linux/mm/mm_init.c
Peng Zhang cabdf74e6b mm: kfence: allocate kfence_metadata at runtime
kfence_metadata is currently a static array.  For the purpose of
allocating scalable __kfence_pool, we first change it to runtime
allocation of metadata.  Since the size of an object of kfence_metadata is
1160 bytes, we can save at least 72 pages (with default 256 objects)
without enabling kfence.

[akpm@linux-foundation.org: restore newline, per Marco]
Link: https://lkml.kernel.org/r/20230718073019.52513-1-zhangpeng.00@bytedance.com
Signed-off-by: Peng Zhang <zhangpeng.00@bytedance.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:39 -07:00

2797 lines
78 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* mm_init.c - Memory initialisation verification and debugging
*
* Copyright 2008 IBM Corporation, 2008
* Author Mel Gorman <mel@csn.ul.ie>
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/kobject.h>
#include <linux/export.h>
#include <linux/memory.h>
#include <linux/notifier.h>
#include <linux/sched.h>
#include <linux/mman.h>
#include <linux/memblock.h>
#include <linux/page-isolation.h>
#include <linux/padata.h>
#include <linux/nmi.h>
#include <linux/buffer_head.h>
#include <linux/kmemleak.h>
#include <linux/kfence.h>
#include <linux/page_ext.h>
#include <linux/pti.h>
#include <linux/pgtable.h>
#include <linux/swap.h>
#include <linux/cma.h>
#include "internal.h"
#include "slab.h"
#include "shuffle.h"
#include <asm/setup.h>
#ifdef CONFIG_DEBUG_MEMORY_INIT
int __meminitdata mminit_loglevel;
/* The zonelists are simply reported, validation is manual. */
void __init mminit_verify_zonelist(void)
{
int nid;
if (mminit_loglevel < MMINIT_VERIFY)
return;
for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid);
struct zone *zone;
struct zoneref *z;
struct zonelist *zonelist;
int i, listid, zoneid;
BUILD_BUG_ON(MAX_ZONELISTS > 2);
for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
/* Identify the zone and nodelist */
zoneid = i % MAX_NR_ZONES;
listid = i / MAX_NR_ZONES;
zonelist = &pgdat->node_zonelists[listid];
zone = &pgdat->node_zones[zoneid];
if (!populated_zone(zone))
continue;
/* Print information about the zonelist */
printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
listid > 0 ? "thisnode" : "general", nid,
zone->name);
/* Iterate the zonelist */
for_each_zone_zonelist(zone, z, zonelist, zoneid)
pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
pr_cont("\n");
}
}
}
void __init mminit_verify_pageflags_layout(void)
{
int shift, width;
unsigned long or_mask, add_mask;
shift = 8 * sizeof(unsigned long);
width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
- LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
SECTIONS_WIDTH,
NODES_WIDTH,
ZONES_WIDTH,
LAST_CPUPID_WIDTH,
KASAN_TAG_WIDTH,
LRU_GEN_WIDTH,
LRU_REFS_WIDTH,
NR_PAGEFLAGS);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
SECTIONS_SHIFT,
NODES_SHIFT,
ZONES_SHIFT,
LAST_CPUPID_SHIFT,
KASAN_TAG_WIDTH);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
(unsigned long)SECTIONS_PGSHIFT,
(unsigned long)NODES_PGSHIFT,
(unsigned long)ZONES_PGSHIFT,
(unsigned long)LAST_CPUPID_PGSHIFT,
(unsigned long)KASAN_TAG_PGSHIFT);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
"Node/Zone ID: %lu -> %lu\n",
(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
(unsigned long)ZONEID_PGOFF);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
#ifdef NODE_NOT_IN_PAGE_FLAGS
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
"Node not in page flags");
#endif
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
"Last cpupid not in page flags");
#endif
if (SECTIONS_WIDTH) {
shift -= SECTIONS_WIDTH;
BUG_ON(shift != SECTIONS_PGSHIFT);
}
if (NODES_WIDTH) {
shift -= NODES_WIDTH;
BUG_ON(shift != NODES_PGSHIFT);
}
if (ZONES_WIDTH) {
shift -= ZONES_WIDTH;
BUG_ON(shift != ZONES_PGSHIFT);
}
/* Check for bitmask overlaps */
or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
(NODES_MASK << NODES_PGSHIFT) |
(SECTIONS_MASK << SECTIONS_PGSHIFT);
add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
(NODES_MASK << NODES_PGSHIFT) +
(SECTIONS_MASK << SECTIONS_PGSHIFT);
BUG_ON(or_mask != add_mask);
}
static __init int set_mminit_loglevel(char *str)
{
get_option(&str, &mminit_loglevel);
return 0;
}
early_param("mminit_loglevel", set_mminit_loglevel);
#endif /* CONFIG_DEBUG_MEMORY_INIT */
struct kobject *mm_kobj;
EXPORT_SYMBOL_GPL(mm_kobj);
#ifdef CONFIG_SMP
s32 vm_committed_as_batch = 32;
void mm_compute_batch(int overcommit_policy)
{
u64 memsized_batch;
s32 nr = num_present_cpus();
s32 batch = max_t(s32, nr*2, 32);
unsigned long ram_pages = totalram_pages();
/*
* For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
* (total memory/#cpus), and lift it to 25% for other policies
* to easy the possible lock contention for percpu_counter
* vm_committed_as, while the max limit is INT_MAX
*/
if (overcommit_policy == OVERCOMMIT_NEVER)
memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
else
memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
vm_committed_as_batch = max_t(s32, memsized_batch, batch);
}
static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
unsigned long action, void *arg)
{
switch (action) {
case MEM_ONLINE:
case MEM_OFFLINE:
mm_compute_batch(sysctl_overcommit_memory);
break;
default:
break;
}
return NOTIFY_OK;
}
static int __init mm_compute_batch_init(void)
{
mm_compute_batch(sysctl_overcommit_memory);
hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
return 0;
}
__initcall(mm_compute_batch_init);
#endif
static int __init mm_sysfs_init(void)
{
mm_kobj = kobject_create_and_add("mm", kernel_kobj);
if (!mm_kobj)
return -ENOMEM;
return 0;
}
postcore_initcall(mm_sysfs_init);
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
static unsigned long required_kernelcore __initdata;
static unsigned long required_kernelcore_percent __initdata;
static unsigned long required_movablecore __initdata;
static unsigned long required_movablecore_percent __initdata;
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
static bool deferred_struct_pages __meminitdata;
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
static int __init cmdline_parse_core(char *p, unsigned long *core,
unsigned long *percent)
{
unsigned long long coremem;
char *endptr;
if (!p)
return -EINVAL;
/* Value may be a percentage of total memory, otherwise bytes */
coremem = simple_strtoull(p, &endptr, 0);
if (*endptr == '%') {
/* Paranoid check for percent values greater than 100 */
WARN_ON(coremem > 100);
*percent = coremem;
} else {
coremem = memparse(p, &p);
/* Paranoid check that UL is enough for the coremem value */
WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
*core = coremem >> PAGE_SHIFT;
*percent = 0UL;
}
return 0;
}
bool mirrored_kernelcore __initdata_memblock;
/*
* kernelcore=size sets the amount of memory for use for allocations that
* cannot be reclaimed or migrated.
*/
static int __init cmdline_parse_kernelcore(char *p)
{
/* parse kernelcore=mirror */
if (parse_option_str(p, "mirror")) {
mirrored_kernelcore = true;
return 0;
}
return cmdline_parse_core(p, &required_kernelcore,
&required_kernelcore_percent);
}
early_param("kernelcore", cmdline_parse_kernelcore);
/*
* movablecore=size sets the amount of memory for use for allocations that
* can be reclaimed or migrated.
*/
static int __init cmdline_parse_movablecore(char *p)
{
return cmdline_parse_core(p, &required_movablecore,
&required_movablecore_percent);
}
early_param("movablecore", cmdline_parse_movablecore);
/*
* early_calculate_totalpages()
* Sum pages in active regions for movable zone.
* Populate N_MEMORY for calculating usable_nodes.
*/
static unsigned long __init early_calculate_totalpages(void)
{
unsigned long totalpages = 0;
unsigned long start_pfn, end_pfn;
int i, nid;
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
unsigned long pages = end_pfn - start_pfn;
totalpages += pages;
if (pages)
node_set_state(nid, N_MEMORY);
}
return totalpages;
}
/*
* This finds a zone that can be used for ZONE_MOVABLE pages. The
* assumption is made that zones within a node are ordered in monotonic
* increasing memory addresses so that the "highest" populated zone is used
*/
static void __init find_usable_zone_for_movable(void)
{
int zone_index;
for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
if (zone_index == ZONE_MOVABLE)
continue;
if (arch_zone_highest_possible_pfn[zone_index] >
arch_zone_lowest_possible_pfn[zone_index])
break;
}
VM_BUG_ON(zone_index == -1);
movable_zone = zone_index;
}
/*
* Find the PFN the Movable zone begins in each node. Kernel memory
* is spread evenly between nodes as long as the nodes have enough
* memory. When they don't, some nodes will have more kernelcore than
* others
*/
static void __init find_zone_movable_pfns_for_nodes(void)
{
int i, nid;
unsigned long usable_startpfn;
unsigned long kernelcore_node, kernelcore_remaining;
/* save the state before borrow the nodemask */
nodemask_t saved_node_state = node_states[N_MEMORY];
unsigned long totalpages = early_calculate_totalpages();
int usable_nodes = nodes_weight(node_states[N_MEMORY]);
struct memblock_region *r;
/* Need to find movable_zone earlier when movable_node is specified. */
find_usable_zone_for_movable();
/*
* If movable_node is specified, ignore kernelcore and movablecore
* options.
