linux/drivers/hwmon/adt7475.c
Andrew Davis 732d2624cf hwmon: (adt7475) Remove use of i2c_match_id()
The function i2c_match_id() is used to fetch the matching ID from
the i2c_device_id table. This is often used to then retrieve the
matching driver_data. This can be done in one step with the helper
i2c_get_match_data().

This helper has a couple other benefits:
 * It doesn't need the i2c_device_id passed in so we do not need
   to have that forward declared, allowing us to remove those or
   move the i2c_device_id table down to its more natural spot
   with the other module info.
 * It also checks for device match data, which allows for OF and
   ACPI based probing. That means we do not have to manually check
   those first and can remove those checks.

Signed-off-by: Andrew Davis <afd@ti.com>
Link: https://lore.kernel.org/r/20240403203633.914389-6-afd@ti.com
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2024-06-08 16:07:32 -07:00

2074 lines
53 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* adt7475 - Thermal sensor driver for the ADT7475 chip and derivatives
* Copyright (C) 2007-2008, Advanced Micro Devices, Inc.
* Copyright (C) 2008 Jordan Crouse <jordan@cosmicpenguin.net>
* Copyright (C) 2008 Hans de Goede <hdegoede@redhat.com>
* Copyright (C) 2009 Jean Delvare <jdelvare@suse.de>
*
* Derived from the lm83 driver by Jean Delvare
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/jiffies.h>
#include <linux/of.h>
#include <linux/util_macros.h>
/* Indexes for the sysfs hooks */
#define INPUT 0
#define MIN 1
#define MAX 2
#define CONTROL 3
#define OFFSET 3
#define AUTOMIN 4
#define THERM 5
#define HYSTERSIS 6
/*
* These are unique identifiers for the sysfs functions - unlike the
* numbers above, these are not also indexes into an array
*/
#define ALARM 9
#define FAULT 10
/* 7475 Common Registers */
#define REG_DEVREV2 0x12 /* ADT7490 only */
#define REG_IMON 0x1D /* ADT7490 only */
#define REG_VTT 0x1E /* ADT7490 only */
#define REG_EXTEND3 0x1F /* ADT7490 only */
#define REG_VOLTAGE_BASE 0x20
#define REG_TEMP_BASE 0x25
#define REG_TACH_BASE 0x28
#define REG_PWM_BASE 0x30
#define REG_PWM_MAX_BASE 0x38
#define REG_DEVID 0x3D
#define REG_VENDID 0x3E
#define REG_DEVID2 0x3F
#define REG_CONFIG1 0x40
#define REG_STATUS1 0x41
#define REG_STATUS2 0x42
#define REG_VID 0x43 /* ADT7476 only */
#define REG_VOLTAGE_MIN_BASE 0x44
#define REG_VOLTAGE_MAX_BASE 0x45
#define REG_TEMP_MIN_BASE 0x4E
#define REG_TEMP_MAX_BASE 0x4F
#define REG_TACH_MIN_BASE 0x54
#define REG_PWM_CONFIG_BASE 0x5C
#define REG_TEMP_TRANGE_BASE 0x5F
#define REG_ENHANCE_ACOUSTICS1 0x62
#define REG_ENHANCE_ACOUSTICS2 0x63
#define REG_PWM_MIN_BASE 0x64
#define REG_TEMP_TMIN_BASE 0x67
#define REG_TEMP_THERM_BASE 0x6A
#define REG_REMOTE1_HYSTERSIS 0x6D
#define REG_REMOTE2_HYSTERSIS 0x6E
#define REG_TEMP_OFFSET_BASE 0x70
#define REG_CONFIG2 0x73
#define REG_EXTEND1 0x76
#define REG_EXTEND2 0x77
#define REG_CONFIG3 0x78
#define REG_CONFIG5 0x7C
#define REG_CONFIG4 0x7D
#define REG_STATUS4 0x81 /* ADT7490 only */
#define REG_VTT_MIN 0x84 /* ADT7490 only */
#define REG_VTT_MAX 0x86 /* ADT7490 only */
#define REG_IMON_MIN 0x85 /* ADT7490 only */
#define REG_IMON_MAX 0x87 /* ADT7490 only */
#define VID_VIDSEL 0x80 /* ADT7476 only */
#define CONFIG2_ATTN 0x20
#define CONFIG3_SMBALERT 0x01
#define CONFIG3_THERM 0x02
#define CONFIG4_PINFUNC 0x03
#define CONFIG4_THERM 0x01
#define CONFIG4_SMBALERT 0x02
#define CONFIG4_MAXDUTY 0x08
#define CONFIG4_ATTN_IN10 0x30
#define CONFIG4_ATTN_IN43 0xC0
#define CONFIG5_TWOSCOMP 0x01
#define CONFIG5_TEMPOFFSET 0x02
#define CONFIG5_VIDGPIO 0x10 /* ADT7476 only */
/* ADT7475 Settings */
#define ADT7475_VOLTAGE_COUNT 5 /* Not counting Vtt or Imon */
#define ADT7475_TEMP_COUNT 3
#define ADT7475_TACH_COUNT 4
#define ADT7475_PWM_COUNT 3
/* Macro to read the registers */
#define adt7475_read(reg) i2c_smbus_read_byte_data(client, (reg))
/* Macros to easily index the registers */
#define TACH_REG(idx) (REG_TACH_BASE + ((idx) * 2))
#define TACH_MIN_REG(idx) (REG_TACH_MIN_BASE + ((idx) * 2))
#define PWM_REG(idx) (REG_PWM_BASE + (idx))
#define PWM_MAX_REG(idx) (REG_PWM_MAX_BASE + (idx))
#define PWM_MIN_REG(idx) (REG_PWM_MIN_BASE + (idx))
#define PWM_CONFIG_REG(idx) (REG_PWM_CONFIG_BASE + (idx))
#define VOLTAGE_REG(idx) (REG_VOLTAGE_BASE + (idx))
#define VOLTAGE_MIN_REG(idx) (REG_VOLTAGE_MIN_BASE + ((idx) * 2))
#define VOLTAGE_MAX_REG(idx) (REG_VOLTAGE_MAX_BASE + ((idx) * 2))
#define TEMP_REG(idx) (REG_TEMP_BASE + (idx))
#define TEMP_MIN_REG(idx) (REG_TEMP_MIN_BASE + ((idx) * 2))
#define TEMP_MAX_REG(idx) (REG_TEMP_MAX_BASE + ((idx) * 2))
#define TEMP_TMIN_REG(idx) (REG_TEMP_TMIN_BASE + (idx))
#define TEMP_THERM_REG(idx) (REG_TEMP_THERM_BASE + (idx))
#define TEMP_OFFSET_REG(idx) (REG_TEMP_OFFSET_BASE + (idx))
#define TEMP_TRANGE_REG(idx) (REG_TEMP_TRANGE_BASE + (idx))
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
enum chips { adt7473, adt7475, adt7476, adt7490 };
static const struct i2c_device_id adt7475_id[] = {
{ "adt7473", adt7473 },
{ "adt7475", adt7475 },
{ "adt7476", adt7476 },
{ "adt7490", adt7490 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adt7475_id);
static const struct of_device_id __maybe_unused adt7475_of_match[] = {
{
.compatible = "adi,adt7473",
.data = (void *)adt7473
},
{
.compatible = "adi,adt7475",
.data = (void *)adt7475
},
{
.compatible = "adi,adt7476",
.data = (void *)adt7476
},
{
.compatible = "adi,adt7490",
.data = (void *)adt7490
},
{ },
};
MODULE_DEVICE_TABLE(of, adt7475_of_match);
struct adt7475_data {
struct i2c_client *client;
struct mutex lock;
unsigned long measure_updated;
bool valid;
u8 config2;
u8 config4;
u8 config5;
u8 has_voltage;
u8 bypass_attn; /* Bypass voltage attenuator */
u8 has_pwm2:1;
u8 has_fan4:1;
u8 has_vid:1;
u32 alarms;
u16 voltage[3][7];
u16 temp[7][3];
u16 tach[2][4];
u8 pwm[4][3];
u8 range[3];
u8 pwmctl[3];
u8 pwmchan[3];
u8 enh_acoustics[2];
u8 vid;
u8 vrm;
