENTS))
|
|
goto skip_write;
|
|
|
|
/* skip writing during file defragment */
|
|
if (is_inode_flag_set(inode, FI_DO_DEFRAG))
|
|
goto skip_write;
|
|
|
|
trace_f2fs_writepages(mapping->host, wbc, DATA);
|
|
|
|
/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
|
|
if (wbc->sync_mode == WB_SYNC_ALL)
|
|
atomic_inc(&sbi->wb_sync_req[DATA]);
|
|
else if (atomic_read(&sbi->wb_sync_req[DATA]))
|
|
goto skip_write;
|
|
|
|
if (__should_serialize_io(inode, wbc)) {
|
|
mutex_lock(&sbi->writepages);
|
|
locked = true;
|
|
}
|
|
|
|
blk_start_plug(&plug);
|
|
ret = f2fs_write_cache_pages(mapping, wbc, io_type);
|
|
blk_finish_plug(&plug);
|
|
|
|
if (locked)
|
|
mutex_unlock(&sbi->writepages);
|
|
|
|
if (wbc->sync_mode == WB_SYNC_ALL)
|
|
atomic_dec(&sbi->wb_sync_req[DATA]);
|
|
/*
|
|
* if some pages were truncated, we cannot guarantee its mapping->host
|
|
* to detect pending bios.
|
|
*/
|
|
|
|
f2fs_remove_dirty_inode(inode);
|
|
return ret;
|
|
|
|
skip_write:
|
|
wbc->pages_skipped += get_dirty_pages(inode);
|
|
trace_f2fs_writepages(mapping->host, wbc, DATA);
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_write_data_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
|
|
return __f2fs_write_data_pages(mapping, wbc,
|
|
F2FS_I(inode)->cp_task == current ?
|
|
FS_CP_DATA_IO : FS_DATA_IO);
|
|
}
|
|
|
|
static void f2fs_write_failed(struct inode *inode, loff_t to)
|
|
{
|
|
loff_t i_size = i_size_read(inode);
|
|
|
|
if (IS_NOQUOTA(inode))
|
|
return;
|
|
|
|
/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
|
|
if (to > i_size && !f2fs_verity_in_progress(inode)) {
|
|
down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
|
|
filemap_invalidate_lock(inode->i_mapping);
|
|
|
|
truncate_pagecache(inode, i_size);
|
|
f2fs_truncate_blocks(inode, i_size, true);
|
|
|
|
filemap_invalidate_unlock(inode->i_mapping);
|
|
up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
|
|
}
|
|
}
|
|
|
|
static int prepare_write_begin(struct f2fs_sb_info *sbi,
|
|
struct page *page, loff_t pos, unsigned len,
|
|
block_t *blk_addr, bool *node_changed)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
pgoff_t index = page->index;
|
|
struct dnode_of_data dn;
|
|
struct page *ipage;
|
|
bool locked = false;
|
|
struct extent_info ei = {0, };
|
|
int err = 0;
|
|
int flag;
|
|
|
|
/*
|
|
* we already allocated all the blocks, so we don't need to get
|
|
* the block addresses when there is no need to fill the page.