*/
if (movable_node_is_enabled()) {
for_each_mem_region(r) {
if (!memblock_is_hotpluggable(r))
continue;
nid = memblock_get_region_node(r);
usable_startpfn = PFN_DOWN(r->base);
zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
min(usable_startpfn, zone_movable_pfn[nid]) :
usable_startpfn;
}
goto out2;
}
/*
* If kernelcore=mirror is specified, ignore movablecore option
*/
if (mirrored_kernelcore) {
bool mem_below_4gb_not_mirrored = false;
for_each_mem_region(r) {
if (memblock_is_mirror(r))
continue;
nid = memblock_get_region_node(r);
usable_startpfn = memblock_region_memory_base_pfn(r);
if (usable_startpfn < PHYS_PFN(SZ_4G)) {
mem_below_4gb_not_mirrored = true;
continue;
}
zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
min(usable_startpfn, zone_movable_pfn[nid]) :
usable_startpfn;
}
if (mem_below_4gb_not_mirrored)
pr_warn("This configuration results in unmirrored kernel memory.\n");
goto out2;
}
/*
* If kernelcore=nn% or movablecore=nn% was specified, calculate the
* amount of necessary memory.
*/
if (required_kernelcore_percent)
required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
10000UL;
if (required_movablecore_percent)
required_movablecore = (totalpages * 100 * required_movablecore_percent) /
10000UL;
/*
* If movablecore= was specified, calculate what size of
* kernelcore that corresponds so that memory usable for
* any allocation type is evenly spread. If both kernelcore
* and movablecore are specified, then the value of kernelcore
* will be used for required_kernelcore if it's greater than
* what movablecore would have allowed.
*/
if (required_movablecore) {
unsigned long corepages;
/*
* Round-up so that ZONE_MOVABLE is at least as large as what
* was requested by the user
*/
required_movablecore =
roundup(required_movablecore, MAX_ORDER_NR_PAGES);
required_movablecore = min(totalpages, required_movablecore);
corepages = totalpages - required_movablecore;
required_kernelcore = max(required_kernelcore, corepages);
}
/*
* If kernelcore was not specified or kernelcore size is larger
* than totalpages, there is no ZONE_MOVABLE.
*/
if (!required_kernelcore || required_kernelcore >= totalpages)
goto out;
/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
restart:
/* Spread kernelcore memory as evenly as possible throughout nodes */
kernelcore_node = required_kernelcore / usable_nodes;
for_each_node_state(nid, N_MEMORY) {
unsigned long start_pfn, end_pfn;
/*
* Recalculate kernelcore_node if the division per node
* now exceeds what is necessary to satisfy the requested
* amount of memory for the kernel
*/
if (required_kernelcore < kernelcore_node)
kernelcore_node = required_kernelcore / usable_nodes;
/*
* As the map is walked, we track how much memory is usable
* by the kernel using kernelcore_remaining. When it is
* 0, the rest of the node is usable by ZONE_MOVABLE
*/
kernelcore_remaining = kernelcore_node;
/* Go through each range of PFNs within this node */
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
unsigned long size_pages;
start_pfn = max(start_pfn, zone_movable_pfn[nid]);
if (start_pfn >= end_pfn)
continue;
/* Account for what is only usable for kernelcore */
if (start_pfn < usable_startpfn) {
unsigned long kernel_pages;
kernel_pages = min(end_pfn, usable_startpfn)
- start_pfn;
kernelcore_remaining -= min(kernel_pages,
kernelcore_remaining);
required_kernelcore -= min(kernel_pages,
required_kernelcore);
/* Continue if range is now fully accounted */
if (end_pfn <= usable_startpfn) {
/*
* Push zone_movable_pfn to the end so
* that if we have to rebalance
* kernelcore across nodes, we will
* not double account here
*/
zone_movable_pfn[nid] = end_pfn;
continue;
}
start_pfn = usable_startpfn;
}
/*
* The usable PFN range for ZONE_MOVABLE is from
* start_pfn->end_pfn. Calculate size_pages as the
* number of pages used as kernelcore
*/
size_pages = end_pfn - start_pfn;
if (size_pages > kernelcore_remaining)
size_pages = kernelcore_remaining;
zone_movable_pfn[nid] = start_pfn + size_pages;
/*
* Some kernelcore has been met, update counts and
* break if the kernelcore for this node has been
* satisfied
*/
required_kernelcore -= min(required_kernelcore,
size_pages);
kernelcore_remaining -= size_pages;
if (!kernelcore_remaining)
break;
}
}
/*
* If there is still required_kernelcore, we do another pass with one
* less node in the count. This will push zone_movable_pfn[nid] further
* along on the nodes that still have memory until kernelcore is
* satisfied
*/
usable_nodes--;
if (usable_nodes && required_kernelcore > usable_nodes)
goto restart;
out2:
/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
for (nid = 0; nid < MAX_NUMNODES; nid++) {
unsigned long start_pfn, end_pfn;
zone_movable_pfn[nid] =
roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
if (zone_movable_pfn[nid] >= end_pfn)
zone_movable_pfn[nid] = 0;
}
out:
/* restore the node_state */
node_states[N_MEMORY] = saved_node_state;
}
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
unsigned long zone, int nid)
{
mm_zero_struct_page(page);
set_page_links(page, zone, nid, pfn);
init_page_count(page);
page_mapcount_reset(page);
page_cpupid_reset_last(page);
page_kasan_tag_reset(page);
INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
/* The shift won't overflow because ZONE_NORMAL is below 4G. */
if (!is_highmem_idx(zone))
set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}
#ifdef CONFIG_NUMA
/*
* During memory init memblocks map pfns to nids. The search is expensive and
* this caches recent lookups. The implementation of __early_pfn_to_nid
* treats start/end as pfns.
*/
struct mminit_pfnnid_cache {
unsigned long last_start;
unsigned long last_end;
int last_nid;
};
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
/*
* Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
*/
static int __meminit __early_pfn_to_nid(unsigned long pfn,
struct mminit_pfnnid_cache *state)
{
unsigned long start_pfn, end_pfn;
int nid;
if (state->last_start <= pfn && pfn < state->last_end)
return state->last_nid;
nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
if (nid != NUMA_NO_NODE) {
state->last_start = start_pfn;
state->last_end = end_pfn;
state->last_nid = nid;
}
return nid;
}
int __meminit early_pfn_to_nid(unsigned long pfn)
{
static DEFINE_SPINLOCK(early_pfn_lock);
int nid;
spin_lock(&early_pfn_lock);
nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
if (nid < 0)
nid = first_online_node;
spin_unlock(&early_pfn_lock);
return nid;
}
int hashdist = HASHDIST_DEFAULT;
static int __init set_hashdist(char *str)
{
if (!str)
return 0;
hashdist = simple_strtoul(str, &str, 0);
return 1;
}
__setup("hashdist=", set_hashdist);
static inline void fixup_hashdist(void)
{
if (num_node_state(N_MEMORY) == 1)
hashdist = 0;
}
#else
static inline void fixup_hashdist(void) {}
#endif /* CONFIG_NUMA */
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
pgdat->first_deferred_pfn = ULONG_MAX;
}
/* Returns true if the struct page for the pfn is initialised */
static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
{
if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
return false;
return true;
}
/*
* Returns true when the remaining initialisation should be deferred until
* later in the boot cycle when it can be parallelised.
*/
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
{
static unsigned long prev_end_pfn, nr_initialised;
if (early_page_ext_enabled())
return false;
/*
* prev_end_pfn static that contains the end of previous zone
* No need to protect because called very early in boot before smp_init.
*/
if (prev_end_pfn != end_pfn) {
prev_end_pfn = end_pfn;
nr_initialised = 0;
}
/* Always populate low zones for address-constrained allocations */
if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
return false;
if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
return true;
/*
* We start only with one section of pages, more pages are added as
* needed until the rest of deferred pages are initialized.