const struct attribute_group *groups[10];
};
static struct i2c_driver adt7475_driver;
static struct adt7475_data *adt7475_update_device(struct device *dev);
static void adt7475_read_hystersis(struct i2c_client *client);
static void adt7475_read_pwm(struct i2c_client *client, int index);
/* Given a temp value, convert it to register value */
static inline u16 temp2reg(struct adt7475_data *data, long val)
{
u16 ret;
if (!(data->config5 & CONFIG5_TWOSCOMP)) {
val = clamp_val(val, -64000, 191000);
ret = (val + 64500) / 1000;
} else {
val = clamp_val(val, -128000, 127000);
if (val < -500)
ret = (256500 + val) / 1000;
else
ret = (val + 500) / 1000;
}
return ret << 2;
}
/* Given a register value, convert it to a real temp value */
static inline int reg2temp(struct adt7475_data *data, u16 reg)
{
if (data->config5 & CONFIG5_TWOSCOMP) {
if (reg >= 512)
return (reg - 1024) * 250;
else
return reg * 250;
} else
return (reg - 256) * 250;
}
static inline int tach2rpm(u16 tach)
{
if (tach == 0 || tach == 0xFFFF)
return 0;
return (90000 * 60) / tach;
}
static inline u16 rpm2tach(unsigned long rpm)
{
if (rpm == 0)
return 0;
return clamp_val((90000 * 60) / rpm, 1, 0xFFFF);
}
/* Scaling factors for voltage inputs, taken from the ADT7490 datasheet */
static const int adt7473_in_scaling[ADT7475_VOLTAGE_COUNT + 2][2] = {
{ 45, 94 }, /* +2.5V */
{ 175, 525 }, /* Vccp */
{ 68, 71 }, /* Vcc */
{ 93, 47 }, /* +5V */
{ 120, 20 }, /* +12V */
{ 45, 45 }, /* Vtt */
{ 45, 45 }, /* Imon */
};
static inline int reg2volt(int channel, u16 reg, u8 bypass_attn)
{
const int *r = adt7473_in_scaling[channel];
if (bypass_attn & (1 << channel))
return DIV_ROUND_CLOSEST(reg * 2250, 1024);
return DIV_ROUND_CLOSEST(reg * (r[0] + r[1]) * 2250, r[1] * 1024);
}
static inline u16 volt2reg(int channel, long volt, u8 bypass_attn)
{
const int *r = adt7473_in_scaling[channel];
long reg;
if (bypass_attn & (1 << channel))
reg = DIV_ROUND_CLOSEST(volt * 1024, 2250);
else
reg = DIV_ROUND_CLOSEST(volt * r[1] * 1024,
(r[0] + r[1]) * 2250);
return clamp_val(reg, 0, 1023) & (0xff << 2);
}
static int adt7475_read_word(struct i2c_client *client, int reg)
{
int val1, val2;
val1 = i2c_smbus_read_byte_data(client, reg);
if (val1 < 0)
return val1;
val2 = i2c_smbus_read_byte_data(client, reg + 1);
if (val2 < 0)
return val2;
return val1 | (val2 << 8);
}
static void adt7475_write_word(struct i2c_client *client, int reg, u16 val)
{
i2c_smbus_write_byte_data(client, reg + 1, val >> 8);
i2c_smbus_write_byte_data(client, reg, val & 0xFF);
}
static ssize_t voltage_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
unsigned short val;
if (IS_ERR(data))
return PTR_ERR(data);
switch (sattr->nr) {
case ALARM:
return sprintf(buf, "%d\n",
(data->alarms >> sattr->index) & 1);
default:
val = data->voltage[sattr->nr][sattr->index];
return sprintf(buf, "%d\n",
reg2volt(sattr->index, val, data->bypass_attn));
}
}
static ssize_t voltage_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct adt7475_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned char reg;
long val;
if (kstrtol(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->lock);
data->voltage[sattr->nr][sattr->index] =
volt2reg(sattr->index, val, data->bypass_attn);
if (sattr->index < ADT7475_VOLTAGE_COUNT) {
if (sattr->nr == MIN)
reg = VOLTAGE_MIN_REG(sattr->index);
else
reg = VOLTAGE_MAX_REG(sattr->index);
} else if (sattr->index == 5) {
if (sattr->nr == MIN)
reg = REG_VTT_MIN;
else
reg = REG_VTT_MAX;
} else {
if (sattr->nr == MIN)
reg = REG_IMON_MIN;
else
reg = REG_IMON_MAX;
}
i2c_smbus_write_byte_data(client, reg,
data->voltage[sattr->nr][sattr->index] >> 2);
mutex_unlock(&data->lock);
return count;
}
static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
int out;
if (IS_ERR(data))
return PTR_ERR(data);
switch (sattr->nr) {
case HYSTERSIS:
mutex_lock(&data->lock);
out = data->temp[sattr->nr][sattr->index];
if (sattr->index != 1)
out = (out >> 4) & 0xF;
else
out = (out & 0xF);
/*
* Show the value as an absolute number tied to
* THERM
*/
out = reg2temp(data, data->temp[THERM][sattr->index]) -
out * 1000;
mutex_unlock(&data->lock);
break;
case OFFSET:
/*
* Offset is always 2's complement, regardless of the
* setting in CONFIG5
*/
mutex_lock(&data->lock);
out = (s8)data->temp[sattr->nr][sattr->index];
if (data->config5 & CONFIG5_TEMPOFFSET)
out *= 1000;
else
out *= 500;
mutex_unlock(&data->lock);
break;
case ALARM:
out = (data->alarms >> (sattr->index + 4)) & 1;
break;
case FAULT:
/* Note - only for remote1 and remote2 */
out = !!(data->alarms & (sattr->index ? 0x8000 : 0x4000));
break;
default:
/* All other temp values are in the configured format */
out = reg2temp(data, data->temp[sattr->nr][sattr->index]);
}
return sprintf(buf, "%d\n", out);
}
static ssize_t temp_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct adt7475_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned char reg = 0;
u8 out;
int temp;
long val;
if (kstrtol(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->lock);
/* We need the config register in all cases for temp <-> reg conv. */
data->config5 = adt7475_read(REG_CONFIG5);
switch (sattr->nr) {
case OFFSET:
if (data->config5 & CONFIG5_TEMPOFFSET) {
val = clamp_val(val, -63000, 127000);
out = data->temp[OFFSET][sattr->index] = val / 1000;
} else {
val = clamp_val(val, -63000, 64000);
out = data->temp[OFFSET][sattr->index] = val / 500;
}
break;
case HYSTERSIS:
/*
* The value will be given as an absolute value, turn it
* into an offset based on THERM
*/
/* Read fresh THERM and HYSTERSIS values from the chip */
data->temp[THERM][sattr->index] =
adt7475_read(TEMP_THERM_REG(sattr->index)) << 2;
adt7475_read_hystersis(client);
temp = reg2temp(data, data->temp[THERM][sattr->index]);
val = clamp_val(val, temp - 15000, temp);
val = (temp - val) / 1000;
if (sattr->index != 1) {
data->temp[HYSTERSIS][sattr->index] &= 0x0F;
data->temp[HYSTERSIS][sattr->index] |= (val & 0xF) << 4;
} else {
data->temp[HYSTERSIS][sattr->index] &= 0xF0;