|
|
*/
|
|
if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
|
|
!is_inode_flag_set(inode, FI_NO_PREALLOC) &&
|
|
!f2fs_verity_in_progress(inode))
|
|
return 0;
|
|
|
|
/* f2fs_lock_op avoids race between write CP and convert_inline_page */
|
|
if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
|
|
flag = F2FS_GET_BLOCK_DEFAULT;
|
|
else
|
|
flag = F2FS_GET_BLOCK_PRE_AIO;
|
|
|
|
if (f2fs_has_inline_data(inode) ||
|
|
(pos & PAGE_MASK) >= i_size_read(inode)) {
|
|
f2fs_do_map_lock(sbi, flag, true);
|
|
locked = true;
|
|
}
|
|
|
|
restart:
|
|
/* check inline_data */
|
|
ipage = f2fs_get_node_page(sbi, inode->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
err = PTR_ERR(ipage);
|
|
goto unlock_out;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, ipage, 0);
|
|
|
|
if (f2fs_has_inline_data(inode)) {
|
|
if (pos + len <= MAX_INLINE_DATA(inode)) {
|
|
f2fs_do_read_inline_data(page, ipage);
|
|
set_inode_flag(inode, FI_DATA_EXIST);
|
|
if (inode->i_nlink)
|
|
set_page_private_inline(ipage);
|
|
} else {
|
|
err = f2fs_convert_inline_page(&dn, page);
|
|
if (err)
|
|
goto out;
|
|
if (dn.data_blkaddr == NULL_ADDR)
|
|
err = f2fs_get_block(&dn, index);
|
|
}
|
|
} else if (locked) {
|
|
err = f2fs_get_block(&dn, index);
|
|
} else {
|
|
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
|
|
dn.data_blkaddr = ei.blk + index - ei.fofs;
|
|
} else {
|
|
/* hole case */
|
|
err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
|
|
if (err || dn.data_blkaddr == NULL_ADDR) {
|
|
f2fs_put_dnode(&dn);
|
|
f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
|
|
true);
|
|
WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
|
|
locked = true;
|
|
goto restart;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* convert_inline_page can make node_changed */
|
|
*blk_addr = dn.data_blkaddr;
|
|
*node_changed = dn.node_changed;
|
|
out:
|
|
f2fs_put_dnode(&dn);
|
|
unlock_out:
|
|
if (locked)
|
|
f2fs_do_map_lock(sbi, flag, false);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
struct page **pagep, void **fsdata)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct page *page = NULL;
|
|
pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
|
|
bool need_balance = false, drop_atomic = false;
|
|
block_t blkaddr = NULL_ADDR;
|
|
int err = 0;
|
|
|
|
trace_f2fs_write_begin(inode, pos, len, flags);
|
|
|
|
if (!f2fs_is_checkpoint_ready(sbi)) {
|
|
err = -ENOSPC;
|
|
goto fail;
|
|
}
|
|
|
|
if ((f2fs_is_atomic_file(inode) &&
|
|
!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
|
|
is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
|
|
err = -ENOMEM;
|
|
drop_atomic = true;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* We should check this at this moment to avoid deadlock on inode page
|
|
* and #0 page. The locking rule for inline_data conversion should be:
|
|
* lock_page(page #0) -> lock_page(inode_page)
|
|
*/
|
|
if (index != 0) {
|
|
err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
goto fail;
|
|
}
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
if (f2fs_compressed_file(inode)) {
|
|
int ret;
|
|
|
|
*fsdata = NULL;
|
|
|
|
if (len == PAGE_SIZE)
|
|
goto repeat;
|
|
|
|
ret = f2fs_prepare_compress_overwrite(inode, pagep,
|
|
index, fsdata);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto fail;
|
|
} else if (ret) {
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
repeat:
|
|
/*
|
|
* Do not use grab_cache_page_write_begin() to avoid deadlock due to
|
|
* wait_for_stable_page. Will wait that below with our IO control.