*/
nr_initialised++;
if ((nr_initialised > PAGES_PER_SECTION) &&
(pfn & (PAGES_PER_SECTION - 1)) == 0) {
NODE_DATA(nid)->first_deferred_pfn = pfn;
return true;
}
return false;
}
static void __meminit init_reserved_page(unsigned long pfn, int nid)
{
pg_data_t *pgdat;
int zid;
if (early_page_initialised(pfn, nid))
return;
pgdat = NODE_DATA(nid);
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
struct zone *zone = &pgdat->node_zones[zid];
if (zone_spans_pfn(zone, pfn))
break;
}
__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
static inline bool early_page_initialised(unsigned long pfn, int nid)
{
return true;
}
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
{
return false;
}
static inline void init_reserved_page(unsigned long pfn, int nid)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
/*
* Initialised pages do not have PageReserved set. This function is
* called for each range allocated by the bootmem allocator and
* marks the pages PageReserved. The remaining valid pages are later
* sent to the buddy page allocator.
*/
void __meminit reserve_bootmem_region(phys_addr_t start,
phys_addr_t end, int nid)
{
unsigned long start_pfn = PFN_DOWN(start);
unsigned long end_pfn = PFN_UP(end);
for (; start_pfn < end_pfn; start_pfn++) {
if (pfn_valid(start_pfn)) {
struct page *page = pfn_to_page(start_pfn);
init_reserved_page(start_pfn, nid);
/* Avoid false-positive PageTail() */
INIT_LIST_HEAD(&page->lru);
/*
* no need for atomic set_bit because the struct
* page is not visible yet so nobody should
* access it yet.
*/
__SetPageReserved(page);
}
}
}
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
static struct memblock_region *r;
if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
for_each_mem_region(r) {
if (*pfn < memblock_region_memory_end_pfn(r))
break;
}
}
if (*pfn >= memblock_region_memory_base_pfn(r) &&
memblock_is_mirror(r)) {
*pfn = memblock_region_memory_end_pfn(r);
return true;
}
}
return false;
}
/*
* Only struct pages that correspond to ranges defined by memblock.memory
* are zeroed and initialized by going through __init_single_page() during
* memmap_init_zone_range().
*
* But, there could be struct pages that correspond to holes in
* memblock.memory. This can happen because of the following reasons:
* - physical memory bank size is not necessarily the exact multiple of the
* arbitrary section size
* - early reserved memory may not be listed in memblock.memory
* - memory layouts defined with memmap= kernel parameter may not align
* nicely with memmap sections
*
* Explicitly initialize those struct pages so that:
* - PG_Reserved is set
* - zone and node links point to zone and node that span the page if the
* hole is in the middle of a zone
* - zone and node links point to adjacent zone/node if the hole falls on
* the zone boundary; the pages in such holes will be prepended to the
* zone/node above the hole except for the trailing pages in the last
* section that will be appended to the zone/node below.
*/
static void __init init_unavailable_range(unsigned long spfn,
unsigned long epfn,
int zone, int node)
{
unsigned long pfn;
u64 pgcnt = 0;
for (pfn = spfn; pfn < epfn; pfn++) {
if (!pfn_valid(pageblock_start_pfn(pfn))) {
pfn = pageblock_end_pfn(pfn) - 1;
continue;
}
__init_single_page(pfn_to_page(pfn), pfn, zone, node);
__SetPageReserved(pfn_to_page(pfn));
pgcnt++;
}
if (pgcnt)
pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
node, zone_names[zone], pgcnt);
}
/*
* Initially all pages are reserved - free ones are freed
* up by memblock_free_all() once the early boot process is
* done. Non-atomic initialization, single-pass.
*
* All aligned pageblocks are initialized to the specified migratetype
* (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
* zone stats (e.g., nr_isolate_pageblock) are touched.
*/
void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
unsigned long start_pfn, unsigned long zone_end_pfn,
enum meminit_context context,
struct vmem_altmap *altmap, int migratetype)
{
unsigned long pfn, end_pfn = start_pfn + size;
struct page *page;
if (highest_memmap_pfn < end_pfn - 1)
highest_memmap_pfn = end_pfn - 1;
#ifdef CONFIG_ZONE_DEVICE
/*
* Honor reservation requested by the driver for this ZONE_DEVICE
* memory. We limit the total number of pages to initialize to just
* those that might contain the memory mapping. We will defer the
* ZONE_DEVICE page initialization until after we have released
* the hotplug lock.
*/
if (zone == ZONE_DEVICE) {
if (!altmap)
return;
if (start_pfn == altmap->base_pfn)
start_pfn += altmap->reserve;
end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
}
#endif
for (pfn = start_pfn; pfn < end_pfn; ) {
/*
* There can be holes in boot-time mem_map[]s handed to this
* function. They do not exist on hotplugged memory.
*/
if (context == MEMINIT_EARLY) {
if (overlap_memmap_init(zone, &pfn))
continue;
if (defer_init(nid, pfn, zone_end_pfn)) {
deferred_struct_pages = true;
break;
}
}
page = pfn_to_page(pfn);
__init_single_page(page, pfn, zone, nid);
if (context == MEMINIT_HOTPLUG)
__SetPageReserved(page);
/*
* Usually, we want to mark the pageblock MIGRATE_MOVABLE,
* such that unmovable allocations won't be scattered all
* over the place during system boot.
*/
if (pageblock_aligned(pfn)) {
set_pageblock_migratetype(page, migratetype);
cond_resched();
}
pfn++;
}
}
static void __init memmap_init_zone_range(struct zone *zone,
unsigned long start_pfn,
unsigned long end_pfn,
unsigned long *hole_pfn)
{
unsigned long zone_start_pfn = zone->zone_start_pfn;
unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
if (start_pfn >= end_pfn)
return;
memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
if (*hole_pfn < start_pfn)
init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
*hole_pfn = end_pfn;
}
static void __init memmap_init(void)
{
unsigned long start_pfn, end_pfn;
unsigned long hole_pfn = 0;
int i, j, zone_id = 0, nid;
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
struct pglist_data *node = NODE_DATA(nid);
for (j = 0; j < MAX_NR_ZONES; j++) {
struct zone *zone = node->node_zones + j;
if (!populated_zone(zone))
continue;
memmap_init_zone_range(zone, start_pfn, end_pfn,
&hole_pfn);
zone_id = j;
}
}
#ifdef CONFIG_SPARSEMEM
/*
* Initialize the memory map for hole in the range [memory_end,
* section_end].
* Append the pages in this hole to the highest zone in the last
* node.
* The call to init_unavailable_range() is outside the ifdef to
* silence the compiler warining about zone_id set but not used;
* for FLATMEM it is a nop anyway
*/
end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
if (hole_pfn < end_pfn)
#endif
init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
}
#ifdef CONFIG_ZONE_DEVICE
static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
unsigned long zone_idx, int nid,
struct dev_pagemap *pgmap)
{
__init_single_page(page, pfn, zone_idx, nid);
/*
* Mark page reserved as it will need to wait for onlining
* phase for it to be fully associated with a zone.
*
* We can use the non-atomic __set_bit operation for setting
* the flag as we are still initializing the pages.
*/
__SetPageReserved(page);
/*
* ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
* and zone_device_data. It is a bug if a ZONE_DEVICE page is
* ever freed or placed on a driver-private list.
*/
page->pgmap = pgmap;
page->zone_device_data = NULL;
/*
* Mark the block movable so that blocks are reserved for
* movable at startup. This will force kernel allocations
* to reserve their blocks rather than leaking throughout
* the address space during boot when many long-lived
* kernel allocations are made.
*
* Please note that MEMINIT_HOTPLUG path doesn't clear memmap
* because this is done early in section_activate()
*/
if (pageblock_aligned(pfn)) {
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
cond_resched();
}
/*
* ZONE_DEVICE pages are released directly to the driver page allocator
* which will set the page count to 1 when allocating the page.
*/
if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
pgmap->type == MEMORY_DEVICE_COHERENT)
set_page_count(page, 0);
}
/*
* With compound page geometry and when struct pages are stored in ram most
* tail pages are reused. Consequently, the amount of unique struct pages to
* initialize is a lot smaller that the total amount of struct pages being
* mapped. This is a paired / mild layering violation with explicit knowledge
* of how the sparse_vmemmap internals handle compound pages in the lack
* of an altmap. See vmemmap_populate_compound_pages().
*/
static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
struct dev_pagemap *pgmap)
{
if (!vmemmap_can_optimize(altmap, pgmap))
return pgmap_vmemmap_nr(pgmap);
return 2 * (PAGE_SIZE / sizeof(struct page));
}
static void __ref memmap_init_compound(struct page *head,
unsigned long head_pfn,
unsigned long zone_idx, int nid,
struct dev_pagemap *pgmap,
unsigned long nr_pages)
{
unsigned long pfn, end_pfn = head_pfn + nr_pages;
unsigned int order = pgmap->vmemmap_shift;
__SetPageHead(head);
for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
struct page *page = pfn_to_page(pfn);
__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
prep_compound_tail(head, pfn - head_pfn);
set_page_count(page, 0);
/*
* The first tail page stores important compound page info.
* Call prep_compound_head() after the first tail page has
* been initialized, to not have the data overwritten.
