mirror of
https://github.com/torvalds/linux.git
synced 2024-11-24 05:02:12 +00:00
e2bdb933ab
Down, down in the deepest depths of GFP_NOIO page reclaim, we have shrink_page_list() calling __remove_mapping() calling __delete_from_ swap_cache() or __delete_from_page_cache(). You would not expect those to need much stack, but in fact they call radix_tree_delete(): which declares a 192-byte radix_tree_path array on its stack (to record the node,offsets it visits when descending, in case it needs to ascend to update them). And if any tag is still set [1], that calls radix_tree_tag_clear(), which declares a further such 192-byte radix_tree_path array on the stack. (At least we have interrupts disabled here, so won't then be pushing registers too.) That was probably a good choice when most users were 32-bit (array of half the size), and adding fields to radix_tree_node would have bloated it unnecessarily. But nowadays many are 64-bit, and each radix_tree_node contains a struct rcu_head, which is only used when freeing; whereas the radix_tree_path info is only used for updating the tree (deleting, clearing tags or setting tags if tagged) when a lock must be held, of no interest when accessing the tree locklessly. So add a parent pointer to the radix_tree_node, in union with the rcu_head, and remove all uses of the radix_tree_path. There would be space in that union to save the offset when descending as before (we can argue that a lock must already be held to exclude other users), but recalculating it when ascending is both easy (a constant shift and a constant mask) and uncommon, so it seems better just to do that. Two little optimizations: no need to decrement height when descending, adjusting shift is enough; and once radix_tree_tag_if_tagged() has set tag on a node and its ancestors, it need not ascend from that node again. perf on the radix tree test harness reports radix_tree_insert() as 2% slower (now having to set parent), but radix_tree_delete() 24% faster. Surely that's an exaggeration from rtth's artificially low map shift 3, but forcing it back to 6 still rates radix_tree_delete() 8% faster. [1] Can a pagecache tag (dirty, writeback or towrite) actually still be set at the time of radix_tree_delete()? Perhaps not if the filesystem is well-behaved. But although I've not tracked any stack overflow down to this cause, I have observed a curious case in which a dirty tag is set and left set on tmpfs: page migration's migrate_page_copy() happens to use __set_page_dirty_nobuffers() to set PageDirty on the newpage, and that sets PAGECACHE_TAG_DIRTY as a side-effect - harmless to a filesystem which doesn't use tags, except for this stack depth issue. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Dave Chinner <david@fromorbit.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Nai Xia <nai.xia@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1514 lines
39 KiB
C
1514 lines
39 KiB
C
/*
|
|
* Copyright (C) 2001 Momchil Velikov
|
|
* Portions Copyright (C) 2001 Christoph Hellwig
|
|
* Copyright (C) 2005 SGI, Christoph Lameter
|
|
* Copyright (C) 2006 Nick Piggin
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2, or (at
|
|
* your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/radix-tree.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/string.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/rcupdate.h>
|
|
|
|
|
|
#ifdef __KERNEL__
|
|
#define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
|
|
#else
|
|
#define RADIX_TREE_MAP_SHIFT 3 /* For more stressful testing */
|
|
#endif
|
|
|
|
#define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
|
|
#define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
|
|
|
|
#define RADIX_TREE_TAG_LONGS \
|
|
((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
|
|
|
|
struct radix_tree_node {
|
|
unsigned int height; /* Height from the bottom */
|
|
unsigned int count;
|
|
union {
|
|
struct radix_tree_node *parent; /* Used when ascending tree */
|
|
struct rcu_head rcu_head; /* Used when freeing node */
|
|
};
|
|
void __rcu *slots[RADIX_TREE_MAP_SIZE];
|
|
unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
|
|
};
|
|
|
|
#define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
|
|
#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
|
|
RADIX_TREE_MAP_SHIFT))
|
|
|
|
/*
|
|
* The height_to_maxindex array needs to be one deeper than the maximum
|
|
* path as height 0 holds only 1 entry.
|
|
*/
|
|
static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
|
|
|
|
/*
|
|
* Radix tree node cache.
|
|
*/
|
|
static struct kmem_cache *radix_tree_node_cachep;
|
|
|
|
/*
|
|
* Per-cpu pool of preloaded nodes
|
|
*/
|
|
struct radix_tree_preload {
|
|
int nr;
|
|
struct radix_tree_node *nodes[RADIX_TREE_MAX_PATH];
|
|
};
|
|
static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
|
|
|
|
static inline void *ptr_to_indirect(void *ptr)
|
|
{
|
|
return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
|
|
}
|
|
|
|
static inline void *indirect_to_ptr(void *ptr)
|
|
{
|
|
return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
|
|
}
|
|
|
|
static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
|
|
{
|
|
return root->gfp_mask & __GFP_BITS_MASK;
|
|
}
|
|
|
|
static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
|
|
int offset)
|
|
{
|
|
__set_bit(offset, node->tags[tag]);
|
|
}
|
|
|
|
static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
|
|
int offset)
|
|
{
|
|
__clear_bit(offset, node->tags[tag]);
|
|
}
|
|
|
|
static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
|
|
int offset)
|
|
{
|
|
return test_bit(offset, node->tags[tag]);
|
|
}
|
|
|
|
static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
|
|
{
|
|
root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
|
|
}
|
|
|
|
static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
|
|
{
|
|
root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
|
|
}
|
|
|
|
static inline void root_tag_clear_all(struct radix_tree_root *root)
|
|
{
|
|
root->gfp_mask &= __GFP_BITS_MASK;
|
|
}
|
|
|
|
static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
|
|
{
|
|
return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
|
|
}
|
|
|
|
/*
|
|
* Returns 1 if any slot in the node has this tag set.
|
|
* Otherwise returns 0.
|
|
*/
|
|
static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
|
|
{
|
|
int idx;
|
|
for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
|
|
if (node->tags[tag][idx])
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
/*
|
|
* This assumes that the caller has performed appropriate preallocation, and
|
|
* that the caller has pinned this thread of control to the current CPU.