|
|
*/
|
|
page = f2fs_pagecache_get_page(mapping, index,
|
|
FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
|
|
if (!page) {
|
|
err = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* TODO: cluster can be compressed due to race with .writepage */
|
|
|
|
*pagep = page;
|
|
|
|
err = prepare_write_begin(sbi, page, pos, len,
|
|
&blkaddr, &need_balance);
|
|
if (err)
|
|
goto fail;
|
|
|
|
if (need_balance && !IS_NOQUOTA(inode) &&
|
|
has_not_enough_free_secs(sbi, 0, 0)) {
|
|
unlock_page(page);
|
|
f2fs_balance_fs(sbi, true);
|
|
lock_page(page);
|
|
if (page->mapping != mapping) {
|
|
/* The page got truncated from under us */
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
}
|
|
|
|
f2fs_wait_on_page_writeback(page, DATA, false, true);
|
|
|
|
if (len == PAGE_SIZE || PageUptodate(page))
|
|
return 0;
|
|
|
|
if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
|
|
!f2fs_verity_in_progress(inode)) {
|
|
zero_user_segment(page, len, PAGE_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
if (blkaddr == NEW_ADDR) {
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
SetPageUptodate(page);
|
|
} else {
|
|
if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
|
|
DATA_GENERIC_ENHANCE_READ)) {
|
|
err = -EFSCORRUPTED;
|
|
goto fail;
|
|
}
|
|
err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
|
|
if (err)
|
|
goto fail;
|
|
|
|
lock_page(page);
|
|
if (unlikely(page->mapping != mapping)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
if (unlikely(!PageUptodate(page))) {
|
|
err = -EIO;
|
|
goto fail;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
fail:
|
|
f2fs_put_page(page, 1);
|
|
f2fs_write_failed(inode, pos + len);
|
|
if (drop_atomic)
|
|
f2fs_drop_inmem_pages_all(sbi, false);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_write_end(struct file *file,
|
|
struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, void *fsdata)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
|
|
trace_f2fs_write_end(inode, pos, len, copied);
|
|
|
|
/*
|
|
* This should be come from len == PAGE_SIZE, and we expect copied
|
|
* should be PAGE_SIZE. Otherwise, we treat it with zero copied and
|
|
* let generic_perform_write() try to copy data again through copied=0.
|
|
*/
|
|
if (!PageUptodate(page)) {
|
|
if (unlikely(copied != len))
|
|
copied = 0;
|
|
else
|
|
SetPageUptodate(page);
|
|
}
|
|
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
/* overwrite compressed file */
|
|
if (f2fs_compressed_file(inode) && fsdata) {
|
|
f2fs_compress_write_end(inode, fsdata, page->index, copied);
|
|
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
|
|
|
|
if (pos + copied > i_size_read(inode) &&
|
|
!f2fs_verity_in_progress(inode))
|
|
f2fs_i_size_write(inode, pos + copied);
|
|
return copied;
|
|
}
|
|
#endif
|
|
|
|
if (!copied)
|
|
goto unlock_out;
|
|
|
|
set_page_dirty(page);
|
|
|
|
if (pos + copied > i_size_read(inode) &&
|
|
!f2fs_verity_in_progress(inode))
|
|
f2fs_i_size_write(inode, pos + copied);
|
|
unlock_out:
|
|
f2fs_put_page(page, 1);
|
|
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
|
|
return copied;
|
|
}
|
|
|
|
static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
|
|
loff_t offset)
|
|
{
|
|
unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
|
|
unsigned blkbits = i_blkbits;
|
|
unsigned blocksize_mask = (1 << blkbits) - 1;
|
|
unsigned long align = offset | iov_iter_alignment(iter);
|
|
struct block_device *bdev = inode->i_sb->s_bdev;
|
|
|
|
if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
|
|
return 1;
|
|
|
|
if (align & blocksize_mask) {
|
|
if (bdev)
|
|
blkbits = blksize_bits(bdev_logical_block_size(bdev));
|
|
blocksize_mask = (1 << blkbits) - 1;