*/
if (pfn == head_pfn + 1)
prep_compound_head(head, order);
}
}
void __ref memmap_init_zone_device(struct zone *zone,
unsigned long start_pfn,
unsigned long nr_pages,
struct dev_pagemap *pgmap)
{
unsigned long pfn, end_pfn = start_pfn + nr_pages;
struct pglist_data *pgdat = zone->zone_pgdat;
struct vmem_altmap *altmap = pgmap_altmap(pgmap);
unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
unsigned long zone_idx = zone_idx(zone);
unsigned long start = jiffies;
int nid = pgdat->node_id;
if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
return;
/*
* The call to memmap_init should have already taken care
* of the pages reserved for the memmap, so we can just jump to
* the end of that region and start processing the device pages.
*/
if (altmap) {
start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
nr_pages = end_pfn - start_pfn;
}
for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
struct page *page = pfn_to_page(pfn);
__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
if (pfns_per_compound == 1)
continue;
memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
compound_nr_pages(altmap, pgmap));
}
pr_debug("%s initialised %lu pages in %ums\n", __func__,
nr_pages, jiffies_to_msecs(jiffies - start));
}
#endif
/*
* The zone ranges provided by the architecture do not include ZONE_MOVABLE
* because it is sized independent of architecture. Unlike the other zones,
* the starting point for ZONE_MOVABLE is not fixed. It may be different
* in each node depending on the size of each node and how evenly kernelcore
* is distributed. This helper function adjusts the zone ranges
* provided by the architecture for a given node by using the end of the
* highest usable zone for ZONE_MOVABLE. This preserves the assumption that
* zones within a node are in order of monotonic increases memory addresses
*/
static void __init adjust_zone_range_for_zone_movable(int nid,
unsigned long zone_type,
unsigned long node_end_pfn,
unsigned long *zone_start_pfn,
unsigned long *zone_end_pfn)
{
/* Only adjust if ZONE_MOVABLE is on this node */
if (zone_movable_pfn[nid]) {
/* Size ZONE_MOVABLE */
if (zone_type == ZONE_MOVABLE) {
*zone_start_pfn = zone_movable_pfn[nid];
*zone_end_pfn = min(node_end_pfn,
arch_zone_highest_possible_pfn[movable_zone]);
/* Adjust for ZONE_MOVABLE starting within this range */
} else if (!mirrored_kernelcore &&
*zone_start_pfn < zone_movable_pfn[nid] &&
*zone_end_pfn > zone_movable_pfn[nid]) {
*zone_end_pfn = zone_movable_pfn[nid];
/* Check if this whole range is within ZONE_MOVABLE */
} else if (*zone_start_pfn >= zone_movable_pfn[nid])
*zone_start_pfn = *zone_end_pfn;
}
}
/*
* Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
* then all holes in the requested range will be accounted for.
*/
unsigned long __init __absent_pages_in_range(int nid,
unsigned long range_start_pfn,
unsigned long range_end_pfn)
{
unsigned long nr_absent = range_end_pfn - range_start_pfn;
unsigned long start_pfn, end_pfn;
int i;
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
nr_absent -= end_pfn - start_pfn;
}
return nr_absent;
}
/**
* absent_pages_in_range - Return number of page frames in holes within a range
* @start_pfn: The start PFN to start searching for holes
* @end_pfn: The end PFN to stop searching for holes
*
* Return: the number of pages frames in memory holes within a range.
*/
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
unsigned long end_pfn)
{
return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}
/* Return the number of page frames in holes in a zone on a node */
static unsigned long __init zone_absent_pages_in_node(int nid,
unsigned long zone_type,
unsigned long zone_start_pfn,
unsigned long zone_end_pfn)
{
unsigned long nr_absent;
/* zone is empty, we don't have any absent pages */
if (zone_start_pfn == zone_end_pfn)
return 0;
nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
/*
* ZONE_MOVABLE handling.
* Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
* and vice versa.
*/
if (mirrored_kernelcore && zone_movable_pfn[nid]) {
unsigned long start_pfn, end_pfn;
struct memblock_region *r;
for_each_mem_region(r) {
start_pfn = clamp(memblock_region_memory_base_pfn(r),
zone_start_pfn, zone_end_pfn);
end_pfn = clamp(memblock_region_memory_end_pfn(r),
zone_start_pfn, zone_end_pfn);
if (zone_type == ZONE_MOVABLE &&
memblock_is_mirror(r))
nr_absent += end_pfn - start_pfn;
if (zone_type == ZONE_NORMAL &&
!memblock_is_mirror(r))
nr_absent += end_pfn - start_pfn;
}
}
return nr_absent;
}
/*
* Return the number of pages a zone spans in a node, including holes
* present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
*/
static unsigned long __init zone_spanned_pages_in_node(int nid,
unsigned long zone_type,
unsigned long node_start_pfn,
unsigned long node_end_pfn,
unsigned long *zone_start_pfn,
unsigned long *zone_end_pfn)
{
unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
/* Get the start and end of the zone */
*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
zone_start_pfn, zone_end_pfn);
/* Check that this node has pages within the zone's required range */
if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
return 0;
/* Move the zone boundaries inside the node if necessary */
*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
/* Return the spanned pages */
return *zone_end_pfn - *zone_start_pfn;
}
static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
{
struct zone *z;
for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
z->zone_start_pfn = 0;
z->spanned_pages = 0;
z->present_pages = 0;
#if defined(CONFIG_MEMORY_HOTPLUG)
z->present_early_pages = 0;
#endif
}
pgdat->node_spanned_pages = 0;
pgdat->node_present_pages = 0;
pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
}
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
unsigned long node_start_pfn,
unsigned long node_end_pfn)
{
unsigned long realtotalpages = 0, totalpages = 0;
enum zone_type i;
for (i = 0; i < MAX_NR_ZONES; i++) {
struct zone *zone = pgdat->node_zones + i;
unsigned long zone_start_pfn, zone_end_pfn;
unsigned long spanned, absent;
unsigned long real_size;
spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
node_start_pfn,
node_end_pfn,
&zone_start_pfn,
&zone_end_pfn);
absent = zone_absent_pages_in_node(pgdat->node_id, i,
zone_start_pfn,
zone_end_pfn);
real_size = spanned - absent;
if (spanned)
zone->zone_start_pfn = zone_start_pfn;
else
zone->zone_start_pfn = 0;
zone->spanned_pages = spanned;
zone->present_pages = real_size;
#if defined(CONFIG_MEMORY_HOTPLUG)
zone->present_early_pages = real_size;
#endif
totalpages += spanned;
realtotalpages += real_size;
}
pgdat->node_spanned_pages = totalpages;
pgdat->node_present_pages = realtotalpages;
pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
}
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
unsigned long present_pages)
{
unsigned long pages = spanned_pages;
/*
* Provide a more accurate estimation if there are holes within
* the zone and SPARSEMEM is in use. If there are holes within the
* zone, each populated memory region may cost us one or two extra
* memmap pages due to alignment because memmap pages for each
* populated regions may not be naturally aligned on page boundary.
* So the (present_pages >> 4) heuristic is a tradeoff for that.
*/
if (spanned_pages > present_pages + (present_pages >> 4) &&
IS_ENABLED(CONFIG_SPARSEMEM))
pages = present_pages;
return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
spin_lock_init(&ds_queue->split_queue_lock);
INIT_LIST_HEAD(&ds_queue->split_queue);
ds_queue->split_queue_len = 0;
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif
#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
{
int i;
pgdat_resize_init(pgdat);
pgdat_kswapd_lock_init(pgdat);
pgdat_init_split_queue(pgdat);
pgdat_init_kcompactd(pgdat);
init_waitqueue_head(&pgdat->kswapd_wait);
init_waitqueue_head(&pgdat->pfmemalloc_wait);
for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
init_waitqueue_head(&pgdat->reclaim_wait[i]);
pgdat_page_ext_init(pgdat);
lruvec_init(&pgdat->__lruvec);
}
static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
unsigned long remaining_pages)
{
atomic_long_set(&zone->managed_pages, remaining_pages);
zone_set_nid(zone, nid);
zone->name = zone_names[idx];
zone->zone_pgdat = NODE_DATA(nid);
spin_lock_init(&zone->lock);
zone_seqlock_init(zone);
zone_pcp_init(zone);
}
static void __meminit zone_init_free_lists(struct zone *zone)
{
unsigned int order, t;
for_each_migratetype_order(order, t) {
INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
zone->free_area[order].nr_free = 0;
}
#ifdef CONFIG_UNACCEPTED_MEMORY
INIT_LIST_HEAD(&zone->unaccepted_pages);
#endif
}
void __meminit init_currently_empty_zone(struct zone *zone,
unsigned long zone_start_pfn,
unsigned long size)
{
struct pglist_data *pgdat = zone->zone_pgdat;
int zone_idx = zone_idx(zone) + 1;
if (zone_idx > pgdat->nr_zones)
pgdat->nr_zones = zone_idx;
zone->zone_start_pfn = zone_start_pfn;
mminit_dprintk(MMINIT_TRACE, "memmap_init",
"Initialising map node %d zone %lu pfns %lu -> %lu\n",
pgdat->node_id,
(unsigned long)zone_idx(zone),
zone_start_pfn, (zone_start_pfn + size));
zone_init_free_lists(zone);
zone->initialized = 1;
}
#ifndef CONFIG_SPARSEMEM
/*
* Calculate the size of the zone->blockflags rounded to an unsigned long
* Start by making sure zonesize is a multiple of pageblock_order by rounding
* up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
* round what is now in bits to nearest long in bits, then return it in
* bytes.