|
|
*/
|
|
static struct radix_tree_node *
|
|
radix_tree_node_alloc(struct radix_tree_root *root)
|
|
{
|
|
struct radix_tree_node *ret = NULL;
|
|
gfp_t gfp_mask = root_gfp_mask(root);
|
|
|
|
if (!(gfp_mask & __GFP_WAIT)) {
|
|
struct radix_tree_preload *rtp;
|
|
|
|
/*
|
|
* Provided the caller has preloaded here, we will always
|
|
* succeed in getting a node here (and never reach
|
|
* kmem_cache_alloc)
|
|
*/
|
|
rtp = &__get_cpu_var(radix_tree_preloads);
|
|
if (rtp->nr) {
|
|
ret = rtp->nodes[rtp->nr - 1];
|
|
rtp->nodes[rtp->nr - 1] = NULL;
|
|
rtp->nr--;
|
|
}
|
|
}
|
|
if (ret == NULL)
|
|
ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
|
|
|
|
BUG_ON(radix_tree_is_indirect_ptr(ret));
|
|
return ret;
|
|
}
|
|
|
|
static void radix_tree_node_rcu_free(struct rcu_head *head)
|
|
{
|
|
struct radix_tree_node *node =
|
|
container_of(head, struct radix_tree_node, rcu_head);
|
|
int i;
|
|
|
|
/*
|
|
* must only free zeroed nodes into the slab. radix_tree_shrink
|
|
* can leave us with a non-NULL entry in the first slot, so clear
|
|
* that here to make sure.
|
|
*/
|
|
for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
|
|
tag_clear(node, i, 0);
|
|
|
|
node->slots[0] = NULL;
|
|
node->count = 0;
|
|
|
|
kmem_cache_free(radix_tree_node_cachep, node);
|
|
}
|
|
|
|
static inline void
|
|
radix_tree_node_free(struct radix_tree_node *node)
|
|
{
|
|
call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
|
|
}
|
|
|
|
/*
|
|
* Load up this CPU's radix_tree_node buffer with sufficient objects to
|
|
* ensure that the addition of a single element in the tree cannot fail. On
|
|
* success, return zero, with preemption disabled. On error, return -ENOMEM
|
|
* with preemption not disabled.
|
|
*
|
|
* To make use of this facility, the radix tree must be initialised without
|
|
* __GFP_WAIT being passed to INIT_RADIX_TREE().
|
|
*/
|
|
int radix_tree_preload(gfp_t gfp_mask)
|
|
{
|
|
struct radix_tree_preload *rtp;
|
|
struct radix_tree_node *node;
|
|
int ret = -ENOMEM;
|
|
|
|
preempt_disable();
|
|
rtp = &__get_cpu_var(radix_tree_preloads);
|
|
while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
|
|
preempt_enable();
|
|
node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
|
|
if (node == NULL)
|
|
goto out;
|
|
preempt_disable();
|
|
rtp = &__get_cpu_var(radix_tree_preloads);
|
|
if (rtp->nr < ARRAY_SIZE(rtp->nodes))
|
|
rtp->nodes[rtp->nr++] = node;
|
|
else
|
|
kmem_cache_free(radix_tree_node_cachep, node);
|
|
}
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(radix_tree_preload);
|
|
|
|
/*
|
|
* Return the maximum key which can be store into a
|
|
* radix tree with height HEIGHT.
|
|
*/
|
|
static inline unsigned long radix_tree_maxindex(unsigned int height)
|
|
{
|
|
return height_to_maxindex[height];
|
|
}
|
|
|
|
/*
|
|
* Extend a radix tree so it can store key @index.
|
|
*/
|
|
static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
|
|
{
|
|
struct radix_tree_node *node;
|
|
struct radix_tree_node *slot;
|
|
unsigned int height;
|
|
int tag;
|
|
|
|
/* Figure out what the height should be. */
|
|
height = root->height + 1;
|
|
while (index > radix_tree_maxindex(height))
|
|
height++;
|
|
|
|
if (root->rnode == NULL) {
|
|
root->height = height;
|
|
goto out;
|
|
}
|
|
|
|
do {
|
|
unsigned int newheight;
|
|
if (!(node = radix_tree_node_alloc(root)))
|
|
return -ENOMEM;
|
|
|
|
/* Propagate the aggregated tag info into the new root */
|
|
for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
|
|
if (root_tag_get(root, tag))
|
|
tag_set(node, tag, 0);
|
|
}
|
|
|
|
/* Increase the height. */
|
|
newheight = root->height+1;
|
|
node->height = newheight;
|
|
node->count = 1;
|
|
node->parent = NULL;
|
|
slot = root->rnode;
|
|
if (newheight > 1) {
|
|
slot = indirect_to_ptr(slot);
|
|
slot->parent = node;
|
|
}
|
|
node->slots[0] = slot;
|
|
node = ptr_to_indirect(node);
|
|
rcu_assign_pointer(root->rnode, node);
|
|
root->height = newheight;
|
|
} while (height > root->height);
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* radix_tree_insert - insert into a radix tree
|
|
* @root: radix tree root
|
|
* @index: index key
|
|
* @item: item to insert
|
|
*
|
|
* Insert an item into the radix tree at position @index.
|
|
*/
|
|
int radix_tree_insert(struct radix_tree_root *root,
|
|
unsigned long index, void *item)
|
|
{
|
|
struct radix_tree_node *node = NULL, *slot;
|
|
unsigned int height, shift;
|
|
int offset;
|
|
int error;
|
|
|
|
BUG_ON(radix_tree_is_indirect_ptr(item));
|
|
|
|
/* Make sure the tree is high enough. */
|
|
if (index > radix_tree_maxindex(root->height)) {
|
|
error = radix_tree_extend(root, index);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
slot = indirect_to_ptr(root->rnode);
|
|
|
|
height = root->height;
|
|
shift = (height-1) * RADIX_TREE_MAP_SHIFT;
|
|
|
|
offset = 0; /* uninitialised var warning */
|
|
while (height > 0) {
|
|
if (slot == NULL) {
|
|
/* Have to add a child node. */
|
|
if (!(slot = radix_tree_node_alloc(root)))
|
|
return -ENOMEM;
|
|
slot->height = height;
|
|
slot->parent = node;
|
|
if (node) {
|
|
rcu_assign_pointer(node->slots[offset], slot);
|
|
node->count++;
|
|
} else
|
|
rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
|
|
}
|
|
|
|
/* Go a level down */
|
|
offset = (index >> shift) & RADIX_TREE_MAP_MASK;
|
|
node = slot;
|
|
slot = node->slots[offset];
|
|
shift -= RADIX_TREE_MAP_SHIFT;
|
|
height--;
|
|
}
|
|
|
|
if (slot != NULL)
|
|
return -EEXIST;
|
|
|
|
if (node) {
|
|
node->count++;
|
|
rcu_assign_pointer(node->slots[offset], item);
|
|
BUG_ON(tag_get(node, 0, offset));
|
|
BUG_ON(tag_get(node, 1, offset));
|
|
} else {
|
|
rcu_assign_pointer(root->rnode, item);
|
|
BUG_ON(root_tag_get(root, 0));
|
|
BUG_ON(root_tag_get(root, 1));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(radix_tree_insert);
|
|
|
|
/*
|
|
* is_slot == 1 : search for the slot.