|
|
if (align & blocksize_mask)
|
|
return -EINVAL;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void f2fs_dio_end_io(struct bio *bio)
|
|
{
|
|
struct f2fs_private_dio *dio = bio->bi_private;
|
|
|
|
dec_page_count(F2FS_I_SB(dio->inode),
|
|
dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
|
|
|
|
bio->bi_private = dio->orig_private;
|
|
bio->bi_end_io = dio->orig_end_io;
|
|
|
|
kfree(dio);
|
|
|
|
bio_endio(bio);
|
|
}
|
|
|
|
static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
|
|
loff_t file_offset)
|
|
{
|
|
struct f2fs_private_dio *dio;
|
|
bool write = (bio_op(bio) == REQ_OP_WRITE);
|
|
|
|
dio = f2fs_kzalloc(F2FS_I_SB(inode),
|
|
sizeof(struct f2fs_private_dio), GFP_NOFS);
|
|
if (!dio)
|
|
goto out;
|
|
|
|
dio->inode = inode;
|
|
dio->orig_end_io = bio->bi_end_io;
|
|
dio->orig_private = bio->bi_private;
|
|
dio->write = write;
|
|
|
|
bio->bi_end_io = f2fs_dio_end_io;
|
|
bio->bi_private = dio;
|
|
|
|
inc_page_count(F2FS_I_SB(inode),
|
|
write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
|
|
|
|
submit_bio(bio);
|
|
return;
|
|
out:
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
bio_endio(bio);
|
|
}
|
|
|
|
static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
|
|
{
|
|
struct address_space *mapping = iocb->ki_filp->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
size_t count = iov_iter_count(iter);
|
|
loff_t offset = iocb->ki_pos;
|
|
int rw = iov_iter_rw(iter);
|
|
int err;
|
|
enum rw_hint hint = iocb->ki_hint;
|
|
int whint_mode = F2FS_OPTION(sbi).whint_mode;
|
|
bool do_opu;
|
|
|
|
err = check_direct_IO(inode, iter, offset);
|
|
if (err)
|
|
return err < 0 ? err : 0;
|
|
|
|
if (f2fs_force_buffered_io(inode, iocb, iter))
|
|
return 0;
|
|
|
|
do_opu = rw == WRITE && f2fs_lfs_mode(sbi);
|
|
|
|
trace_f2fs_direct_IO_enter(inode, offset, count, rw);
|
|
|
|
if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
|
|
iocb->ki_hint = WRITE_LIFE_NOT_SET;
|
|
|
|
if (iocb->ki_flags & IOCB_NOWAIT) {
|
|
if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
|
|
iocb->ki_hint = hint;
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
|
|
up_read(&fi->i_gc_rwsem[rw]);
|
|
iocb->ki_hint = hint;
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
} else {
|
|
down_read(&fi->i_gc_rwsem[rw]);
|
|
if (do_opu)
|
|
down_read(&fi->i_gc_rwsem[READ]);
|
|
}
|
|
|
|
err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
|
|
iter, rw == WRITE ? get_data_block_dio_write :
|
|
get_data_block_dio, NULL, f2fs_dio_submit_bio,
|
|
rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
|
|
DIO_SKIP_HOLES);
|
|
|
|
if (do_opu)
|
|
up_read(&fi->i_gc_rwsem[READ]);
|
|
|
|
up_read(&fi->i_gc_rwsem[rw]);
|
|
|
|
if (rw == WRITE) {
|
|
if (whint_mode == WHINT_MODE_OFF)
|
|
iocb->ki_hint = hint;
|
|
if (err > 0) {
|
|
f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
|
|
err);
|
|
if (!do_opu)
|
|
set_inode_flag(inode, FI_UPDATE_WRITE);
|
|
} else if (err == -EIOCBQUEUED) {
|
|
f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
|
|
count - iov_iter_count(iter));
|
|
} else if (err < 0) {
|
|
f2fs_write_failed(inode, offset + count);
|
|
}
|
|
} else {
|
|
if (err > 0)
|
|
f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
|
|
else if (err == -EIOCBQUEUED)
|
|
f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
|
|
count - iov_iter_count(iter));
|
|
}
|
|
|
|
out:
|
|
trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
void f2fs_invalidate_page(struct page *page, unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
|
|
(offset % PAGE_SIZE || length != PAGE_SIZE))
|
|
return;
|
|
|
|
if (PageDirty(page)) {
|
|
if (inode->i_ino == F2FS_META_INO(sbi)) {
|
|