*/
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
{
unsigned long usemapsize;
zonesize += zone_start_pfn & (pageblock_nr_pages-1);
usemapsize = roundup(zonesize, pageblock_nr_pages);
usemapsize = usemapsize >> pageblock_order;
usemapsize *= NR_PAGEBLOCK_BITS;
usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
return usemapsize / 8;
}
static void __ref setup_usemap(struct zone *zone)
{
unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
zone->spanned_pages);
zone->pageblock_flags = NULL;
if (usemapsize) {
zone->pageblock_flags =
memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
zone_to_nid(zone));
if (!zone->pageblock_flags)
panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
usemapsize, zone->name, zone_to_nid(zone));
}
}
#else
static inline void setup_usemap(struct zone *zone) {}
#endif /* CONFIG_SPARSEMEM */
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
void __init set_pageblock_order(void)
{
unsigned int order = MAX_ORDER;
/* Check that pageblock_nr_pages has not already been setup */
if (pageblock_order)
return;
/* Don't let pageblocks exceed the maximum allocation granularity. */
if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
order = HUGETLB_PAGE_ORDER;
/*
* Assume the largest contiguous order of interest is a huge page.
* This value may be variable depending on boot parameters on IA64 and
* powerpc.
*/
pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
/*
* When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
* is unused as pageblock_order is set at compile-time. See
* include/linux/pageblock-flags.h for the values of pageblock_order based on
* the kernel config
*/
void __init set_pageblock_order(void)
{
}
#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
/*
* Set up the zone data structures
* - init pgdat internals
* - init all zones belonging to this node
*
* NOTE: this function is only called during memory hotplug
*/
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
{
int nid = pgdat->node_id;
enum zone_type z;
int cpu;
pgdat_init_internals(pgdat);
if (pgdat->per_cpu_nodestats == &boot_nodestats)
pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
/*
* Reset the nr_zones, order and highest_zoneidx before reuse.
* Note that kswapd will init kswapd_highest_zoneidx properly
* when it starts in the near future.
*/
pgdat->nr_zones = 0;
pgdat->kswapd_order = 0;
pgdat->kswapd_highest_zoneidx = 0;
pgdat->node_start_pfn = 0;
pgdat->node_present_pages = 0;
for_each_online_cpu(cpu) {
struct per_cpu_nodestat *p;
p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
memset(p, 0, sizeof(*p));
}
/*
* When memory is hot-added, all the memory is in offline state. So
* clear all zones' present_pages and managed_pages because they will
* be updated in online_pages() and offline_pages().
*/
for (z = 0; z < MAX_NR_ZONES; z++) {
struct zone *zone = pgdat->node_zones + z;
zone->present_pages = 0;
zone_init_internals(zone, z, nid, 0);
}
}
#endif
/*
* Set up the zone data structures:
* - mark all pages reserved
* - mark all memory queues empty
* - clear the memory bitmaps
*
* NOTE: pgdat should get zeroed by caller.
* NOTE: this function is only called during early init.
*/
static void __init free_area_init_core(struct pglist_data *pgdat)
{
enum zone_type j;
int nid = pgdat->node_id;
pgdat_init_internals(pgdat);
pgdat->per_cpu_nodestats = &boot_nodestats;
for (j = 0; j < MAX_NR_ZONES; j++) {
struct zone *zone = pgdat->node_zones + j;
unsigned long size, freesize, memmap_pages;
size = zone->spanned_pages;
freesize = zone->present_pages;
/*
* Adjust freesize so that it accounts for how much memory
* is used by this zone for memmap. This affects the watermark
* and per-cpu initialisations
*/
memmap_pages = calc_memmap_size(size, freesize);
if (!is_highmem_idx(j)) {
if (freesize >= memmap_pages) {
freesize -= memmap_pages;
if (memmap_pages)
pr_debug(" %s zone: %lu pages used for memmap\n",
zone_names[j], memmap_pages);
} else
pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
zone_names[j], memmap_pages, freesize);
}
/* Account for reserved pages */
if (j == 0 && freesize > dma_reserve) {
freesize -= dma_reserve;
pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
}
if (!is_highmem_idx(j))
nr_kernel_pages += freesize;
/* Charge for highmem memmap if there are enough kernel pages */
else if (nr_kernel_pages > memmap_pages * 2)
nr_kernel_pages -= memmap_pages;
nr_all_pages += freesize;
/*
* Set an approximate value for lowmem here, it will be adjusted
* when the bootmem allocator frees pages into the buddy system.
* And all highmem pages will be managed by the buddy system.
*/
zone_init_internals(zone, j, nid, freesize);
if (!size)
continue;
setup_usemap(zone);
init_currently_empty_zone(zone, zone->zone_start_pfn, size);
}
}
void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr, int nid, bool exact_nid)
{
void *ptr;
if (exact_nid)
ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
MEMBLOCK_ALLOC_ACCESSIBLE,
nid);
else
ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
MEMBLOCK_ALLOC_ACCESSIBLE,
nid);
if (ptr && size > 0)
page_init_poison(ptr, size);
return ptr;
}
#ifdef CONFIG_FLATMEM
static void __init alloc_node_mem_map(struct pglist_data *pgdat)
{
unsigned long __maybe_unused start = 0;
unsigned long __maybe_unused offset = 0;
/* Skip empty nodes */
if (!pgdat->node_spanned_pages)
return;
start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
offset = pgdat->node_start_pfn - start;
/* ia64 gets its own node_mem_map, before this, without bootmem */
if (!pgdat->node_mem_map) {
unsigned long size, end;
struct page *map;
/*
* The zone's endpoints aren't required to be MAX_ORDER
* aligned but the node_mem_map endpoints must be in order
* for the buddy allocator to function correctly.
*/
end = pgdat_end_pfn(pgdat);
end = ALIGN(end, MAX_ORDER_NR_PAGES);
size = (end - start) * sizeof(struct page);
map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
pgdat->node_id, false);
if (!map)
panic("Failed to allocate %ld bytes for node %d memory map\n",
size, pgdat->node_id);
pgdat->node_mem_map = map + offset;
}
pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
__func__, pgdat->node_id, (unsigned long)pgdat,
(unsigned long)pgdat->node_mem_map);
#ifndef CONFIG_NUMA
/*
* With no DISCONTIG, the global mem_map is just set as node 0's
*/
if (pgdat == NODE_DATA(0)) {
mem_map = NODE_DATA(0)->node_mem_map;
if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
mem_map -= offset;
}
#endif
}
#else
static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLATMEM */
/**
* get_pfn_range_for_nid - Return the start and end page frames for a node
* @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
* @start_pfn: Passed by reference. On return, it will have the node start_pfn.
* @end_pfn: Passed by reference. On return, it will have the node end_pfn.
*
* It returns the start and end page frame of a node based on information
* provided by memblock_set_node(). If called for a node
* with no available memory, the start and end PFNs will be 0.
*/
void __init get_pfn_range_for_nid(unsigned int nid,
unsigned long *start_pfn, unsigned long *end_pfn)
{
unsigned long this_start_pfn, this_end_pfn;
int i;
*start_pfn = -1UL;
*end_pfn = 0;
for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
*start_pfn = min(*start_pfn, this_start_pfn);
*end_pfn = max(*end_pfn, this_end_pfn);
}
if (*start_pfn == -1UL)
*start_pfn = 0;
}
static void __init free_area_init_node(int nid)
{
pg_data_t *pgdat = NODE_DATA(nid);
unsigned long start_pfn = 0;
unsigned long end_pfn = 0;
/* pg_data_t should be reset to zero when it's allocated */
WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
pgdat->node_id = nid;
pgdat->node_start_pfn = start_pfn;
pgdat->per_cpu_nodestats = NULL;
if (start_pfn != end_pfn) {
pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
(u64)start_pfn << PAGE_SHIFT,
end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
calculate_node_totalpages(pgdat, start_pfn, end_pfn);
} else {
pr_info("Initmem setup node %d as memoryless\n", nid);
reset_memoryless_node_totalpages(pgdat);
}
alloc_node_mem_map(pgdat);
pgdat_set_deferred_range(pgdat);
free_area_init_core(pgdat);
lru_gen_init_pgdat(pgdat);
}
/* Any regular or high memory on that node ? */
static void __init check_for_memory(pg_data_t *pgdat)
{
enum zone_type zone_type;
for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
struct zone *zone = &pgdat->node_zones[zone_type];
if (populated_zone(zone)) {
if (IS_ENABLED(CONFIG_HIGHMEM))
node_set_state(pgdat->node_id, N_HIGH_MEMORY);
if (zone_type <= ZONE_NORMAL)
node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
break;
}
}
}
#if MAX_NUMNODES > 1
/*
* Figure out the number of possible node ids.