|
|
* is_slot == 0 : search for the node.
|
|
*/
|
|
static void *radix_tree_lookup_element(struct radix_tree_root *root,
|
|
unsigned long index, int is_slot)
|
|
{
|
|
unsigned int height, shift;
|
|
struct radix_tree_node *node, **slot;
|
|
|
|
node = rcu_dereference_raw(root->rnode);
|
|
if (node == NULL)
|
|
return NULL;
|
|
|
|
if (!radix_tree_is_indirect_ptr(node)) {
|
|
if (index > 0)
|
|
return NULL;
|
|
return is_slot ? (void *)&root->rnode : node;
|
|
}
|
|
node = indirect_to_ptr(node);
|
|
|
|
height = node->height;
|
|
if (index > radix_tree_maxindex(height))
|
|
return NULL;
|
|
|
|
shift = (height-1) * RADIX_TREE_MAP_SHIFT;
|
|
|
|
do {
|
|
slot = (struct radix_tree_node **)
|
|
(node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
|
|
node = rcu_dereference_raw(*slot);
|
|
if (node == NULL)
|
|
return NULL;
|
|
|
|
shift -= RADIX_TREE_MAP_SHIFT;
|
|
height--;
|
|
} while (height > 0);
|
|
|
|
return is_slot ? (void *)slot : indirect_to_ptr(node);
|
|
}
|
|
|
|
/**
|
|
* radix_tree_lookup_slot - lookup a slot in a radix tree
|
|
* @root: radix tree root
|
|
* @index: index key
|
|
*
|
|
* Returns: the slot corresponding to the position @index in the
|
|
* radix tree @root. This is useful for update-if-exists operations.
|
|
*
|
|
* This function can be called under rcu_read_lock iff the slot is not
|
|
* modified by radix_tree_replace_slot, otherwise it must be called
|
|
* exclusive from other writers. Any dereference of the slot must be done
|
|
* using radix_tree_deref_slot.
|
|
*/
|
|
void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
|
|
{
|
|
return (void **)radix_tree_lookup_element(root, index, 1);
|
|
}
|
|
EXPORT_SYMBOL(radix_tree_lookup_slot);
|
|
|
|
/**
|
|
* radix_tree_lookup - perform lookup operation on a radix tree
|
|
* @root: radix tree root
|
|
* @index: index key
|
|
*
|
|
* Lookup the item at the position @index in the radix tree @root.
|
|
*
|
|
* This function can be called under rcu_read_lock, however the caller
|
|
* must manage lifetimes of leaf nodes (eg. RCU may also be used to free
|
|
* them safely). No RCU barriers are required to access or modify the
|
|
* returned item, however.
|
|
*/
|
|
void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
|
|
{
|
|
return radix_tree_lookup_element(root, index, 0);
|
|
}
|
|
EXPORT_SYMBOL(radix_tree_lookup);
|
|
|
|
/**
|
|
* radix_tree_tag_set - set a tag on a radix tree node
|
|
* @root: radix tree root
|
|
* @index: index key
|
|
* @tag: tag index
|
|
*
|
|
* Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
|
|
* corresponding to @index in the radix tree. From
|
|
* the root all the way down to the leaf node.
|
|
*
|
|
* Returns the address of the tagged item. Setting a tag on a not-present
|
|
* item is a bug.
|
|
*/
|
|
void *radix_tree_tag_set(struct radix_tree_root *root,
|
|
unsigned long index, unsigned int tag)
|
|
{
|
|
unsigned int height, shift;
|
|
struct radix_tree_node *slot;
|
|
|
|
height = root->height;
|
|
BUG_ON(index > radix_tree_maxindex(height));
|
|
|
|
slot = indirect_to_ptr(root->rnode);
|
|
shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
|
|
|
|
while (height > 0) {
|
|
int offset;
|
|
|
|
offset = (index >> shift) & RADIX_TREE_MAP_MASK;
|
|
if (!tag_get(slot, tag, offset))
|
|
tag_set(slot, tag, offset);
|
|
slot = slot->slots[offset];
|
|
BUG_ON(slot == NULL);
|
|
shift -= RADIX_TREE_MAP_SHIFT;
|
|
height--;
|
|
}
|
|
|
|
/* set the root's tag bit */
|
|
if (slot && !root_tag_get(root, tag))
|
|
root_tag_set(root, tag);
|
|
|
|
return slot;
|
|
}
|
|
EXPORT_SYMBOL(radix_tree_tag_set);
|
|
|
|
/**
|
|
* radix_tree_tag_clear - clear a tag on a radix tree node
|
|
* @root: radix tree root
|
|
* @index: index key
|
|
* @tag: tag index
|
|
*
|
|
* Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
|
|
* corresponding to @index in the radix tree. If
|
|
* this causes the leaf node to have no tags set then clear the tag in the
|
|
* next-to-leaf node, etc.
|
|
*
|
|
* Returns the address of the tagged item on success, else NULL. ie:
|
|
* has the same return value and semantics as radix_tree_lookup().
|
|
*/
|
|
void *radix_tree_tag_clear(struct radix_tree_root *root,
|
|
unsigned long index, unsigned int tag)
|
|
{
|
|
struct radix_tree_node *node = NULL;
|
|
struct radix_tree_node *slot = NULL;
|
|
unsigned int height, shift;
|
|
int uninitialized_var(offset);
|
|
|
|
height = root->height;
|
|
if (index > radix_tree_maxindex(height))
|
|
goto out;
|
|
|
|
shift = height * RADIX_TREE_MAP_SHIFT;
|
|
slot = indirect_to_ptr(root->rnode);
|
|
|
|
while (shift) {
|
|
if (slot == NULL)
|
|
goto out;
|
|
|
|
shift -= RADIX_TREE_MAP_SHIFT;
|
|
offset = (index >> shift) & RADIX_TREE_MAP_MASK;
|
|
node = slot;
|
|
slot = slot->slots[offset];
|
|
}
|
|
|
|
if (slot == NULL)
|
|
goto out;
|
|
|
|
while (node) {
|
|
if (!tag_get(node, tag, offset))
|
|
goto out;
|
|
tag_clear(node, tag, offset);
|
|
if (any_tag_set(node, tag))
|
|
goto out;
|
|
|
|
index >>= RADIX_TREE_MAP_SHIFT;
|
|
offset = index & RADIX_TREE_MAP_MASK;
|
|
node = node->parent;
|
|
}
|
|
|
|
/* clear the root's tag bit */
|
|
if (root_tag_get(root, tag))
|
|
root_tag_clear(root, tag);
|
|
|
|
out:
|
|
return slot;
|
|
}
|
|
EXPORT_SYMBOL(radix_tree_tag_clear);
|
|
|
|
/**
|
|
* radix_tree_tag_get - get a tag on a radix tree node
|
|
* @root: radix tree root
|
|
* @index: index key
|
|
* @tag: tag index (< RADIX_TREE_MAX_TAGS)
|
|
*
|
|
* Return values:
|
|
*
|
|
* 0: tag not present or not set
|
|
* 1: tag set
|
|
*
|
|
* Note that the return value of this function may not be relied on, even if
|
|
* the RCU lock is held, unless tag modification and node deletion are excluded
|
|
* from concurrency.