data->temp[HYSTERSIS][sattr->index] |= (val & 0xF);
}
out = data->temp[HYSTERSIS][sattr->index];
break;
default:
data->temp[sattr->nr][sattr->index] = temp2reg(data, val);
/*
* We maintain an extra 2 digits of precision for simplicity
* - shift those back off before writing the value
*/
out = (u8) (data->temp[sattr->nr][sattr->index] >> 2);
}
switch (sattr->nr) {
case MIN:
reg = TEMP_MIN_REG(sattr->index);
break;
case MAX:
reg = TEMP_MAX_REG(sattr->index);
break;
case OFFSET:
reg = TEMP_OFFSET_REG(sattr->index);
break;
case AUTOMIN:
reg = TEMP_TMIN_REG(sattr->index);
break;
case THERM:
reg = TEMP_THERM_REG(sattr->index);
break;
case HYSTERSIS:
if (sattr->index != 2)
reg = REG_REMOTE1_HYSTERSIS;
else
reg = REG_REMOTE2_HYSTERSIS;
break;
}
i2c_smbus_write_byte_data(client, reg, out);
mutex_unlock(&data->lock);
return count;
}
/* Assuming CONFIG6[SLOW] is 0 */
static const int ad7475_st_map[] = {
37500, 18800, 12500, 7500, 4700, 3100, 1600, 800,
};
static ssize_t temp_st_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct adt7475_data *data = dev_get_drvdata(dev);
long val;
switch (sattr->index) {
case 0:
val = data->enh_acoustics[0] & 0xf;
break;
case 1:
val = data->enh_acoustics[1] & 0xf;
break;
case 2:
default:
val = (data->enh_acoustics[1] >> 4) & 0xf;
break;
}
if (val & 0x8)
return sprintf(buf, "%d\n", ad7475_st_map[val & 0x7]);
else
return sprintf(buf, "0\n");
}
static ssize_t temp_st_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct adt7475_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned char reg;
int shift, idx;
ulong val;
if (kstrtoul(buf, 10, &val))
return -EINVAL;
switch (sattr->index) {
case 0:
reg = REG_ENHANCE_ACOUSTICS1;
shift = 0;
idx = 0;
break;
case 1:
reg = REG_ENHANCE_ACOUSTICS2;
shift = 0;
idx = 1;
break;
case 2:
default:
reg = REG_ENHANCE_ACOUSTICS2;
shift = 4;
idx = 1;
break;
}
if (val > 0) {
val = find_closest_descending(val, ad7475_st_map,
ARRAY_SIZE(ad7475_st_map));
val |= 0x8;
}
mutex_lock(&data->lock);
data->enh_acoustics[idx] &= ~(0xf << shift);
data->enh_acoustics[idx] |= (val << shift);
i2c_smbus_write_byte_data(client, reg, data->enh_acoustics[idx]);
mutex_unlock(&data->lock);
return count;
}
/*
* Table of autorange values - the user will write the value in millidegrees,
* and we'll convert it
*/
static const int autorange_table[] = {
2000, 2500, 3330, 4000, 5000, 6670, 8000,
10000, 13330, 16000, 20000, 26670, 32000, 40000,
53330, 80000
};
static ssize_t point2_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
int out, val;
if (IS_ERR(data))
return PTR_ERR(data);
mutex_lock(&data->lock);
out = (data->range[sattr->index] >> 4) & 0x0F;
val = reg2temp(data, data->temp[AUTOMIN][sattr->index]);
mutex_unlock(&data->lock);
return sprintf(buf, "%d\n", val + autorange_table[out]);
}
static ssize_t point2_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct adt7475_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
int temp;
long val;
if (kstrtol(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->lock);
/* Get a fresh copy of the needed registers */
data->config5 = adt7475_read(REG_CONFIG5);
data->temp[AUTOMIN][sattr->index] =
adt7475_read(TEMP_TMIN_REG(sattr->index)) << 2;
data->range[sattr->index] =
adt7475_read(TEMP_TRANGE_REG(sattr->index));
/*
* The user will write an absolute value, so subtract the start point
* to figure the range
*/
temp = reg2temp(data, data->temp[AUTOMIN][sattr->index]);
val = clamp_val(val, temp + autorange_table[0],
temp + autorange_table[ARRAY_SIZE(autorange_table) - 1]);
val -= temp;
/* Find the nearest table entry to what the user wrote */
val = find_closest(val, autorange_table, ARRAY_SIZE(autorange_table));
data->range[sattr->index] &= ~0xF0;
data->range[sattr->index] |= val << 4;
i2c_smbus_write_byte_data(client, TEMP_TRANGE_REG(sattr->index),
data->range[sattr->index]);
mutex_unlock(&data->lock);
return count;
}
static ssize_t tach_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
int out;
if (IS_ERR(data))
return PTR_ERR(data);
if (sattr->nr == ALARM)
out = (data->alarms >> (sattr->index + 10)) & 1;
else
out = tach2rpm(data->tach[sattr->nr][sattr->index]);
return sprintf(buf, "%d\n", out);
}
static ssize_t tach_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct adt7475_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
if (kstrtoul(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->lock);
data->tach[MIN][sattr->index] = rpm2tach(val);
adt7475_write_word(client, TACH_MIN_REG(sattr->index),
data->tach[MIN][sattr->index]);
mutex_unlock(&data->lock);
return count;
}
static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", data->pwm[sattr->nr][sattr->index]);
}
static ssize_t pwmchan_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", data->pwmchan[sattr->index]);
}
static ssize_t pwmctrl_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", data->pwmctl[sattr->index]);
}
static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct adt7475_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned char reg = 0;
long val;
if (kstrtol(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->lock);
switch (sattr->nr) {
case INPUT:
/* Get a fresh value for CONTROL */
data->pwm[CONTROL][sattr->index] =
adt7475_read(PWM_CONFIG_REG(sattr->index));
/*
* If we are not in manual mode, then we shouldn't allow
* the user to set the pwm speed
*/
if (((data->pwm[CONTROL][sattr->index] >> 5) & 7) != 7) {
mutex_unlock(&data->lock);
return count;
}
reg = PWM_REG(sattr->index);
break;
case MIN:
reg = PWM_MIN_REG(sattr->index);
break;
case MAX:
reg = PWM_MAX_REG(sattr->index);
break;
}
data->pwm[sattr->nr][sattr->index] = clamp_val(val, 0, 0xFF);
i2c_smbus_write_byte_data(client, reg,
data->pwm[sattr->nr][sattr->index]);
mutex_unlock(&data->lock);
return count;
}
static ssize_t stall_disable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct adt7475_data *data = dev_get_drvdata(dev);
u8 mask = BIT(5 + sattr->index);