dec_page_count(sbi, F2FS_DIRTY_META);
|
|
} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
|
|
dec_page_count(sbi, F2FS_DIRTY_NODES);
|
|
} else {
|
|
inode_dec_dirty_pages(inode);
|
|
f2fs_remove_dirty_inode(inode);
|
|
}
|
|
}
|
|
|
|
clear_page_private_gcing(page);
|
|
|
|
if (test_opt(sbi, COMPRESS_CACHE)) {
|
|
if (f2fs_compressed_file(inode))
|
|
f2fs_invalidate_compress_pages(sbi, inode->i_ino);
|
|
if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
|
|
clear_page_private_data(page);
|
|
}
|
|
|
|
if (page_private_atomic(page))
|
|
return f2fs_drop_inmem_page(inode, page);
|
|
|
|
detach_page_private(page);
|
|
set_page_private(page, 0);
|
|
}
|
|
|
|
int f2fs_release_page(struct page *page, gfp_t wait)
|
|
{
|
|
/* If this is dirty page, keep PagePrivate */
|
|
if (PageDirty(page))
|
|
return 0;
|
|
|
|
/* This is atomic written page, keep Private */
|
|
if (page_private_atomic(page))
|
|
return 0;
|
|
|
|
if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) {
|
|
struct f2fs_sb_info *sbi = F2FS_P_SB(page);
|
|
struct inode *inode = page->mapping->host;
|
|
|
|
if (f2fs_compressed_file(inode))
|
|
f2fs_invalidate_compress_pages(sbi, inode->i_ino);
|
|
if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
|
|
clear_page_private_data(page);
|
|
}
|
|
|
|
clear_page_private_gcing(page);
|
|
|
|
detach_page_private(page);
|
|
set_page_private(page, 0);
|
|
return 1;
|
|
}
|
|
|
|
static int f2fs_set_data_page_dirty(struct page *page)
|
|
{
|
|
struct inode *inode = page_file_mapping(page)->host;
|
|
|
|
trace_f2fs_set_page_dirty(page, DATA);
|
|
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
if (PageSwapCache(page))
|
|
return __set_page_dirty_nobuffers(page);
|
|
|
|
if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
|
|
if (!page_private_atomic(page)) {
|
|
f2fs_register_inmem_page(inode, page);
|
|
return 1;
|
|
}
|
|
/*
|
|
* Previously, this page has been registered, we just
|
|
* return here.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
if (!PageDirty(page)) {
|
|
__set_page_dirty_nobuffers(page);
|
|
f2fs_update_dirty_page(inode, page);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
|
|
{
|
|
#ifdef CONFIG_F2FS_FS_COMPRESSION
|
|
struct dnode_of_data dn;
|
|
sector_t start_idx, blknr = 0;
|
|
int ret;
|
|
|
|
start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
|
|
if (ret)
|
|
return 0;
|
|
|
|
if (dn.data_blkaddr != COMPRESS_ADDR) {
|
|
dn.ofs_in_node += block - start_idx;
|
|
blknr = f2fs_data_blkaddr(&dn);
|
|
if (!__is_valid_data_blkaddr(blknr))
|
|
blknr = 0;
|
|
}
|
|
|
|
f2fs_put_dnode(&dn);
|
|
return blknr;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
|
|
static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
sector_t blknr = 0;
|
|
|
|
if (f2fs_has_inline_data(inode))
|
|
goto out;
|
|
|
|
/* make sure allocating whole blocks */
|
|
if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
|
|
filemap_write_and_wait(mapping);
|
|
|
|
/* Block number less than F2FS MAX BLOCKS */
|
|
if (unlikely(block >= max_file_blocks(inode)))
|
|
goto out;
|
|
|
|
if (f2fs_compressed_file(inode)) {
|
|
blknr = f2fs_bmap_compress(inode, block);
|
|
} else {
|
|
struct f2fs_map_blocks map;
|
|
|
|
memset(&map, 0, sizeof(map));
|
|
map.m_lblk = block;
|
|
map.m_len = 1;
|
|
map.m_next_pgofs = NULL;
|
|
map.m_seg_type = NO_CHECK_TYPE;
|
|
|
|
if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
|
|
blknr = map.m_pblk;
|
|
}
|
|
out:
|
|
trace_f2fs_bmap(inode, block, blknr);
|
|
return blknr;
|
|
}
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
#include <linux/migrate.h>
|
|
|
|
int f2fs_migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page, enum migrate_mode mode)