|
|
*/
|
|
int radix_tree_tag_get(struct radix_tree_root *root,
|
|
unsigned long index, unsigned int tag)
|
|
{
|
|
unsigned int height, shift;
|
|
struct radix_tree_node *node;
|
|
|
|
/* check the root's tag bit */
|
|
if (!root_tag_get(root, tag))
|
|
return 0;
|
|
|
|
node = rcu_dereference_raw(root->rnode);
|
|
if (node == NULL)
|
|
return 0;
|
|
|
|
if (!radix_tree_is_indirect_ptr(node))
|
|
return (index == 0);
|
|
node = indirect_to_ptr(node);
|
|
|
|
height = node->height;
|
|
if (index > radix_tree_maxindex(height))
|
|
return 0;
|
|
|
|
shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
|
|
|
|
for ( ; ; ) {
|
|
int offset;
|
|
|
|
if (node == NULL)
|
|
return 0;
|
|
|
|
offset = (index >> shift) & RADIX_TREE_MAP_MASK;
|
|
if (!tag_get(node, tag, offset))
|
|
return 0;
|
|
if (height == 1)
|
|
return 1;
|
|
node = rcu_dereference_raw(node->slots[offset]);
|
|
shift -= RADIX_TREE_MAP_SHIFT;
|
|
height--;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(radix_tree_tag_get);
|
|
|
|
/**
|
|
* radix_tree_range_tag_if_tagged - for each item in given range set given
|
|
* tag if item has another tag set
|
|
* @root: radix tree root
|
|
* @first_indexp: pointer to a starting index of a range to scan
|
|
* @last_index: last index of a range to scan
|
|
* @nr_to_tag: maximum number items to tag
|
|
* @iftag: tag index to test
|
|
* @settag: tag index to set if tested tag is set
|
|
*
|
|
* This function scans range of radix tree from first_index to last_index
|
|
* (inclusive). For each item in the range if iftag is set, the function sets
|
|
* also settag. The function stops either after tagging nr_to_tag items or
|
|
* after reaching last_index.
|
|
*
|
|
* The tags must be set from the leaf level only and propagated back up the
|
|
* path to the root. We must do this so that we resolve the full path before
|
|
* setting any tags on intermediate nodes. If we set tags as we descend, then
|
|
* we can get to the leaf node and find that the index that has the iftag
|
|
* set is outside the range we are scanning. This reults in dangling tags and
|
|
* can lead to problems with later tag operations (e.g. livelocks on lookups).
|
|
*
|
|
* The function returns number of leaves where the tag was set and sets
|
|
* *first_indexp to the first unscanned index.
|
|
* WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
|
|
* be prepared to handle that.
|
|
*/
|
|
unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
|
|
unsigned long *first_indexp, unsigned long last_index,
|
|
unsigned long nr_to_tag,
|
|
unsigned int iftag, unsigned int settag)
|
|
{
|
|
unsigned int height = root->height;
|
|
struct radix_tree_node *node = NULL;
|
|
struct radix_tree_node *slot;
|
|
unsigned int shift;
|
|
unsigned long tagged = 0;
|
|
unsigned long index = *first_indexp;
|
|
|
|
last_index = min(last_index, radix_tree_maxindex(height));
|
|
if (index > last_index)
|
|
return 0;
|
|
if (!nr_to_tag)
|
|
return 0;
|
|
if (!root_tag_get(root, iftag)) {
|
|
*first_indexp = last_index + 1;
|
|
return 0;
|
|
}
|
|
if (height == 0) {
|
|
*first_indexp = last_index + 1;
|
|
root_tag_set(root, settag);
|
|
return 1;
|
|
}
|
|
|
|
shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
|
|
slot = indirect_to_ptr(root->rnode);
|
|
|
|
for (;;) {
|
|
unsigned long upindex;
|
|
int offset;
|
|
|
|
offset = (index >> shift) & RADIX_TREE_MAP_MASK;
|
|
if (!slot->slots[offset])
|
|
goto next;
|
|
if (!tag_get(slot, iftag, offset))
|
|
goto next;
|
|
if (shift) {
|
|
/* Go down one level */
|
|
shift -= RADIX_TREE_MAP_SHIFT;
|
|
node = slot;
|
|
slot = slot->slots[offset];
|
|
continue;
|
|
}
|
|
|
|
/* tag the leaf */
|
|
tagged++;
|
|
tag_set(slot, settag, offset);
|
|
|
|
/* walk back up the path tagging interior nodes */
|
|
upindex = index;
|
|
while (node) {
|
|
upindex >>= RADIX_TREE_MAP_SHIFT;
|
|
offset = upindex & RADIX_TREE_MAP_MASK;
|
|
|
|
/* stop if we find a node with the tag already set */
|
|
if (tag_get(node, settag, offset))
|
|
break;
|
|
tag_set(node, settag, offset);
|
|
node = node->parent;
|
|
}
|
|
|
|
/*
|
|
* Small optimization: now clear that node pointer.
|
|
* Since all of this slot's ancestors now have the tag set
|
|
* from setting it above, we have no further need to walk
|
|
* back up the tree setting tags, until we update slot to
|
|
* point to another radix_tree_node.
|
|
*/
|
|
node = NULL;
|
|
|
|
next:
|
|
/* Go to next item at level determined by 'shift' */
|
|
index = ((index >> shift) + 1) << shift;
|
|
/* Overflow can happen when last_index is ~0UL... */
|
|
if (index > last_index || !index)
|
|
break;
|
|
if (tagged >= nr_to_tag)
|
|
break;
|
|
while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
|
|
/*
|
|
* We've fully scanned this node. Go up. Because
|
|
* last_index is guaranteed to be in the tree, what
|
|
* we do below cannot wander astray.
|
|
*/
|
|
slot = slot->parent;
|
|
shift += RADIX_TREE_MAP_SHIFT;
|
|
}
|
|
}
|
|
/*
|
|
* We need not to tag the root tag if there is no tag which is set with
|
|
* settag within the range from *first_indexp to last_index.
