mirror of
https://github.com/torvalds/linux.git
synced 2024-11-06 03:51:48 +00:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
442 lines
11 KiB
C
442 lines
11 KiB
C
/*
|
|
* i2c-algo-pcf.c i2c driver algorithms for PCF8584 adapters
|
|
*
|
|
* Copyright (C) 1995-1997 Simon G. Vogl
|
|
* 1998-2000 Hans Berglund
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi> and
|
|
* Frodo Looijaard <frodol@dds.nl>, and also from Martin Bailey
|
|
* <mbailey@littlefeet-inc.com>
|
|
*
|
|
* Partially rewriten by Oleg I. Vdovikin <vdovikin@jscc.ru> to handle multiple
|
|
* messages, proper stop/repstart signaling during receive, added detect code
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/i2c-algo-pcf.h>
|
|
#include "i2c-algo-pcf.h"
|
|
|
|
|
|
#define DEB2(x) if (i2c_debug >= 2) x
|
|
#define DEB3(x) if (i2c_debug >= 3) x /* print several statistical values */
|
|
#define DEBPROTO(x) if (i2c_debug >= 9) x;
|
|
/* debug the protocol by showing transferred bits */
|
|
#define DEF_TIMEOUT 16
|
|
|
|
/*
|
|
* module parameters:
|
|
*/
|
|
static int i2c_debug;
|
|
|
|
/* setting states on the bus with the right timing: */
|
|
|
|
#define set_pcf(adap, ctl, val) adap->setpcf(adap->data, ctl, val)
|
|
#define get_pcf(adap, ctl) adap->getpcf(adap->data, ctl)
|
|
#define get_own(adap) adap->getown(adap->data)
|
|
#define get_clock(adap) adap->getclock(adap->data)
|
|
#define i2c_outb(adap, val) adap->setpcf(adap->data, 0, val)
|
|
#define i2c_inb(adap) adap->getpcf(adap->data, 0)
|
|
|
|
/* other auxiliary functions */
|
|
|
|
static void i2c_start(struct i2c_algo_pcf_data *adap)
|
|
{
|
|
DEBPROTO(printk(KERN_DEBUG "S "));
|
|
set_pcf(adap, 1, I2C_PCF_START);
|
|
}
|
|
|
|
static void i2c_repstart(struct i2c_algo_pcf_data *adap)
|
|
{
|
|
DEBPROTO(printk(" Sr "));
|
|
set_pcf(adap, 1, I2C_PCF_REPSTART);
|
|
}
|
|
|
|
static void i2c_stop(struct i2c_algo_pcf_data *adap)
|
|
{
|
|
DEBPROTO(printk("P\n"));
|
|
set_pcf(adap, 1, I2C_PCF_STOP);
|
|
}
|
|
|
|
static void handle_lab(struct i2c_algo_pcf_data *adap, const int *status)
|
|
{
|
|
DEB2(printk(KERN_INFO
|
|
"i2c-algo-pcf.o: lost arbitration (CSR 0x%02x)\n",
|
|
*status));
|
|
/*
|
|
* Cleanup from LAB -- reset and enable ESO.
|
|
* This resets the PCF8584; since we've lost the bus, no
|
|
* further attempts should be made by callers to clean up
|
|
* (no i2c_stop() etc.)
|
|
*/
|
|
set_pcf(adap, 1, I2C_PCF_PIN);
|
|
set_pcf(adap, 1, I2C_PCF_ESO);
|
|
/*
|
|
* We pause for a time period sufficient for any running
|
|
* I2C transaction to complete -- the arbitration logic won't
|
|
* work properly until the next START is seen.
|
|
* It is assumed the bus driver or client has set a proper value.
|
|
*
|
|
* REVISIT: should probably use msleep instead of mdelay if we
|
|
* know we can sleep.
