mirror of
https://github.com/torvalds/linux.git
synced 2024-11-26 22:21:42 +00:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
486 lines
12 KiB
C
486 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* High memory handling common code and variables.
|
|
*
|
|
* (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
|
|
* Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
|
|
*
|
|
*
|
|
* Redesigned the x86 32-bit VM architecture to deal with
|
|
* 64-bit physical space. With current x86 CPUs this
|
|
* means up to 64 Gigabytes physical RAM.
|
|
*
|
|
* Rewrote high memory support to move the page cache into
|
|
* high memory. Implemented permanent (schedulable) kmaps
|
|
* based on Linus' idea.
|
|
*
|
|
* Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/export.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/init.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/kgdb.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
|
|
#if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32)
|
|
DEFINE_PER_CPU(int, __kmap_atomic_idx);
|
|
#endif
|
|
|
|
/*
|
|
* Virtual_count is not a pure "count".
|
|
* 0 means that it is not mapped, and has not been mapped
|
|
* since a TLB flush - it is usable.
|
|
* 1 means that there are no users, but it has been mapped
|
|
* since the last TLB flush - so we can't use it.
|
|
* n means that there are (n-1) current users of it.
|
|
*/
|
|
#ifdef CONFIG_HIGHMEM
|
|
|
|
/*
|
|
* Architecture with aliasing data cache may define the following family of
|
|
* helper functions in its asm/highmem.h to control cache color of virtual
|
|
* addresses where physical memory pages are mapped by kmap.
|
|
*/
|
|
#ifndef get_pkmap_color
|
|
|
|
/*
|
|
* Determine color of virtual address where the page should be mapped.
|
|
*/
|
|
static inline unsigned int get_pkmap_color(struct page *page)
|
|
{
|
|
return 0;
|
|
}
|
|
#define get_pkmap_color get_pkmap_color
|
|
|
|
/*
|
|
* Get next index for mapping inside PKMAP region for page with given color.
|
|
*/
|
|
static inline unsigned int get_next_pkmap_nr(unsigned int color)
|
|
{
|
|
static unsigned int last_pkmap_nr;
|
|
|
|
last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
|
|
return last_pkmap_nr;
|
|
}
|
|
|
|
/*
|
|
* Determine if page index inside PKMAP region (pkmap_nr) of given color
|
|
* has wrapped around PKMAP region end. When this happens an attempt to
|
|
* flush all unused PKMAP slots is made.
|
|
*/
|
|
static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color)
|
|
{
|
|
return pkmap_nr == 0;
|
|
}
|
|
|
|
/*
|
|
* Get the number of PKMAP entries of the given color. If no free slot is
|
|
* found after checking that many entries, kmap will sleep waiting for
|
|
* someone to call kunmap and free PKMAP slot.
|
|
*/
|
|
static inline int get_pkmap_entries_count(unsigned int color)
|
|
{
|
|
return LAST_PKMAP;
|
|
}
|
|
|
|
/*
|
|
* Get head of a wait queue for PKMAP entries of the given color.
|
|
* Wait queues for different mapping colors should be independent to avoid
|
|
* unnecessary wakeups caused by freeing of slots of other colors.
|
|
*/
|
|
static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color)
|
|
{
|
|
static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
|
|
|
|
return &pkmap_map_wait;
|
|
}
|
|
#endif
|
|
|
|
unsigned long totalhigh_pages __read_mostly;
|
|
EXPORT_SYMBOL(totalhigh_pages);
|
|
|
|
|
|
EXPORT_PER_CPU_SYMBOL(__kmap_atomic_idx);
|
|
|
|
unsigned int nr_free_highpages (void)
|
|
{
|
|
struct zone *zone;
|
|
unsigned int pages = 0;
|
|
|
|
for_each_populated_zone(zone) {
|
|
if (is_highmem(zone))
|
|
pages += zone_page_state(zone, NR_FREE_PAGES);
|
|
}
|
|
|
|
return pages;
|
|
}
|
|
|
|
static int pkmap_count[LAST_PKMAP];
|
|
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
|
|
|
|
pte_t * pkmap_page_table;
|
|
|
|
/*
|
|
* Most architectures have no use for kmap_high_get(), so let's abstract
|
|
* the disabling of IRQ out of the locking in that case to save on a
|
|
* potential useless overhead.