|
|
*/
|
|
if (tagged > 0)
|
|
root_tag_set(root, settag);
|
|
*first_indexp = index;
|
|
|
|
return tagged;
|
|
}
|
|
EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
|
|
|
|
|
|
/**
|
|
* radix_tree_next_hole - find the next hole (not-present entry)
|
|
* @root: tree root
|
|
* @index: index key
|
|
* @max_scan: maximum range to search
|
|
*
|
|
* Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
|
|
* indexed hole.
|
|
*
|
|
* Returns: the index of the hole if found, otherwise returns an index
|
|
* outside of the set specified (in which case 'return - index >= max_scan'
|
|
* will be true). In rare cases of index wrap-around, 0 will be returned.
|
|
*
|
|
* radix_tree_next_hole may be called under rcu_read_lock. However, like
|
|
* radix_tree_gang_lookup, this will not atomically search a snapshot of
|
|
* the tree at a single point in time. For example, if a hole is created
|
|
* at index 5, then subsequently a hole is created at index 10,
|
|
* radix_tree_next_hole covering both indexes may return 10 if called
|
|
* under rcu_read_lock.
|
|
*/
|
|
unsigned long radix_tree_next_hole(struct radix_tree_root *root,
|
|
unsigned long index, unsigned long max_scan)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < max_scan; i++) {
|
|
if (!radix_tree_lookup(root, index))
|
|
break;
|
|
index++;
|
|
if (index == 0)
|
|
break;
|
|
}
|
|
|
|
return index;
|
|
}
|
|
EXPORT_SYMBOL(radix_tree_next_hole);
|
|
|
|
/**
|
|
* radix_tree_prev_hole - find the prev hole (not-present entry)
|
|
* @root: tree root
|
|
* @index: index key
|
|
* @max_scan: maximum range to search
|
|
*
|
|
* Search backwards in the range [max(index-max_scan+1, 0), index]
|
|
* for the first hole.
|
|
*
|
|
* Returns: the index of the hole if found, otherwise returns an index
|
|
* outside of the set specified (in which case 'index - return >= max_scan'
|
|
* will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
|
|
*
|
|
* radix_tree_next_hole may be called under rcu_read_lock. However, like
|
|
* radix_tree_gang_lookup, this will not atomically search a snapshot of
|
|
* the tree at a single point in time. For example, if a hole is created
|
|
* at index 10, then subsequently a hole is created at index 5,
|
|
* radix_tree_prev_hole covering both indexes may return 5 if called under
|
|
* rcu_read_lock.
|
|
*/
|
|
unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
|
|
unsigned long index, unsigned long max_scan)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < max_scan; i++) {
|
|
if (!radix_tree_lookup(root, index))
|
|
break;
|
|
index--;
|
|
if (index == ULONG_MAX)
|
|
break;
|
|
}
|
|
|
|
return index;
|
|
}
|
|
EXPORT_SYMBOL(radix_tree_prev_hole);
|
|
|
|
static unsigned int
|
|
__lookup(struct radix_tree_node *slot, void ***results, unsigned long *indices,
|
|
unsigned long index, unsigned int max_items, unsigned long *next_index)
|
|
{
|
|
unsigned int nr_found = 0;
|
|
unsigned int shift, height;
|
|
unsigned long i;
|
|
|
|
height = slot->height;
|
|
if (height == 0)
|
|
goto out;
|
|
shift = (height-1) * RADIX_TREE_MAP_SHIFT;
|
|
|
|
for ( ; height > 1; height--) {
|
|
i = (index >> shift) & RADIX_TREE_MAP_MASK;
|
|
for (;;) {
|
|
if (slot->slots[i] != NULL)
|
|
break;
|
|
index &= ~((1UL << shift) - 1);
|
|
index += 1UL << shift;
|
|
if (index == 0)
|
|
goto out; /* 32-bit wraparound */
|
|
i++;
|
|
if (i == RADIX_TREE_MAP_SIZE)
|
|
goto out;
|
|
}
|
|
|
|
shift -= RADIX_TREE_MAP_SHIFT;
|
|
slot = rcu_dereference_raw(slot->slots[i]);
|
|
if (slot == NULL)
|
|
goto out;
|
|
}
|
|
|
|
/* Bottom level: grab some items */
|
|
for (i = index & RADIX_TREE_MAP_MASK; i < RADIX_TREE_MAP_SIZE; i++) {
|
|
if (slot->slots[i]) {
|
|
results[nr_found] = &(slot->slots[i]);
|
|
if (indices)
|
|
indices[nr_found] = index;
|
|
if (++nr_found == max_items) {
|
|
index++;
|
|
goto out;
|
|
}
|
|
}
|
|
index++;
|
|
}
|
|
out:
|
|
*next_index = index;
|
|
return nr_found;
|
|
}
|
|
|
|
/**
|
|
* radix_tree_gang_lookup - perform multiple lookup on a radix tree
|
|
* @root: radix tree root
|
|
* @results: where the results of the lookup are placed
|
|
* @first_index: start the lookup from this key
|
|
* @max_items: place up to this many items at *results
|
|
*
|
|
* Performs an index-ascending scan of the tree for present items. Places
|
|
* them at *@results and returns the number of items which were placed at
|
|
* *@results.
|
|
*
|
|
* The implementation is naive.
|
|
*
|
|
* Like radix_tree_lookup, radix_tree_gang_lookup may be called under
|
|
* rcu_read_lock. In this case, rather than the returned results being
|
|
* an atomic snapshot of the tree at a single point in time, the semantics
|
|
* of an RCU protected gang lookup are as though multiple radix_tree_lookups
|
|
* have been issued in individual locks, and results stored in 'results'.
|
|
*/
|
|
unsigned int
|
|
radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
|
|
unsigned long first_index, unsigned int max_items)
|
|
{
|
|
unsigned long max_index;
|
|
struct radix_tree_node *node;
|
|
unsigned long cur_index = first_index;
|
|
unsigned int ret;
|
|
|
|
node = rcu_dereference_raw(root->rnode);
|
|
if (!node)
|
|
return 0;
|
|
|
|
if (!radix_tree_is_indirect_ptr(node)) {
|
|
if (first_index > 0)
|
|
return 0;
|
|
results[0] = node;
|
|
return 1;
|
|
}
|
|
node = indirect_to_ptr(node);
|
|
|
|
max_index = radix_tree_maxindex(node->height);
|
|
|
|
ret = 0;
|
|
while (ret < max_items) {
|
|
unsigned int nr_found, slots_found, i;
|
|
unsigned long next_index; /* Index of next search */
|
|
|
|
if (cur_index > max_index)
|
|
break;
|
|
slots_found = __lookup(node, (void ***)results + ret, NULL,
|
|
cur_index, max_items - ret, &next_index);
|
|
nr_found = 0;
|
|
for (i = 0; i < slots_found; i++) {
|
|
struct radix_tree_node *slot;
|
|
slot = *(((void ***)results)[ret + i]);
|
|
if (!slot)
|
|
continue;
|
|
results[ret + nr_found] =
|
|
indirect_to_ptr(rcu_dereference_raw(slot));
|
|
nr_found++;
|
|
}
|
|
ret += nr_found;
|
|
if (next_index == 0)
|
|
break;
|
|
cur_index = next_index;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(radix_tree_gang_lookup);
|
|
|
|
/**
|
|
* radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
|
|
* @root: radix tree root
|
|
* @results: where the results of the lookup are placed
|
|
* @indices: where their indices should be placed (but usually NULL)
|
|
* @first_index: start the lookup from this key
|
|
* @max_items: place up to this many items at *results
|
|
*
|
|
* Performs an index-ascending scan of the tree for present items. Places
|
|
* their slots at *@results and returns the number of items which were
|
|
* placed at *@results.