|
|
*/
|
|
if (adap->lab_mdelay)
|
|
mdelay(adap->lab_mdelay);
|
|
|
|
DEB2(printk(KERN_INFO
|
|
"i2c-algo-pcf.o: reset LAB condition (CSR 0x%02x)\n",
|
|
get_pcf(adap, 1)));
|
|
}
|
|
|
|
static int wait_for_bb(struct i2c_algo_pcf_data *adap)
|
|
{
|
|
|
|
int timeout = DEF_TIMEOUT;
|
|
int status;
|
|
|
|
status = get_pcf(adap, 1);
|
|
|
|
while (!(status & I2C_PCF_BB) && --timeout) {
|
|
udelay(100); /* wait for 100 us */
|
|
status = get_pcf(adap, 1);
|
|
}
|
|
|
|
if (timeout == 0) {
|
|
printk(KERN_ERR "Timeout waiting for Bus Busy\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int wait_for_pin(struct i2c_algo_pcf_data *adap, int *status)
|
|
{
|
|
|
|
int timeout = DEF_TIMEOUT;
|
|
|
|
*status = get_pcf(adap, 1);
|
|
|
|
while ((*status & I2C_PCF_PIN) && --timeout) {
|
|
adap->waitforpin(adap->data);
|
|
*status = get_pcf(adap, 1);
|
|
}
|
|
if (*status & I2C_PCF_LAB) {
|
|
handle_lab(adap, status);
|
|
return -EINTR;
|
|
}
|
|
|
|
if (timeout == 0)
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This should perform the 'PCF8584 initialization sequence' as described
|
|
* in the Philips IC12 data book (1995, Aug 29).
|
|
* There should be a 30 clock cycle wait after reset, I assume this
|
|
* has been fulfilled.
|
|
* There should be a delay at the end equal to the longest I2C message
|
|
* to synchronize the BB-bit (in multimaster systems). How long is
|
|
* this? I assume 1 second is always long enough.
|
|
*
|
|
* vdovikin: added detect code for PCF8584
|
|
*/
|
|
static int pcf_init_8584 (struct i2c_algo_pcf_data *adap)
|
|
{
|
|
unsigned char temp;
|
|
|
|
DEB3(printk(KERN_DEBUG "i2c-algo-pcf.o: PCF state 0x%02x\n",
|
|
get_pcf(adap, 1)));
|
|
|
|
/* S1=0x80: S0 selected, serial interface off */
|
|
set_pcf(adap, 1, I2C_PCF_PIN);
|
|
/*
|
|
* check to see S1 now used as R/W ctrl -
|
|
* PCF8584 does that when ESO is zero
|
|
*/
|
|
if (((temp = get_pcf(adap, 1)) & 0x7f) != (0)) {
|
|
DEB2(printk(KERN_ERR "i2c-algo-pcf.o: PCF detection failed -- can't select S0 (0x%02x).\n", temp));
|
|
return -ENXIO; /* definitely not PCF8584 */
|
|
}
|
|
|
|
/* load own address in S0, effective address is (own << 1) */
|
|
i2c_outb(adap, get_own(adap));
|
|
/* check it's really written */
|
|
if ((temp = i2c_inb(adap)) != get_own(adap)) {
|
|
DEB2(printk(KERN_ERR "i2c-algo-pcf.o: PCF detection failed -- can't set S0 (0x%02x).\n", temp));
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* S1=0xA0, next byte in S2 */
|
|
set_pcf(adap, 1, I2C_PCF_PIN | I2C_PCF_ES1);
|
|
/* check to see S2 now selected */
|
|
if (((temp = get_pcf(adap, 1)) & 0x7f) != I2C_PCF_ES1) {
|
|
DEB2(printk(KERN_ERR "i2c-algo-pcf.o: PCF detection failed -- can't select S2 (0x%02x).\n", temp));
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* load clock register S2 */
|
|
i2c_outb(adap, get_clock(adap));
|
|
/* check it's really written, the only 5 lowest bits does matter */
|
|
if (((temp = i2c_inb(adap)) & 0x1f) != get_clock(adap)) {
|
|
DEB2(printk(KERN_ERR "i2c-algo-pcf.o: PCF detection failed -- can't set S2 (0x%02x).\n", temp));