*/
void __init setup_nr_node_ids(void)
{
unsigned int highest;
highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
nr_node_ids = highest + 1;
}
#endif
/*
* Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
* such cases we allow max_zone_pfn sorted in the descending order
*/
static bool arch_has_descending_max_zone_pfns(void)
{
return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
}
/**
* free_area_init - Initialise all pg_data_t and zone data
* @max_zone_pfn: an array of max PFNs for each zone
*
* This will call free_area_init_node() for each active node in the system.
* Using the page ranges provided by memblock_set_node(), the size of each
* zone in each node and their holes is calculated. If the maximum PFN
* between two adjacent zones match, it is assumed that the zone is empty.
* For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
* that arch_max_dma32_pfn has no pages. It is also assumed that a zone
* starts where the previous one ended. For example, ZONE_DMA32 starts
* at arch_max_dma_pfn.
*/
void __init free_area_init(unsigned long *max_zone_pfn)
{
unsigned long start_pfn, end_pfn;
int i, nid, zone;
bool descending;
/* Record where the zone boundaries are */
memset(arch_zone_lowest_possible_pfn, 0,
sizeof(arch_zone_lowest_possible_pfn));
memset(arch_zone_highest_possible_pfn, 0,
sizeof(arch_zone_highest_possible_pfn));
start_pfn = PHYS_PFN(memblock_start_of_DRAM());
descending = arch_has_descending_max_zone_pfns();
for (i = 0; i < MAX_NR_ZONES; i++) {
if (descending)
zone = MAX_NR_ZONES - i - 1;
else
zone = i;
if (zone == ZONE_MOVABLE)
continue;
end_pfn = max(max_zone_pfn[zone], start_pfn);
arch_zone_lowest_possible_pfn[zone] = start_pfn;
arch_zone_highest_possible_pfn[zone] = end_pfn;
start_pfn = end_pfn;
}
/* Find the PFNs that ZONE_MOVABLE begins at in each node */
memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
find_zone_movable_pfns_for_nodes();
/* Print out the zone ranges */
pr_info("Zone ranges:\n");
for (i = 0; i < MAX_NR_ZONES; i++) {
if (i == ZONE_MOVABLE)
continue;
pr_info(" %-8s ", zone_names[i]);
if (arch_zone_lowest_possible_pfn[i] ==
arch_zone_highest_possible_pfn[i])
pr_cont("empty\n");
else
pr_cont("[mem %#018Lx-%#018Lx]\n",
(u64)arch_zone_lowest_possible_pfn[i]
<< PAGE_SHIFT,
((u64)arch_zone_highest_possible_pfn[i]
<< PAGE_SHIFT) - 1);
}
/* Print out the PFNs ZONE_MOVABLE begins at in each node */
pr_info("Movable zone start for each node\n");
for (i = 0; i < MAX_NUMNODES; i++) {
if (zone_movable_pfn[i])
pr_info(" Node %d: %#018Lx\n", i,
(u64)zone_movable_pfn[i] << PAGE_SHIFT);
}
/*
* Print out the early node map, and initialize the
* subsection-map relative to active online memory ranges to
* enable future "sub-section" extensions of the memory map.
*/
pr_info("Early memory node ranges\n");
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
(u64)start_pfn << PAGE_SHIFT,
((u64)end_pfn << PAGE_SHIFT) - 1);
subsection_map_init(start_pfn, end_pfn - start_pfn);
}
/* Initialise every node */
mminit_verify_pageflags_layout();
setup_nr_node_ids();
set_pageblock_order();
for_each_node(nid) {
pg_data_t *pgdat;
if (!node_online(nid)) {
pr_info("Initializing node %d as memoryless\n", nid);
/* Allocator not initialized yet */
pgdat = arch_alloc_nodedata(nid);
if (!pgdat)
panic("Cannot allocate %zuB for node %d.\n",
sizeof(*pgdat), nid);
arch_refresh_nodedata(nid, pgdat);
free_area_init_node(nid);
/*
* We do not want to confuse userspace by sysfs
* files/directories for node without any memory
* attached to it, so this node is not marked as
* N_MEMORY and not marked online so that no sysfs
* hierarchy will be created via register_one_node for
* it. The pgdat will get fully initialized by
* hotadd_init_pgdat() when memory is hotplugged into
* this node.
*/
continue;
}
pgdat = NODE_DATA(nid);
free_area_init_node(nid);
/* Any memory on that node */
if (pgdat->node_present_pages)
node_set_state(nid, N_MEMORY);
check_for_memory(pgdat);
}
memmap_init();
/* disable hash distribution for systems with a single node */
fixup_hashdist();
}
/**
* node_map_pfn_alignment - determine the maximum internode alignment
*
* This function should be called after node map is populated and sorted.
* It calculates the maximum power of two alignment which can distinguish
* all the nodes.
*
* For example, if all nodes are 1GiB and aligned to 1GiB, the return value
* would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
* nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
* shifted, 1GiB is enough and this function will indicate so.
*
* This is used to test whether pfn -> nid mapping of the chosen memory
* model has fine enough granularity to avoid incorrect mapping for the
* populated node map.
*
* Return: the determined alignment in pfn's. 0 if there is no alignment
* requirement (single node).
*/
unsigned long __init node_map_pfn_alignment(void)
{
unsigned long accl_mask = 0, last_end = 0;
unsigned long start, end, mask;
int last_nid = NUMA_NO_NODE;
int i, nid;
for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
if (!start || last_nid < 0 || last_nid == nid) {
last_nid = nid;
last_end = end;
continue;
}
/*
* Start with a mask granular enough to pin-point to the
* start pfn and tick off bits one-by-one until it becomes
* too coarse to separate the current node from the last.
*/
mask = ~((1 << __ffs(start)) - 1);
while (mask && last_end <= (start & (mask << 1)))
mask <<= 1;
/* accumulate all internode masks */
accl_mask |= mask;
}
/* convert mask to number of pages */
return ~accl_mask + 1;
}
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static void __init deferred_free_range(unsigned long pfn,
unsigned long nr_pages)
{
struct page *page;
unsigned long i;
if (!nr_pages)
return;
page = pfn_to_page(pfn);
/* Free a large naturally-aligned chunk if possible */
if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
for (i = 0; i < nr_pages; i += pageblock_nr_pages)
set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
__free_pages_core(page, MAX_ORDER);
return;
}
/* Accept chunks smaller than MAX_ORDER upfront */
accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages));
for (i = 0; i < nr_pages; i++, page++, pfn++) {
if (pageblock_aligned(pfn))
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
__free_pages_core(page, 0);
}
}
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
static inline void __init pgdat_init_report_one_done(void)
{
if (atomic_dec_and_test(&pgdat_init_n_undone))
complete(&pgdat_init_all_done_comp);
}
/*
* Returns true if page needs to be initialized or freed to buddy allocator.
*
* We check if a current MAX_ORDER block is valid by only checking the validity
* of the head pfn.
*/
static inline bool __init deferred_pfn_valid(unsigned long pfn)
{
if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn))
return false;
return true;
}
/*
* Free pages to buddy allocator. Try to free aligned pages in
* MAX_ORDER_NR_PAGES sizes.
*/
static void __init deferred_free_pages(unsigned long pfn,
unsigned long end_pfn)
{
unsigned long nr_free = 0;
for (; pfn < end_pfn; pfn++) {
if (!deferred_pfn_valid(pfn)) {
deferred_free_range(pfn - nr_free, nr_free);
nr_free = 0;
} else if (IS_MAX_ORDER_ALIGNED(pfn)) {
deferred_free_range(pfn - nr_free, nr_free);
nr_free = 1;
} else {
nr_free++;
}
}
/* Free the last block of pages to allocator */
deferred_free_range(pfn - nr_free, nr_free);
}
/*
* Initialize struct pages. We minimize pfn page lookups and scheduler checks
* by performing it only once every MAX_ORDER_NR_PAGES.
* Return number of pages initialized.
*/
static unsigned long __init deferred_init_pages(struct zone *zone,
unsigned long pfn,
unsigned long end_pfn)
{
int nid = zone_to_nid(zone);
unsigned long nr_pages = 0;
int zid = zone_idx(zone);
struct page *page = NULL;
for (; pfn < end_pfn; pfn++) {
if (!deferred_pfn_valid(pfn)) {
page = NULL;
continue;
} else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) {
page = pfn_to_page(pfn);
} else {
page++;
}
__init_single_page(page, pfn, zid, nid);
nr_pages++;
}
return (nr_pages);
}
/*
* This function is meant to pre-load the iterator for the zone init.
* Specifically it walks through the ranges until we are caught up to the
* first_init_pfn value and exits there. If we never encounter the value we
* return false indicating there are no valid ranges left.