|
|
*/
|
|
#ifdef ARCH_NEEDS_KMAP_HIGH_GET
|
|
#define lock_kmap() spin_lock_irq(&kmap_lock)
|
|
#define unlock_kmap() spin_unlock_irq(&kmap_lock)
|
|
#define lock_kmap_any(flags) spin_lock_irqsave(&kmap_lock, flags)
|
|
#define unlock_kmap_any(flags) spin_unlock_irqrestore(&kmap_lock, flags)
|
|
#else
|
|
#define lock_kmap() spin_lock(&kmap_lock)
|
|
#define unlock_kmap() spin_unlock(&kmap_lock)
|
|
#define lock_kmap_any(flags) \
|
|
do { spin_lock(&kmap_lock); (void)(flags); } while (0)
|
|
#define unlock_kmap_any(flags) \
|
|
do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
|
|
#endif
|
|
|
|
struct page *kmap_to_page(void *vaddr)
|
|
{
|
|
unsigned long addr = (unsigned long)vaddr;
|
|
|
|
if (addr >= PKMAP_ADDR(0) && addr < PKMAP_ADDR(LAST_PKMAP)) {
|
|
int i = PKMAP_NR(addr);
|
|
return pte_page(pkmap_page_table[i]);
|
|
}
|
|
|
|
return virt_to_page(addr);
|
|
}
|
|
EXPORT_SYMBOL(kmap_to_page);
|
|
|
|
static void flush_all_zero_pkmaps(void)
|
|
{
|
|
int i;
|
|
int need_flush = 0;
|
|
|
|
flush_cache_kmaps();
|
|
|
|
for (i = 0; i < LAST_PKMAP; i++) {
|
|
struct page *page;
|
|
|
|
/*
|
|
* zero means we don't have anything to do,
|
|
* >1 means that it is still in use. Only
|
|
* a count of 1 means that it is free but
|
|
* needs to be unmapped
|
|
*/
|
|
if (pkmap_count[i] != 1)
|
|
continue;
|
|
pkmap_count[i] = 0;
|
|
|
|
/* sanity check */
|
|
BUG_ON(pte_none(pkmap_page_table[i]));
|
|
|
|
/*
|
|
* Don't need an atomic fetch-and-clear op here;
|
|
* no-one has the page mapped, and cannot get at
|
|
* its virtual address (and hence PTE) without first
|
|
* getting the kmap_lock (which is held here).
|
|
* So no dangers, even with speculative execution.
|
|
*/
|
|
page = pte_page(pkmap_page_table[i]);
|
|
pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]);
|
|
|
|
set_page_address(page, NULL);
|
|
need_flush = 1;
|
|
}
|
|
if (need_flush)
|
|
flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
|
|
}
|
|
|
|
/**
|
|
* kmap_flush_unused - flush all unused kmap mappings in order to remove stray mappings
|
|
*/
|
|
void kmap_flush_unused(void)
|
|
{
|
|
lock_kmap();
|
|
flush_all_zero_pkmaps();
|
|
unlock_kmap();
|
|
}
|
|
|
|
static inline unsigned long map_new_virtual(struct page *page)
|
|
{
|
|
unsigned long vaddr;
|
|
int count;
|
|
unsigned int last_pkmap_nr;
|
|
unsigned int color = get_pkmap_color(page);
|
|
|
|
start:
|
|
count = get_pkmap_entries_count(color);
|
|
/* Find an empty entry */
|
|
for (;;) {
|
|
last_pkmap_nr = get_next_pkmap_nr(color);
|
|
if (no_more_pkmaps(last_pkmap_nr, color)) {
|
|
flush_all_zero_pkmaps();
|
|
count = get_pkmap_entries_count(color);
|
|
}
|
|
if (!pkmap_count[last_pkmap_nr])
|
|
break; /* Found a usable entry */
|
|
if (--count)
|
|
continue;
|
|
|
|
/*
|
|
* Sleep for somebody else to unmap their entries
|
|
*/
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
wait_queue_head_t *pkmap_map_wait =
|
|
get_pkmap_wait_queue_head(color);
|
|
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(pkmap_map_wait, &wait);
|
|
unlock_kmap();
|
|
schedule();
|
|
remove_wait_queue(pkmap_map_wait, &wait);
|
|
lock_kmap();
|
|
|
|
/* Somebody else might have mapped it while we slept */
|
|
if (page_address(page))
|
|
return (unsigned long)page_address(page);
|
|
|
|
/* Re-start */
|
|
goto start;
|
|
}
|
|
}
|
|
vaddr = PKMAP_ADDR(last_pkmap_nr);
|
|
set_pte_at(&init_mm, vaddr,
|
|
&(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
|
|
|
|
pkmap_count[last_pkmap_nr] = 1;
|
|
set_page_address(page, (void *)vaddr);
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
/**
|
|
* kmap_high - map a highmem page into memory
|
|
* @page: &struct page to map
|
|
*
|
|
* Returns the page's virtual memory address.