return sprintf(buf, "%d\n", !!(data->enh_acoustics[0] & mask));
}
static ssize_t stall_disable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct adt7475_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
u8 mask = BIT(5 + sattr->index);
if (kstrtol(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->lock);
data->enh_acoustics[0] &= ~mask;
if (val)
data->enh_acoustics[0] |= mask;
i2c_smbus_write_byte_data(client, REG_ENHANCE_ACOUSTICS1,
data->enh_acoustics[0]);
mutex_unlock(&data->lock);
return count;
}
/* Called by set_pwmctrl and set_pwmchan */
static int hw_set_pwm(struct i2c_client *client, int index,
unsigned int pwmctl, unsigned int pwmchan)
{
struct adt7475_data *data = i2c_get_clientdata(client);
long val = 0;
switch (pwmctl) {
case 0:
val = 0x03; /* Run at full speed */
break;
case 1:
val = 0x07; /* Manual mode */
break;
case 2:
switch (pwmchan) {
case 1:
/* Remote1 controls PWM */
val = 0x00;
break;
case 2:
/* local controls PWM */
val = 0x01;
break;
case 4:
/* remote2 controls PWM */
val = 0x02;
break;
case 6:
/* local/remote2 control PWM */
val = 0x05;
break;
case 7:
/* All three control PWM */
val = 0x06;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
data->pwmctl[index] = pwmctl;
data->pwmchan[index] = pwmchan;
data->pwm[CONTROL][index] &= ~0xE0;
data->pwm[CONTROL][index] |= (val & 7) << 5;
i2c_smbus_write_byte_data(client, PWM_CONFIG_REG(index),
data->pwm[CONTROL][index]);
return 0;
}
static ssize_t pwmchan_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct adt7475_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int r;
long val;
if (kstrtol(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->lock);
/* Read Modify Write PWM values */
adt7475_read_pwm(client, sattr->index);
r = hw_set_pwm(client, sattr->index, data->pwmctl[sattr->index], val);
if (r)
count = r;
mutex_unlock(&data->lock);
return count;
}
static ssize_t pwmctrl_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct adt7475_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int r;
long val;
if (kstrtol(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->lock);
/* Read Modify Write PWM values */
adt7475_read_pwm(client, sattr->index);
r = hw_set_pwm(client, sattr->index, val, data->pwmchan[sattr->index]);
if (r)
count = r;
mutex_unlock(&data->lock);
return count;
}
/* List of frequencies for the PWM */
static const int pwmfreq_table[] = {
11, 14, 22, 29, 35, 44, 58, 88, 22500
};
static ssize_t pwmfreq_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
int idx;
if (IS_ERR(data))
return PTR_ERR(data);
idx = clamp_val(data->range[sattr->index] & 0xf, 0,
ARRAY_SIZE(pwmfreq_table) - 1);
return sprintf(buf, "%d\n", pwmfreq_table[idx]);
}
static ssize_t pwmfreq_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct adt7475_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int out;
long val;
if (kstrtol(buf, 10, &val))
return -EINVAL;
out = find_closest(val, pwmfreq_table, ARRAY_SIZE(pwmfreq_table));
mutex_lock(&data->lock);
data->range[sattr->index] =
adt7475_read(TEMP_TRANGE_REG(sattr->index));
data->range[sattr->index] &= ~0xf;
data->range[sattr->index] |= out;
i2c_smbus_write_byte_data(client, TEMP_TRANGE_REG(sattr->index),
data->range[sattr->index]);
mutex_unlock(&data->lock);
return count;
}
static ssize_t pwm_use_point2_pwm_at_crit_show(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", !!(data->config4 & CONFIG4_MAXDUTY));
}
static ssize_t pwm_use_point2_pwm_at_crit_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct adt7475_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
if (kstrtol(buf, 10, &val))
return -EINVAL;
if (val != 0 && val != 1)
return -EINVAL;
mutex_lock(&data->lock);
data->config4 = i2c_smbus_read_byte_data(client, REG_CONFIG4);
if (val)
data->config4 |= CONFIG4_MAXDUTY;
else
data->config4 &= ~CONFIG4_MAXDUTY;
i2c_smbus_write_byte_data(client, REG_CONFIG4, data->config4);
mutex_unlock(&data->lock);
return count;
}
static ssize_t vrm_show(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct adt7475_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", (int)data->vrm);
}
static ssize_t vrm_store(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct adt7475_data *data = dev_get_drvdata(dev);
long val;
if (kstrtol(buf, 10, &val))
return -EINVAL;
if (val < 0 || val > 255)
return -EINVAL;
data->vrm = val;
return count;
}
static ssize_t cpu0_vid_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
}
static SENSOR_DEVICE_ATTR_2_RO(in0_input, voltage, INPUT, 0);
static SENSOR_DEVICE_ATTR_2_RW(in0_max, voltage, MAX, 0);
static SENSOR_DEVICE_ATTR_2_RW(in0_min, voltage, MIN, 0);
static SENSOR_DEVICE_ATTR_2_RO(in0_alarm, voltage, ALARM, 0);
static SENSOR_DEVICE_ATTR_2_RO(in1_input, voltage, INPUT, 1);
static SENSOR_DEVICE_ATTR_2_RW(in1_max, voltage, MAX, 1);
static SENSOR_DEVICE_ATTR_2_RW(in1_min, voltage, MIN, 1);
static SENSOR_DEVICE_ATTR_2_RO(in1_alarm, voltage, ALARM, 1);
static SENSOR_DEVICE_ATTR_2_RO(in2_input, voltage, INPUT, 2);
static SENSOR_DEVICE_ATTR_2_RW(in2_max, voltage, MAX, 2);
static SENSOR_DEVICE_ATTR_2_RW(in2_min, voltage, MIN, 2);
static SENSOR_DEVICE_ATTR_2_RO(in2_alarm, voltage, ALARM, 2);
static SENSOR_DEVICE_ATTR_2_RO(in3_input, voltage, INPUT, 3);
static SENSOR_DEVICE_ATTR_2_RW(in3_max, voltage, MAX, 3);
static SENSOR_DEVICE_ATTR_2_RW(in3_min, voltage, MIN, 3);
static SENSOR_DEVICE_ATTR_2_RO(in3_alarm, voltage, ALARM, 3);
static SENSOR_DEVICE_ATTR_2_RO(in4_input, voltage, INPUT, 4);
static SENSOR_DEVICE_ATTR_2_RW(in4_max, voltage, MAX, 4);
static SENSOR_DEVICE_ATTR_2_RW(in4_min, voltage, MIN, 4);
static SENSOR_DEVICE_ATTR_2_RO(in4_alarm, voltage, ALARM, 8);
static SENSOR_DEVICE_ATTR_2_RO(in5_input, voltage, INPUT, 5);
static SENSOR_DEVICE_ATTR_2_RW(in5_max, voltage, MAX, 5);
static SENSOR_DEVICE_ATTR_2_RW(in5_min, voltage, MIN, 5);
static SENSOR_DEVICE_ATTR_2_RO(in5_alarm, voltage, ALARM, 31);
static SENSOR_DEVICE_ATTR_2_RO(in6_input, voltage, INPUT, 6);