|
|
{
|
|
int rc, extra_count;
|
|
struct f2fs_inode_info *fi = F2FS_I(mapping->host);
|
|
bool atomic_written = page_private_atomic(page);
|
|
|
|
BUG_ON(PageWriteback(page));
|
|
|
|
/* migrating an atomic written page is safe with the inmem_lock hold */
|
|
if (atomic_written) {
|
|
if (mode != MIGRATE_SYNC)
|
|
return -EBUSY;
|
|
if (!mutex_trylock(&fi->inmem_lock))
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/* one extra reference was held for atomic_write page */
|
|
extra_count = atomic_written ? 1 : 0;
|
|
rc = migrate_page_move_mapping(mapping, newpage,
|
|
page, extra_count);
|
|
if (rc != MIGRATEPAGE_SUCCESS) {
|
|
if (atomic_written)
|
|
mutex_unlock(&fi->inmem_lock);
|
|
return rc;
|
|
}
|
|
|
|
if (atomic_written) {
|
|
struct inmem_pages *cur;
|
|
|
|
list_for_each_entry(cur, &fi->inmem_pages, list)
|
|
if (cur->page == page) {
|
|
cur->page = newpage;
|
|
break;
|
|
}
|
|
mutex_unlock(&fi->inmem_lock);
|
|
put_page(page);
|
|
get_page(newpage);
|
|
}
|
|
|
|
/* guarantee to start from no stale private field */
|
|
set_page_private(newpage, 0);
|
|
if (PagePrivate(page)) {
|
|
set_page_private(newpage, page_private(page));
|
|
SetPagePrivate(newpage);
|
|
get_page(newpage);
|
|
|
|
set_page_private(page, 0);
|
|
ClearPagePrivate(page);
|
|
put_page(page);
|
|
}
|
|
|
|
if (mode != MIGRATE_SYNC_NO_COPY)
|
|
migrate_page_copy(newpage, page);
|
|
else
|
|
migrate_page_states(newpage, page);
|
|
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SWAP
|
|
static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
|
|
unsigned int blkcnt)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
unsigned int blkofs;
|
|
unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
|
|
unsigned int secidx = start_blk / blk_per_sec;
|
|
unsigned int end_sec = secidx + blkcnt / blk_per_sec;
|
|
int ret = 0;
|
|
|
|
down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
|
|
filemap_invalidate_lock(inode->i_mapping);
|
|
|
|
set_inode_flag(inode, FI_ALIGNED_WRITE);
|
|
|
|
for (; secidx < end_sec; secidx++) {
|
|
down_write(&sbi->pin_sem);
|
|
|
|
f2fs_lock_op(sbi);
|
|
f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
|
|
f2fs_unlock_op(sbi);
|
|
|
|
set_inode_flag(inode, FI_DO_DEFRAG);
|
|
|
|
for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
|
|
struct page *page;
|
|
unsigned int blkidx = secidx * blk_per_sec + blkofs;
|
|
|
|
page = f2fs_get_lock_data_page(inode, blkidx, true);
|
|
if (IS_ERR(page)) {
|
|
up_write(&sbi->pin_sem);
|
|
ret = PTR_ERR(page);
|
|
goto done;
|
|
}
|
|
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
|
|
clear_inode_flag(inode, FI_DO_DEFRAG);
|
|
|
|
ret = filemap_fdatawrite(inode->i_mapping);
|
|
|
|
up_write(&sbi->pin_sem);
|
|
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
done:
|
|
clear_inode_flag(inode, FI_DO_DEFRAG);
|
|
clear_inode_flag(inode, FI_ALIGNED_WRITE);
|
|
|
|
filemap_invalidate_unlock(inode->i_mapping);
|
|
up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int check_swap_activate(struct swap_info_struct *sis,
|
|
struct file *swap_file, sector_t *span)
|
|
{
|
|
struct address_space *mapping = swap_file->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
sector_t cur_lblock;
|
|
sector_t last_lblock;
|
|
sector_t pblock;
|
|
sector_t lowest_pblock = -1;
|
|
sector_t highest_pblock = 0;
|
|
int nr_extents = 0;
|
|
unsigned long nr_pblocks;
|
|
unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
|
|
unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
|
|
unsigned int not_aligned = 0;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Map all the blocks into the extent list. This code doesn't try
|
|
* to be very smart.