|
|
*
|
|
* We cannot call this from interrupts, as it may block.
|
|
*/
|
|
void *kmap_high(struct page *page)
|
|
{
|
|
unsigned long vaddr;
|
|
|
|
/*
|
|
* For highmem pages, we can't trust "virtual" until
|
|
* after we have the lock.
|
|
*/
|
|
lock_kmap();
|
|
vaddr = (unsigned long)page_address(page);
|
|
if (!vaddr)
|
|
vaddr = map_new_virtual(page);
|
|
pkmap_count[PKMAP_NR(vaddr)]++;
|
|
BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
|
|
unlock_kmap();
|
|
return (void*) vaddr;
|
|
}
|
|
|
|
EXPORT_SYMBOL(kmap_high);
|
|
|
|
#ifdef ARCH_NEEDS_KMAP_HIGH_GET
|
|
/**
|
|
* kmap_high_get - pin a highmem page into memory
|
|
* @page: &struct page to pin
|
|
*
|
|
* Returns the page's current virtual memory address, or NULL if no mapping
|
|
* exists. If and only if a non null address is returned then a
|
|
* matching call to kunmap_high() is necessary.
|
|
*
|
|
* This can be called from any context.
|
|
*/
|
|
void *kmap_high_get(struct page *page)
|
|
{
|
|
unsigned long vaddr, flags;
|
|
|
|
lock_kmap_any(flags);
|
|
vaddr = (unsigned long)page_address(page);
|
|
if (vaddr) {
|
|
BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
|
|
pkmap_count[PKMAP_NR(vaddr)]++;
|
|
}
|
|
unlock_kmap_any(flags);
|
|
return (void*) vaddr;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* kunmap_high - unmap a highmem page into memory
|
|
* @page: &struct page to unmap
|
|
*
|
|
* If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
|
|
* only from user context.
|
|
*/
|
|
void kunmap_high(struct page *page)
|
|
{
|
|
unsigned long vaddr;
|
|
unsigned long nr;
|
|
unsigned long flags;
|
|
int need_wakeup;
|
|
unsigned int color = get_pkmap_color(page);
|
|
wait_queue_head_t *pkmap_map_wait;
|
|
|
|
lock_kmap_any(flags);
|
|
vaddr = (unsigned long)page_address(page);
|
|
BUG_ON(!vaddr);
|
|
nr = PKMAP_NR(vaddr);
|
|
|
|
/*
|
|
* A count must never go down to zero
|
|
* without a TLB flush!
|
|
*/
|
|
need_wakeup = 0;
|
|
switch (--pkmap_count[nr]) {
|
|
case 0:
|
|
BUG();
|
|
case 1:
|
|
/*
|
|
* Avoid an unnecessary wake_up() function call.
|
|
* The common case is pkmap_count[] == 1, but
|
|
* no waiters.