static SENSOR_DEVICE_ATTR_2_RW(in6_max, voltage, MAX, 6);
static SENSOR_DEVICE_ATTR_2_RW(in6_min, voltage, MIN, 6);
static SENSOR_DEVICE_ATTR_2_RO(in6_alarm, voltage, ALARM, 30);
static SENSOR_DEVICE_ATTR_2_RO(temp1_input, temp, INPUT, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp1_alarm, temp, ALARM, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp1_fault, temp, FAULT, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_max, temp, MAX, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_min, temp, MIN, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_offset, temp, OFFSET, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_point1_temp, temp, AUTOMIN, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_auto_point2_temp, point2, 0, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_crit, temp, THERM, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_crit_hyst, temp, HYSTERSIS, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_smoothing, temp_st, 0, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp2_input, temp, INPUT, 1);
static SENSOR_DEVICE_ATTR_2_RO(temp2_alarm, temp, ALARM, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_max, temp, MAX, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_min, temp, MIN, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_offset, temp, OFFSET, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_point1_temp, temp, AUTOMIN, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_auto_point2_temp, point2, 0, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_crit, temp, THERM, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_crit_hyst, temp, HYSTERSIS, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp2_smoothing, temp_st, 0, 1);
static SENSOR_DEVICE_ATTR_2_RO(temp3_input, temp, INPUT, 2);
static SENSOR_DEVICE_ATTR_2_RO(temp3_alarm, temp, ALARM, 2);
static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, temp, FAULT, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_max, temp, MAX, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_min, temp, MIN, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_offset, temp, OFFSET, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_point1_temp, temp, AUTOMIN, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_auto_point2_temp, point2, 0, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_crit, temp, THERM, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_crit_hyst, temp, HYSTERSIS, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp3_smoothing, temp_st, 0, 2);
static SENSOR_DEVICE_ATTR_2_RO(fan1_input, tach, INPUT, 0);
static SENSOR_DEVICE_ATTR_2_RW(fan1_min, tach, MIN, 0);
static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm, tach, ALARM, 0);
static SENSOR_DEVICE_ATTR_2_RO(fan2_input, tach, INPUT, 1);
static SENSOR_DEVICE_ATTR_2_RW(fan2_min, tach, MIN, 1);
static SENSOR_DEVICE_ATTR_2_RO(fan2_alarm, tach, ALARM, 1);
static SENSOR_DEVICE_ATTR_2_RO(fan3_input, tach, INPUT, 2);
static SENSOR_DEVICE_ATTR_2_RW(fan3_min, tach, MIN, 2);
static SENSOR_DEVICE_ATTR_2_RO(fan3_alarm, tach, ALARM, 2);
static SENSOR_DEVICE_ATTR_2_RO(fan4_input, tach, INPUT, 3);
static SENSOR_DEVICE_ATTR_2_RW(fan4_min, tach, MIN, 3);
static SENSOR_DEVICE_ATTR_2_RO(fan4_alarm, tach, ALARM, 3);
static SENSOR_DEVICE_ATTR_2_RW(pwm1, pwm, INPUT, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_freq, pwmfreq, INPUT, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_enable, pwmctrl, INPUT, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_channels_temp, pwmchan, INPUT, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point1_pwm, pwm, MIN, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point2_pwm, pwm, MAX, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_stall_disable, stall_disable, 0, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm2, pwm, INPUT, 1);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_freq, pwmfreq, INPUT, 1);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_enable, pwmctrl, INPUT, 1);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_channels_temp, pwmchan, INPUT, 1);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point1_pwm, pwm, MIN, 1);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point2_pwm, pwm, MAX, 1);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_stall_disable, stall_disable, 0, 1);
static SENSOR_DEVICE_ATTR_2_RW(pwm3, pwm, INPUT, 2);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_freq, pwmfreq, INPUT, 2);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_enable, pwmctrl, INPUT, 2);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_channels_temp, pwmchan, INPUT, 2);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point1_pwm, pwm, MIN, 2);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point2_pwm, pwm, MAX, 2);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_stall_disable, stall_disable, 0, 2);
/* Non-standard name, might need revisiting */
static DEVICE_ATTR_RW(pwm_use_point2_pwm_at_crit);
static DEVICE_ATTR_RW(vrm);
static DEVICE_ATTR_RO(cpu0_vid);
static struct attribute *adt7475_attrs[] = {
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_fault.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp1_offset.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_smoothing.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp2_offset.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_smoothing.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_fault.dev_attr.attr,
&sensor_dev_attr_temp3_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp3_offset.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp3_crit.dev_attr.attr,
&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_smoothing.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan3_min.dev_attr.attr,
&sensor_dev_attr_fan3_alarm.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm1_freq.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_stall_disable.dev_attr.attr,