|
|
*/
|
|
cur_lblock = 0;
|
|
last_lblock = bytes_to_blks(inode, i_size_read(inode));
|
|
|
|
while (cur_lblock < last_lblock && cur_lblock < sis->max) {
|
|
struct f2fs_map_blocks map;
|
|
retry:
|
|
cond_resched();
|
|
|
|
memset(&map, 0, sizeof(map));
|
|
map.m_lblk = cur_lblock;
|
|
map.m_len = last_lblock - cur_lblock;
|
|
map.m_next_pgofs = NULL;
|
|
map.m_next_extent = NULL;
|
|
map.m_seg_type = NO_CHECK_TYPE;
|
|
map.m_may_create = false;
|
|
|
|
ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* hole */
|
|
if (!(map.m_flags & F2FS_MAP_FLAGS)) {
|
|
f2fs_err(sbi, "Swapfile has holes");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
pblock = map.m_pblk;
|
|
nr_pblocks = map.m_len;
|
|
|
|
if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
|
|
nr_pblocks & sec_blks_mask) {
|
|
not_aligned++;
|
|
|
|
nr_pblocks = roundup(nr_pblocks, blks_per_sec);
|
|
if (cur_lblock + nr_pblocks > sis->max)
|
|
nr_pblocks -= blks_per_sec;
|
|
|
|
if (!nr_pblocks) {
|
|
/* this extent is last one */
|
|
nr_pblocks = map.m_len;
|
|
f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
|
|
goto next;
|
|
}
|
|
|
|
ret = f2fs_migrate_blocks(inode, cur_lblock,
|
|
nr_pblocks);
|
|
if (ret)
|
|
goto out;
|
|
goto retry;
|
|
}
|
|
next:
|
|
if (cur_lblock + nr_pblocks >= sis->max)
|
|
nr_pblocks = sis->max - cur_lblock;
|
|
|
|
if (cur_lblock) { /* exclude the header page */
|
|
if (pblock < lowest_pblock)
|
|
lowest_pblock = pblock;
|
|
if (pblock + nr_pblocks - 1 > highest_pblock)
|
|
highest_pblock = pblock + nr_pblocks - 1;
|
|
}
|
|
|
|
/*
|
|
* We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
|
|
*/
|
|
ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
|
|
if (ret < 0)
|
|
goto out;
|
|
nr_extents += ret;
|
|
cur_lblock += nr_pblocks;
|
|
}
|
|
ret = nr_extents;
|
|
*span = 1 + highest_pblock - lowest_pblock;
|
|
if (cur_lblock == 0)
|
|
cur_lblock = 1; /* force Empty message */
|
|
sis->max = cur_lblock;
|
|
sis->pages = cur_lblock - 1;
|
|
sis->highest_bit = cur_lblock - 1;
|
|
out:
|
|
if (not_aligned)
|
|
f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
|
|
not_aligned, blks_per_sec * F2FS_BLKSIZE);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
|
|
sector_t *span)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
int ret;
|
|
|
|
if (!S_ISREG(inode->i_mode))
|
|
return -EINVAL;
|
|
|
|
if (f2fs_readonly(F2FS_I_SB(inode)->sb))
|
|
return -EROFS;
|
|
|
|
if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
|
|
f2fs_err(F2FS_I_SB(inode),
|
|
"Swapfile not supported in LFS mode");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!f2fs_disable_compressed_file(inode))
|
|
return -EINVAL;
|
|
|
|
f2fs_precache_extents(inode);
|
|
|
|
ret = check_swap_activate(sis, file, span);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
set_inode_flag(inode, FI_PIN_FILE);
|
|
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
|