|
|
* The tasks queued in the wait-queue are guarded
|
|
* by both the lock in the wait-queue-head and by
|
|
* the kmap_lock. As the kmap_lock is held here,
|
|
* no need for the wait-queue-head's lock. Simply
|
|
* test if the queue is empty.
|
|
*/
|
|
pkmap_map_wait = get_pkmap_wait_queue_head(color);
|
|
need_wakeup = waitqueue_active(pkmap_map_wait);
|
|
}
|
|
unlock_kmap_any(flags);
|
|
|
|
/* do wake-up, if needed, race-free outside of the spin lock */
|
|
if (need_wakeup)
|
|
wake_up(pkmap_map_wait);
|
|
}
|
|
|
|
EXPORT_SYMBOL(kunmap_high);
|
|
#endif
|
|
|
|
#if defined(HASHED_PAGE_VIRTUAL)
|
|
|
|
#define PA_HASH_ORDER 7
|
|
|
|
/*
|
|
* Describes one page->virtual association
|
|
*/
|
|
struct page_address_map {
|
|
struct page *page;
|
|
void *virtual;
|
|
struct list_head list;
|
|
};
|
|
|
|
static struct page_address_map page_address_maps[LAST_PKMAP];
|
|
|
|
/*
|
|
* Hash table bucket
|
|
*/
|
|
static struct page_address_slot {
|
|
struct list_head lh; /* List of page_address_maps */
|
|
spinlock_t lock; /* Protect this bucket's list */
|
|
} ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
|
|
|
|
static struct page_address_slot *page_slot(const struct page *page)
|
|
{
|
|
return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
|
|
}
|
|
|
|
/**
|
|
* page_address - get the mapped virtual address of a page
|
|
* @page: &struct page to get the virtual address of
|
|
*
|
|
* Returns the page's virtual address.
|
|
*/
|
|
void *page_address(const struct page *page)
|
|
{
|
|
unsigned long flags;
|
|
void *ret;
|
|
struct page_address_slot *pas;
|
|
|
|
if (!PageHighMem(page))
|
|
return lowmem_page_address(page);
|
|
|
|
pas = page_slot(page);
|
|
ret = NULL;
|
|
spin_lock_irqsave(&pas->lock, flags);
|
|
if (!list_empty(&pas->lh)) {
|
|
struct page_address_map *pam;
|
|
|
|
list_for_each_entry(pam, &pas->lh, list) {
|
|
if (pam->page == page) {
|
|
ret = pam->virtual;
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
done:
|
|
spin_unlock_irqrestore(&pas->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
EXPORT_SYMBOL(page_address);
|
|
|
|
/**
|
|
* set_page_address - set a page's virtual address
|
|
* @page: &struct page to set
|
|
* @virtual: virtual address to use
|
|
*/
|
|
void set_page_address(struct page *page, void *virtual)
|
|
{
|
|
unsigned long flags;
|
|
struct page_address_slot *pas;
|
|
struct page_address_map *pam;
|
|
|
|
BUG_ON(!PageHighMem(page));
|
|
|
|
pas = page_slot(page);
|
|
if (virtual) { /* Add */
|
|
pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)];
|
|
pam->page = page;
|
|
pam->virtual = virtual;
|
|
|
|
spin_lock_irqsave(&pas->lock, flags);
|
|
list_add_tail(&pam->list, &pas->lh);
|
|
spin_unlock_irqrestore(&pas->lock, flags);
|
|
} else { /* Remove */
|
|
spin_lock_irqsave(&pas->lock, flags);
|
|
list_for_each_entry(pam, &pas->lh, list) {
|
|
if (pam->page == page) {
|
|
list_del(&pam->list);
|
|
spin_unlock_irqrestore(&pas->lock, flags);
|
|
goto done;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&pas->lock, flags);
|
|
}
|
|
done:
|
|
return;
|
|
}
|
|
|
|
void __init page_address_init(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
|
|
INIT_LIST_HEAD(&page_address_htable[i].lh);
|
|
spin_lock_init(&page_address_htable[i].lock);
|
|
}
|
|
}
|
|
|
|
#endif /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */
|