&sensor_dev_attr_pwm3.dev_attr.attr,
&sensor_dev_attr_pwm3_freq.dev_attr.attr,
&sensor_dev_attr_pwm3_enable.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_stall_disable.dev_attr.attr,
&dev_attr_pwm_use_point2_pwm_at_crit.attr,
NULL,
};
static struct attribute *fan4_attrs[] = {
&sensor_dev_attr_fan4_input.dev_attr.attr,
&sensor_dev_attr_fan4_min.dev_attr.attr,
&sensor_dev_attr_fan4_alarm.dev_attr.attr,
NULL
};
static struct attribute *pwm2_attrs[] = {
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_pwm2_freq.dev_attr.attr,
&sensor_dev_attr_pwm2_enable.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_stall_disable.dev_attr.attr,
NULL
};
static struct attribute *in0_attrs[] = {
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in0_alarm.dev_attr.attr,
NULL
};
static struct attribute *in3_attrs[] = {
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
NULL
};
static struct attribute *in4_attrs[] = {
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
NULL
};
static struct attribute *in5_attrs[] = {
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in5_alarm.dev_attr.attr,
NULL
};
static struct attribute *in6_attrs[] = {
&sensor_dev_attr_in6_input.dev_attr.attr,
&sensor_dev_attr_in6_max.dev_attr.attr,
&sensor_dev_attr_in6_min.dev_attr.attr,
&sensor_dev_attr_in6_alarm.dev_attr.attr,
NULL
};
static struct attribute *vid_attrs[] = {
&dev_attr_cpu0_vid.attr,
&dev_attr_vrm.attr,
NULL
};
static const struct attribute_group adt7475_attr_group = { .attrs = adt7475_attrs };
static const struct attribute_group fan4_attr_group = { .attrs = fan4_attrs };
static const struct attribute_group pwm2_attr_group = { .attrs = pwm2_attrs };
static const struct attribute_group in0_attr_group = { .attrs = in0_attrs };
static const struct attribute_group in3_attr_group = { .attrs = in3_attrs };
static const struct attribute_group in4_attr_group = { .attrs = in4_attrs };
static const struct attribute_group in5_attr_group = { .attrs = in5_attrs };
static const struct attribute_group in6_attr_group = { .attrs = in6_attrs };
static const struct attribute_group vid_attr_group = { .attrs = vid_attrs };
static int adt7475_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int vendid, devid, devid2;
const char *name;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
vendid = adt7475_read(REG_VENDID);
devid2 = adt7475_read(REG_DEVID2);
if (vendid != 0x41 || /* Analog Devices */
(devid2 & 0xf8) != 0x68)
return -ENODEV;
devid = adt7475_read(REG_DEVID);
if (devid == 0x73)
name = "adt7473";
else if (devid == 0x75 && client->addr == 0x2e)
name = "adt7475";
else if (devid == 0x76)
name = "adt7476";
else if ((devid2 & 0xfc) == 0x6c)
name = "adt7490";
else {
dev_dbg(&adapter->dev,
"Couldn't detect an ADT7473/75/76/90 part at "
"0x%02x\n", (unsigned int)client->addr);
return -ENODEV;
}
strscpy(info->type, name, I2C_NAME_SIZE);
return 0;
}
static int adt7475_update_limits(struct i2c_client *client)
{
struct adt7475_data *data = i2c_get_clientdata(client);
int i;
int ret;
ret = adt7475_read(REG_CONFIG4);
if (ret < 0)
return ret;
data->config4 = ret;
ret = adt7475_read(REG_CONFIG5);
if (ret < 0)
return ret;
data->config5 = ret;
for (i = 0; i < ADT7475_VOLTAGE_COUNT; i++) {
if (!(data->has_voltage & (1 << i)))
continue;
/* Adjust values so they match the input precision */
ret = adt7475_read(VOLTAGE_MIN_REG(i));
if (ret < 0)
return ret;
data->voltage[MIN][i] = ret << 2;
ret = adt7475_read(VOLTAGE_MAX_REG(i));
if (ret < 0)
return ret;
data->voltage[MAX][i] = ret << 2;
}
if (data->has_voltage & (1 << 5)) {
ret = adt7475_read(REG_VTT_MIN);
if (ret < 0)
return ret;
data->voltage[MIN][5] = ret << 2;
ret = adt7475_read(REG_VTT_MAX);
if (ret < 0)
return ret;
data->voltage[MAX][5] = ret << 2;
}
if (data->has_voltage & (1 << 6)) {
ret = adt7475_read(REG_IMON_MIN);
if (ret < 0)
return ret;
data->voltage[MIN][6] = ret << 2;
ret = adt7475_read(REG_IMON_MAX);
if (ret < 0)
return ret;
data->voltage[MAX][6] = ret << 2;
}
for (i = 0; i < ADT7475_TEMP_COUNT; i++) {
/* Adjust values so they match the input precision */
ret = adt7475_read(TEMP_MIN_REG(i));
if (ret < 0)
return ret;
data->temp[MIN][i] = ret << 2;
ret = adt7475_read(TEMP_MAX_REG(i));
if (ret < 0)
return ret;
data->temp[MAX][i] = ret << 2;
ret = adt7475_read(TEMP_TMIN_REG(i));
if (ret < 0)
return ret;
data->temp[AUTOMIN][i] = ret << 2;
ret = adt7475_read(TEMP_THERM_REG(i));
if (ret < 0)
return ret;
data->temp[THERM][i] = ret << 2;
ret = adt7475_read(TEMP_OFFSET_REG(i));
if (ret < 0)
return ret;
data->temp[OFFSET][i] = ret;
}
adt7475_read_hystersis(client);
for (i = 0; i < ADT7475_TACH_COUNT; i++) {
if (i == 3 && !data->has_fan4)
continue;
ret = adt7475_read_word(client, TACH_MIN_REG(i));
if (ret < 0)
return ret;
data->tach[MIN][i] = ret;
}
for (i = 0; i < ADT7475_PWM_COUNT; i++) {
if (i == 1 && !data->has_pwm2)
continue;
ret = adt7475_read(PWM_MAX_REG(i));
if (ret < 0)
return ret;
data->pwm[MAX][i] = ret;
ret = adt7475_read(PWM_MIN_REG(i));
if (ret < 0)
return ret;
data->pwm[MIN][i] = ret;
/* Set the channel and control information */
adt7475_read_pwm(client, i);
}
ret = adt7475_read(TEMP_TRANGE_REG(0));
if (ret < 0)
return ret;
data->range[0] = ret;
ret = adt7475_read(TEMP_TRANGE_REG(1));
if (ret < 0)
return ret;
data->range[1] = ret;
ret = adt7475_read(TEMP_TRANGE_REG(2));
if (ret < 0)
return ret;
data->range[2] = ret;
return 0;
}
static int load_config3(const struct i2c_client *client, const char *propname)
{
const char *function;
u8 config3;
int ret;
ret = device_property_read_string(&client->dev, propname, &function);
if (!ret) {
ret = adt7475_read(REG_CONFIG3);
if (ret < 0)
return ret;
config3 = ret & ~CONFIG3_SMBALERT;
if (!strcmp("pwm2", function))
;
else if (!strcmp("smbalert#", function))
config3 |= CONFIG3_SMBALERT;
else
return -EINVAL;
return i2c_smbus_write_byte_data(client, REG_CONFIG3, config3);
}
return 0;
}