|
|
*
|
|
* The implementation is naive.
|
|
*
|
|
* Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
|
|
* be dereferenced with radix_tree_deref_slot, and if using only RCU
|
|
* protection, radix_tree_deref_slot may fail requiring a retry.
|
|
*/
|
|
unsigned int
|
|
radix_tree_gang_lookup_slot(struct radix_tree_root *root,
|
|
void ***results, unsigned long *indices,
|
|
unsigned long first_index, unsigned int max_items)
|
|
{
|
|
unsigned long max_index;
|
|
struct radix_tree_node *node;
|
|
unsigned long cur_index = first_index;
|
|
unsigned int ret;
|
|
|
|
node = rcu_dereference_raw(root->rnode);
|
|
if (!node)
|
|
return 0;
|
|
|
|
if (!radix_tree_is_indirect_ptr(node)) {
|
|
if (first_index > 0)
|
|
return 0;
|
|
results[0] = (void **)&root->rnode;
|
|
if (indices)
|
|
indices[0] = 0;
|
|
return 1;
|
|
}
|
|
node = indirect_to_ptr(node);
|
|
|
|
max_index = radix_tree_maxindex(node->height);
|
|
|
|
ret = 0;
|
|
while (ret < max_items) {
|
|
unsigned int slots_found;
|
|
unsigned long next_index; /* Index of next search */
|
|
|
|
if (cur_index > max_index)
|
|
break;
|
|
slots_found = __lookup(node, results + ret,
|
|
indices ? indices + ret : NULL,
|
|
cur_index, max_items - ret, &next_index);
|
|
ret += slots_found;
|
|
if (next_index == 0)
|
|
break;
|
|
cur_index = next_index;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
|
|
|
|
/*
|
|
* FIXME: the two tag_get()s here should use find_next_bit() instead of
|
|
* open-coding the search.
|
|
*/
|
|
static unsigned int
|
|
__lookup_tag(struct radix_tree_node *slot, void ***results, unsigned long index,
|
|
unsigned int max_items, unsigned long *next_index, unsigned int tag)
|
|
{
|
|
unsigned int nr_found = 0;
|
|
unsigned int shift, height;
|
|
|
|
height = slot->height;
|
|
if (height == 0)
|
|
goto out;
|
|
shift = (height-1) * RADIX_TREE_MAP_SHIFT;
|
|
|
|
while (height > 0) {
|
|
unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;
|
|
|
|
for (;;) {
|
|
if (tag_get(slot, tag, i))
|
|
break;
|
|
index &= ~((1UL << shift) - 1);
|
|
index += 1UL << shift;
|
|
if (index == 0)
|
|
goto out; /* 32-bit wraparound */
|
|
i++;
|
|
if (i == RADIX_TREE_MAP_SIZE)
|
|
goto out;
|
|
}
|
|
height--;
|
|
if (height == 0) { /* Bottom level: grab some items */
|
|
unsigned long j = index & RADIX_TREE_MAP_MASK;
|
|
|
|
for ( ; j < RADIX_TREE_MAP_SIZE; j++) {
|
|
index++;
|
|
if (!tag_get(slot, tag, j))
|
|
continue;
|
|
/*
|
|
* Even though the tag was found set, we need to
|
|
* recheck that we have a non-NULL node, because
|
|
* if this lookup is lockless, it may have been
|
|
* subsequently deleted.
|
|
*
|
|
* Similar care must be taken in any place that
|
|
* lookup ->slots[x] without a lock (ie. can't
|
|
* rely on its value remaining the same).
|
|
*/
|
|
if (slot->slots[j]) {
|
|
results[nr_found++] = &(slot->slots[j]);
|
|
if (nr_found == max_items)
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
shift -= RADIX_TREE_MAP_SHIFT;
|
|
slot = rcu_dereference_raw(slot->slots[i]);
|
|
if (slot == NULL)
|
|
break;
|
|
}
|
|
out:
|
|
*next_index = index;
|
|
return nr_found;
|
|
}
|
|
|
|
/**
|
|
* radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
|
|
* based on a tag
|
|
* @root: radix tree root
|
|
* @results: where the results of the lookup are placed
|
|
* @first_index: start the lookup from this key
|
|
* @max_items: place up to this many items at *results
|
|
* @tag: the tag index (< RADIX_TREE_MAX_TAGS)
|
|
*
|
|
* Performs an index-ascending scan of the tree for present items which
|
|
* have the tag indexed by @tag set. Places the items at *@results and
|
|
* returns the number of items which were placed at *@results.