*/
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
unsigned long *spfn, unsigned long *epfn,
unsigned long first_init_pfn)
{
u64 j;
/*
* Start out by walking through the ranges in this zone that have
* already been initialized. We don't need to do anything with them
* so we just need to flush them out of the system.
*/
for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
if (*epfn <= first_init_pfn)
continue;
if (*spfn < first_init_pfn)
*spfn = first_init_pfn;
*i = j;
return true;
}
return false;
}
/*
* Initialize and free pages. We do it in two loops: first we initialize
* struct page, then free to buddy allocator, because while we are
* freeing pages we can access pages that are ahead (computing buddy
* page in __free_one_page()).
*
* In order to try and keep some memory in the cache we have the loop
* broken along max page order boundaries. This way we will not cause
* any issues with the buddy page computation.
*/
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
unsigned long *end_pfn)
{
unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
unsigned long spfn = *start_pfn, epfn = *end_pfn;
unsigned long nr_pages = 0;
u64 j = *i;
/* First we loop through and initialize the page values */
for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
unsigned long t;
if (mo_pfn <= *start_pfn)
break;
t = min(mo_pfn, *end_pfn);
nr_pages += deferred_init_pages(zone, *start_pfn, t);
if (mo_pfn < *end_pfn) {
*start_pfn = mo_pfn;
break;
}
}
/* Reset values and now loop through freeing pages as needed */
swap(j, *i);
for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
unsigned long t;
if (mo_pfn <= spfn)
break;
t = min(mo_pfn, epfn);
deferred_free_pages(spfn, t);
if (mo_pfn <= epfn)
break;
}
return nr_pages;
}
static void __init
deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
void *arg)
{
unsigned long spfn, epfn;
struct zone *zone = arg;
u64 i;
deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
/*
* Initialize and free pages in MAX_ORDER sized increments so that we
* can avoid introducing any issues with the buddy allocator.
*/
while (spfn < end_pfn) {
deferred_init_maxorder(&i, zone, &spfn, &epfn);
cond_resched();
}
}
/* An arch may override for more concurrency. */
__weak int __init
deferred_page_init_max_threads(const struct cpumask *node_cpumask)
{
return 1;
}
/* Initialise remaining memory on a node */
static int __init deferred_init_memmap(void *data)
{
pg_data_t *pgdat = data;
const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
unsigned long spfn = 0, epfn = 0;
unsigned long first_init_pfn, flags;
unsigned long start = jiffies;
struct zone *zone;
int zid, max_threads;
u64 i;
/* Bind memory initialisation thread to a local node if possible */
if (!cpumask_empty(cpumask))
set_cpus_allowed_ptr(current, cpumask);
pgdat_resize_lock(pgdat, &flags);
first_init_pfn = pgdat->first_deferred_pfn;
if (first_init_pfn == ULONG_MAX) {
pgdat_resize_unlock(pgdat, &flags);
pgdat_init_report_one_done();
return 0;
}
/* Sanity check boundaries */
BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
pgdat->first_deferred_pfn = ULONG_MAX;
/*
* Once we unlock here, the zone cannot be grown anymore, thus if an
* interrupt thread must allocate this early in boot, zone must be
* pre-grown prior to start of deferred page initialization.
*/
pgdat_resize_unlock(pgdat, &flags);
/* Only the highest zone is deferred so find it */
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
zone = pgdat->node_zones + zid;
if (first_init_pfn < zone_end_pfn(zone))
break;
}
/* If the zone is empty somebody else may have cleared out the zone */
if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
first_init_pfn))
goto zone_empty;
max_threads = deferred_page_init_max_threads(cpumask);
while (spfn < epfn) {
unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
struct padata_mt_job job = {
.thread_fn = deferred_init_memmap_chunk,
.fn_arg = zone,
.start = spfn,
.size = epfn_align - spfn,
.align = PAGES_PER_SECTION,
.min_chunk = PAGES_PER_SECTION,
.max_threads = max_threads,
};
padata_do_multithreaded(&job);
deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
epfn_align);
}
zone_empty:
/* Sanity check that the next zone really is unpopulated */
WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
pr_info("node %d deferred pages initialised in %ums\n",
pgdat->node_id, jiffies_to_msecs(jiffies - start));
pgdat_init_report_one_done();
return 0;
}
/*
* If this zone has deferred pages, try to grow it by initializing enough
* deferred pages to satisfy the allocation specified by order, rounded up to
* the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
* of SECTION_SIZE bytes by initializing struct pages in increments of
* PAGES_PER_SECTION * sizeof(struct page) bytes.
*
* Return true when zone was grown, otherwise return false. We return true even
* when we grow less than requested, to let the caller decide if there are
* enough pages to satisfy the allocation.
*
* Note: We use noinline because this function is needed only during boot, and
* it is called from a __ref function _deferred_grow_zone. This way we are
* making sure that it is not inlined into permanent text section.
*/
bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
{
unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
pg_data_t *pgdat = zone->zone_pgdat;
unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
unsigned long spfn, epfn, flags;
unsigned long nr_pages = 0;
u64 i;
/* Only the last zone may have deferred pages */
if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
return false;
pgdat_resize_lock(pgdat, &flags);
/*
* If someone grew this zone while we were waiting for spinlock, return
* true, as there might be enough pages already.
*/
if (first_deferred_pfn != pgdat->first_deferred_pfn) {
pgdat_resize_unlock(pgdat, &flags);
return true;
}
/* If the zone is empty somebody else may have cleared out the zone */
if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
first_deferred_pfn)) {
pgdat->first_deferred_pfn = ULONG_MAX;
pgdat_resize_unlock(pgdat, &flags);
/* Retry only once. */
return first_deferred_pfn != ULONG_MAX;
}
/*
* Initialize and free pages in MAX_ORDER sized increments so
* that we can avoid introducing any issues with the buddy
* allocator.
*/
while (spfn < epfn) {
/* update our first deferred PFN for this section */
first_deferred_pfn = spfn;
nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
touch_nmi_watchdog();
/* We should only stop along section boundaries */
if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
continue;
/* If our quota has been met we can stop here */
if (nr_pages >= nr_pages_needed)
break;
}
pgdat->first_deferred_pfn = spfn;
pgdat_resize_unlock(pgdat, &flags);
return nr_pages > 0;
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
#ifdef CONFIG_CMA
void __init init_cma_reserved_pageblock(struct page *page)
{
unsigned i = pageblock_nr_pages;
struct page *p = page;
do {
__ClearPageReserved(p);
set_page_count(p, 0);
} while (++p, --i);
set_pageblock_migratetype(page, MIGRATE_CMA);
set_page_refcounted(page);
__free_pages(page, pageblock_order);
adjust_managed_page_count(page, pageblock_nr_pages);
page_zone(page)->cma_pages += pageblock_nr_pages;
}
#endif
void set_zone_contiguous(struct zone *zone)
{
unsigned long block_start_pfn = zone->zone_start_pfn;
unsigned long block_end_pfn;
block_end_pfn = pageblock_end_pfn(block_start_pfn);
for (; block_start_pfn < zone_end_pfn(zone);
block_start_pfn = block_end_pfn,
block_end_pfn += pageblock_nr_pages) {
block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
if (!__pageblock_pfn_to_page(block_start_pfn,
block_end_pfn, zone))
return;
cond_resched();
}
/* We confirm that there is no hole */
zone->contiguous = true;
}
void __init page_alloc_init_late(void)
{
struct zone *zone;
int nid;
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
/* There will be num_node_state(N_MEMORY) threads */
atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
for_each_node_state(nid, N_MEMORY) {
kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
}
/* Block until all are initialised */
wait_for_completion(&pgdat_init_all_done_comp);
/*
* We initialized the rest of the deferred pages. Permanently disable
* on-demand struct page initialization.
*/
static_branch_disable(&deferred_pages);
/* Reinit limits that are based on free pages after the kernel is up */
files_maxfiles_init();
#endif
buffer_init();
/* Discard memblock private memory */
memblock_discard();
for_each_node_state(nid, N_MEMORY)
shuffle_free_memory(NODE_DATA(nid));
for_each_populated_zone(zone)
set_zone_contiguous(zone);
/* Initialize page ext after all struct pages are initialized. */
if (deferred_struct_pages)
page_ext_init();
page_alloc_sysctl_init();
}
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
* Returns the number of pages that arch has reserved but
* is not known to alloc_large_system_hash().
*/
static unsigned long __init arch_reserved_kernel_pages(void)
{
return 0;
}
#endif
/*
* Adaptive scale is meant to reduce sizes of hash tables on large memory
* machines. As memory size is increased the scale is also increased but at
* slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
* quadruples the scale is increased by one, which means the size of hash table
* only doubles, instead of quadrupling as well.
* Because 32-bit systems cannot have large physical memory, where this scaling
* makes sense, it is disabled on such platforms.