|
return ret;
|
|
}
|
|
|
|
static void f2fs_swap_deactivate(struct file *file)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
|
|
clear_inode_flag(inode, FI_PIN_FILE);
|
|
}
|
|
#else
|
|
static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
|
|
sector_t *span)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static void f2fs_swap_deactivate(struct file *file)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
const struct address_space_operations f2fs_dblock_aops = {
|
|
.readpage = f2fs_read_data_page,
|
|
.readahead = f2fs_readahead,
|
|
.writepage = f2fs_write_data_page,
|
|
.writepages = f2fs_write_data_pages,
|
|
.write_begin = f2fs_write_begin,
|
|
.write_end = f2fs_write_end,
|
|
.set_page_dirty = f2fs_set_data_page_dirty,
|
|
.invalidatepage = f2fs_invalidate_page,
|
|
.releasepage = f2fs_release_page,
|
|
.direct_IO = f2fs_direct_IO,
|
|
.bmap = f2fs_bmap,
|
|
.swap_activate = f2fs_swap_activate,
|
|
.swap_deactivate = f2fs_swap_deactivate,
|
|
#ifdef CONFIG_MIGRATION
|
|
.migratepage = f2fs_migrate_page,
|
|
#endif
|
|
};
|
|
|
|
void f2fs_clear_page_cache_dirty_tag(struct page *page)
|
|
{
|
|
struct address_space *mapping = page_mapping(page);
|
|
unsigned long flags;
|
|
|
|
xa_lock_irqsave(&mapping->i_pages, flags);
|
|
__xa_clear_mark(&mapping->i_pages, page_index(page),
|
|
PAGECACHE_TAG_DIRTY);
|
|
xa_unlock_irqrestore(&mapping->i_pages, flags);
|
|
}
|
|
|
|
int __init f2fs_init_post_read_processing(void)
|
|
{
|
|
bio_post_read_ctx_cache =
|
|
kmem_cache_create("f2fs_bio_post_read_ctx",
|
|
sizeof(struct bio_post_read_ctx), 0, 0, NULL);
|
|
if (!bio_post_read_ctx_cache)
|
|
goto fail;
|
|
bio_post_read_ctx_pool =
|
|
mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
|
|
bio_post_read_ctx_cache);
|
|
if (!bio_post_read_ctx_pool)
|
|
goto fail_free_cache;
|
|
return 0;
|
|
|
|
fail_free_cache:
|
|
kmem_cache_destroy(bio_post_read_ctx_cache);
|
|
fail:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void f2fs_destroy_post_read_processing(void)
|
|
{
|
|
mempool_destroy(bio_post_read_ctx_pool);
|
|
kmem_cache_destroy(bio_post_read_ctx_cache);
|
|
}
|
|
|
|
int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
|
|
{
|
|
if (!f2fs_sb_has_encrypt(sbi) &&
|
|
!f2fs_sb_has_verity(sbi) &&
|
|
!f2fs_sb_has_compression(sbi))
|
|
return 0;
|
|
|
|
sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
|
|
WQ_UNBOUND | WQ_HIGHPRI,
|
|
num_online_cpus());
|
|
if (!sbi->post_read_wq)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
|
|
{
|
|
if (sbi->post_read_wq)
|
|
destroy_workqueue(sbi->post_read_wq);
|
|
}
|
|
|
|
int __init f2fs_init_bio_entry_cache(void)
|
|
{
|
|
bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
|
|
sizeof(struct bio_entry));
|
|
if (!bio_entry_slab)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void f2fs_destroy_bio_entry_cache(void)
|
|
{
|
|
kmem_cache_destroy(bio_entry_slab);
|
|
}
|