static int load_config4(const struct i2c_client *client, const char *propname)
{
const char *function;
u8 config4;
int ret;
ret = device_property_read_string(&client->dev, propname, &function);
if (!ret) {
ret = adt7475_read(REG_CONFIG4);
if (ret < 0)
return ret;
config4 = ret & ~CONFIG4_PINFUNC;
if (!strcmp("tach4", function))
;
else if (!strcmp("therm#", function))
config4 |= CONFIG4_THERM;
else if (!strcmp("smbalert#", function))
config4 |= CONFIG4_SMBALERT;
else if (!strcmp("gpio", function))
config4 |= CONFIG4_PINFUNC;
else
return -EINVAL;
return i2c_smbus_write_byte_data(client, REG_CONFIG4, config4);
}
return 0;
}
static int load_config(const struct i2c_client *client, enum chips chip)
{
int err;
const char *prop1, *prop2;
switch (chip) {
case adt7473:
case adt7475:
prop1 = "adi,pin5-function";
prop2 = "adi,pin9-function";
break;
case adt7476:
case adt7490:
prop1 = "adi,pin10-function";
prop2 = "adi,pin14-function";
break;
}
err = load_config3(client, prop1);
if (err) {
dev_err(&client->dev, "failed to configure %s\n", prop1);
return err;
}
err = load_config4(client, prop2);
if (err) {
dev_err(&client->dev, "failed to configure %s\n", prop2);
return err;
}
return 0;
}
static int set_property_bit(const struct i2c_client *client, char *property,
u8 *config, u8 bit_index)
{
u32 prop_value = 0;
int ret = device_property_read_u32(&client->dev, property,
&prop_value);
if (!ret) {
if (prop_value)
*config |= (1 << bit_index);
else
*config &= ~(1 << bit_index);
}
return ret;
}
static int load_attenuators(const struct i2c_client *client, enum chips chip,
struct adt7475_data *data)
{
switch (chip) {
case adt7476:
case adt7490:
set_property_bit(client, "adi,bypass-attenuator-in0",
&data->config4, 4);
set_property_bit(client, "adi,bypass-attenuator-in1",
&data->config4, 5);
set_property_bit(client, "adi,bypass-attenuator-in3",
&data->config4, 6);
set_property_bit(client, "adi,bypass-attenuator-in4",
&data->config4, 7);
return i2c_smbus_write_byte_data(client, REG_CONFIG4,
data->config4);
case adt7473:
case adt7475:
set_property_bit(client, "adi,bypass-attenuator-in1",
&data->config2, 5);
return i2c_smbus_write_byte_data(client, REG_CONFIG2,
data->config2);
}
return 0;
}
static int adt7475_set_pwm_polarity(struct i2c_client *client)
{
u32 states[ADT7475_PWM_COUNT];
int ret, i;
u8 val;
ret = device_property_read_u32_array(&client->dev,
"adi,pwm-active-state", states,
ARRAY_SIZE(states));
if (ret)
return ret;
for (i = 0; i < ADT7475_PWM_COUNT; i++) {
ret = adt7475_read(PWM_CONFIG_REG(i));
if (ret < 0)
return ret;
val = ret;
if (states[i])
val &= ~BIT(4);
else
val |= BIT(4);
ret = i2c_smbus_write_byte_data(client, PWM_CONFIG_REG(i), val);
if (ret)
return ret;
}
return 0;
}
static int adt7475_probe(struct i2c_client *client)
{
enum chips chip;
static const char * const names[] = {
[adt7473] = "ADT7473",
[adt7475] = "ADT7475",
[adt7476] = "ADT7476",
[adt7490] = "ADT7490",
};
struct adt7475_data *data;
struct device *hwmon_dev;
int i, ret = 0, revision, group_num = 0;
u8 config3;
data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
mutex_init(&data->lock);
data->client = client;
i2c_set_clientdata(client, data);
chip = (uintptr_t)i2c_get_match_data(client);
/* Initialize device-specific values */
switch (chip) {
case adt7476:
data->has_voltage = 0x0e; /* in1 to in3 */
revision = adt7475_read(REG_DEVID2) & 0x07;
break;
case adt7490:
data->has_voltage = 0x7e; /* in1 to in6 */
revision = adt7475_read(REG_DEVID2) & 0x03;
if (revision == 0x03)
revision += adt7475_read(REG_DEVREV2);
break;
default:
data->has_voltage = 0x06; /* in1, in2 */
revision = adt7475_read(REG_DEVID2) & 0x07;
}
ret = load_config(client, chip);
if (ret)
return ret;
config3 = adt7475_read(REG_CONFIG3);
/* Pin PWM2 may alternatively be used for ALERT output */
if (!(config3 & CONFIG3_SMBALERT))
data->has_pwm2 = 1;
/* Meaning of this bit is inverted for the ADT7473-1 */
if (chip == adt7473 && revision >= 1)
data->has_pwm2 = !data->has_pwm2;
data->config4 = adt7475_read(REG_CONFIG4);
/* Pin TACH4 may alternatively be used for THERM */
if ((data->config4 & CONFIG4_PINFUNC) == 0x0)
data->has_fan4 = 1;
/*
* THERM configuration is more complex on the ADT7476 and ADT7490,
* because 2 different pins (TACH4 and +2.5 Vin) can be used for
* this function
*/
if (chip == adt7490) {
if ((data->config4 & CONFIG4_PINFUNC) == 0x1 &&
!(config3 & CONFIG3_THERM))
data->has_fan4 = 1;
}
if (chip == adt7476 || chip == adt7490) {
if (!(config3 & CONFIG3_THERM) ||
(data->config4 & CONFIG4_PINFUNC) == 0x1)
data->has_voltage |= (1 << 0); /* in0 */
}
/*
* On the ADT7476, the +12V input pin may instead be used as VID5,
* and VID pins may alternatively be used as GPIO
*/
if (chip == adt7476) {
u8 vid = adt7475_read(REG_VID);
if (!(vid & VID_VIDSEL))
data->has_voltage |= (1 << 4); /* in4 */
data->has_vid = !(adt7475_read(REG_CONFIG5) & CONFIG5_VIDGPIO);
}
/* Voltage attenuators can be bypassed, globally or individually */
data->config2 = adt7475_read(REG_CONFIG2);
ret = load_attenuators(client, chip, data);
if (ret)
dev_warn(&client->dev, "Error configuring attenuator bypass\n");
if (data->config2 & CONFIG2_ATTN) {
data->bypass_attn = (0x3 << 3) | 0x3;
} else {
data->bypass_attn = ((data->config4 & CONFIG4_ATTN_IN10) >> 4) |
((data->config4 & CONFIG4_ATTN_IN43) >> 3);
}
data->bypass_attn &= data->has_voltage;
/*
* Call adt7475_read_pwm for all pwm's as this will reprogram any
* pwm's which are disabled to manual mode with 0% duty cycle
*/
for (i = 0; i < ADT7475_PWM_COUNT; i++)
adt7475_read_pwm(client, i);
ret = adt7475_set_pwm_polarity(client);
if (ret && ret != -EINVAL)
dev_warn(&client->dev, "Error configuring pwm polarity\n");
/* Start monitoring */
switch (chip) {
case adt7475:
case adt7476:
i2c_smbus_write_byte_data(client, REG_CONFIG1,
adt7475_read(REG_CONFIG1) | 0x01);
break;
default:
break;
}
data->groups[group_num++] = &adt7475_attr_group;
/* Features that can be disabled individually */