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* Enable serial interface, idle, S0 selected */
|
|
set_pcf(adap, 1, I2C_PCF_IDLE);
|
|
|
|
/* check to see PCF is really idled and we can access status register */
|
|
if ((temp = get_pcf(adap, 1)) != (I2C_PCF_PIN | I2C_PCF_BB)) {
|
|
DEB2(printk(KERN_ERR "i2c-algo-pcf.o: PCF detection failed -- can't select S1` (0x%02x).\n", temp));
|
|
return -ENXIO;
|
|
}
|
|
|
|
printk(KERN_DEBUG "i2c-algo-pcf.o: detected and initialized PCF8584.\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pcf_sendbytes(struct i2c_adapter *i2c_adap, const char *buf,
|
|
int count, int last)
|
|
{
|
|
struct i2c_algo_pcf_data *adap = i2c_adap->algo_data;
|
|
int wrcount, status, timeout;
|
|
|
|
for (wrcount=0; wrcount<count; ++wrcount) {
|
|
DEB2(dev_dbg(&i2c_adap->dev, "i2c_write: writing %2.2X\n",
|
|
buf[wrcount] & 0xff));
|
|
i2c_outb(adap, buf[wrcount]);
|
|
timeout = wait_for_pin(adap, &status);
|
|
if (timeout) {
|
|
if (timeout == -EINTR)
|
|
return -EINTR; /* arbitration lost */
|
|
|
|
i2c_stop(adap);
|
|
dev_err(&i2c_adap->dev, "i2c_write: error - timeout.\n");
|
|
return -EREMOTEIO; /* got a better one ?? */
|
|
}
|
|
if (status & I2C_PCF_LRB) {
|
|
i2c_stop(adap);
|
|
dev_err(&i2c_adap->dev, "i2c_write: error - no ack.\n");
|
|
return -EREMOTEIO; /* got a better one ?? */
|
|
}
|
|
}
|
|
if (last)
|
|
i2c_stop(adap);
|
|
else
|
|
i2c_repstart(adap);
|
|
|
|
return wrcount;
|
|
}
|
|
|
|
static int pcf_readbytes(struct i2c_adapter *i2c_adap, char *buf,
|
|
int count, int last)
|
|
{
|
|
int i, status;
|
|
struct i2c_algo_pcf_data *adap = i2c_adap->algo_data;
|
|
int wfp;
|
|
|
|
/* increment number of bytes to read by one -- read dummy byte */
|
|
for (i = 0; i <= count; i++) {
|
|
|
|
if ((wfp = wait_for_pin(adap, &status))) {
|
|
if (wfp == -EINTR)
|
|
return -EINTR; /* arbitration lost */
|
|
|
|
i2c_stop(adap);
|
|
dev_err(&i2c_adap->dev, "pcf_readbytes timed out.\n");
|
|
return -1;
|
|
}
|
|
|
|
if ((status & I2C_PCF_LRB) && (i != count)) {
|
|
i2c_stop(adap);
|
|
dev_err(&i2c_adap->dev, "i2c_read: i2c_inb, No ack.\n");
|
|
return -1;
|
|
}
|
|
|
|
if (i == count - 1) {
|
|
set_pcf(adap, 1, I2C_PCF_ESO);
|
|
} else if (i == count) {
|
|
if (last)
|
|
i2c_stop(adap);
|
|
else
|
|
i2c_repstart(adap);
|
|
}
|
|
|
|
if (i)
|
|
buf[i - 1] = i2c_inb(adap);
|
|
else
|
|
i2c_inb(adap); /* dummy read */
|
|
}
|
|
|
|
return i - 1;
|
|
}
|
|
|
|
|
|
static int pcf_doAddress(struct i2c_algo_pcf_data *adap,
|
|
struct i2c_msg *msg)
|
|
{
|
|
unsigned short flags = msg->flags;
|
|
unsigned char addr;
|
|
|
|
addr = msg->addr << 1;
|
|
if (flags & I2C_M_RD)
|
|
addr |= 1;
|
|
if (flags & I2C_M_REV_DIR_ADDR)
|
|
addr ^= 1;
|
|
i2c_outb(adap, addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pcf_xfer(struct i2c_adapter *i2c_adap,
|
|
struct i2c_msg *msgs,
|
|
int num)
|
|
{
|
|
struct i2c_algo_pcf_data *adap = i2c_adap->algo_data;
|
|
struct i2c_msg *pmsg;
|
|
int i;
|
|
int ret=0, timeout, status;
|
|
|
|
if (adap->xfer_begin)
|
|
adap->xfer_begin(adap->data);
|
|
|
|
/* Check for bus busy */
|
|
timeout = wait_for_bb(adap);
|
|