|
|
*/
|
|
unsigned int
|
|
radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
|
|
unsigned long first_index, unsigned int max_items,
|
|
unsigned int tag)
|
|
{
|
|
struct radix_tree_node *node;
|
|
unsigned long max_index;
|
|
unsigned long cur_index = first_index;
|
|
unsigned int ret;
|
|
|
|
/* check the root's tag bit */
|
|
if (!root_tag_get(root, tag))
|
|
return 0;
|
|
|
|
node = rcu_dereference_raw(root->rnode);
|
|
if (!node)
|
|
return 0;
|
|
|
|
if (!radix_tree_is_indirect_ptr(node)) {
|
|
if (first_index > 0)
|
|
return 0;
|
|
results[0] = node;
|
|
return 1;
|
|
}
|
|
node = indirect_to_ptr(node);
|
|
|
|
max_index = radix_tree_maxindex(node->height);
|
|
|
|
ret = 0;
|
|
while (ret < max_items) {
|
|
unsigned int nr_found, slots_found, i;
|
|
unsigned long next_index; /* Index of next search */
|
|
|
|
if (cur_index > max_index)
|
|
break;
|
|
slots_found = __lookup_tag(node, (void ***)results + ret,
|
|
cur_index, max_items - ret, &next_index, tag);
|
|
nr_found = 0;
|
|
for (i = 0; i < slots_found; i++) {
|
|
struct radix_tree_node *slot;
|
|
slot = *(((void ***)results)[ret + i]);
|
|
if (!slot)
|
|
continue;
|
|
results[ret + nr_found] =
|
|
indirect_to_ptr(rcu_dereference_raw(slot));
|
|
nr_found++;
|
|
}
|
|
ret += nr_found;
|
|
if (next_index == 0)
|
|
break;
|
|
cur_index = next_index;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
|
|
|
|
/**
|
|
* radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
|
|
* radix tree based on a tag
|
|
* @root: radix tree root
|
|
* @results: where the results of the lookup are placed
|
|
* @first_index: start the lookup from this key
|
|
* @max_items: place up to this many items at *results
|
|
* @tag: the tag index (< RADIX_TREE_MAX_TAGS)
|
|
*
|
|
* Performs an index-ascending scan of the tree for present items which
|
|
* have the tag indexed by @tag set. Places the slots at *@results and
|
|
* returns the number of slots which were placed at *@results.
|
|
*/
|
|
unsigned int
|
|
radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
|
|
unsigned long first_index, unsigned int max_items,
|
|
unsigned int tag)
|
|
{
|
|
struct radix_tree_node *node;
|
|
unsigned long max_index;
|
|
unsigned long cur_index = first_index;
|
|
unsigned int ret;
|
|
|
|
/* check the root's tag bit */
|
|
if (!root_tag_get(root, tag))
|
|
return 0;
|
|
|
|
node = rcu_dereference_raw(root->rnode);
|
|
if (!node)
|
|
return 0;
|
|
|
|
if (!radix_tree_is_indirect_ptr(node)) {
|
|
if (first_index > 0)
|
|
return 0;
|
|
results[0] = (void **)&root->rnode;
|
|
return 1;
|
|
}
|
|
node = indirect_to_ptr(node);
|
|
|
|
max_index = radix_tree_maxindex(node->height);
|
|
|
|
ret = 0;
|
|
while (ret < max_items) {
|
|
unsigned int slots_found;
|
|
unsigned long next_index; /* Index of next search */
|
|
|
|
if (cur_index > max_index)
|
|
break;
|
|
slots_found = __lookup_tag(node, results + ret,
|
|
cur_index, max_items - ret, &next_index, tag);
|
|
ret += slots_found;
|
|
if (next_index == 0)
|
|
break;
|
|
cur_index = next_index;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
|
|
|
|
#if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
|
|
#include <linux/sched.h> /* for cond_resched() */
|
|
|
|
/*
|
|
* This linear search is at present only useful to shmem_unuse_inode().
|
|
*/
|
|
static unsigned long __locate(struct radix_tree_node *slot, void *item,
|
|
unsigned long index, unsigned long *found_index)
|
|
{
|
|
unsigned int shift, height;
|
|
unsigned long i;
|
|
|
|
height = slot->height;
|
|
shift = (height-1) * RADIX_TREE_MAP_SHIFT;
|
|
|
|
for ( ; height > 1; height--) {
|
|
i = (index >> shift) & RADIX_TREE_MAP_MASK;
|
|
for (;;) {
|
|
if (slot->slots[i] != NULL)
|
|
break;
|
|
index &= ~((1UL << shift) - 1);
|
|
index += 1UL << shift;
|
|
if (index == 0)
|
|
goto out; /* 32-bit wraparound */
|
|
i++;
|
|
if (i == RADIX_TREE_MAP_SIZE)
|
|
goto out;
|
|
}
|
|
|
|
shift -= RADIX_TREE_MAP_SHIFT;
|
|
slot = rcu_dereference_raw(slot->slots[i]);
|
|
if (slot == NULL)
|
|
goto out;
|
|
}
|
|
|
|
/* Bottom level: check items */
|
|
for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
|
|
if (slot->slots[i] == item) {
|
|
*found_index = index + i;
|
|
index = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
index += RADIX_TREE_MAP_SIZE;
|
|
out:
|
|
return index;
|
|
}
|
|
|
|
/**
|
|
* radix_tree_locate_item - search through radix tree for item
|
|
* @root: radix tree root
|
|
* @item: item to be found
|
|
*
|
|
* Returns index where item was found, or -1 if not found.
|
|
* Caller must hold no lock (since this time-consuming function needs
|
|
* to be preemptible), and must check afterwards if item is still there.
|
|
*/
|
|
unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
|
|
{
|
|
struct radix_tree_node *node;
|
|
unsigned long max_index;
|
|
unsigned long cur_index = 0;
|
|
unsigned long found_index = -1;
|
|
|
|
do {
|
|
rcu_read_lock();
|
|
node = rcu_dereference_raw(root->rnode);
|
|
if (!radix_tree_is_indirect_ptr(node)) {
|
|
rcu_read_unlock();
|
|
if (node == item)
|
|
found_index = 0;
|
|
break;
|
|
}
|
|
|
|
node = indirect_to_ptr(node);
|
|
max_index = radix_tree_maxindex(node->height);
|
|
if (cur_index > max_index)
|
|
break;
|
|
|
|
cur_index = __locate(node, item, cur_index, &found_index);
|
|
rcu_read_unlock();
|
|
cond_resched();
|
|
} while (cur_index != 0 && cur_index <= max_index);
|
|
|
|
return found_index;
|
|
}
|
|
#else
|
|
unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
|
|
{
|
|
return -1;
|
|
}
|
|
#endif /* CONFIG_SHMEM && CONFIG_SWAP */
|
|
|
|
/**
|
|
* radix_tree_shrink - shrink height of a radix tree to minimal
|
|
* @root radix tree root
|
|
*/
|
|
static inline void radix_tree_shrink(struct radix_tree_root *root)
|
|
{
|
|
/* try to shrink tree height */
|
|
while (root->height > 0) {
|
|
struct radix_tree_node *to_free = root->rnode;
|
|
struct radix_tree_node *slot;
|
|
|
|
BUG_ON(!radix_tree_is_indirect_ptr(to_free));
|
|
to_free = indirect_to_ptr(to_free);
|
|
|
|
/*
|
|
* The candidate node has more than one child, or its child
|
|
* is not at the leftmost slot, we cannot shrink.
|
|
*/
|
|
if (to_free->count != 1)
|
|
break;
|
|
if (!to_free->slots[0])
|
|
break;
|
|
|
|
/*
|
|
* We don't need rcu_assign_pointer(), since we are simply
|
|
* moving the node from one part of the tree to another: if it
|
|
* was safe to dereference the old pointer to it
|
|
* (to_free->slots[0]), it will be safe to dereference the new
|
|
* one (root->rnode) as far as dependent read barriers go.