*/
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE (64ul << 30)
#define ADAPT_SCALE_SHIFT 2
#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif
/*
* allocate a large system hash table from bootmem
* - it is assumed that the hash table must contain an exact power-of-2
* quantity of entries
* - limit is the number of hash buckets, not the total allocation size
*/
void *__init alloc_large_system_hash(const char *tablename,
unsigned long bucketsize,
unsigned long numentries,
int scale,
int flags,
unsigned int *_hash_shift,
unsigned int *_hash_mask,
unsigned long low_limit,
unsigned long high_limit)
{
unsigned long long max = high_limit;
unsigned long log2qty, size;
void *table;
gfp_t gfp_flags;
bool virt;
bool huge;
/* allow the kernel cmdline to have a say */
if (!numentries) {
/* round applicable memory size up to nearest megabyte */
numentries = nr_kernel_pages;
numentries -= arch_reserved_kernel_pages();
/* It isn't necessary when PAGE_SIZE >= 1MB */
if (PAGE_SIZE < SZ_1M)
numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
#if __BITS_PER_LONG > 32
if (!high_limit) {
unsigned long adapt;
for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
adapt <<= ADAPT_SCALE_SHIFT)
scale++;
}
#endif
/* limit to 1 bucket per 2^scale bytes of low memory */
if (scale > PAGE_SHIFT)
numentries >>= (scale - PAGE_SHIFT);
else
numentries <<= (PAGE_SHIFT - scale);
if (unlikely((numentries * bucketsize) < PAGE_SIZE))
numentries = PAGE_SIZE / bucketsize;
}
numentries = roundup_pow_of_two(numentries);
/* limit allocation size to 1/16 total memory by default */
if (max == 0) {
max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
do_div(max, bucketsize);
}
max = min(max, 0x80000000ULL);
if (numentries < low_limit)
numentries = low_limit;
if (numentries > max)
numentries = max;
log2qty = ilog2(numentries);
gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
do {
virt = false;
size = bucketsize << log2qty;
if (flags & HASH_EARLY) {
if (flags & HASH_ZERO)
table = memblock_alloc(size, SMP_CACHE_BYTES);
else
table = memblock_alloc_raw(size,
SMP_CACHE_BYTES);
} else if (get_order(size) > MAX_ORDER || hashdist) {
table = vmalloc_huge(size, gfp_flags);
virt = true;
if (table)
huge = is_vm_area_hugepages(table);
} else {
/*
* If bucketsize is not a power-of-two, we may free
* some pages at the end of hash table which
* alloc_pages_exact() automatically does
*/
table = alloc_pages_exact(size, gfp_flags);
kmemleak_alloc(table, size, 1, gfp_flags);
}
} while (!table && size > PAGE_SIZE && --log2qty);
if (!table)
panic("Failed to allocate %s hash table\n", tablename);
pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
if (_hash_shift)
*_hash_shift = log2qty;
if (_hash_mask)
*_hash_mask = (1 << log2qty) - 1;
return table;
}
/**
* set_dma_reserve - set the specified number of pages reserved in the first zone
* @new_dma_reserve: The number of pages to mark reserved
*
* The per-cpu batchsize and zone watermarks are determined by managed_pages.
* In the DMA zone, a significant percentage may be consumed by kernel image
* and other unfreeable allocations which can skew the watermarks badly. This
* function may optionally be used to account for unfreeable pages in the
* first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
* smaller per-cpu batchsize.
*/
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
dma_reserve = new_dma_reserve;
}
void __init memblock_free_pages(struct page *page, unsigned long pfn,
unsigned int order)
{
if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
int nid = early_pfn_to_nid(pfn);
if (!early_page_initialised(pfn, nid))
return;
}
if (!kmsan_memblock_free_pages(page, order)) {
/* KMSAN will take care of these pages. */
return;
}
__free_pages_core(page, order);
}
DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
EXPORT_SYMBOL(init_on_alloc);
DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
EXPORT_SYMBOL(init_on_free);
static bool _init_on_alloc_enabled_early __read_mostly
= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
static int __init early_init_on_alloc(char *buf)
{
return kstrtobool(buf, &_init_on_alloc_enabled_early);
}
early_param("init_on_alloc", early_init_on_alloc);
static bool _init_on_free_enabled_early __read_mostly
= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
static int __init early_init_on_free(char *buf)
{
return kstrtobool(buf, &_init_on_free_enabled_early);
}
early_param("init_on_free", early_init_on_free);
DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
/*
* Enable static keys related to various memory debugging and hardening options.
* Some override others, and depend on early params that are evaluated in the
* order of appearance. So we need to first gather the full picture of what was
* enabled, and then make decisions.
*/
static void __init mem_debugging_and_hardening_init(void)
{
bool page_poisoning_requested = false;
bool want_check_pages = false;
#ifdef CONFIG_PAGE_POISONING
/*
* Page poisoning is debug page alloc for some arches. If
* either of those options are enabled, enable poisoning.
*/
if (page_poisoning_enabled() ||
(!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
debug_pagealloc_enabled())) {
static_branch_enable(&_page_poisoning_enabled);
page_poisoning_requested = true;
want_check_pages = true;
}
#endif
if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
page_poisoning_requested) {
pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
"will take precedence over init_on_alloc and init_on_free\n");
_init_on_alloc_enabled_early = false;
_init_on_free_enabled_early = false;
}
if (_init_on_alloc_enabled_early) {
want_check_pages = true;
static_branch_enable(&init_on_alloc);
} else {
static_branch_disable(&init_on_alloc);
}
if (_init_on_free_enabled_early) {
want_check_pages = true;
static_branch_enable(&init_on_free);
} else {
static_branch_disable(&init_on_free);
}
if (IS_ENABLED(CONFIG_KMSAN) &&
(_init_on_alloc_enabled_early || _init_on_free_enabled_early))
pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
#ifdef CONFIG_DEBUG_PAGEALLOC
if (debug_pagealloc_enabled()) {
want_check_pages = true;
static_branch_enable(&_debug_pagealloc_enabled);
if (debug_guardpage_minorder())
static_branch_enable(&_debug_guardpage_enabled);
}
#endif
/*
* Any page debugging or hardening option also enables sanity checking
* of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
* enabled already.
*/
if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
static_branch_enable(&check_pages_enabled);
}
/* Report memory auto-initialization states for this boot. */
static void __init report_meminit(void)
{
const char *stack;
if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
stack = "all(pattern)";
else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
stack = "all(zero)";
else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
stack = "byref_all(zero)";
else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
stack = "byref(zero)";
else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
stack = "__user(zero)";
else
stack = "off";
pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
want_init_on_free() ? "on" : "off");
if (want_init_on_free())
pr_info("mem auto-init: clearing system memory may take some time...\n");
}
static void __init mem_init_print_info(void)
{
unsigned long physpages, codesize, datasize, rosize, bss_size;
unsigned long init_code_size, init_data_size;
physpages = get_num_physpages();
codesize = _etext - _stext;
datasize = _edata - _sdata;
rosize = __end_rodata - __start_rodata;
bss_size = __bss_stop - __bss_start;
init_data_size = __init_end - __init_begin;
init_code_size = _einittext - _sinittext;
/*
* Detect special cases and adjust section sizes accordingly:
* 1) .init.* may be embedded into .data sections
* 2) .init.text.* may be out of [__init_begin, __init_end],
* please refer to arch/tile/kernel/vmlinux.lds.S.
* 3) .rodata.* may be embedded into .text or .data sections.
*/
#define adj_init_size(start, end, size, pos, adj) \
do { \
if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
size -= adj; \
} while (0)
adj_init_size(__init_begin, __init_end, init_data_size,
_sinittext, init_code_size);
adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
#undef adj_init_size
pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
#ifdef CONFIG_HIGHMEM
", %luK highmem"
#endif
")\n",
K(nr_free_pages()), K(physpages),
codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
K(physpages - totalram_pages() - totalcma_pages),
K(totalcma_pages)
#ifdef CONFIG_HIGHMEM
, K(totalhigh_pages())
#endif
);
}
/*
* Set up kernel memory allocators
*/
void __init mm_core_init(void)
{
/* Initializations relying on SMP setup */
build_all_zonelists(NULL);
page_alloc_init_cpuhp();
/*
* page_ext requires contiguous pages,
* bigger than MAX_ORDER unless SPARSEMEM.
*/
page_ext_init_flatmem();
mem_debugging_and_hardening_init();
kfence_alloc_pool_and_metadata();
report_meminit();
kmsan_init_shadow();
stack_depot_early_init();
mem_init();
mem_init_print_info();
kmem_cache_init();
/*
* page_owner must be initialized after buddy is ready, and also after
* slab is ready so that stack_depot_init() works properly
*/
page_ext_init_flatmem_late();
kmemleak_init();
ptlock_cache_init();
pgtable_cache_init();
debug_objects_mem_init();
vmalloc_init();
/* If no deferred init page_ext now, as vmap is fully initialized */
if (!deferred_struct_pages)
page_ext_init();
/* Should be run before the first non-init thread is created */
init_espfix_bsp();
/* Should be run after espfix64 is set up. */
pti_init();
kmsan_init_runtime();
mm_cache_init();
}