if (timeout) {
|
|
DEB2(printk(KERN_ERR "i2c-algo-pcf.o: "
|
|
"Timeout waiting for BB in pcf_xfer\n");)
|
|
i = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0;ret >= 0 && i < num; i++) {
|
|
pmsg = &msgs[i];
|
|
|
|
DEB2(printk(KERN_DEBUG "i2c-algo-pcf.o: Doing %s %d bytes to 0x%02x - %d of %d messages\n",
|
|
pmsg->flags & I2C_M_RD ? "read" : "write",
|
|
pmsg->len, pmsg->addr, i + 1, num);)
|
|
|
|
ret = pcf_doAddress(adap, pmsg);
|
|
|
|
/* Send START */
|
|
if (i == 0)
|
|
i2c_start(adap);
|
|
|
|
/* Wait for PIN (pending interrupt NOT) */
|
|
timeout = wait_for_pin(adap, &status);
|
|
if (timeout) {
|
|
if (timeout == -EINTR) {
|
|
/* arbitration lost */
|
|
i = -EINTR;
|
|
goto out;
|
|
}
|
|
i2c_stop(adap);
|
|
DEB2(printk(KERN_ERR "i2c-algo-pcf.o: Timeout waiting "
|
|
"for PIN(1) in pcf_xfer\n");)
|
|
i = -EREMOTEIO;
|
|
goto out;
|
|
}
|
|
|
|
/* Check LRB (last rcvd bit - slave ack) */
|
|
if (status & I2C_PCF_LRB) {
|
|
i2c_stop(adap);
|
|
DEB2(printk(KERN_ERR "i2c-algo-pcf.o: No LRB(1) in pcf_xfer\n");)
|
|
i = -EREMOTEIO;
|
|
goto out;
|
|
}
|
|
|
|
DEB3(printk(KERN_DEBUG "i2c-algo-pcf.o: Msg %d, addr=0x%x, flags=0x%x, len=%d\n",
|
|
i, msgs[i].addr, msgs[i].flags, msgs[i].len);)
|
|
|
|
if (pmsg->flags & I2C_M_RD) {
|
|
ret = pcf_readbytes(i2c_adap, pmsg->buf, pmsg->len,
|
|
(i + 1 == num));
|
|
|
|
if (ret != pmsg->len) {
|
|
DEB2(printk(KERN_DEBUG "i2c-algo-pcf.o: fail: "
|
|
"only read %d bytes.\n",ret));
|
|
} else {
|
|
DEB2(printk(KERN_DEBUG "i2c-algo-pcf.o: read %d bytes.\n",ret));
|
|
}
|
|
} else {
|
|
ret = pcf_sendbytes(i2c_adap, pmsg->buf, pmsg->len,
|
|
(i + 1 == num));
|
|
|
|
if (ret != pmsg->len) {
|
|
DEB2(printk(KERN_DEBUG "i2c-algo-pcf.o: fail: "
|
|
"only wrote %d bytes.\n",ret));
|
|
} else {
|
|
DEB2(printk(KERN_DEBUG "i2c-algo-pcf.o: wrote %d bytes.\n",ret));
|
|
}
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (adap->xfer_end)
|
|
adap->xfer_end(adap->data);
|
|
return i;
|
|
}
|
|
|
|
static u32 pcf_func(struct i2c_adapter *adap)
|
|
{
|
|
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
|
|
I2C_FUNC_PROTOCOL_MANGLING;
|
|
}
|
|
|
|
/* exported algorithm data: */
|
|
static const struct i2c_algorithm pcf_algo = {
|
|
.master_xfer = pcf_xfer,
|
|
.functionality = pcf_func,
|
|
};
|
|
|
|
/*
|
|
* registering functions to load algorithms at runtime
|
|
*/
|
|
int i2c_pcf_add_bus(struct i2c_adapter *adap)
|
|
{
|
|
struct i2c_algo_pcf_data *pcf_adap = adap->algo_data;
|
|
int rval;
|
|
|
|
DEB2(dev_dbg(&adap->dev, "hw routines registered.\n"));
|
|
|
|
/* register new adapter to i2c module... */
|
|
adap->algo = &pcf_algo;
|
|
|
|
if ((rval = pcf_init_8584(pcf_adap)))
|
|
return rval;
|
|
|
|
rval = i2c_add_adapter(adap);
|
|
|
|
return rval;
|
|
}
|
|
EXPORT_SYMBOL(i2c_pcf_add_bus);
|
|
|
|
MODULE_AUTHOR("Hans Berglund <hb@spacetec.no>");
|
|
MODULE_DESCRIPTION("I2C-Bus PCF8584 algorithm");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
module_param(i2c_debug, int, S_IRUGO | S_IWUSR);
|
|
MODULE_PARM_DESC(i2c_debug,
|
|
"debug level - 0 off; 1 normal; 2,3 more verbose; 9 pcf-protocol");
|