|
|
*/
|
|
slot = to_free->slots[0];
|
|
if (root->height > 1) {
|
|
slot->parent = NULL;
|
|
slot = ptr_to_indirect(slot);
|
|
}
|
|
root->rnode = slot;
|
|
root->height--;
|
|
|
|
/*
|
|
* We have a dilemma here. The node's slot[0] must not be
|
|
* NULLed in case there are concurrent lookups expecting to
|
|
* find the item. However if this was a bottom-level node,
|
|
* then it may be subject to the slot pointer being visible
|
|
* to callers dereferencing it. If item corresponding to
|
|
* slot[0] is subsequently deleted, these callers would expect
|
|
* their slot to become empty sooner or later.
|
|
*
|
|
* For example, lockless pagecache will look up a slot, deref
|
|
* the page pointer, and if the page is 0 refcount it means it
|
|
* was concurrently deleted from pagecache so try the deref
|
|
* again. Fortunately there is already a requirement for logic
|
|
* to retry the entire slot lookup -- the indirect pointer
|
|
* problem (replacing direct root node with an indirect pointer
|
|
* also results in a stale slot). So tag the slot as indirect
|
|
* to force callers to retry.
|
|
*/
|
|
if (root->height == 0)
|
|
*((unsigned long *)&to_free->slots[0]) |=
|
|
RADIX_TREE_INDIRECT_PTR;
|
|
|
|
radix_tree_node_free(to_free);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* radix_tree_delete - delete an item from a radix tree
|
|
* @root: radix tree root
|
|
* @index: index key
|
|
*
|
|
* Remove the item at @index from the radix tree rooted at @root.
|
|
*
|
|
* Returns the address of the deleted item, or NULL if it was not present.
|
|
*/
|
|
void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
|
|
{
|
|
struct radix_tree_node *node = NULL;
|
|
struct radix_tree_node *slot = NULL;
|
|
struct radix_tree_node *to_free;
|
|
unsigned int height, shift;
|
|
int tag;
|
|
int uninitialized_var(offset);
|
|
|
|
height = root->height;
|
|
if (index > radix_tree_maxindex(height))
|
|
goto out;
|
|
|
|
slot = root->rnode;
|
|
if (height == 0) {
|
|
root_tag_clear_all(root);
|
|
root->rnode = NULL;
|
|
goto out;
|
|
}
|
|
slot = indirect_to_ptr(slot);
|
|
shift = height * RADIX_TREE_MAP_SHIFT;
|
|
|
|
do {
|
|
if (slot == NULL)
|
|
goto out;
|
|
|
|
shift -= RADIX_TREE_MAP_SHIFT;
|
|
offset = (index >> shift) & RADIX_TREE_MAP_MASK;
|
|
node = slot;
|
|
slot = slot->slots[offset];
|
|
} while (shift);
|
|
|
|
if (slot == NULL)
|
|
goto out;
|
|
|
|
/*
|
|
* Clear all tags associated with the item to be deleted.
|
|
* This way of doing it would be inefficient, but seldom is any set.
|
|
*/
|
|
for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
|
|
if (tag_get(node, tag, offset))
|
|
radix_tree_tag_clear(root, index, tag);
|
|
}
|
|
|
|
to_free = NULL;
|
|
/* Now free the nodes we do not need anymore */
|
|
while (node) {
|
|
node->slots[offset] = NULL;
|
|
node->count--;
|
|
/*
|
|
* Queue the node for deferred freeing after the
|
|
* last reference to it disappears (set NULL, above).
|
|
*/
|
|
if (to_free)
|
|
radix_tree_node_free(to_free);
|
|
|
|
if (node->count) {
|
|
if (node == indirect_to_ptr(root->rnode))
|
|
radix_tree_shrink(root);
|
|
goto out;
|
|
}
|
|
|
|
/* Node with zero slots in use so free it */
|
|
to_free = node;
|
|
|
|
index >>= RADIX_TREE_MAP_SHIFT;
|
|
offset = index & RADIX_TREE_MAP_MASK;
|
|
node = node->parent;
|
|
}
|
|
|
|
root_tag_clear_all(root);
|
|
root->height = 0;
|
|
root->rnode = NULL;
|
|
if (to_free)
|
|
radix_tree_node_free(to_free);
|
|
|
|
out:
|
|
return slot;
|
|
}
|
|
EXPORT_SYMBOL(radix_tree_delete);
|
|
|
|
/**
|
|
* radix_tree_tagged - test whether any items in the tree are tagged
|
|
* @root: radix tree root
|
|
* @tag: tag to test
|
|
*/
|
|
int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
|
|
{
|
|
return root_tag_get(root, tag);
|
|
}
|
|
EXPORT_SYMBOL(radix_tree_tagged);
|
|
|
|
static void
|
|
radix_tree_node_ctor(void *node)
|
|
{
|
|
memset(node, 0, sizeof(struct radix_tree_node));
|
|
}
|
|
|
|
static __init unsigned long __maxindex(unsigned int height)
|
|
{
|
|
unsigned int width = height * RADIX_TREE_MAP_SHIFT;
|
|
int shift = RADIX_TREE_INDEX_BITS - width;
|
|
|
|
if (shift < 0)
|
|
return ~0UL;
|
|
if (shift >= BITS_PER_LONG)
|
|
return 0UL;
|
|
return ~0UL >> shift;
|
|
}
|
|
|
|
static __init void radix_tree_init_maxindex(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
|
|
height_to_maxindex[i] = __maxindex(i);
|
|
}
|
|
|
|
static int radix_tree_callback(struct notifier_block *nfb,
|
|
unsigned long action,
|
|
void *hcpu)
|
|
{
|
|
int cpu = (long)hcpu;
|
|
struct radix_tree_preload *rtp;
|
|
|
|
/* Free per-cpu pool of perloaded nodes */
|
|
if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
|
|
rtp = &per_cpu(radix_tree_preloads, cpu);
|
|
while (rtp->nr) {
|
|
kmem_cache_free(radix_tree_node_cachep,
|
|
rtp->nodes[rtp->nr-1]);
|
|
rtp->nodes[rtp->nr-1] = NULL;
|
|
rtp->nr--;
|
|
}
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
void __init radix_tree_init(void)
|
|
{
|
|
radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
|
|
sizeof(struct radix_tree_node), 0,
|
|
SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
|
|
radix_tree_node_ctor);
|
|
radix_tree_init_maxindex();
|
|
hotcpu_notifier(radix_tree_callback, 0);
|
|
}
|