if (data->has_fan4) {
data->groups[group_num++] = &fan4_attr_group;
}
if (data->has_pwm2) {
data->groups[group_num++] = &pwm2_attr_group;
}
if (data->has_voltage & (1 << 0)) {
data->groups[group_num++] = &in0_attr_group;
}
if (data->has_voltage & (1 << 3)) {
data->groups[group_num++] = &in3_attr_group;
}
if (data->has_voltage & (1 << 4)) {
data->groups[group_num++] = &in4_attr_group;
}
if (data->has_voltage & (1 << 5)) {
data->groups[group_num++] = &in5_attr_group;
}
if (data->has_voltage & (1 << 6)) {
data->groups[group_num++] = &in6_attr_group;
}
if (data->has_vid) {
data->vrm = vid_which_vrm();
data->groups[group_num] = &vid_attr_group;
}
/* register device with all the acquired attributes */
hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
client->name, data,
data->groups);
if (IS_ERR(hwmon_dev)) {
ret = PTR_ERR(hwmon_dev);
return ret;
}
dev_info(&client->dev, "%s device, revision %d\n",
names[chip], revision);
if ((data->has_voltage & 0x11) || data->has_fan4 || data->has_pwm2)
dev_info(&client->dev, "Optional features:%s%s%s%s%s\n",
(data->has_voltage & (1 << 0)) ? " in0" : "",
(data->has_voltage & (1 << 4)) ? " in4" : "",
data->has_fan4 ? " fan4" : "",
data->has_pwm2 ? " pwm2" : "",
data->has_vid ? " vid" : "");
if (data->bypass_attn)
dev_info(&client->dev, "Bypassing attenuators on:%s%s%s%s\n",
(data->bypass_attn & (1 << 0)) ? " in0" : "",
(data->bypass_attn & (1 << 1)) ? " in1" : "",
(data->bypass_attn & (1 << 3)) ? " in3" : "",
(data->bypass_attn & (1 << 4)) ? " in4" : "");
/* Limits and settings, should never change update more than once */
ret = adt7475_update_limits(client);
if (ret)
return ret;
return 0;
}
static struct i2c_driver adt7475_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "adt7475",
.of_match_table = of_match_ptr(adt7475_of_match),
},
.probe = adt7475_probe,
.id_table = adt7475_id,
.detect = adt7475_detect,
.address_list = normal_i2c,
};
static void adt7475_read_hystersis(struct i2c_client *client)
{
struct adt7475_data *data = i2c_get_clientdata(client);
data->temp[HYSTERSIS][0] = (u16) adt7475_read(REG_REMOTE1_HYSTERSIS);
data->temp[HYSTERSIS][1] = data->temp[HYSTERSIS][0];
data->temp[HYSTERSIS][2] = (u16) adt7475_read(REG_REMOTE2_HYSTERSIS);
}
static void adt7475_read_pwm(struct i2c_client *client, int index)
{
struct adt7475_data *data = i2c_get_clientdata(client);
unsigned int v;
data->pwm[CONTROL][index] = adt7475_read(PWM_CONFIG_REG(index));
/*
* Figure out the internal value for pwmctrl and pwmchan
* based on the current settings
*/
v = (data->pwm[CONTROL][index] >> 5) & 7;
if (v == 3)
data->pwmctl[index] = 0;
else if (v == 7)
data->pwmctl[index] = 1;
else if (v == 4) {
/*
* The fan is disabled - we don't want to
* support that, so change to manual mode and
* set the duty cycle to 0 instead
*/
data->pwm[INPUT][index] = 0;
data->pwm[CONTROL][index] &= ~0xE0;
data->pwm[CONTROL][index] |= (7 << 5);
i2c_smbus_write_byte_data(client, PWM_CONFIG_REG(index),
data->pwm[INPUT][index]);
i2c_smbus_write_byte_data(client, PWM_CONFIG_REG(index),
data->pwm[CONTROL][index]);
data->pwmctl[index] = 1;
} else {
data->pwmctl[index] = 2;
switch (v) {
case 0:
data->pwmchan[index] = 1;
break;
case 1:
data->pwmchan[index] = 2;
break;
case 2:
data->pwmchan[index] = 4;
break;
case 5:
data->pwmchan[index] = 6;
break;
case 6:
data->pwmchan[index] = 7;
break;
}
}
}
static int adt7475_update_measure(struct device *dev)
{
struct adt7475_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
u16 ext;
int i;
int ret;
ret = adt7475_read(REG_STATUS2);
if (ret < 0)
return ret;
data->alarms = ret << 8;
ret = adt7475_read(REG_STATUS1);
if (ret < 0)
return ret;
data->alarms |= ret;
ret = adt7475_read(REG_EXTEND2);
if (ret < 0)
return ret;
ext = (ret << 8);
ret = adt7475_read(REG_EXTEND1);
if (ret < 0)
return ret;
ext |= ret;
for (i = 0; i < ADT7475_VOLTAGE_COUNT; i++) {
if (!(data->has_voltage & (1 << i)))
continue;
ret = adt7475_read(VOLTAGE_REG(i));
if (ret < 0)
return ret;
data->voltage[INPUT][i] =
(ret << 2) |
((ext >> (i * 2)) & 3);
}
for (i = 0; i < ADT7475_TEMP_COUNT; i++) {
ret = adt7475_read(TEMP_REG(i));
if (ret < 0)
return ret;
data->temp[INPUT][i] =
(ret << 2) |
((ext >> ((i + 5) * 2)) & 3);
}
if (data->has_voltage & (1 << 5)) {
ret = adt7475_read(REG_STATUS4);
if (ret < 0)
return ret;
data->alarms |= ret << 24;
ret = adt7475_read(REG_EXTEND3);
if (ret < 0)
return ret;
ext = ret;
ret = adt7475_read(REG_VTT);
if (ret < 0)
return ret;
data->voltage[INPUT][5] = ret << 2 |
((ext >> 4) & 3);
}
if (data->has_voltage & (1 << 6)) {
ret = adt7475_read(REG_STATUS4);
if (ret < 0)
return ret;
data->alarms |= ret << 24;
ret = adt7475_read(REG_EXTEND3);
if (ret < 0)
return ret;
ext = ret;
ret = adt7475_read(REG_IMON);
if (ret < 0)
return ret;
data->voltage[INPUT][6] = ret << 2 |
((ext >> 6) & 3);
}
for (i = 0; i < ADT7475_TACH_COUNT; i++) {
if (i == 3 && !data->has_fan4)
continue;
ret = adt7475_read_word(client, TACH_REG(i));
if (ret < 0)
return ret;
data->tach[INPUT][i] = ret;
}
/* Updated by hw when in auto mode */
for (i = 0; i < ADT7475_PWM_COUNT; i++) {
if (i == 1 && !data->has_pwm2)
continue;
ret = adt7475_read(PWM_REG(i));
if (ret < 0)
return ret;
data->pwm[INPUT][i] = ret;
}
if (data->has_vid) {
ret = adt7475_read(REG_VID);
if (ret < 0)
return ret;
data->vid = ret & 0x3f;
}
return 0;
}
static struct adt7475_data *adt7475_update_device(struct device *dev)
{
struct adt7475_data *data = dev_get_drvdata(dev);
int ret;
mutex_lock(&data->lock);
/* Measurement values update every 2 seconds */
if (time_after(jiffies, data->measure_updated + HZ * 2) ||
!data->valid) {
ret = adt7475_update_measure(dev);
if (ret) {
data->valid = false;
mutex_unlock(&data->lock);
return ERR_PTR(ret);
}
data->measure_updated = jiffies;
data->valid = true;
}
mutex_unlock(&data->lock);
return data;
}
module_i2c_driver(adt7475_driver);
MODULE_AUTHOR("Advanced Micro Devices, Inc");
MODULE_DESCRIPTION("adt7475 driver");
MODULE_LICENSE("GPL");